Чередование фаз в трехфазной сети – Как определить фазы в трехфазной сети – Как определить чередование фаз трехфазного электродвигателя — Производство и поставка электростанций, Бензиновые и дизельные генераторы от 1 до 100 кВт. Мини ТЭЦ на базе двигателя Стирлинга.

Содержание

Что такое чередование фаз и фазировка

Нередко при обслуживании электрооборудований необходимо проводить проверку чередования фаз и производить фазировку. Таким чаще всего пользуются  при согласовании работы трансформаторов. В нашей статье мы опишем чередование фаз в 3-х фазной сети, необходимые инструменты и способы правильной фазировки.

Вводная история

Представим себе монтаж двух масляных трансформаторов. Электрики провели успешные пусконаладочные работы трансформаторов, вводных выключателей, шин и секционных разделителей. Но, когда попытались запустить трансформаторы параллельно, произошло короткое замыкание. Электромонтеры говорили, что произвели проверку чередования фаз, и все было в порядке. Но фазировку видимо никто не учел, что привело к такой ошибке. Давайте детально рассмотрим суть проблемы данного случая.

Что такое чередование фаз

Трехфазная сеть имеет три фазы, обозначаемые А, В и С. Если вспомнить физику, то это означает, что синусоиды фаз на 120˚ смещены друг от друга. Всего существует шесть типов порядков чередования, которые в свою очередь можно разделить на две группы – прямые и обратные.  Прямые чередования выглядят как АВС, ВСА и САВ, а обратные – СВА, ВАС и АСВ. Для проверки чередования фаз используют прибор – фазоуказатель.

Что необходимо для проверки фаз

Фазоуказатель (см. рисунок ниже) состоит из трех обмоток и диска, который при проверке будет вращаться. Чтобы удобно было распознавать результат, на диске нанесены черно-белые метки. ФУ работает так же, как и асинхронный двигатель.

Если мы подключим три провода на выводы, то увидим, что диск начнет вращаться. Если он крутится по часовой стрелке, это означает прямое чередование фаз (АВС, ВСА или САВ).Если диск крутится против часовой стрелки, то это означает обратное чередование( СВА, ВАС или АСВ).

Вернемся к нашей истории с электромонтажниками, они проверили чередование фаз, которое в одном и другом случае совпало. Фазировку было выполнить необходимо, а тут не обойтись без фазоуказателя (ФУ). Электромонтажники соединили разноименные фазы при запуске, а для того, чтобы узнать где именно А, В и С надо было использовать мультиметр или осциллограф.

Прибор мультиметр измеряет напряжение между фазами разных источников питания, достижение отметки ноль означает, что фазы одноименные.  В противоположном случае, линейное напряжение будет означать, что фазы разноименные.  Такой способ самый быстрый и простой, но можно также использовать осциллограф, который будет показывать какая фаза отстает от другой на 120˚.

В каких случаях учитывают порядок

Проверка чередования фаз необходима при использовании трехфазных электродвигателей переменного тока. От порядка фаз зависит направление вращения двигателя, это очень важное условие, особенно когда несколько механизмов используют двигатели.

Еще один случай, когда необходимо обратить внимание на чередование фаз, это при работе с электросчетчиком индукционного типа СА4. При обратном порядке иногда случается самопроизвольное вращение диска на счетчике.  Современные счетчики не настолько чувствительны к чередованию фаз, но у них на индикаторе тоже появится  соответствующие данные.

Иногда контроль фазировки можно выполнить и без специальных приборов. Это если подключение трехфазной сети питания выполняется с помощью электрического силового кабеля, купить который можно в компании Югтелекабель. Если жилы внутри кабеля отличаются по цветам, то прозвонка осуществляется гораздо быстрее. Иногда просто нужно снять наружную изоляцию кабеля, чтобы понять, где какая фаза находится (А, В или С). Если на обоих концах жилы одинакового цвета, то они одинаковые.

Не всегда стоит полагаться на цветовую маркировку, не все производители придерживаются таких тенденций, иногда на разных концах кабеля можно встретить  разные цвета. Поэтому лучше воспользоваться прозвонкой жил.

Как определить последовательность фаз в трехфазной цепи. Что такое чередование фаз и как его проверить

Небольшое вступление

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили . Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.


Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или .

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.


Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель, с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь . На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о вы можете узнать из нашей статьи.


8.1.Основные понятия и определения

Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен.порядок следования и чередования фаз.

В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустановки с соответствующими фазами напряжения сети.

Фазировка включает в себя три существенно различные операции. Первая из них состоит в проверке и срав-нении порядка следования фаз включаемой электроустановки и сети. Вторая операция состоит в проверке совпадения по фазе одноименных напряжений, т. е. отсутствии между ними углового сдвига. Наконец, третья операция заключается в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, т. е. в конечном счете правильности подвода токопроводящих частей к включающему аппарату.

Фаза. Под трехфазной системой напряжений понимают совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты (амплитуда синусоиды одного напряжения относительно предшествующей ей амплитуды синусоиды другого напряжения) на один и тот же фазный угол (рис. 8.1, а).

Таким образом, угол, характери-зующий определенную стадию перио-дически изменяющегося параметра (в данном случае напряжения) , называют фазным углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся напряже-ний одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяется меж-ду одинаковыми фазами. Фазы обозна-чают прописными буквами

А, В, С. Трехфазные системы изображают также вращающимися векторами (рис.8.1, б).

На практике под фазой, трехфазной системы понимают также отдельный участок трехфазной цепи, по ко-торому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой назы-вают обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи. Для распознавания фаз оборудования на кожухах аппаратов, шинах, опорах и конструкциях.наносят цветные метки в виде кружков, полос и т. д. Элементы оборудования, принадлежащие ф

Основные понятия и определения | Фазировка оборудования

Страница 2 из 13

Трехфазная система.

Под трехфазной системой ЭДС (напряжений) понимают совокупность трех симметричных ДС, амплитуды, которых равны по значению и сдвинуты (амплитуда каждой ЭДС относительно предшествующей ей амплитуды другой ЭДС) на один и тот же фазный угол. На рис. 1,д приведена схема простейшего синхронного генератора трехфазного тока. Обмотки, в. которых наводятся переменные ЭДС, помещены в пазы статора, смещенные по окружности на 120°. Выводам обмоток присвоены обозначения «начал» АБСа «концов» X, Y, Z соответственно. По обмотке ротора проходит постоянный ток, создавая магнитное поле. При пересечении обмоток статора магнитным полем вращающегося ротора в них наводится симметричная система трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе на 120° (рис. 1,6). За один оборот ротора, что соответствует периоду времени Т, в каждой из обмоток происходит полный цикл изменения ЭДС. Когда ось ротора/— / пересекает витки обмотки статора, в них наводится максимальная ЭДС. Но так как для трех обмоток статора это происходит в разные моменты времени, то и максимумы наведенных ЭДС не совпадают по фазе, т. е. их амплитуды Ед, Eg, Ее оказываются сдвинутыми одна относительно другой на 1/3 периода, или на 120°.
Фаза. Угол, характеризующий определенную стадию периодически изменяющегося параметра (в данном случае ЭДС), называют фазовым углом или простой фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся ЭДС одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяют между одинаковыми фазами, например между началами синусоид, как это показано на рис. 1,6, или между амплитудами. При сдвиге двух синусоид по фазе одна из них будет отставать от другой по времени. Чтобы определить, какая из синусоид отстает, находят их начала, т. е. нулевые значения ЭДС при переходе от отрицательных 6 значений к положительным.
Получение трехфазной симметричной системы ЭДС
Рис. 1. Получение трехфазной симметричной системы ЭДС: 1 — статор; 2 — обмотка статора; 3 — ротор; 4 — обмотка ротора

На рис. 1,6 начала обозначены буквами а, Ь, с. Из рисунка видно, что начало одной синусоиды (например, синусоиды, проходящей через точку Ь) расположено правее начала другой (синусоиды, проходящей через точку а ). Это свидетельствует о том, что синусоида с началом в точке b отстает по времени от синусоиды с началом в точке а Еще более отстает синусоида, проходящая через точку с, так как ее начало сдвинуто на (2/3) Т или на 240° от начала координат (момента, когда / = 0). В равной мере можно говорить, что синусоида с началом в точке а опережает синусоиды с началом в точке b на (1/3) Tvi с началом в точке с — на (2/3) Т.
На практике под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.
Фазы обозначают прописными буквами А, В, С. Но навешивать надписи букв на оборудование станций и подстанций не всегда удобно. Поэтому при окраске оборудования (например, сборных и соединительных шин в закрытых РУ), которая применяется с целью защиты от коррозии, используют красители различного цвета. Краску наносят по всей длине шин.
Шины фазы А окрашивают в желтый цвет, фазы В — в зеленый и фазы С — в красный. Поэтому фазы часто называют Ж, 3, К. Для распознавания фаз оборудования на кожухах, арматуре изоляторов, конструкциях и опорах наносят соответствующие цветные метки в виде кружков или полос.
Таким образом, в зависимости от рассматриваемого вопроса фаза — это либо угол, характеризующий состояние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.
Порядок следования фаз. Порядок, в котором ЭДС в фазных обмотках генератора проходят через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы ЭДС могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,с, то фазы будут следовать в порядке А, В, С — это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить на противоположное, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В — это обратный порядок следования фаз.
Иногда вместо термина «порядок следования фаз» говорят «порядок чередования фаз». Во избежание путаницы условимся применять термин «Чередование фаз» только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз.

Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины и т. д.) расположены в пространстве, если обход их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок (ПУЭ) предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при расположении их в вертикальной плоскости: верхняя шина — желтая, средняя — зеленая, нижняя — красная. При расположении шин в горизонтальной плоскости наиболее удаленная шина окрашивается в желтый цвет, а ближайшая к коридору обслуживания — в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза Ж, 8 справа — фаза К, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ — из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя — в зеленый, отдаленная — в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы Ж, справа — фазы К, если смотреть со стороны шин на трансформатор.
Отступление от указанных выше требований порядка чередования окраски шин РУ ПУЭ допускают в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов BЛ.
Совпадение фаз. При фазировке трехфазных цепей могут быть различные варианты чередования обозначений (расцветки) вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз. Для простоты дальнейших рассуждений допустим, что фазируемые напряжения двух систем шин электроустановки имеют одинаковые порядки следования фаз А, В, С и Ах, Bi, С|. При этом условии фазы одноименных напряжений могут совпасть, а порядок чередования обозначений вводов у выключателя может не совпасть (рис- 2, а) или, наоборот, при одном и том же порядке чередования обозначений вводов фазируемые напряжения могут оказаться сдвинутыми по фазе (рис. 2, б). Поворот одноименных векторов напряжений относительно друг друга может быть не только на угол 120°, как это показано на рис. 2,6, но на любой угол, кратный 30е, что Характерно для трансформаторов, имеющих разные группы соединения обмоток. В обоих приведенных случаях включение выключателя неизбежно приводит к КЗ.
В то же время возможен вариант, когда совпадает и то, и другое (рис. 2, в) — Короткое замыкание между соединяемыми частями установки здесь исключено.
Под совпадением фаз при фазировке как раз и понимают именно этот случай, когда на вводах выключателя, расположенных друг против друга и принадлежащих одной фазе, одноименные напряжения двух частей установки совпадают по фазе, а обозначения (расцветка) вводов выключателя согласованы с соответствующими фазами напряжения и имеют один и тот же порядок чередования.
Векторное изображение синусоидально изменяющихся ЭДС (напряжений, токов). Периодически изменяющиеся синусоидальные величины изображают в виде синусоид (рис. 1,6) и вращающимися векторами — направленными отрезками прямой линии (рис. 1,в).
Варианты несовпадения   и совпадения  фаз двух частей электроустановки
Рис. 2. Варианты несовпадения (е. б) и совпадения (в) фаз двух частей электроустановки
Для векторов фазных ЭДС Ej4, Eg. Eq> изображенных на этом рисунке, условно приняты направления от начал обмоток к их концам. Связь между синусоидальной кривой и вращающимися векторами показана на рис. 3. Синусоида получается проектированием вращающегося вектора (равного в заданном масштабе амплитуде изменяющейся ЭДС) на вертикальную ось /-/, перемещаемую по оси абсцисс со скоростью, пропорциональной частоте вращения вектора. Сдвиг фаз между двумя векторами, начала которых совмещены в одной точке, определяется углом V (рис.4). Отставание вектора Eg от вектора Ед показано направлением стрелки угла (против направления вращения векторов).
Следует сказать, что понятие вращающегося вектора ЭДС (напряжения, тока и т.д.) в электротехнике несколько отличается от понятия вектора, скажем, силы или скорости в механике.
Получение синусоидального графика при вращении вектора
Рис. 3. Получение синусоидального графика при вращении вектора
Изображение двух ЭДС синусоидами и векторами при различных углах сдвига
Рис. 4. Изображение двух ЭДС синусоидами и векторами при различных углах сдвига

Если в механике векторы не могут быть определены полностью только по их значениям без указания направления их действия в пространстве, то в электротехнике вращающиеся векторы не определяют действительного направления изображаемых ими величин в пространстве. Однако совокупное расположение вращающихся с одной частотой векторов (например, ЭДС трех фаз) на диаграмме дает представление о происходящем в электрической цепи процессе во времени и позволяет сделать количественную оценку явлений путем проведения элементарных операций над векторами.

Основные Схемы соединений трехфазных цепей.

Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.
При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, в), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными ЭДС и обозначают Ед, Eg, Ее, или просто £ф. Электродвижущие силы между выводами фаз называют линейными tn. Они получаются как разность векторов соответствующих фазных ЭДС генератора, например Ед — Eg = Едд (рис. 5,в).
Соединение обмоток генератора
Рис. 5. Соединение обмоток генератора в звезду (о), векторная диаграмма ЭДС (б), вычитание векторов фазных ЭДС (в)
Соединение обмоток генератора треугольником
Рис. 6. Соединение обмоток генератора треугольником (д) и векторная диаграмма ЭДС (б)
Порядок индексов в обозначении линейных ЭДС не произволен — индексы ставятся в порядке
вычитания векторов: Ев-Ес= Евс\ Ес-Ёл = ЕСА- С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора ЭДС отстающей фазы из вектора ЭДС опережающей. В результате векторы линейных ЭДС всегда опережают уменьшаемые фазные векторы на 30°. Значения линейных ЭДС в \Д или в 1,73, раз больше фазных, в чем легко убедиться измерением векторов на диаграмме.
Соединение обмоток генератора треугольником показано на рис. 6,о. Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными ЭДС промышленной частоты, сдвинутыми относительно друг друга на (1/3) Т, так как в каждый момент времени геометрическая сумма ЭДС, действующих в контуре треугольника, равна нулю. Убедиться в этом можно, рассматривая векторную диаграмму рис.»6, б и синусоиды мгновенных значений ЭДС трехфазного генератора (рис. 1, б).
Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов
Рис. 7. Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов:
а — фазы ЭДС Ед и Еа совпадают; б — ЭДС Ед и Eg находятся в противофазе

Из рис. 6, а видно, что при соединении треугольником линейные провода отходят непосредственно от начала и конца обмотки каждой фазы, поэтому фазные ЭДС равны линейным и совпадают с ними по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко и только у турбогенераторов одного типа (ТВС-30).
Обмотки трансформаторов, так же как и генераторов, соединяют в звезду и треугольник (схема зигзага встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки среднего (СН) и низшего (НН) напряжений также соединяют в У или Д.
В отличие от генераторов у мощных трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным [lj.
Группы соединений обмоток трансформаторов. Между первичной я вторичной ЭДС трансформатора, включенного под напряжение, может быть угол сдвига, который в общем случае зависит от схемы соединения и направления намотки обмоток, а также от обозначения (маркировки) зажимов.
Число сочетаний схем соединений У и Д может быть не более четырех: У/У, У/Д, Д/Д и Д/У, но, принимая во внимание возможность намотки обмоток на магнитопроводе в разных направлениях, случайное и преднамеренное изменение маркировки зажимов, а также соединение фазных обмоток в треугольник в ином чередовании, число схем включений трансформатора значительно возрастает. Приведем примеры. У каждой обмотки есть начало и конец. Начала обмоток обозначают буквами А, В, С, а, Ь, с, а концы X, ¥, Z, х, у, г соответственно. И хотя эти понятия условны, они имеют прямое отношение к действующей в обмотке ЭДС.

ва варианта схем соединения фазных обмоток НН треугольником
Рис. 8. Два варианта схем соединения фазных обмоток НН треугольником

Если у одной из обмоток поменять обозначения начала а и конца * (рис. 7), то, принимая ориентацию ЭДС по отношению к новому началу прежней (от * к в ), необходимо считать вектор ЭДС Еа повернутым на 180°. К такому же результату приводит и изменение направления намотки обмоток. В обмотках с односторонней намоткой (витки обеих обмоток идут от начал в правую или левую сторону) ЭДС совпадают по направлению, при разносторонней намотке они сдвинуты на 180°.  

Схемы и группы соединения обмоток трансформаторов и автотрансформаторов
Рис. 9. Схемы и группы соединения обмоток трансформаторов и автотрансформаторов :
а — трехфазных двухобмоточных трансформаторов; б — трехфазных трехобмоточнмх трансформаторов; в — трехфазных трехобмоточных автотрансформаторов

Циклическая перемаркировка фаз обмотки в стандартной схеме
Рис. 10. Циклическая перемаркировка фаз обмотки в стандартной схеме. У/У-0
На рис. 8, а показано соединение фазных обмоток треугольником в стандартном порядке: а — у; Ь— z; с — х. Если обмотки соединить в порядке Oi — zt; сх — уЬг — xt (рис. 8,6), то векторы линейных ЭДС НН смещаются по отношению друг к другу на 60° (рис. 8, в) *
Чтобы упорядочить все многообразие схем соединений обмоток трансформаторов, введено понятие о группе соединений, характеризующее угловое смещение векторов линейных ЭДС вторичных обмоток относительно одноименных векторов линейных ЭДС обмотки ВН независимо от того, является трансформатор понижающим или повышающим.
Циклическая перемаркировка фаз при ошибочном монтаже ошиновки
Рис. 11. Циклическая перемаркировка фаз при ошибочном монтаже ошиновки. Обозначение фаз НН, соответствующее группе У/У-О, показано в скобках

Группа соединений обозначается числом, которое при умножении на 30° дает угол отставания вектора ЭДС вторичной обмотки от ЭДС Вектора первичной обмотки. Если, например, схема и группа соединений трансформатора обозначены У/Д-11, то смещение векторов линейных ЭДС равно 330°.
В ГОСТ 11677-75* предусмотрены две группы соединения обмоток трехфазных двухобмоточных трансформаторов: 0 и 11 (рис.9). Практически могут встретиться 12 групп и, кроме того, такие соединения, которые вообще не могут быть отнесены к какой-либо определенной группе. Заметим, что нестандартные группы могут быть получены ошибочно при монтаже и ремонте оборудования без вскрытия трансформатора и пересоединения его обмоток. Для этого достаточно, например, перекрасить шины фаз или перемаркировать обозначения выводов и потом ориентироваться на эти обозначения. Типичными являются следующие случаи. При перемещении обозначений выводов фаз (циклическая перемаркировка фаз), когда по кругу меняются местами надписи на выводах трех фаз на стороне ВН или НН (рис. 10), группа соединений каждый раз изменяется на 4 или 8 угловых единиц. Так, при подсоединении трансформатора зажим фазы b может ошибочно оказаться подсоединенным к сборной шине фазы а, зажим с — к шине фазы Л и т. д. Такое подсоединение равносильно перемаркировке фаз и влечет за собой изменение исходной группы трансформатора на 4 единицы. Действительно, построение и совмещение векторных диаграмм (рис.11) показывает, что векторы повернуты на 120°, или на 4 единицы.

*В построениях векторных диаграмм на рнс. 8 и далее принято направление векторов линейных ЭДС (напряжений) обмоток ВН от В к А и обмоток НН — от Ь к а .

Двойная перемаркировка фаз при ошибочном монтаже ошиновки на стороне ВН и НН
Рис. 12. Двойная перемаркировка фаз при ошибочном монтаже ошиновки на стороне ВН и НН: а — исходная группа У/Д-11; б — перемаркировка одноименных фаз А и С, а и с; в — перемаркировка разноименных фаз А и С.  

Ошибочное обозначение выводов двух фаз b и с на стороне низшего напряжения
Рис. 13. Ошибочное обозначение выводов двух фаз b и с на стороне низшего напряжения
Перестановка обозначений двух фаз на стороне ВН и одновременно НН (двойная перемаркировка) у трансформатора, имеющего нечетную группу соединений, вызывает угловое смещение векторов ЭДС вторичной обмотки относительно их первоначального положения на 60 или 300°. Значение угла зависит от того, какие две фазы на стороне ВН, а также на стороне НН перемещаются — одноименные или разноименные. На рис. 12 показано, что достаточно поменять местами соединительные шины двух фаз А и С на стороне ВН и тех же фаз на стороне НН, как группа 11 перейдет в группу 1, а при перемене мест фаз А и С и. одновременно Ь и с группа 11 превращается в 9.
Наиболее вероятен в эксплуатационной практике случай перекрещивания шин только двух фаз на какой-нибудь одной стороне (ВН или НН), например фаз b и с. При этом изменяется порядок чередования фаз. Вместо а — b -с порядок чередования будете — с — Ь (рис. 13), и углы сдвига фаз одноименных ЭДС обмоток ВН и НН будут неодинаковы: = 0°; ifpb = 120°; \fCc — 240°. Это обстоятельство не позволяет отнести трансформатор к определенной группе соединений.
Одним из основных условий параллельной работы трансформаторов является тождественность групп соединений их обмоток, что устанавливается по паспортным данным или специальными измерениями. Но даже при одинаковых группах перед первым включением в работу (после монтажа или капитального ремонта со сменой обмоток, отсоединением кабелей и пр.) трансформатор фазируют с сетью, так как на зажимах включающего аппарата (выключателя, отделителя, рубильника) может появиться сдвиг фаз в результате неправильного присоединения токоведущих частей к аппаратам и выводам трансформатора, о чем было сказано выше. Здесь следует особо подчеркнуть, что цель фазировки заключается не в определении группы, к которой принадлежит включаемый трансформатор, а в проверке согласованности соединяемых фаз всех элементов трехфазной цепи со стороны как высшего, так и низшего напряжения.

Фазировка электрического оборудования

7

8.1.Основные понятия и определения

Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен .порядок следования и чередования фаз.

В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустановки с соответствующими фазами напряжения сети.

Фазировка включает в себя три существенно различные операции. Первая из них состоит в проверке и срав-нении порядка следования фаз включаемой электроустановки и сети. Вторая операция состоит в проверке совпадения по фазе одноименных напряжений, т. е. отсутствии между ними углового сдвига. Наконец, третья операция заключается в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, т. е. в конечном счете правильности подвода токопроводящих частей к включающему аппарату.

Фаза. Под трехфазной системой напряжений понимают совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты (амплитуда синусоиды одного напряжения относительно предшествующей ей амплитуды синусоиды другого напряжения) на один и тот же фазный угол (рис. 8.1, а).

Таким образом, угол, характери-зующий определенную стадию перио-дически изменяющегося параметра (в данном случае напряжения) , называют фазным углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся напряже-ний одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяется меж-ду одинаковыми фазами. Фазы обозна-чают прописными буквами А, В, С. Трехфазные системы изображают также вращающимися векторами (рис.8.1, б).

На практике под фазой, трехфазной системы понимают также отдельный участок трехфазной цепи, по ко-торому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой назы-вают обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи. Для распознавания фаз оборудования на кожухах аппаратов, шинах, опорах и конструкциях .наносят цветные метки в виде кружков, полос и т. д. Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В—в зеленый и фазы С—в красный. В соответствии с этим фазы часто называют желтой, зеленой и красной: ж, з, к.

Таким образом, в зависимости от рассматриваемого вопроса фаза — это либо угол, характеризующий состоя­ние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.

Порядок следования фаз. Трехфазные системы напряжений и тока могут отличаться друг от друга порядком следования фаз. Если фазы (например, сети) следуют друг за другом в порядке А, В, С это так называемый прямой порядок следования фаз (см. § 7.3). Если фазы следуют друг за другом в порядке А, С, В это обратный порядок следования фаз.

Порядок следования фаз проверяют индукционным фазоуказателем типа И-517 или аналогичным по устройству фазоуказателем типа ФУ-2. Фазоуказатель подключают к проверяемой системе напряжений. Зажимы прибора маркированы, т. е. обозначены буквами А, В, С. Если фазы сети совпадут с маркировкой прибора, диск фазоуказателя будет вращаться в направлении, указанном стрелкой на кожухе прибора. Такое вращение диска соответствует прямому порядку следования фаз сети. Вращение диска в обратном направлении указывает на обратный порядок следования фаз. Получение прямого порядка следования фаз из обратного производится переменой мест двух любых фаз электроустановки.

Иногда вместо термина «порядок следования фаз» говорят «порядок чередования фаз». Во избежание пута­ницы условимся применять термин «чередование фаз» только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз. Итак, под чередованием фаз следует понимать очередность, в которой фазы трехфазной цепи (обмотки и выводы электрических машин, провода линий и т. д.) расположены в пространстве, если обход их кажцый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветке проводов и сборных шин.

Совпадение фаз. При фазировке трехфазных цепей встречаются различные варианты чередования обозначений вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз (рис. 8.2, а, б). Варианты, при которых не совпадает порядок следования фаз, или порядок чередования фаз электроустановки и сети, при включении выключателя приводят к КЗ.

В то же время возможен единственный вариант, когда совпадает то и другое. Короткое замыкание между соединяемыми частями (электроустановкой и сетью) здесь исключено.

Под совпадением фаз при фазировке как раз и понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов вы-ключателя согласованы с обозначением фаз напряжений (рис. 8.2, в).

Проверка Последовательности Чередования Фаз (Фазировка)

Прибор необходимый при проверке фазировки называется — Фазоуказатель, он состоит из трех обмоток и диска, который при проверке будет вращаться. Чтобы удобно было распознавать результат, на диске нанесены черно-белые метки. ФУ работает так же, как и асинхронный двигатель.

Если мы подключим три провода на выводы, то увидим, что диск начнет вращаться. Если он крутится по часовой стрелке, это означает прямое чередование фаз (АВС, ВСА или САВ). Если диск крутится против часовой стрелки, то это означает обратное чередование фаз (СВА, ВАС или АСВ).

Прибор Мультиметр измеряет напряжение между фазами разных источников питания, достижение отметки ноль означает, что фазы одноименные.  В противоположном случае, линейное напряжение будет означать, что фазы разноименные.  Такой способ проверки фазировки самый быстрый и простой, но можно также использовать Осциллограф, который будет показывать какая фаза отстает от другой на 120˚.

Вольтметры переменного тока, используемые при фазировке электроустановок до 1 кВ и подключаемые непосредственно к выводам электрооборудования.

Мегаомметры, представляющие собой переносные приборы, необходимые для измерения сопротивлений изоляции в широких диапазонах, что очень хорошо себя зарекомендовало при производстве фазировки.

Иногда контроль фазировки можно выполнить и без специальных приборов. Это если подключение трехфазной сети питания выполняется с помощью электрического силового кабеля и жилы внутри кабеля отличаются по цветам, то прозвонка осуществляется гораздо быстрее. Иногда просто нужно снять наружную изоляцию кабеля, чтобы понять, где какая фаза находится (А, В или С). Если на обоих концах жилы одинакового цвета, то они одинаковые.

 Не всегда стоит полагаться на цветовую маркировку, не все производители придерживаются таких тенденций, иногда на разных концах кабеля можно встретить  разные цвета. Поэтому лучше воспользоваться прозвонкой жил.

Реле контроля чередования и обрыва фаз, наличия и качества сетевого напряжения

Реле контроля фаз

Реле контроля наличия фаз и напряжения предназначено для защиты электрооборудования от отклонений параметров питающей трёхфазной электросети.

К основным факторам, на которые реагируют приборы этого класса, относятся:

  • превышение питающим напряжением установленного верхнего предела (уставки) или его падение ниже допустимого уровня;
  • нарушение симметричности трёхфазной системы питания, обрыва одной или двух фаз, как крайнего случая проявления не симметрии;
  • изменение порядка чередования фаз;
  • обрыв нулевого провода (опционально в некоторых конструкциях).

Отдельные экземпляры трёхфазного реле контроля фаз обладают возможностями регулирования уставок верхнего и нижнего пределов отклонения напряжения, а также установки желаемого времени срабатывания.

Для удобства визуального наблюдения и контроля отдельные модели реле могут быть оборудованы индикаторными устройствами, фиксирующими значение фазных параметров.

Реле контроля чередования, обрыва фаз и напряжения содержит несколько функциональных блоков.

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

Основными компонентами фазового реле являются:

  • блок измерений;
  • устройство обработки информации;
  • исполнительная (коммутационная) часть.
БЛОК ИЗМЕРЕНИЙ

Эта часть схемы реле осуществляет непрерывный контроль параметров электропитания – фазных токов и напряжений. Для фиксации искажений симметрии трёхфазной питающей системы напряжений устройство содержит фильтр гармонических составляющих обратной последовательности.

Гармонические составляющие или высшие гармоники представляют собой высокочастотные сигналы, сопутствующие основной частоте промышленного тока и кратные ей.

Теоретически кривые каждого из фазных напряжений, вырабатываемых генераторами электростанций должны иметь строго синусоидальную форму. На практике любой источник напряжения даёт некоторые искажения синусоиды.

Свой вклад в дело ухудшения синусоидальности вносят также разнообразные потребители, содержащие нелинейную нагрузку. В результате, питающее напряжение электрической сети никогда не является синусоидальным на 100%.

В соответствии с теоремой Фурье любая сложная периодическая функция может быть представлена суммой простых гармонических функций.

Примечание. Гармонической называют функцию, изменяющуюся по закону синуса или косинуса.

Таким образом, любое отклонение от синусоидальности влечёт за собой появление высших гармоник – слагаемых формулы разложения Фурье. Каждая из функций – слагаемых имеет частоту, в n раз превышающую частоту основной функции, где n – порядковый номер слагаемого.

То есть применительно к системе питания промышленной частоты 50 Гц, 1-я гармоника обладает частотой 50 Гц, 2-я – 100 Гц, 3-я – 150 Гц и так далее. Амплитуда гармоник уменьшается с увеличением их порядкового номера.

Вся совокупность гармоник образует три последовательности фазных чередований:

  • составляющие 1, 4, 7, 10 … образуют прямую последовательность;
  • 2, 5, 8, 11… — соответствуют обратному фазному чередованию;
  • 3, 6, 9, 12… — составляют нулевую последовательность.

Нарушения симметрии системы характеризуются увеличением гармоник обратной последовательности, что и является критерием отклонения от нормы, применяемым в алгоритме контроля при работе реле.

БЛОК ЛОГИКИ

Данные, полученные из блока измерения, подвергаются здесь сравнению с условиями, определёнными выставленными уставками. Блок логики формирует команды, которые передаются исполнительному органу.

Следует заметить, что в схемотехнике реле контроля бывает невозможно выделить компоненты, относящиеся к блокам логики и измерений. В некоторых моделях используются многофункциональные микропроцессорные чипы, объединяющие эти блоки.

ИСПОЛНИТЕЛЬНЫЙ ОРГАН

Отключение защищаемой электроустановки или части сети производится «сухими» контактами электромагнитного реле или пускателя.

Термин «сухой контакт» является устойчивым жаргонным выражением проектировщиков автоматизированных систем. Выражение заимствовано из жаргона англоязычных коллег путём прямого перевода слов dry contact. Данное выражение никак не связано с отсутствием влаги.

Означает оно то, что контакт не имеет гальванической связи с цепями управления, не заземлён и не подключен к источнику питания.

В различных моделях реле контроля фаз применяются исполнительные органы двух типов, коммутирующие нагрузку непосредственно или воздействуя на промежуточный элемент – магнитный пускатель.

В первом случае устройство имеет три входа для подключения трёхфазного питания и три выхода для непосредственного присоединения к нагрузке. Коммутация нагрузки осуществляется внутри устройства.

При подключении реле контроля фаз второго типа подразумевается использование пускателя. В этих приборах имеются выходы контактов исполнительного реле, предназначенных для работы в цепях отключения. Сухие контакты реле контроля фаз коммутируют катушку пускателя.

Такие комбинации используются для защиты оборудования большой мощности, непосредственная коммутация которого невозможна контактами исполнительного органа.

ОБЛАСТЬ ПРИМЕНЕНИЯ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Основным оборудованием, нуждающимся в защите от несимметричных режимов и нарушений порядка чередования фаз, являются трёхфазные асинхронные электродвигатели.

Ассимметрия трёхфазного питания приводит к снижению рабочего и пускового моментов электродвигателя, снижает его КПД и увеличивает величину скольжения.

Полное отсутствие одной из фаз в системе питания приводит к повреждению электродвигателя вследствие перегрева. Усугубляет опасность этого режима небольшой ток потребления и нечувствительность к нему максимальных токовых защит.

Обратное чередование фаз непосредственно двигателю вреда не наносит, но при этом меняется направление его вращения. Такой режим чаще всего губителен для механизмов, приводимых двигателем, и как минимум нарушает технологический процесс.

Изменение порядка чередования фаз возникает в результате ошибки персонала при подключении кабельных линий или шлейфов воздушных линий электропередачи после выполнения ремонтных работ. Это может произойти как на территории потребителя, так и в электроустановках электросетевой компании.

К основным параметрам настройки реле относятся:

  • регулирование уставки срабатывания при повышении уровня напряжения;
  • установка нижнего предела напряжения питания;
  • установка времени повторного включения.

Пределы допустимого изменения параметров питающей электросети устанавливаются исходя из характеристик питаемого оборудования.

Повторное включение происходит после восстановления нормального режима питающей сети. После отключения нагрузки в результате работы реле напряжения и контроля чередования фаз, орган измерения продолжает осуществлять непрерывный контроль состояния сети.

При возвращении параметров электропитания к норме происходит автоматическое повторное включение нагрузки. Время повторного включения выбирают с учётом характеристики сети питания.

Необходимость задержки включения обусловлена отстройкой от колебаний параметров переходного режима и возможной неуспешностью попыток включения линий питания.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


РЗА на новой ПС 110кВ и обратное следование фаз (А1-С2-В3) (Страница 1) — Спрашивайте

Long_Ago пишет:

Если не затруднит — сможете разъяснить разницу?

Выдержка из книги «Фазировка электрического оборудования» автор Филатов А.А.:

Порядок следования фаз.
Порядок, в котором э. д. с. трех фаз непрерывно проходит через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы э. д. с. могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,а, то порядок следования фаз будет А, В, С — это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В,- это обратный порядок следования фаз.
Иногда вместо термина «порядок следования фаз» говорят «порядок чередования фаз». Во избежание путаницы условимся применять термин «чередование фаз» только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз.
Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины ит. д.) расположены в пространстве, если обход «их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, согласно ГОСТ порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при их вертикальном расположении: верхняя шина — желтая, средняя — зеленая, нижняя — красная. При расположении шин горизонтально наиболее удаленная шина окрашивается в желтый цвет, а ближайшая — в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза А, справа — фаза С, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ — из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя — в зеленый, отдаленная — в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы А, справа — фазы С, если смотреть из ОРУ на вводы трансформаторов.
Отступление от указанных выше требований порядка чередования окраски крайних шин РУ ПУЭ допускает в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов воздушных линий.

Несовпадение порядка чередования и обозначения фаз электроустановок при их фазировке
В начале главы отмечалось, что фазировкой устанавливают совпадение: порядков следования фаз фазируемых между собой электроустановок, векторов одноименных напряжений по фазе (отсутствие между ними сдвига по углу), порядков чередования фаз на выводах коммутационного аппарата, включением которого установка должна включаться в работу, обозначений фаз (их расцветка).
Выполнение перечисленных условий является обязательным при включении электроустановок в работу.
На практике, однако, нередки случаи, когда фазируемые электроустановки (например, электростанция по отношению к энергосистеме или одна энергосистема по отношению к другой) имеют различные порядки следования фаз или при одном и том же порядке следования фаз векторы их одноименных напряжений смещены по фазе на 120 или 240°. Нет необходимости называть причины таких несоответствий. Так уж сложилось исторически, и с этим приходится считаться при фазировке.

Возникает, однако, вопрос: как осуществляется в подобных случаях фазировка, и соблюдаются ли при этом условия совпадения фаз?

Рассмотрим это на примере. Допустим, что необходимо провести фазировку и включить на параллельную работу две электроустановки, в одной из которых прямой, а в другой обратный порядок следования фаз. Соединяющим их элементом должна стать линия электропередачи. Известно, что для включения двух электроустановок на параллельную работу совершенно необходимо, чтобы одна из них по отношению к другой имела один и тот же порядок следования фаз. Только в этом случае возможна их синхронизация.

Для того чтобы порядки следования фаз электроустановок совпали, например обратный порядок следования фаз одной электроустановки по отношению к другой стал прямым, на линии электропередачи изменяют порядок чередования фаз. Практически это осуществляется перемещением на линии проводов фаз на одной опоре, т. е. изменением их чередования в пространстве.

Таким образом, изменением порядка чередования фаз на линии изменяется порядок следования фаз векторов напряжений одной электроустановки относительно другой, хотя абсолютные порядки следования фаз векторов напряжений электроустановок остаются прежними (прямым и обратным). В этом проявляется взаимозависимость понятий порядка следования и чередования фаз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *