Угловая частота — Википедия
Материал из Википедии — свободной энциклопедии
Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).
Угловая частота является производной по времени от фазы колебания:
- ω=∂φ/∂t.{\displaystyle \omega =\partial \varphi /\partial t.}
Другое распространённое обозначение ω=φ˙.{\displaystyle \omega ={\dot {\varphi }}.}
Угловая частота связана с частотой ν соотношением[1]
- ω=2πν.{\displaystyle \omega ={2\pi \nu }.}
В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:
- ω=360∘ν.{\displaystyle \omega ={360^{\circ }\nu }.}
В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.
Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ωLC=1/LC,{\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота νLC=1/(2πLC).{\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}
В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.
- ↑ Угловая частота (неопр.). Большой энциклопедический политехнический словарь. Дата обращения 27 октября 2016.
Формула частоты в физике
ОпределениеЧастота — это физический параметр, которые используют для характеристики периодических процессов. Частота равна количеству повторений или свершения событий в единицу времени.
Чаще всего в физике частоту обозначают буквой $\nu ,$ иногда встречаются другие обозначения частоты, например $f$ или $F$.
Частота (наряду со временем) является самой точно измеряемой величиной.
Формула частоты колебаний
При помощи частоты характеризуют колебания. В этом случае частота является физической величиной обратной периоду колебаний $(T).$
\[\nu =\frac{1}{T}\left(1\right).\]Частота, в этом случае — это число полных колебаний ($N$), совершающихся за единицу времени:
\[\nu =\frac{N}{\Delta t}\left(2\right),\]Единицей измерения частоты в Международной системе единиц (СИ) служат в герцы или обратные секунды:
\[\left[\nu \right]=с^{-1}=Гц.\]Герц — это единица измерения частоты периодического процесса, при которой за время равное одной секунде происходит один цикл процесса. Единица измерения частоты периодического процесса получила свое наименование в честь немецкого ученого Г. Герца.
Частота биений, которые возникают при сложении двух колебаний, происходящих по одной прямой с разными, но близкими по величине частотами (${\nu }_1\ и\ {\nu }_2$) равна:
\[{\nu =\nu }_1-\ {\nu }_2\left(3\right).\]Еще одно величиной характеризующей колебательный процесс является циклическая частота (${\omega }_0$), связанная с частотой как:
\[{\omega }_0=2\pi \nu \left(4\right).\]Циклическая частота измеряется в радианах, деленных на секунду:
\[\left[{\omega }_0\right]=\frac{рад}{с}.\]Частота колебаний тела, имеющего массу$\ m,$ подвешенного на пружине с коэффициентом упругости $k$ равна:
\[\nu =\frac{1}{2\pi \sqrt{{m}/{k}}}\left(5\right).\]Формула (4) верна для упругих, малых колебаний. Кроме того масса пружины должна быть малой по сравнению с массой тела, прикрепленного к этой пружине.
Для математического маятника частоту колебаний вычисляют как: длина нити:
\[\nu =\frac{1}{2\pi \sqrt{{l}/{g}}}\left(6\right),\]где $g$ — ускорение свободного падения; $\ l$ — длина нити (длина подвеса) маятника.
Физический маятник совершает колебания с частотой:
\[\nu =\frac{1}{2\pi \sqrt{{J}/{mgd}}}\left(7\right),\]где $J$ — момент инерции тела, совершающего колебания относительно оси; $d$ — расстояние от центра масс маятника до оси колебаний.
Формулы (4) — (6) приближенные. Чем меньше амплитуда колебаний, тем точнее значение частоты колебаний, вычисляемых с их помощью.
Формулы для вычисления частоты дискретных событий, частота вращения
дискретных колебаний ($n$) — называют физическую величину, равную числу действий (событий) в единицу времени. Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:
\[n=\frac{1}{\tau }\left(8\right).\]Един
Частота колебаний | Все формулы
Сообщение от администратора:
Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам — очень круто. Прогресс налицо.
В приложении можно учить слова, тренировать аудирование и произношение.
Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА
Частота колебаний — величина, обратная периоду колебаний, т. е. равная числу периодов колебаний (числу колебаний), совершаемых в единицу времени.
Разновидность частот колебаний :
Циклическая частота
Частота колебаний физического маятника
Частота пружинного маятника
Частота математического маятника
Частота электромагнитных колебаний
Частота колебаний крутильного маятника
В Формуле мы использовали :
— Частота колебаний
— Циклическая частота
— Период колебаний маятника
— Масса груза, или масса маятника
— Жесткость пружины
— Длина подвеса
— Ускорение свободного падения
— Момент инерции маятника относительно оси вращения
— Расстояние от оси вращения до центра масс
— Момент инерции тела
— Вращательный коэффициент жёсткости маятника
Что такое частота колебаний? :: SYL.ru
Всё на планете имеет свою частоту. Согласно одной из версий, она даже положена в основу нашего мира. Увы, теория весьма сложна, чтобы излагать её в рамках одной публикации, поэтому нами будет рассмотрена исключительно частота колебаний как самостоятельное действие. В рамках статьи будет дано определения этому физическому процессу, его единицам измерений и метрологической составляющей. И под конец будет рассмотрен пример важности в обычной жизни обыкновенного звука. Мы узнаем, что он собой представляет и какова его природа.
Что называют частотой колебаний?
Под этим подразумевают физическую величину, которая используется для характеристики периодического процесса, что равен количеству повторений или возникновений определённых событий за одну единицу времени. Этот показатель рассчитывается как отношение числа данных происшествий к промежутку времени, за который они были совершены. Собственная частота колебаний есть у каждого элемента мира. Тело, атом, дорожный мост, поезд, самолёт – все они совершают определённые движения, которые так называются. Пускай эти процессы не видны глазу, они есть. Единицами измерений, в которых считается частота колебаний, являются герцы. Своё название они получили в честь физика немецкого происхождения Генриха Герца.Мгновенная частота
Периодический сигнал можно охарактеризовать мгновенной частотой, которая с точностью до коэффициента является скоростью изменения фазы. Его можно представить как сумму гармонических спектральных составляющих, обладающих своими постоянными колебаниями.
Циклическая частота колебаний
Её удобно применять в теоретической физике, особенно в разделе про электромагнетизм. Циклическая частота (её также называют радиальной, круговой, угловой) – это физическая величина, которая используется для обозначения интенсивности происхождения колебательного или вращательного движения. Первая выражается в оборотах или колебаниях на секунду. При вращательном движении частота равняется модулю вектора угловой скорости.Выражение этого показателя осуществляется в радианах на одну секунду. Размерность циклической частоты является обратной времени. В числовом выражении она равняется числу колебаний или оборотов, что произошли за количество секунд 2π. Её введения для использования позволяет значительно упрощать различный спектр формул в электронике и теоретической физике. Самый популярный пример использования – это обсчёт резонансной циклической частоты колебательного LC-контура. Другие формулы могут значительно усложняться.
Частота дискретных событий
Под этой величиной подразумевают значение, что равно числу дискретных событий, которые происходят за одну единицу времени. В теории обычно используется показатель – секунда в минус первой степени. На практике, чтобы выразить частоту импульсов, обычно применяют герц.Частота вращения
Под нею понимают физическую величину, которая равняется числу полных оборотов, что происходят за одну единицу времени. Здесь также применяется показатель – секунда в минус первой степени. Для обозначения сделанной работы могут использовать такие словосочетания, как оборот в минуту, час, день, месяц, год и другие.
Единицы измерения
В чём же измеряется частота колебаний? Если брать во внимание систему СИ, то здесь единица измерения – это герц. Первоначально она была введена международной электротехнической комиссией ещё в 1930 году. А 11-я генеральная конференция по весам и мерам в 1960-м закрепила употребление этого показателя как единицы СИ. Что было выдвинуто в качестве «идеала»? Им выступила частота, когда один цикл совершается за одну секунду.Но что делать с производством? Для них были закреплены произвольные значения: килоцикл, мегацикл в секунду и так далее. Поэтому беря в руки устройство, которое работает с показателем в ГГц (как процессор компьютера), можете примерно представить, сколько действий оно совершает. Казалось бы, как медленно для человека тянется время. Но техника за тот же промежуток успевает выполнять миллионы и даже миллиарды операций в секунду. За один час компьютер делает уже столько действий, что большинство людей даже не смогут представить их в численном выражении.
Метрологические аспекты
Частота колебаний нашла своё применение даже в метрологии. Различные устройства имеют много функций:- Измеряют частоту импульсов. Они представлены электронно-счётными и конденсаторными типами.
- Определяют частоту спектральных составляющих. Существуют гетеродинные и резонансные типы.
- Производят анализ спектра.
- Воспроизводят необходимую частоту с заданной точностью. При этом могут применяться различные меры: стандарты, синтезаторы, генераторы сигналов и другая техника этого направления.
- Сравнивают показатели полученных колебаний, в этих целях используют компаратор или осциллограф.
Пример работы: звук
Всё выше написанное может быть довольно сложным для понимания, поскольку нами использовался сухой язык физики. Чтобы осознать приведённую информацию, можно привести пример. В нём всё будет детально расписано, основываясь на анализе случаев из современной жизни. Для этого рассмотрим самый известный пример колебаний – звук. Его свойства, а также особенности осуществления механических упругих колебаний в среде, находятся в прямой зависимости от частоты.
Человеческие органы слуха могут улавливать колебания, которые находятся в рамках от 20 Гц до 20 кГц. Причём с возрастом верхняя граница будет постепенно снижаться. Если частота колебаний звука упадёт ниже показателя в 20 Гц (что соответствует ми субконтроктавы), то будет создаваться инфразвук. Этот тип, который в большинстве случаев не слышен нам, люди всё же могут ощущать осязательно. При превышении границы в 20 килогерц генерируются колебания, которые называются ультразвуком. Если частота превысит 1 ГГц, то в этом случае мы будем иметь дело с гиперзвуком. Если рассматривать такой музыкальный инструмент, как фортепиано, то он может создавать колебания в диапазоне от 27,5 Гц до 4186 Гц. При этом следует учитывать, что музыкальный звук не состоит только из основной частоты – к нему ещё примешиваются обертоны, гармоники. Это всё вместе определяет тембр.
Заключение
Как вы имели возможность узнать, частота колебаний является чрезвычайно важной составляющей, которая позволяет функционировать нашему миру. Благодаря ей мы можем слышать, с её содействия работают компьютеры и осуществляется множество других полезных вещей. Но если частота колебаний превысит оптимальный предел, то могут начаться определённые разрушения. Так, если повлиять на процессор, чтобы его кристалл работал с вдвое большими показателями, то он быстро выйдет из строя.
Подобное можно привести и с человеческой жизнью, когда при высокой частотности у него лопнут барабанные перепонки. Также произойдут другие негативные изменения с телом, которые повлекут за собой определённые проблемы, вплоть до смертельного исхода. Причём из-за особенности физической природы этот процесс растянется на довольно длительный промежуток времени. Кстати, беря во внимание этот фактор, военные рассматривают новые возможности для разработки вооружения будущего.
Величины, характеризующие колебательное движение. Видеоурок. Физика 9 Класс
Обсудим количественные характеристики колебаний. Начнем с самой очевидной характеристики – амплитуды. Амплитуда обозначается большой буквой А и измеряется в метрах.
Определение
Амплитудой называют максимальное смещение от положения равновесия.
Часто амплитуду путают с размахом колебаний. Размах – это когда тело совершает колебание из одной крайней точки в другую. А амплитуда – это максимальное смещение, т. е. расстояние от точки равновесия, от линии равновесия до крайней точки, в которую оно попало. Помимо амплитуды, существует еще одна характеристика – смещение. Это текущее отклонение от положения равновесия.
А – амплитуда –
х – смещение –
Рис. 1. Амплитуда
Посмотрим, как отличаются амплитуда и смещение на примере. Математический маятник находится в состоянии равновесия. Линия расположения маятника в начальный момент времени – линия равновесия. Если отвести маятник в сторону – это и будет его максимальное смещение (амплитуда). В любой другой момент времени расстояние не будет амплитудой, а будет просто смещением.
Рис. 2. Отличие амплитуды и смещения
Следующая характеристика, к которой мы переходим, называется
Определение
Периодом колебаний называется промежуток времени, в течение которого совершается одно полное колебание.
Обратите внимание, что величина «период» обозначается большой буквой , определяется она следующим образом: , .
Рис. 3. Период
Стоит добавить, что чем больше мы берем число колебаний за большее время, тем точнее мы определим период колебаний.
Следующая величина – это частота.
Определение
Число колебаний, совершенных за единицу времени, называют частотой колебаний.
Рис. 4. Частота
Обозначается частота греческой буквой
Единицы измерения частоты . Эту единицу называют «герц» в честь немецкого физика Генриха Герца. Обратите внимание, что период и частота связаны через число колебаний и время, в течение которых это колебание совершается. Для каждой колебательной системы частота и период есть величины постоянные. Связь между этими величинами довольно проста:
Кроме понятия «частота колебаний» нередко пользуются понятием «циклическая частота колебаний», то есть количество колебаний за секунд. Обозначается она буквой и измеряется в радианах за секунду
Графики свободных незатухающих колебаний
Мы уже знаем решение главной задачи механики для свободных колебаний – закон синуса или косинуса. Также мы знаем, что графики являются мощнейшим инструментом исследования физических процессов. Поговорим о том, как будут выглядеть графики синусоиды и косинусоиды в применении к гармоническим колебаниям.
Для начала определимся с особыми точками во время колебаний. Это необходимо для того, чтобы правильно выбрать масштаб построения. Рассмотрим математический маятник. Первый вопрос, который возникает: какую функцию использовать – синус или косинус? Если колебание начинается с верхней точки – максимального отклонения, законом движения будет закон косинуса. Если же начать движение с точки равновесия – законом движения будет закон синуса.
Если законом движения будет закон косинуса, то через четверть периода маятник будет находиться в положении равновесия, еще через четверть – в крайней точке, еще через четверть – опять в положении равновесия, и еще через одну четверть вернется в начальное положение.
Если маятник колеблется по закону синуса, то через четверть периода он будет находиться в крайней точке, еще через четверть – в положении равновесия. Потом опять в крайней точке, но с другой стороны, и через еще четверть периода вернется в положение равновесия.
Итак, масштабом времени будет не произвольные значение 5 с, 10 с и т. д., а доли периода. Мы будем строить график по четвертям долей периода.
Что же сказать о координате ? Дальше, чем положение равновесия, маятник не двигается. График будет ограничен значением амплитуды.
Перейдем к построению. меняется либо по закону синуса, либо по закону косинуса. Ось ординат –
Рис. 5. Графики зависимости
График для колебания по закону синуса выходит из нуля и обозначен темно-синим цветом (рис. 5). График для колебания по закону косинуса выходит из положения максимального отклонения и обозначен голубым цветом на рисунке. Графики выглядят абсолютно идентично, но сдвинуты по фазе относительно друг друга на четверть периода или радиан.
Аналогичный вид будут иметь графики зависимости и , ведь они тоже меняются по гармоническому закону.
Особенности колебаний математического маятника
Математический маятник – это материальная точка массой , подвешенная на длинной нерастяжимой невесомой нити длиной .
Обратите внимание на формулу периода колебаний математического маятника: , где – длина маятника, – ускорение свободного падения.
Чем больше длина маятника, тем больше период его колебаний (рис. 6). Чем длиннее нить, тем дольше маятник раскачивается.
Рис. 6 Зависимость периода колебаний от длины маятника
Чем больше ускорение свободного падения, тем меньше период колебаний (рис. 7). Чем больше ускорение свободного падения, тем сильнее небесное тело притягивает грузик и тем быстрее он стремится вернуться в положение равновесия.
Рис. 7 Зависимость периода колебаний от ускорения свободного падения
Обратите внимание, что период колебаний не зависит от массы груза и амплитуды колебаний (рис. 8).
Рис. 8. Период колебаний не зависит от амплитуды колебаний
Первым на этот факт обратил внимание Галилео Галилей. На основании этого факта предложен механизм маятниковых часов.
Следует отметить, что точность формулы максимальна лишь для малых, сравнительно небольших отклонений. Например, для отклонения погрешность формулы составляет . Для более крупных отклонений точность формулы не столь велика.
Рассмотрим качественные задачи, которые описывают математический маятник.
Задача. Как изменится ход маятниковых часов, если их: 1) перевезти из Москвы на Северный полюс; 2) перевезти из Москвы на экватор; 3) поднять высоко в гору; 4) вынести из нагретого помещения на мороз.
Для того чтобы правильно ответить на вопрос задачи, необходимо понять, что имеется в виду под «ходом маятниковых часов». Маятниковые часы основаны на математическом маятнике. Если период колебаний часов будет меньше, чем нам нужно, часы начнут спешить. Если же период колебаний станет больше, чем необходимо, часы будут отставать. Задача сводится к ответу на вопрос: что произойдет с периодом колебаний математического маятника в результате всех перечисленных в задаче действий?
Рассмотрим первую ситуацию. Математический маятник переносится из Москвы на Северный полюс. Вспоминаем, что Земля имеет форму геоида, то есть сплюснутого у полюсов шара (рис. 9). Это значит, что на полюсе величина ускорения свободного падения несколько больше, чем в Москве. А раз ускорение свободного падения больше, то период колебаний станет несколько меньше и маятниковые часы начнут спешить. Здесь мы пренебрегаем тем, что на Северном полюсе холоднее.
Рис. 9. Ускорение свободного падения больше на полюсах Земли
Рассмотрим вторую ситуацию. Переносим часы из Москвы на экватор, предполагая, что температура не меняется. Ускорение свободного падения на экваторе несколько меньше, чем в Москве. Это значит, что период колебаний математического маятника увеличится и часы начнут отставать.
В третьем случае часы поднимают высоко в гору, тем самым увеличивая расстояние до центра Земли (рис. 10). Это значит, что ускорение свободного падения на вершине горы меньше. Период колебаний увеличивается, часы будут отставать.
Рис. 10 Ускорение свободного падения больше на вершине горы
Рассмотрим последний случай. Часы выносят из теплой комнаты на мороз. При понижении температуры линейные размеры тел уменьшаются. Это значит, что длина маятника немного сократится. Раз длина стала меньше, то период колебаний также уменьшился. Часы будут спешить.
Мы рассмотрели самые типичные ситуации, которые позволяют разобраться с тем, как работает формула периода колебаний математического маятника.
В заключение рассмотрим еще одну характеристику колебаний – фазу. О том, что такое фаза, более подробно мы будем говорить в старших классах. Сегодня мы должны рассмотреть, с чем можно эту характеристику сравнить, сопоставить и как ее для себя определить. Удобнее всего фазу колебаний сопоставить со скоростью движения маятника.
Рис. 11. Маятники колеблются синфазно (с одинаковыми фазами)
На рисунке 11 представлены два одинаковых маятника. Первый маятник отклонили влево на определенный угол, второй тоже отклонили влево на определенный угол, такой же, как и первый. Оба маятника будут совершать абсолютно одинаковые колебания. В этом случае можно сказать, что маятники совершают колебания с одинаковой фазой, поскольку скорости маятника имеют одно направление и равные модули.
Рис. 12. Маятники совершают колебания в противофазе
На рисунке 12 два таких же маятника, но один отклонен влево, а другой – вправо. У них тоже одинаковые по модулю скорости, но направление противоположное. В этом случае говорят, что маятники совершают колебания в противофазе.
Во всех других случаях, как правило, упоминают о разности фаз.
Рис. 13 Разница фаз
Фазу колебаний в произвольный момент времени можно рассчитать по формуле , то есть как произведение циклической частоты на время, прошедшее с начала колебаний. Измеряется фаза в радианах.
Особенности колебаний пружинного маятника
Формула колебаний пружинного маятника: . Таким образом, период колебаний пружинного маятника зависит от массы груза и жесткости пружины.
Чем больше масса груза, тем больше его инертность. То есть маятник будет медленнее разгоняться, период его колебаний будет больше (рис. 14).
Рис. 14 Зависимость периода колебаний от массы
Чем больше жесткость пружины, тем быстрее она стремится вернуться в положение равновесия. Период пружинного маятника будет меньше.
Рис. 15 Зависимость периода колебаний от жесткости пружины
Рассмотрим применение формулы на примере задачи.
Задача. На рисунке представлен график зависимости координаты от времени для пружинного маятника. Найдите массу грузика, если жесткость пружины равна .
Рис. 16 График зависимости координаты от времени для пружинного маятника
Решение:
Массу грузика можно определить из формулы периода колебаний пружинного маятника:
Период колебаний находим, используя график зависимости координаты от времени. Период – это время одного полного колебания. Одно полное колебание совершается за (рис. 17).
Рис. 17 Период колебаний
Если подставить теперь все необходимые значения в формулу для вычисления массы, получим:
Ответ: масса грузика составляет приблизительно 10 г.
Так же, как и в случае с математическим маятником, для пружинного маятника период колебаний не зависит от его амплитуды. Естественно, что это справедливо только для небольших отклонений от положения равновесия, когда деформация пружины является упругой. Этот факт был положен в основу устройства пружинных часов (рис. 18).
Рис. 18 Пружинные часы
Заключение
Конечно, кроме колебаний и тех характеристик, о которых мы говорили, существуют и другие не менее важные характеристики колебательного движения. Но о них мы поговорим в старшей школе.
Список литературы
- Кикоин А.К. О законе колебательного движения // Квант. – 1983. – № 9. – С. 30-31.
- Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
- Черноуцан А.И. Гармонические колебания – обычные и удивительные // Квант. – 1991. – № 9. – С. 36-38.
- Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал «abitura.com» (Источник)
- Интернет-портал «phys-portal.ru» (Источник)
- Интернет-портал «fizmat.by» (Источник)
Домашнее задание
- Что такое математический и пружинный маятники? Какая разница между ними?
- Что такое гармоническое колебание, период колебания?
- Груз массой 200 г колеблется на пружине с жесткостью 200 Н/м. Найдите полную механическую энергию колебаний и наибольшую скорость движения груза, если амплитуда колебаний 10 см (трением пренебречь).
Частота в физике, теория и онлайн калькуляторы
Определение частоты
ОпределениеЧастотой называют физическую величину, характеризующую периодический процесс.
Она равна числу повторений или реализации событий за единицу времени. Обозначают частоту $\nu ,$ могут встречаться другие варианты обозначений частоты, например $f$ или $F$.
Частота (наряду со временем) — это наиболее точно измеряемая величина.
Частота колебаний
Частота служит одним из основных параметров, характеризующих колебания.
ОпределениеЧастота — это физическая величина обратная периоду колебаний (T). Частота — это число полных колебаний, которые совершаются за единицу времени.
\[\nu =\frac{1}{T}\left(1\right).\]В Международной системе единиц (СИ) частота измеряется в герцах или обратных секундах:
\[\left[\nu \right]=с^{-1}=Гц.\]Герц — единица измерения частоты периодического процесса, при которой за время в одну секунду протекает один цикл процесса. Единица измерения частоты периодического процесса получила свое наименование в честь немецкого ученого Г. Герца.
Частота биений, которые возникают при сложении двух колебаний, происходящих по одной прямой с разными, о близкими по величине частотами (${\nu }_1\ и\ {\nu }_2$) равна:
\[{\nu =\nu }_1-\ {\nu }_2\left(2\right).\]Другой характеристикой колебаний является циклическая частота, которая равна:
\[{\omega }_0=2\pi \nu \left(3\right).\]Циклическая частота измеряется в радианах, деленных на секунду:
\[\left[{\omega }_0\right]=\frac{рад}{с}.\]Частота колебаний тела, массой$\ m,$ подвешенного на пружине с жесткостью $k$ равна:
\[\nu =\frac{1}{2\pi \sqrt{{m}/{k}}}\left(4\right).\]Выражение (4) выполняется для упругих, малых колебаний. Масса пружины должна быть мала в сравнении с массой тела.
Частота колебаний математического маятника, длина нити которого $l$:
\[\nu =\frac{1}{2\pi \sqrt{{l}/{g}}}\left(5\right),\]где $g$ — ускорение свободного падения.
Частота колебаний физического маятника:
\[\nu =\frac{1}{2\pi \sqrt{{J}/{mgd}}}\left(6\right),\]где $J$ — момент инерции тела, совершающего колебания относительно оси; $d$ — расстояние от центра масс маятника до оси колебаний.
Формулы (4) — (6) приближенные. Чем меньше амплитуда колебаний, тем точнее результаты дают эти формулы.
Частота дискретных событий, частота вращения
ОпределениеЧастотой дискретных колебаний ($n$) — называют физическую величину, которая равна количеству действий (событий) в единицу времени.
Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:
\[n=\frac{1}{\tau }\left(7\right).\]Единицей измерения частоты дискретных событий является обратная секунда:
\[\left[n\right]=\frac{1}{с}.\]Секунда в минус первой степени равна частоте дискретных событий, если за время, равное одной секунде происходит одно событие.
Частотой вращения ($n$) — называю
Частота электрического тока: определение, формула, характеристики
Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.
Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду. В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.
В республиках бывшего СССР стандартной считается частота тока в 50 Гц.
Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.
Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:
• Метод дискретного счета;
• Метод перезаряда конденсатора;
• Резонансный метод измерения частот.
• Метод сравнения частот;
Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.
Более подробно о частоте переменного тока Вы можете узнать из видео:
Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.
Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.
Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.
Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.
Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.
Ещё одно интересное видео о частоте переменного тока: