Чем порождается электростатическое поле – Электростатическое поле. Напряженность электростатического поля. Поток вектора напряженности. Принцип суперпозиций полей

Как создать электростатическое поле. Электростатическое поле и единичный заряд

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Нижегородский Государственный Технический Университет

Выксунский филиал

Кафедра общеобразовательных и общепрофессиональных дисциплин

Лабораторная работа № 2-2.

(методическое пособие)

Составили: А.М. Кривенко, В.П.Маслов, И.И.Рожков, Р.В.Щербаков.

Свойства электростатического поля: Лаб. Работа № 2-20 по общей физике для студентов всех специальностей ВФ НГТУ;

Приведены основные сведения по теории электростатического поля. Дана методика исследования электростатического поля методом электролитической ванны. При составлении пособия использованы описания лабораторных работ НГТУ, МАИ, МИФИ, СФТИ и др. вузов.

Научный редактор: Радионов А.А

Цель работы. Исследование свойств электростатического поля при простейших распределениях зарядов. Экспериментальное определение по­тенциала и напряженности электрического поля, построение силовых и эк­випотенциальных линий поля между электродами определенной формы и вблизи проводников.

Теоретическая часть

Электростатическое, то есть не меняющееся во времени, поле соз­дается неподвижными в данной системе координат электрическими заряда­ми.

Основные характеристики: напряженность электрического поля (векторная величина) — силовая характеристика и потенциал поля (скалярная величина) — энергетическая характеристика.

Напряженностью электрического поля в данной точке пространства называется отношение силы () действующей на точечный заряд q поме­щенный в эту точку, к величине заряда:


(1)

где напряженность электрического поля;

сила, действующая на заряд q

Потенциал электрического поля () в некоторой точкеравен от­ношению потенциальной энергииW() положительного точечного зарядаq помещенного в эту точку, к величине заряда:


(2)

где W () потенциальная энергия; () потенциал поля.

Потенциал электрического поля измеряется работой, которую совершают силы поля, перемещая положительный единичный зарядиз данной точки в бесконечность (или другую точку, потенциал которой условно принят рав­ным нулю).

Работа сил поля определяется по формуле: A 12 = q ( 1

2 ).

В электростатическом поле работа при перемещении заряда не зависит от пути, по которому движется заряд, а определяется лишь начальным (1-м) и конечным (2-м) положениями заряда. Поле, отвечающее этому условию, принято называть потенциальным.

Работа, совершаемая силами поля над зарядом q при перемещении его из 1-й точки во 2-ю, может быть вычислена также по формуле:

где d- элементарное перемещение заряда q.

Единицы измерений в СИ:

Напряженность и потенциал не являются независимыми характе­ристиками электрического поля. Они связаны друг с другом соотношением

Напряженность поля равна со знаком минус градиенту потенциала . Знак называется оператором «набла», его математическое выражение зависит от выбранной системы координат. В декартовой системе его пони­мают следующим образом:


(4)

где – орты (единичные векторы)осей декартовой системы координат,


и т.д. — соответствующие частные производные.

Градиент потенциала характеризует быстроту возрастания потенциала в направлении нормали к эквипотенциальной поверхности, т.е. вдоль силовой линии.

Связь между и можно представить в форме

(5)

где — проекция вектора Ена направление интегрирования 1, которая согласно (4) равна


(6)

Графическое представление электрического поля

Электрическое поле можно наглядно представить с помощью линий напряженности (или силовых линий) и эквипотенциальных поверхностей.

Линии напряженности — это направленные линии, касательные к кото­рым в каждой точке совпадают по направлению с вектором напряженности в этой точке, а густота линий (число линий, пронизывавших единичную пло­щадку, перпендикулярную к линиям в этой точке) пропорциональна модулю вектора. Силовые линии начинаются на положительных и заканчиваются на отрицательных зарядах (свободных и связанных) и нигде не пересекаются.

Эквипотенциальные поверхности это поверхности равного потенциа­ла .

Уравнение такой поверхности задается условием:

(x,y,z,) — const.

Числовое значение const определяет величину постоянного потенциала. В каждой, точке на эквипотенциальной поверхности вектор перпендикулярен поверхности и направлен в сторону уменьшения потенциала. Это следует из формулы (6).

При изображении электростатического поля с помощью силовых линий и эквипотенциальных поверхностей последние обычно проводятся так, чтобы разность потенциалов между двумя соседними поверхностями была всюду одинаковой. В этом случае по густоте эквипотенциальных поверхностей и силовых линий можно судить о численном значении напряженности поля в каких-либо его точках.

Основное математические понятия

ТЕОРИЯ ПОЛЯ

Теория поля есть учение об электрических и магнитных явлениях, о теоретических положениях и законах, которым подчиняются эти явления и о вытекающих из них методах расчета.

Электромагнитное поле является особым видом материи, оно является носителем энергии и обладает специфическими (присущими только ему) электрическими и магнитными свойствами. Изложение основных свойств и методов расчета полей произведем в порядке перехода от более простых к более сложным. В соответствии с этим в начале рассмотрим поля, неизменные во времени, и только после этого изучим переменное электромагнитное поле. Изучение всех видов полей расширяет физические представления о поле, известные и курса физики, способствует более глубокому пониманию процессов, происходящих в электротехнических устройствах, важно с прикладной точки зрения, т.к. дает возможность решать многие задачи, имеющие существенное значение не только для теории электрических цепей, но и более общих задач (излучение и канализация электрической энергии и др.).

Мы будем изучать только поля в однородных (одинаковых во всех точках поля) и изотропных (со свойствами, н

Электростатическое поле

1

суммарный заряд электрически изолированной системы не может изменятся. Система называется эл. изолированной, если через ограничивающую её поверхность не могут проникать заряженные частицы. Точечным зарядом называется заряженное тело, размерами которого можно пренебречь по сравнению с расстояниями от этого тела до других тел, несущих эл.заряд.

Закон Кулона: сила взаимодействия двух неподвижных, точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними.

где k – коэффициент пропорциональности, е12

– единичный вектор имеющий направление от заряда q1 к заряду q2

поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

  • Напряженность электростатического поля

есть физическая величина, определяемая силой, которая действует на пробный единичный положительный заряд, помещенный в эту точку поля: (1) Как следует из формулы (1) и закона Кулона, напряженность поля точечного заряда в вакууме

или (2)

  • Силовая линия

это кривая, касательная к которой в любой точке совпадает по направлению с вектором, характеризующим данное поле в этой точке. (Силовые линии электростатического поля всегда незамкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных)

2

  • Принцип суперпозиции.

Напряжённость поля системы зарядов равна векторной сумме напряжённостей полей, которые создавал бы каждый из зарядов системы в отдельности.

Выделим малую площадку площадью ΔS, ориентация которой задается единичным вектором нормали (рис. 157).В пределах малой площадки электрическое поле можно считать однородным, тогда поток вектора напряженности ΔФE определяется как произведение площади площадки на нормальную составляющую вектора напряженности где

— скалярное произведение векторов и ; En — нормальная к площадке компонента вектора напряженности.

3

  • Теорема Гаусса , и ее применение к расчету полей заряженной плоскости, цилиндра, шара.

Поток вектора напряжённости электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгеброической сумме заключенных внутри этой поверхности зарядов делённой на 0 .

4

в каждой точке поля.    Следовательно:

Т.к. если вектор перемещения перпендикулярен вектору силы (напряженности поля), работа поля равна нулю, то работа электростатического поля по перемещению заряда по любой траектории определяется разностью координат этих точек:

Работа по перемещению заряда по замкнутому контуру равна 0.

5

Работа по перемещению единичного положительного заряда вдоль оси Х равна повторив это для осейy,z получим

Эквипотенциальная поверхность – поверхность во всех точках которой потенциал имеет одно и тоже значение.

  • Уравнение Пуассона

эллиптическое дифференциальное уравнение в частных производных, которое, среди прочего, описывает электростатическое поле. Это уравнение имеет вид:

где оператор Лапласа или лапласиан, а вещественная или комплексная функция на некотором многообразии.

В трёхмерной декартовой системе координат уравнение принимает форму:

где — электростатический потенциал (ввольтах), — объёмнаяплотность заряда, а диэлектрическая проницаемость вакуума .

9

  • Энергия системы неподвижных зарядов

Потенциальная энергия Wp неподвижной системы зарядов представляет собой работу, необходимую для создания этой системы из отдельных частей, т.е. энергию, запасенную в созданной системе. Это — скалярная величина, являющаяся свойством системы в целом.

электростатическое поле — это… Что такое электростатическое поле?

электрическое поле неподвижных электрических зарядов.

ЭЛЕКТРОСТАТИ́ЧЕСКОЕ ПО́ЛЕ, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними.
Электростатическое поле характеризуется напряженностью электрического поля (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) Е, которая является его силовой характеристикой: Напряженность электростатического поля показывает, с какой силой электростатическое поле действует на единичный положительный электрический заряд (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД), помещенный в данную точку поля. Направление вектора напряженности совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.
Электростатическое поле является стационарным (постоянным), если его напряженность не изменяется с течением времени. Стационарные электростатические поля создаются неподвижными электрическими зарядами.
Электростатическое поле однородно, если вектор его напряженности одинаков во всех точках поля, если вектор напряженности в различных точках различается, поле неоднородно. Однородными электростатическими полями являются, например, электростатические поля равномерно заряженной конечной плоскости и плоского конденсатора (см. КОНДЕНСАТОР (электрический)) вдали от краев его обкладок.
Одно из фундаментальных свойств электростатического поля заключается в том, что работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от траектории движения, а определяется только положением начальной и конечной точек и величиной заряда. Следовательно, работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными. То есть электростатическое поле — это потенциальное поле, энергетической характеристикой которого является электростатический потенциал (см. ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКИЙ) , связанным с вектором напряженности Е соотношением:
Е = -gradj.
Для графического изображения электростатического поля используют силовые линии (см. СИЛОВЫЕ ЛИНИИ) (линии напряженности) — воображаемые линии, касательные к которым совпадают с направлением вектора напряженности в каждой точке поля.
Для электростатических полей соблюдается принцип суперпозиции (см. СУПЕРПОЗИЦИИ ПРИНЦИП). Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженности полей, создаваемых в данной точке каждым из зарядов в отдельности.
Всякий заряд в окружающем его пространстве создает электростатическое поле. Чтобы обнаружить поле в какой-либо точке, надо поместить в точку наблюдения точечный пробный заряд — заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле).
Поле, создаваемое уединенным точечным зарядом q, является сферически симметричным. Модуль напряженности уединенного точечного заряда в вакууме с помощью закона Кулона (см. КУЛОНА ЗАКОН) можно представить в виде:
Е = q/4peоr2.
Где eо — электрическая постоянная, = 8,85.10-12Ф/м.
Закон Кулона, установленный при помощи созданных им крутильных весов (см. Кулона весы (см. КУЛОНА ВЕСЫ)), — один из основных законов, описывающих электростатическое поле. Он устанавливает зависимость между силой взаимодействия зарядов и расстоянием между ними: сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
Эту силу называют кулоновской, а поле — кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q (см. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ) среды) меньше, чем в вакууме.
Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда. Электрическое поле можно характеризовать значением потока вектора напряженности электрического поля, который можно рассчитать в соответствии с теоремой Гаусса (см. ГАУССА ТЕОРЕМА). Теорема Гаусса устанавливает связь между потоком напряженности электрического поля через замкнутую поверхность и зарядом внутри этой поверхности. Поток напряженности зависит от распределения поля по поверхности той или иной площади и пропорционален электрическому заряду внутри этой поверхности.
Если изолированный проводник поместить в электрическое поле, то на свободные заряды q в проводнике будет действовать сила. В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, компенсирует полностью внешнее поле, т. е. установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в ноль: во всех точках внутри проводника Е = 0, то есть поле отсутствует. Силовые линии электростатического поля вне проводника в непосредственной близости к его поверхности перпендикулярны поверхности. Если бы это было не так, то имелась бы составляющая напряженности поля, вдоль поверхности провод­ника и по поверхности протекал бы ток. Заряды располагаются только на поверхности проводника, при этом все точки поверхности проводника имеют одно и то же значение потенциала. Поверхность проводника является эквипотенциальной поверхностью (см. ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ). Если в проводнике есть полость, то электрическое поле в ней также равно нулю; на этом основана электростатическая защита электрических приборов.
Если в электростатическое поле поместить диэлектрик, то в нем происходит процесс поляризации — процесс ориентации диполей (см. ДИПОЛЬ) или появление под воздействием электрического поля ориентированных по полю диполей. В однородном диэлектрике электростатическое поле вследствие поляризации (см. Поляризация диэлектриков) убывает в ? раз.

Электростатическое поле.

Министерство образования и науки РФ

Уфимский Государственный Авиационный Технический Университет

Кафедра Вычислительной техники и

Защиты информации.

Реферат

Электрическое поле

Выполнил:

Студент ФИРТ

группы ЗИ-225

Проверила:

доцент, к.т.н.

Машкина И.В.

Уфа 2004

Содержание

  1. Электрический заряд……………………………………………3

  2. Закон Кулона…………………………………………………….5

  3. Электростатическое поле……………………………………….7

  4. Напряжённость поля…………………………………………….8

  5. Применение теоремы Гаусса……………………………….…11

  6. Проводники в электростатическом поле……………………..12

  7. Разность потенциалов………………………………………….13

  8. Поле движущегося заряда………………………………………15

  9. Вихревое электрическое поле…………………………………16

  10. Работа вихревого электрического поля……………………17

  11. Токи Фуко……………………………………………………18

  12. Ферриты……………………………………………………..18

  13. Заключение………………………………………………….19

  14. Список используемой литературы…………………………20

Электрическое поле создается электрическими зарядами или заряженными телами, а также действует на эти объекты независимо от того, движутся они или неподвижны.

Электрическое поле подразделяется по принципу образования:

Электрическое поле

Образовано неподвижными в данной системе отсчета телами и частицами, то их взаимодействие

осуществляется посредством электростатиче­ского поля.

Образовано движущимися частицами.

Вихревое электрическое поле.

.

Электростатика – раздел физики, изучающий электрические поля неподвижных зарядов (заряженных тел).

Электрический заряд

Все тела в природе способны электризоваться, т.е. приобретать заряд. Наличие электрического заряда проявляется в том, что заряженное тело взаимодействует с другими заряженными телами. Имеется два вида электрических зарядов, условно называемых положительными и отрицательными. Заряды одного знака отталкиваются, а разных знаков – притягиваются друг другом. Заряд всех элементарных частиц одинаков по абсолютной величине. Его можно назвать элементарным зарядом. Положительный элементарный заряд обозначается буквой е.

Элементарный заряд

электрон (несущий отрицательный заряд –e)

Протон (несущий положительный заряд +е)

нейтрон (заряд которого равен нулю)

Из этих частиц построены атомы и молекулы любого вещества, поэтому электрические заряды входят в состав всех тел. Обычно частицы, несущие заряды разных знаков, присутствуют в равных количествах и распределены в теле с одинаковой плотностью.

Поскольку всякий заряд q образуется совокупностью элементарных зарядов, он является целым кратным е:

q= + Ne.

(формула №1)

Однако элементарный заряд настолько мал, что возможную величину макроскопических зарядов можно считать изменяющейся непрерывно. Величина заряда измеряемая в разных инерциальных системах отсчёта, оказывается одинаковой. Следовательно, электрический заряд является релятивистскии инвариантным. Отсюда вытекает, что величина заряда не зависит от того, движется этот заряд или покоится.

Электрические заряды могу исчезать и возникать вновь. Однако всегда возникают или исчезают два элементарных заряда противоположных знаков. Например,

Электрон

Позитрон (положительный электрон)

Нейтральные гамма-фотоны

+ =

При этом исчезают заряды –е и +е. В ходе процесса, называемого рождением пары, гамма-фотон, попадая в поле атомного ядра, превращается в пару частиц – электрон и ряды –е и +е.

Таким образом, суммарный заряд электрически изолированной системы не может изменяться. Это утверждение носит название закона сохранения электрического заряда.

Данный закон тесно связан с релятивистской инвариантностью заряда. Действительно, если бы величина заряда зависела бы от его скорости, то, приведя в движение заряды одного какого-то знака, мы изменили бы суммарный заряд изолированной системы.

Линии напряженности для разных видов зарядов.

Закон Кулона.

Закон Кулона – это закон, без которого дальнейшее рассмотрение электрических полей не имеет смысла. Он был установлен в 1785 году Кулоном.

Точечным зарядом называется заряженное тело, размерами которого можно пренебречь по сравнению с расстояниями от этого тела до других тел, несущих электрический заряд.

Опыты Кулона привели к установлению закона, напоминающего закон всемирного тяготения.

Закон Кулона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обрат­но пропорциональна квадрату расстояния между ними. Эту силу называют кулоновской.

Кулоновская сила – это электрическая сила подчиняющаяся закону Кулона и направленная по прямой соединяющей заряды.

Если обозначить модули зарядов через   и , то закон Кулона можно записать в следующей форме:

Здесь k — коэффициент пропорциональности, значение ко­торого зависит от выбора единиц электрического заряда, . Используя систему единиц СИ, этот коэффициент часто записывают в виде: , где  — электрическая постоянная.

Условия применимости формулы

 

Для точечных неподвижных заряженных тел в вакууме

для шаров, радиусы которых соизмеримы с расстояниями между их центрами (заряды распределены равномерно).

Электростатическое полевид материи, осуществляющий взаимодействие между электрически заряженными частицами. Всякий заряд изменяет свойства окружающего его пространства – создаёт в нём электрическое поле. Это поле проявляет себя в том, что помещённый в какую – либо точку электрический заряд оказывается под действием силы. Следовательно, для того чтобы выяснить, имеется ли в данном месте электрическое поле, нужно поместить туда заряженное тело и установить, испытывает оно действие электрической силы или нет. По величине силы, действующей на даны заряд, можно, очевидно, судить об “интенсивности” поля.

Основные характеристики электрического поля

Напряжённость

Потенциал

Итак, для обнаружения и исследования электрического поля нужно воспользоваться некоторым “пробным” зарядом. Для того чтобы сила, действующая на пробный заряд, характеризовала поле “в данной точке”, пробный заряд должен быть точечным. В противном случае сила, действующая на заряд, будет характеризовать свойства поля, усредненные по объему, занимаемому телом, которое несет на себе пробный заряд.

Электростатическое поле. Напряженность электростатического поля. Поток вектора напряженности. Принцип суперпозиций полей

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующаяэлектрическое поле в данной точке и численно равная отношению силы  действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора  (вообще говоря — разное[3] в разных точках пространства), таким образом,  — это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к.  может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности NE.

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где  — угол между силовой линией и нормалью  к площадке dS;  — проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

(13.4)

Так как  , то

(13.5)

где  — проекция вектора  на нормаль и к поверхности dS.

При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

  • Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

  • Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

  • Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ — Большая Медицинская Энциклопедия

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ (синоним статическое электрическое поле) — электрическое поле неподвижных (статических) электрических зарядов. Электростатическое поле представляет собой особую форму электрического поля, которое в общем случае является составляющей электромагнитного поля (см.). Электростатическое поле, возникающее в результате скопления электрических зарядов на поверхности тела человека, обладает неспецифическим действием на организм. В основе этого действия, как полагают, лежит нейрорефлекторный механизм (см. Статическое электричество), однако определенного заболевания электростатическое поле у человека не вызывает.

Силовой характеристикой электростатического поля, как и электрического поля, является напряженность (Е) — векторная величина, численное значение к-рой равно отношению силы (F), действующей в данной точке поля на точечный положительный заряд, к величине (q) этого заряда : Е = F/q.

Направление напряженности электростатического поля совпадает с направлением этой силы. Как и электрическое поле, элекстростатическое поле условно представляется силовыми линиями, направление касательных к которым совпадает с направлением вектора напряженности электростатического поля в тех же точках поля. Силовые линии электростатического поля ориентированы от положительного заряда к отрицательному, их конфигурация зависит от формы поверхностей, на которых расположены заряды.

Энергетической характеристикой электростатического поля является потенциал φ, который в каждой данной точке поля равен отношению потенциальной энергии (П) взаимодействия заряда с электростатического поля к величине этого заряда: φ = П/q.

Практическое значение имеет разность потенциалов, или напряжение (U), между двумя точками поля: U = φ1 — φ2 равная отношению работы (А), совершаемой силами поля при перемещении точечного положительного заряда из одной точки электростатического поля в другую, к величине этого заряда: U = A/q. Значения потенциалов φ в различных точках электростатического поля можно представить в виде поверхностей одинакового потенциала (эквипотенциальные поверхности). Эквипотенциальные поверхности и силовые линии в каждой точке электростатического поля взаимно перпендикулярны.

Напряженность электростатического поля (Е) и его напряжение (U) связаны между собой отношением E=U/L , где L — расстояние вдоль силовой линии между точками электростатического поля, разность потенциалов между которыми равна U. Это отношение используется на практике для косвенного измерения напряженности электрического и электростатического полей. Единицей измерения является вольт на метр (в/м). Для однородного электростатического поля плоского конденсатора Е = U/d, где U — напряжение, приложенное к пластинам конденсатора, а d — расстояние между ними.

В помещенном в электростатическом поле диэлектрике (веществе, плохо проводящем электрический ток) происходит смещение зарядов в пределах атома вещества (см. Атом) или его молекулы (см.) либо так наз. поляризация, в результате которой на поверхности диэлектрика появляются связанные заряды и соответствующее им обратное поле, ослабляющее внешнее электростатическое поле (см. Поляризация). Способность любого диэлектрика к поляризации характеризуется его диэлектрической проницаемостью (см.).

В проводнике, находящемся в электростатическом поле, происходит перемещение свободных зарядов до тех пор, пока напряженность результирующего электростатического поля внутри проводника не станет равной нулю. В пространстве, ограниченном металлической сеткой, электростатическое поле отсутствует, что используют для как называемой электростатической защиты: при определенных обследованиях снятие электроэнцефалограммы и пр.), экспериментах или измерениях людей, животных и приборы помещают внутрь металлического проводника (сетки), который заземляют.

Человек постоянно находится под воздействием электростатического поля. Это вызвано естественными факторами (полный статический заряд Земли, составляющий 5,7*10^5 к, обусловливает вблизи поверхности Земли электростатического поля напряженностью около 130 в/м), производственными и бытовыми факторами (см. Статическое электричество), а также может быть вызвано некоторыми лечебными процедурами (см. Франклинизация).

Под действием электростатического поля происходит поляризация биологических структур, обладающих диэлектрическими свойствами, и некоторое перемещение ионов. Так как ткани человека в основном обладают выраженными электропроводящими свойствами, то внешнее электростатическое поле внутрь органов почти не проникает (см. Электропроводность биологических систем). Основное действие на человека внешнее электростатическое поле оказывает в связи с электрическими разрядами в окружающем воздухе и образованием аэроионов (см. Аэроионизация).

Библиогр.: Физические факторы в комплексном лечении я профилактике внутренних и нервных болезней, под ред. А. Н. Обросова, М., 1971.

См. также библиогр. к ст. Электромагнитное поле.


Электростатическое поле — Мегаэнциклопедия Кирилла и Мефодия — статья

Электростати́ческое по́ле, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними.

Электростатическое поле характеризуется напряженностью электрического поляЕ, которая является его силовой характеристикой: Напряженность электростатического поля показывает, с какой силой электростатическое поле действует на единичный положительный электрический заряд, помещенный в данную точку поля. Направление вектора напряженности совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.

Электростатическое поле является стационарным (постоянным), если его напряженность не изменяется с течением времени. Стационарные электростатические поля создаются неподвижными электрическими зарядами.

Электростатическое поле однородно, если вектор его напряженности одинаков во всех точках поля, если вектор напряженности в различных точках различается, поле неоднородно. Однородными электростатическими полями являются, например, электростатические поля равномерно заряженной конечной плоскости и плоского конденсатора вдали от краев его обкладок.Одно из фундаментальных свойств электростатического поля заключается в том, что работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от траектории движения, а определяется только положением начальной и конечной точек и величиной заряда. Следовательно, работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными. То есть электростатическое поле — это потенциальное поле, энергетической характеристикой которого является электростатический потенциал, связанным с вектором напряженности Е соотношением:

Е = -gradj.

Для графического изображения электростатического поля используют силовые линии (линии напряженности) — воображаемые линии, касательные к которым совпадают с направлением вектора напряженности в каждой точке поля.Для электростатических полей соблюдается принцип суперпозиции. Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженности полей, создаваемых в данной точке каждым из зарядов в отдельности.

Всякий заряд в окружающем его пространстве создает электростатическое поле. Чтобы обнаружить поле в какой-либо точке, надо поместить в точку наблюдения точечный пробный заряд — заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле).

Поле, создаваемое уединенным точечным зарядом q, является сферически симметричным. Модуль напряженности уединенного точечного заряда в вакууме с помощью закона Кулона можно представить в виде:

Е = q/4peоr2.

Где eо — электрическая постоянная, = 8, 85.10-12Ф/м.

Закон Кулона, установленный при помощи созданных им крутильных весов (см. Кулона весы), — один из основных законов, описывающих электростатическое поле. Он устанавливает зависимость между силой взаимодействия зарядов и расстоянием между ними: сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.Эту силу называют кулоновской, а поле — кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q ? раз (? — диэлектрическая проницаемость среды) меньше, чем в вакууме.Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда. Электрическое поле можно характеризовать значением потока вектора напряженности электрического поля, который можно рассчитать в соответствии с теоремой Гаусса. Теорема Гаусса устанавливает связь между потоком напряженности электрического поля через замкнутую поверхность и зарядом внутри этой поверхности. Поток напряженности зависит от распределения поля по поверхности той или иной площади и пропорционален электрическому заряду внутри этой поверхности.Если изолированный проводник поместить в электрическое поле, то на свободные заряды q в проводнике будет действовать сила. В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, компенсирует полностью внешнее поле, т. е. установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в ноль: во всех точках внутри проводника Е = 0, то есть поле отсутствует. Силовые линии электростатического поля вне проводника в непосредственной близости к его поверхности перпендикулярны поверхности. Если бы это было не так, то имелась бы составляющая напряженности поля, вдоль поверхности провод­ника и по поверхности протекал бы ток. Заряды располагаются только на поверхности проводника, при этом все точки поверхности проводника имеют одно и то же значение потенциала. Поверхность проводника является эквипотенциальной поверхностью. Если в проводнике есть полость, то электрическое поле в ней также равно нулю; на этом основана электростатическая защита электрических приборов.Если в электростатическое поле поместить диэлектрик, то в нем происходит процесс поляризации — процесс ориентации диполей или появление под воздействием электрического поля ориентированных по полю диполей. В однородном диэлектрике электростатическое поле вследствие поляризации (см. Поляризация диэлектриков) убывает в ? раз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *