Частоты резонансные: Резонансная частота — это… Что такое Резонансная частота?

Содержание

Резонансная частота — это… Что такое Резонансная частота?

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Но это далеко не полное определение явления резонанса. Для более детального восприятия этой категории необходимы некоторые факты из теории дифференциальных уравнений и математического анализа. В теории обыкновенных дифференциальных уравнений известна проблема собственных векторов и собственных значений. Резонанс в динамической системе, описываемой дифференциальными уравнениями (и не только ими), формально наступает, когда проблема собственных значений приводит к кратным собственным числам.

При этом в математическом аспекте не очень существенно, являются ли собственные числа комплексными или действительными. В физическом аспекте явление резонанса обычно связывают только с колебательными динамическими системами. Наиболее ярко понятие явления резонанса развито в современной теории динамических систем. Примером является известная теория Колмогорова-Арнольда-Мозера. Центральная проблема этой теории — вопрос сохранения квазипериодического или условно-периодического движения на торе (теорема КАМ). Эта теорема дала мощный толчок к развитию современной теории нелинейных колебаний и волн. В частности, стало ясно, что резонанс может и не наступить, хоть собственные числа совпадают или близки. Напротив, резонанс может проявиться в системе, где никакие собственные числа не совпадают, а удовлетворяют лишь определенным резонансным соотношениям или условиям синхронизма.

Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы

Механика

Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

,

где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (

низших гармониках).

Резонансные явления могут вызвать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 — разрушился Такомский мост в США. Чтобы предотвратить такие повреждения существует правило, заставляющее строй солдат сбивать шаг при прохождении мостов.

В основе работы механических резонаторов лежит преобразование кинетической энергии в потенциальную и обратно. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.

Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.

Электроника

В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства.

Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения ωL = 1/ωC, где ω = 2πf; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с

полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

Акустика

Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, мембрана у барабанов.

Струна

Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, его частота зависит от скорости v, с которой волна распространяется по струне:

где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:

Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:

,

где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.

Увеличение натяжения струны и уменьшение её длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f, и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит все частоты).

Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.

Примечания

См. также

Ссылки

Richardson LF (1922), Weather prediction by numerical process, Cambridge.

Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech., 20, 457-472.

Бломберген Н. (1965), Нелинейная оптика, М.: Мир — 424 с.

Захаров В.Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика, 17(4), 431-453.

Арнольд В.И. (1979), Потеря устойчивости автоколебаний вблизи резонансов,

Нелинейные волны, ред. А.В. Гапонов-Грехов, М.: Наука, 116-131.

Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys, 51(2), 275-309.

Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.

Филлипс O.М. (1984), Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. М.: Мир, 297-314.

Журавлёв В.Ф., Климов Д.М. (1988), Прикладные методы в теории колебаний

, М.:Наука

Сухоруков А.П. (1988), Нелинейные волновые взаимодействия в оптике и радиофизике, М.: Наука — 232 с.

Брюно А.Д. (1990), Ограниченная задача трех тел, М.:Наука

Wikimedia Foundation. 2010.

Резонанс — друг и враг

Резонанс — это явление резкого возрастания амплитуды вынужденных колебаний системы, которое наступает при приближении частоты внешнего воздействия к определенным значениям (резонансных частот), обусловленным свойствами системы. Таким образом, причиной резонанса является совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы.

Резонанс встречается в механике, электронике, оптике, акустике, астрофизике.

Явление резонанса лежит в основе проектирования музыкальных инструментов: рояля, скрипки, флейты …

Используется явление резонанса и в электронике. Колебательный контур, состоящий из емкости и индуктивности, используется в элементах настройки и электрических фильтрах. Однако резонанс может быть и вредным, если он вызывает искажение сигнала или паразитные шумы.

Наблюдается резонанс и в космосе, когда два небесных тела, которые имеют периоды обращения, относящихся друг с другом как небольшие целые числа, делают регулярное гравитационное воздействие друг на друга, которое может стабилизировать их орбиты (орбитальный резонанс в небесной механике).

Однако наиболее часто резонанс бывает в классической и строительной механике, а также гидро- и аэромеханике. И, к ​​сожалению, во многих случаях именно тогда, когда он совершенно нежелателен.

… Известно, что военным подразделениям при прохождении мостов приписывается «сбивать ногу» и идти не строевым, а свободным шагом. Горький опыт некоторых катастроф научил военнослужащих в подобных ситуациях отходить от многовековых традиций.

Так, 12 апреля 1831 разрушился Бротонский подвесной мост через реку Ирвелл в Англии, когда по нему шел военный отряд. Частота шагов воинов, шагавших в ногу, совпала с частотой собственных колебаний моста, через которые амплитуда резко возросла, цепи оборвались, и мост рухнул в реку. Именно этот случай, в результате которого два десятка человек были травмированы, способствовал принятию в британской армии правила «идти не в ногу» при прохождении войсками мостов. По той же причине в 1850 году неподалеку от французского города Анже был разрушен подвесной цепной мост над рекой Мин длиной более ста метров, что привело к многочисленным жертвам. Также существует версия, что 1905 году в результате прохождения кавалерийского эскадрона через резонанс разрушился и Египетский мост через реку Фонтанку в Петербурге. Однако эта версия, скорее всего, безосновательна, поскольку не существует методов дрессировки значительного количества лошадей для их движения «в ногу».

Причиной разрушения мостов из-за резонанса могут стать не только пешеходы, но и железнодорожные поезда. Для исключения резонанса моста поезд может двигаться или медленно, или на максимальной скорости (вспомните, как замедляют ход поезда метрополитена во время их движения через мост Метро в Киеве). Это обычно делается для исключения совпадения частоты ударов колес по стыкам рельсов с собственной частотой колебаний моста (по этой же причине участок рельсов на мосту часто выполняют сплошной, т.е. без стыков).

Катастрофические последствия для мостов могут послужить также и от воздействия ветра. Так, 7 ноября 1940 через игнорирование действия ветровой нагрузки на мост при его проектировании и вследствие возникновения резонанса разрушился Такомский подвесной мост общей длиной 1800 м и длиной центрального пролета 850 м (США).

С резонансом можно столкнуться не только на суше, но и на море и в воздухе. Так, при некоторых частотах вращения гребного вала в резонанс входили даже корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания элементов самолета, что он полностью разрушался в воздухе.

Причиной резонанса элементов летательных аппаратов и их разрушение может стать и флаттер — сочетание самовозбуждающиеся незатухающих изгибающих и крутильных автоколебаний элементов конструкции (главным образом крыла самолета или несущего винта вертолета). Одним из путей борьбы с этим явлением является использование так называемых протифлатерных грузов.

Интересно, что крепления двигателей на пилонах крыльев самолетов — это не прихоть конструкторов и дизайнеров, а насущная необходимость, поскольку двигатели демпфирующие колебания крыла в полете воздушного судна, будучи при этом своеобразным протифлатерним грузом.

Также известны случаи, когда во время выступлений знаменитого русского певца Федора Ивановича Шаляпина часто лопались плафоны в люстрах. И происходило это опять же через резонанс, когда частота собственных колебаний стекла совпадала с частотой акустических волн, воспроизводимых певцом.

Еще более интересным фактом является то, что во время Великой Отечественной войны все тот же резонанс едва не поставил под угрозу существование единой ниточки, проходившей по льду Ладожского озера и связывала блокадный Ленинград с «большой землей».

… Во время наведения участка Дороги жизни по Ладожскому озеру защитники Ленинграда неожиданно столкнулись с необычным явлением, когда после нормального прохождения по льду тяжелого грузовика, легкая машина, которая шла по тому же пути, нередко проваливалась под лед.

Перед учеными была поставлена ​​задача срочно разобраться с ситуацией, сложившейся и предоставить рекомендации по преодоления автомобилями ледяного покрова. В южной части Ладожского озера, под артиллерийским и минометным огнем врага гидрограф и гидротехники проводили эксперименты по определению предельных нагрузок на лед. Все выводы ученых поступали в Ледовую службу Морской обсерватории. Было изучено деформационную устойчивость льда под статической нагрузкой и данные про упругие деформации льда при распространении по льду взрывной волны. При проведении автоколонн по Ладоге наблюдались и неизвестные ранее колебания ледяного покрова: водяной волна, образовавшаяся под льдом проседала, двигалась с постоянной для определенной толщины льда и глубины водоема скоростью. Она могла опережать приложенную нагрузку или отставать от нее, но опасным было совпадения этих скоростей — тогда вода прекращала поддержку ледяного покрова, и поддержка обеспечивалась только упругими свойствами льда. При этом наступал резонанс, что приводило к разрушению льда. Это проявление резонанса было названо изгибно-гравитационной волной.

По результатам исследований для автомобилей, которые двигались по льду, были установлены определенные скорости и дистанции. Ежедневно по ледяному покрову в обе стороны перевозилось около 6 тыс. Тонн грузов, а общее количество доставленных в Ленинград по Дороге жизни грузов за весь период ее существования составила более 1 млн 615 тыс. Тонн. Также за это же время с осажденного города было эвакуировано около 1 млн 376 тыс. Его жителей.

С учетом приобретенного опыта позже был разработан резонансный метод разрушения льда, энергоемкость которого в несколько раз меньше энергоемкости традиционного разрушения ледяного покрова с помощью ледоколов и ледокольного навесного оборудования.

Как видим, резонанс может быть достаточно коварным, но укротить его и вернуть на пользу человеку вполне по силам!

РЕЗОНАНСНЫЕ КОЛЕБАНИЯ С ПРЕДЕЛЬНОЙ АМПЛИТУДОЙ В ВИБРАЦИОНОМ ЭЛЕКТРОМАГНИТНОМ АКТИВАТОРЕ

Актуальность исследования обусловлена тем, что вибрационные электромагнитные активаторы являются перспективными для применения в различных технологиях, связанных с добычей и транспортировкой георесурсов, в том числе при приготовлении буровых растворов и разжижении вязких нефтепродуктов. Вибрационный электромагнитный активатор представляет собой электрическую машину возвратно-поступательного движения с якорем-активатором, образующим в жидкой обрабатываемой среде турбулентные затопленные струи. В первом попупериоде якорь-активатор притягивается к стенке за счет импульса тока в катушках, при этом в упругой пружине накапливается потенциальная энергия. Этот режим является режимом вынужденных колебаний в механической системе вибрационного электромагнитного активатора. Во втором полупериоде ток в катушках отсутствует, а якорь-активатор отталкивается от стенок за счет энергии пружины – это режим свободных колебаний в механической системе. С точки зрения улучшения энергоэффективности следует настраивать вибрационный электромагнитный активатор на резонансную частоту. Резонансная частота не является постоянной и зависит от свойств обрабатываемой жидкости. Форма вынуждающей колебания силы должна быть такой, чтобы обеспечивать колебания в механической системе на резонансной частоте с предельной амплитудой, что обеспечит повышение энергоэффективности и производительности вибрационного электромагнитного активатора. Цель: провести аналитические исследования, позволяющие обеспечивать резонансные колебания с предельной амплитудой в вибрационном электромагнитном активаторе.  Методы исследования основаны на использовании обыкновенных дифференциальных уравнений, преобразования Лапласа, амплитудно-частотных характеристик, систем нелинейных алгебраических уравнений, спектрального анализа, сопоставления аналитических и экспериментальных характеристик. Результаты. На основе линеаризованной математической модели механической системы вибрационного электромагнитного активатора рассмотрен режим свободных колебаний якоря-активатора с предельной амплитудой. Режим вынужденных колебаний предлагается рассматривать как естественное дополнение к режиму свободных колебаний с вынуждающей силой, действующей половину периода и имеющей специальную форму. Показано, что режимы свободных и вынужденных колебаний существенно зависят от параметров механической системы, которые определяются свойствами обрабатываемой жидкой среды. Проведен спектральный анализ вынуждающей силы, обеспечивающей резонансные колебания с предельной амплитудой в механической системе вибрационного электромагнитного активатора. Предложено техническое решение, обеспечивающее управление вибрационным электромагнитным активатором с автоматической настройкой на резонансную частоту и предельную амплитуду колебаний якоря-активатора. Такой режим обеспечивает максимизацию энергоэффективности и производительности процессов перемешивания жидких обрабатываемых сред. На основе сопоставления аналитических и экспериментальных частотных характеристик подтверждена гипотеза о допустимости линеаризации математической модели механической системы вибрационного электромагнитного активатора при аналитическом исследовании вынуждающей силы оптимальной формы.

Ключевые слова:

Буровой раствор, высоковязкий нефтепродукт, вибрационный электромагнитный активатор, резонанс, вынуждающая колебания сила, свободные колебания, вынужденные колебания, спектральный анализ, настройка на резонансную частоту, оценка погрешности

Частота резонансная — Справочник химика 21

    Как и во всяком спектроскопическом методе, определяются частоты резонансного поглощения, ширина и тонкая структура линий. Из формулы (XXV.6) следует, что для свободного электрона [c.671]

    Метод атомно-абсорбционного анализа (ААА) основан на резонансном поглощении света свободными атомами, возникающем при пропускании пучка света через слой атомного пара (рис. 3.32). Селективно поглощая свет на частоте резонансного перехода, атомы переходят из основного состояния в возбужденное, а интенсивность проходящего пучка света на этой частоте экспоненциально убывает по закону Бугера — Ламберта  [c.138]


    На рис. Д.154 приведена принципиальная схема установки атомно-абсорбционного анализа. Для увеличения поглощения обычно применяют вытянутое в длину пламя. Резонансное характеристическое излучение определяемого элемента возбуждают с помощью источника света. После этого излучение попадает в пламя, проходит через монохроматор и регистрируется, Чувствительность метода зависит от частоты резонансного характеристического излучения, а также в значительной степени от интенсивности возбуждающего резонансного излучения.[c.379]

    Какой должен быть диапазон частот резонансного толщиномера (/min, чтобы обеспечить измерение толщины стальных изделий от Л щ = = 0,35 мм и более  [c.170]

    Эти полосы часто рассматриваются как часть резонансного спектра излучения, поскольку соответствуют переходам с первоначально заселенного уровня V. Однако, строго говоря, частота резонансной линии равна частоте возбуждения. [c.92]

    Колебательное звено, как система второго порядка, имеет три характерные частоты резонансную сор, частоту Шо незатухающих колебаний, совпадающую с сопрягающей частотой, и частоту Шс свободных затухающих колебаний. Эти частоты связаны соотношениями (2.73), (2.74) и (2.126). Для консервативного звена ( = 0) три частоты совпадают. [c.83]

    Электронная конфигурация атома азота в основном состоянии У азота существует три терма 6, и Р, Состояние является основным состояния Ю ъ Р — метастабиль-ными [49]. СТ-взаимодействие атома азота в 5-состоянии возникает из-за обменной поляризации 15- и Зх-орбиталей тремя неспаренными 2р-электронами [51—53]. Суммарный электронный спин атома в 5-состоянии равен Поскольку спин ядра азота равен единице, у атомарного азота должно быть 12 магнитных энергетических уровней. Правила отбора в условиях сильного поля (Ато/ = О и = = 0 1) ограничивают число переходов между магнитными уровнями до девяти. При отсутствии расщепления уровней основного состояния атома азота в нулевом поле должен наблюдаться спектр ЭПР из трех линий, обусловленный взаимодействием с ядром азота уровни тонкой структуры трехкратно вырождены (частота резонансных переходов между энергетическими уровнями с равными и и и — /21 одинакова). Таким образом, у атомов азота в 5з/ -состоянии должен быть спектр, состоящий либо из трех, либо из девяти линий. [c.120]

    Как правило, в пределы Ауп спектральной линии активного в-ва может попадать неск. резонансных частот (резонансных мод) резонатора (рис. 3), главные из к-рых [c.562]

    Близкое значение (1,6) было получено в работе [54] по разности частот резонансной линии Hg и коротковолнового предела флюктуационных полос Hgg. Авторы работ [236, 309] рекомендовали более высокое значение, вводя ошибочную поправку на [c.50]


    Очевидно, что ларморова частота совпадает с частотой резонансного облучения, полученной выше для двухуровневой системы (см. (1.18)). В самом деле, [c.17]

    Частоты Резонансные поля [c.122]

    В основе метода атомно-абсорбционной спектроскопии (ААС) лежит явление селективного поглощения света свободными атомами в газообразном состоянии. Поглощение можно наблюдать, пропуская свет от внешнего источника непрерывного (сплошного) спектра через слой свободных атомов какого-либо элемента (рис. 14.39). Природным аналогом системы являются линии Фраунгофера в солнечном спектре. Селективно поглощая свет, чаще всего — на частоте резонансного перехода, атомы переходят из основного состояния в возбужденное, а интенсивность проходящего пучка света на этой частоте (длине волны) экспоненциально убывает по закону Бугера—Ламберта—Бера  [c. 824]

    Наиболее вероятным изменением энергетического состояния атома при возбуждении является его переход на уровень, ближайший к основному энергетическому состоянию, т. е. резонансный переход. Если на невозбужденный атом направить излучение с частотой, равной частоте резонансного перехода, кванты света будут поглощаться атомами и интенсивность излучения будет уменьшаться. Использование этих явлений составляет физическую основу атомно-абсорбционной спектроскопии. Таким образом, если в эмиссионной спектроскопии концентрация вещества связывалась с интенсивностью излучения, которое было прямо пропорционально числу возбужденных атомов, то в атом-но-абсорбционной спектроскопии аналитический сигнал (уменьшение интенсивности излучения) связан с числом невозбужденных атомов. [c.97]

    УЗ-дефектоскопов, применяемым для контроля металлов (см. разд. 2.2.1.2). Однако имеются отличия, обусловленные более низкими рабочими частотами. В преобразователях для контроля бетона обычно используют полуволновые пакеты, склеенные из нескольких одинаковых дисковых пьезопластин, электрически соединенных параллельно и синфазно. Это связано с тем, что с уменьшением рабочей частоты резонансная толщина пьезоэлемента растет. Поэтому создание напряженности электрического поля, достаточной для эффективного излучения, требует повышения напряжения возбуждающего преобразователь генератора, что затруднительно. Использование пакетов из нескольких пьезопластин позволяет создавать в пьезоэлектрике нужную напряженность поля при приемлемых значениях этого напряжения. [c.537]

    В различных молекулах или в пределах одной молекулы однотипные ядра (например, протоны) могут иметь различные константы экранирования и, следовательно, различные условия резонанса. Рассмотрим, например, условия резонанса протонов и атомов углерода метильных групп тетраметилсилана, триметиламина и диметилового эфира. Очевидно, что электронная плотность на атомах углерода и на протонах в ряду этих соединений уменьшается ввиду увеличения электроотрицательности гетероатома. Если зафиксировать частоту электромагнитного поля V( и плавно повышать напряженность постоянного магнитного поля (развертка по полю), то условия резонанса наступят раньше (т. е. при более слабом поле) для протонов метильных групп диметилового эфира (ДМЭ), затем — триметиламина (ТМА) и, наконец,-тетраметилсилана (ТМС) (рис. 5.5). Если, наоборот, зафиксировать напряженность Hq и плавно менять частоту электромагнитного поля (развертка по частоте), резонансная линия протонов тетраметилсилана появится при более низкой частоте радиочастотного поля, затем линия протонов триметиламина-при более высокой частоте и, наконец, линия диметилового эфира-при самой высокой частоте. Рис. 5.5 есть [c.282]

    Поскольку скорости движения газа в каналах газового тракта высоки, резонансный пик систем регулирования обычно относится к достаточно высоким частотам,, порядка 10 рад/с, что делает автоматическое регулирование весьма эффективным. Лишь. в случае технологических аппаратов большого объема и наличия существенного транспортного запаздывания в устройствах для отбора и анализа состава газа частота резонансного пика может понизиться примерно до 0,03 рад/с, как это имеет место в примере, приведенном на рис. 56, б,. кривая Е. [c.169]

    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]


    АЕ=Ил V — частота резонансного поглощения  [c.635]

    Показатели коррозии, определяемые из изменения в результате коррозии внутреннего трения Kq-i и частоты резонансных колебаний — вр> рассчитывали по формулам  [c.124]

    При повышении температуры скорость заторможенного внутреннего вращения в молекуле диметилформамида вокруг связи С—N. обладающей частично двойным характером, увеличивается. Когда частота вращения станет значительно больше, чем разность частот резонансных линий двух метильных групп, равная (2,95 — 2,78) 60 = 10,2 гц, метильные группы становятся неразличимыми и дают один сигнал в спектре ПМР. Химический сдвиг нового сигнала будет равен полусумме химических сдвигов 62 и 63. Этот сигнал наблюдают при 150° — температуре, при которой внутреннее вращение становится соверщенно свободным. [c.389]

    Образец исследуемого вещества помещают в катушку колебательного контура генератора (рис. 1-5). Подбирая обратную связь в контуре, возбуждают колебания, частота которых может плавно меняться при изменении емкости контура. Когда частота удовлетворяет условию А = Ну (где АЕ — расстояние между квадруполь-ными уровнями, а V — частота резонансного контура), вещество начинает поглощать радиочастотную энергию, меняя активную составляющую проводимости контура ЬС, т. е. меняя его добротность. Полученное таким образом изменение напряжения на контуре ЕС затем детектируется и усиливается. [c.20]

    Для того чтобы показания прибора зависели только от изменения активного сопротивления ячейки, необходимо тем или иным образом исключить влияние изменения емкости ячейки на собственную частоту резонансного контура.[c.35]

    Окончив кипячение, выключают нагрев и воду, поступающую в холодильники, осторожно сливают раствор, извлекают образцы (работу надо производить в защитных очках и резиновых перчатках), промывают их водой и сушат фильтровальной бумагой. Затем измеряют электросопротивление образцов на мостике Томсона, частоту резонансных колебаний и внутреннее трение. Рабочая длина образца при измерениях до и после кипячения должна быть одинаковой. После измерений производят пробу на звук при падении образца с высоты 200—250 мм на каменную плитку, записывая результаты испытания в таблицу (звук металлический, приглушенный, картонный). [c.157]

    Межкристаллитную коррозию вызывают, выдерживая образцы и стандартном кипящем растворе Си504 и Нг504 с медными стружками. Затем измеряют частоту резонансных колебаний образцов и внутреннее трение. [c.347]

    Согласно уравнению (XXIV.7), частота резонансного поглощения однозначно определяется величиной g. Так как зависит от соотношения орбитального и спиновых магнитных моментов, то метод парамагнитного резонанса непосредственно позволяет определять наличие и величину неспаренных спин-моментов (свободных валентностей). Величина магнитного момента является основной, по не единственной характеристикой, получаемой при помощи метода парамагнитного резонанса. [c.532]

    Влияние ядра первого протона приводит к тому, что у половины радикалов неспаренный электрон оказывается в суммарном магнитном поле ЯвнЧ-АЯ/ (спин ядра ориентирован по полю), у другой половины радикалов — в поле Я н—ДЯ (спин ядра ориентирован против поля). Поскольку при фиксированной частоте резонансное поглощение всегда наблюдается при суммарной напряженности магнитного поля на элек- [c.28]

    Маятниковый режим движения струи означает, что периодический ввод очередной порции акгивного газа в энергообменные каналы, расположенные между центральным и крайними каналами, происходит на двух равных по величине частотах (резонансных), но с фазовым сдвигом между ними. При этом величина фазового сдвига изменяется от канала к каналу. Следствием этого является дополнительное перемешивание активного и пассивного газов в начальных участках энергообменных каналов, а также ослабление интенсивности формирующихся ударных волн, определяющих интенсивность тепловьщелений в пассивном газе. [c.37]

    Характеристики преобразователей. Собственные частоты вибраторов преобразователей зависят от определенного формулой (2,60) импеданса 2о их общей механической нагрузки, обычно имеющего упругоактивный характер, причем ио1 Ко- Поэтому при рассмотрении собственных частот можно положить 2о /Хо- При работе непрерывными колебаниями, что характерно для совмещенных преобразователей, значение Ха определяет частоту резонансного режима, при котором достигается максимальная чувствительность. [c.314]

    Околорезонансные колебания. Оригинальный вариант резонансного метода измерения вязкоупругих характеристик пластмасс основан на варьировании амплитуды, достигаемом изменением силы тока в системе возбуждения колебаний [8]. Этот метод позволяет находить характеристики материала при поддержании постоянной амплитуды деформаций (что особенно важно, если измеряемые параметры зависят от деформации), довольно легко реализуется на практике и поддается автоматизации. Суть метода основана на использовании формулы (VII.2) для двух частот — резонансной (U0 и близкой к ней ш (отношение со/соо ниже обозначается как g). Так как резонансная амплитуда равна fo/(MG») [см. формулу (VII.3)], а -соо связана с G, то исходное расчетное уравнение принимает вид  [c.154]

    При охвате системы питания жидкостью контуром а(втоматиче Окого регулирования частота резонансного пика обычно столь высока (до 3—5 рад/с), что практически не сказывается на последующем технологическом процессе [39, с. 343]. Исключение составляют возможные на последующих стадиях контуры регулирования потока по. кажому-либо параметру качества жидкости большое транопортное запаздывание, авойственное таким контурам, может существенно снизить частоту резонансного пика.[c.162]

    В тех1Нологических процессах, протекающих под повышенным давлением, частоты резонансных пиков могут быть ниже вследствие аккумулирования газа в аппаратах, трубопроводах, а также в пробоотборных линиях. [c.169]

    Практически для наблюдения ЭПР-спектров выбирают поле Н порядка 3000 э, тогда частота резонансных колебаний V оказывается порядка v=10 , что соответствует ультракоротким радиоволнам с длиной волны 3 см. Пользуясь ультракоротковолновой техникой, можно наблюдать спектр поглощения трехсантиметровых радиоволн (отсюда термин — радиоспектроскопия) образцом, содержащим неспарепные электроны и помещенным в магнитное поле, где величина магнитного поля точно подгоняется к условию резонанса. Спектр парамагнитных частиц должен был бы состоять из одной единственной линии поглощения. В действительности же наблюдается интересное осложнение, [c.193]

    Замечено также, что ширины линий в образцах ДФПГ различного происхождения довольно значительно расходятся. Специальное исследование показало, что определяющей здесь является природа растворителя, из которого кристаллизуется ДФПГ [1]. В табл. 22 приведены значения ширин линий ДФПГ на двух частотах резонансного поглощения. [c.96]

    Используя закон Гука для колебания между двумя атомами, рассчитайте частоту резонансного колебания (в Гц) следующих двухатомных групп, если известны следующие силовые постоянные (к)  [c.754]

    В ЭТОМ методе неселективно образованные ионы всех изотопов (например, путём поверхностной ионизации) ускоряются заданным потенциалом, так что ионы различных изотопов приобретают различную скорость, затем перезаряжаются в атомы и уже после изотопически-се-лективно ионизируются при коллинеарном облучении пучка ускоренных атомов. Изменяя ускоряющее напряжение, можно было настраивать за счёт эффекта Доплера частоту резонансного поглощения атома в резонанс с частотой лазерного излучения на первой ступени возбуждения. Была достигнута изотопическая селективность ионизации 10 , что позволяло отчётливо сепарировать редкий изотоп [c. 365]

    Несколько и.наче изготовлен регулятор типа Мео-ла (из1готавли1ваамый в ЧССР) с датчиком погружения. Это трехточечный осциллятор высокой частоты, резонансная цепь котор ого находится внутри зонда и представляет, по существу, датчик. При изменении элект- [c.154]

    Если амплитудная характеристика имеет резкие максимумы, что свойственно слабодемпфированным резонансным системам, то обычно максимумы у ху( ) и Н(1) приходятся на эти же частоты (резонансные частоты системы), поскольку отноше- [c.113]

    Взаимодействия через карбонильную группу происходят и в системах диенонов. Поэтому в спектре (рис. 66) 16а-метил-преднизона XXXIV резонансный сдвиг протона С-2 появляется в виде четырех линий (/1,2=10 гц и /2,4=2,0 гц) причем две линии совпадают с широким сигналом протона С-4. Большинство отнесений, сделанных на рисунке, должно быть для читателя очевидным следует обратить внимание только на уширение пика метильной группы С-18 по сравнению с пиком метильной группы С-19, что указывает на наличие в молекуле 12-метилен-11-кетофрагмента. Отнесения резонансных сигналов 12а- и 12р-протонов на основании лишь спектра на частоте 60 Мгц невозможны, однако спектр на частоте 100 Мгц и эксперименты по двойному резонансу позволяют решить эту задачу [И]. Так, двойное облучение на частоте резонансного сигнала 12а-протона превращает сигнал 12р-протона в синглет при 2,10 [11]. В аналогичном эксперименте резонансные сигналы всех трех С-метильных групп появляются в виде синглетов приблизительно равной интенсивности (см. спектр на частоте 100 Мгц на рис. 66). Этот эксперимент показывает, что резонансный сигнал 1бр-атома водорода расположен в одной области с резонансным сигналом 12а-атома водорода. Очевидно, две пары линий, [c.159]


Резонанс шагового двигателя — статья

Шаговым двигателям свойственен нежелательный эффект, называемый резонансом. Эффект проявляется в виде внезапного падения момента на некоторых скоростях. Это может привести к пропуску шагов и потере синхронности. Эффект проявляется в том случае, если частота шагов совпадает с собственной резонансной частотой ротора двигателя.

Когда двигатель совершает шаг, ротор не сразу устанавливается в новую позицию, а совершает затухающие колебания. Дело в том, что систему ротор – магнитное поле – статор можно рассматривать как пружинный маятник, частота колебаний которого зависит от момента инерции ротора (плюс нагрузки) и величины магнитного поля. Ввиду сложной конфигурации магнитного поля, резонансная частота ротора зависит от амплитуды колебаний. При уменьшении амплитуды частота растет, приближаясь к малоамплитудной частоте, которая более просто вычисляется количественно. Эта частота зависит от угла шага и от отношения момента удержания к моменту инерции ротора. Больший момент удержания и меньший момент инерции приводят к увеличению резонансной частоты.

Резонансная частота вычисляется по формуле:

F0 = (N*TH/(JR+JL))0.5/4*pi,

где F0 – резонансная частота,
N – число полных шагов на оборот,
TH – момент удержания для используемого способа управления и тока фаз,
JR – момент инерции ротора,
JL – момент инерции нагрузки.

Необходимо заметить, что резонансную частоту определяет момент инерции собственно ротора двигателя плюс момент инерции нагрузки, подключенной к валу двигателя. Поэтому резонансная частота ротора ненагруженного двигателя, которая иногда приводится среди параметров, имеет маленькую практическую ценность, так как любая нагрузка, подсоединенная к двигателю, изменит эту частоту.

На практике эффект резонанса приводит к трудностям при работе на частоте, близкой к резонансной. Момент на частоте резонанса равен нулю и без принятия специальных мер шаговый двигатель не может при разгоне пройти резонансную частоту. В любом случае, явление резонанса способно существенно ухудшить точностные характеристики привода.

В системах с низким демпфированием существует опасность потери шагов или повышения шума, когда двигатель работает вблизи резонансной частоты. В некоторых случаях проблемы могут возникать и на гармониках частоты основного резонанса.

Когда используется не микрошаговый режим, основной причиной появления колебаний является прерывистое вращение ротора. При осуществлении шага ротору толчком сообщается некоторая энергия. Этот толчок возбуждает колебания. Энергия, которая сообщается ротору в полушаговом режиме, составляет около 30% от энергии полного шага. Поэтому в полушаговом режиме амплитуда колебаний существенно меньше. В микрошаговом режиме с шагом 1/32 основного при каждом микрошаге сообщается всего около 0.1% от энергии полного шага. Поэтому в микрошаговом режиме явление резонанса практически незаметно.

Для борьбы с резонансом можно использовать различные методы. Например, применение эластичных материалов при выполнении механических муфт связи с нагрузкой. Эластичный материал способствует поглощению энергии в резонансной системе, что приводит к затуханию паразитных колебаний. Другим способом является применение вязкого трения. Выпускаются специальные демпферы, где внутри полого цилиндра, заполненного вяДля борьбы с резонансом можно использовать различные методы. Например, применение эластичных материалов при выполнении механических муфт связи с нагрузкой. Эластичный материал способствует поглощению энергии в резонансной системе, что приводит к затуханию паразитных колебаний. Другим способом является применение вязкого трения. Выпускаются специальные демпферы, где внутри полого цилиндра, заполненного вязкой кремнийорганической смазкой, может вращаться металлический диск. При вращении этой системы с ускорением диск испытывает вязкое трение, что эффективно демпфирует систему.

Существуют электрические методы борьбы с резонансом. Колеблющийся ротор приводит к возникновению в обмотках статора ЭДС. Если закоротить обмотки, которые на данном шаге не используются, это приведет к демпфированию резонанса.

И, наконец, существуют методы борьбы с резонансом на уровне алгоритма работы драйвера. Например, можно использовать тот факт, что при работе с двумя включенными фазами резонансная частота примерно на 20% выше, чем с одной включенной фазой. Если резонансная частота точно известна, то ее можно проходить, меняя режим работы.

Если это возможно, при старте и остановке нужно использовать частоты выше резонансной. Увеличение момента инерции системы ротор-нагрузка уменьшает резонансную частоту.

Самой эффективной мерой для борьбы с резонансом является применение микрошагового режима.

Частотный отклик механических систем | Блог COMSOL

В продолжение статьи нашего корпоративного блога о демпфировании механических колебаний мы подробно расскажем про анализ гармонического отклика механических систем при учете демпфирования. Мы также продемонстрируем различные способы определения и анализа частотного отклика в программном пакете COMSOL Multiphysics®.

Что такое частотный отклик?

В общем смысле, частотный отклик системы показывает реакцию системы (в части некоторых свойств) на воздействие как функцию от частоты возбуждения. 2 \right )

т.е. меньше, чем собственная частота колебаний демпфированной системы.

Фактически сдвиг по частоте получается в два раза больше. Может показаться парадоксальным то, что частота возбуждения, вызывающая максимальное усиление колебаний, не совпадает с частотой свободных колебаний. Это можно объяснить фазовым сдвигом между силой и смещением, который обусловлен демпфированием. Без демпфирования нагрузка и смещение синфазны ниже собственной частоты и сдвинуты на 180° по фазе выше собственной частоты (с быстрым переходом в её окрестности). Демпфирование обеспечивает более плавный переход фазового сдвига (см. график ниже). Вне зависимости от уровня демпфирования, фазовый сдвиг на собственной частоте колебаний недемпфированной системы всегда составляет 90°.


Зависимость фазового сдвига смещения как функция от частоты.

Несовпадение по фазе силы и смещения при демпфировании, оказывает влияние на процесс передачи энергии этой силой системе.

Описание демпфирования через коэффициент гистерезисных потерь

Повторим анализ для системы с одной степенью свободы с гистерезисными потерями. 2}{8}
\right )

Анализ, в результате которого можно получить соответствующее снижение частоты возбуждения, которое также меньше собственной частоты колебаний демпфированной системы, в данной статье не приведен.

Фазовый сдвиг между возбуждением и откликом при описании демпфирования через коэффициент гистерезисных потерь особенно интересен, поскольку он наблюдается даже при очень низких частотах возбуждения. Его асимптотическое значение — arctan(η).


Зависимость фазового сдвига смещения от частоты в случае введения демпфирования в систему через коэффициент гистерезисных потерь. Низкочастотные асимптоты обозначены пунктирными линиями.

Замечание о трении

В случае сопряжения эффекта демпфирования с эффектом трения между двумя поверхностями, отклик на гармоническое воздействие уже не будет являться гармоническим, ввиду наличия нелинейности в системе. При этом отклик может быть периодическим, но ангармоническим. Такие задачи уже невозможно решить с помощью методов анализа в частотной области, в которых предполагается линейность отношения внешнего воздействия и результата этого воздействия.

Моделирование частотного отклика в COMSOL Multiphysics®

Настройка исследования

После добавления физического интерфейса из группы Механика Конструкций в Мастере создания моделей становится доступно для выбора несколько типов исследования, четыре из которых можно использовать для вычисления частотного отклика:

  1. Frequency Domain
  2. Frequency Domain, Prestressed
  3. Frequency Domain, Modal
  4. Frequency Domain, Prestressed, Modal


Доступные типы исследования для интерфейса Solid Mechanics.

Два исследования из указанных выше реализуют прямое решение, а в двух других используется техника модальной суперпозиции. При использовании исследований группы Prestressed можно учитывать изменение жесткости конструкции, обусловленное стационарной предварительной нагрузкой. Методика суперпозиции мод идеально подходит для расчетов в частотной области, поскольку при этом реализуется простой выбор подходящих мод собственных колебаний на основе заданных частот.

В любом случае частотный анализ выполняется при условии, что в настройках исследования указаны значения частот, для которых требуется вычислить отклик. Зачастую бывает эффективно сгустить частотные точки около собственных частот конструкции (для получения лучшего разрешения).


Ввод частот для проведения частотного анализа.

Обратите внимание на то, что без демпфирования отклик на собственной резонансной частоте стремится к бесконечности. Другими словами, невозможно решить задачу о частотном отклике без демпфирования на частоте равной собственной или близкой к ней. Численный результат при этом будет представлять собой вырожденную или, по крайней мере, плохообусловленную системную матрицу.

Гармоническое возмущение или нет?

В узле Stationary(Стационарный) в последовательности решателя для исследования в частотной области имеется достаточно важная настройка: Linearity (Линейность).


Опции задания настройки Linearity.

В принципе, любой анализ в частотной области можно рассматривать как небольшое возмущение, так что использование опции Linear perturbation (Линейное возмущение) не будет ошибочным. Однако, в наиболее распространенном случае колебания происходят относительно нулевого положения. При этом не так важно, рассматривается ли задача как Linear (линейная) или Linear Perturbation (Линейное гармоническое возмущение). Но свойство линейности всегда фундаментально меняет характер интерпретации нагрузок. Нагрузку можно пометить как Harmonic Perturbation (Гармоническое возмущение). Такая нагрузка будет учитываться, только если для опции Linearity задано значение Linear perturbation. Все нагрузки, не имеющие пометку Harmonic Perturbation, в ходе такого исследования будут проигнорированы. И наоборот, если в Linearity не задано значение Linear perturbation, то все нагрузки с пометкой Harmonic Perturbation (Гармоническое возмущение) не будут учитываться, а все остальные рассматриваются как гармонические.


Нагрузка, заданная на грань и помеченная как Harmonic Perturbation.

Рассматриваемая настройка позволяет разграничить нагрузки, приводящие к предварительным напряжениям, и гармонические возбуждения, воздействующие поверх них.

При добавлении стандартного исследования в Frequency Domain (Исследование в частотной области) по умолчанию в Linearity не ставится вариант с учетом возмущений. Поэтому, в таком случае не следует использовать для нагрузок метку Harmonic Perturbation (пока вы не измените соответствующим образом настройку Linearity). При добавлении исследования в Frequency Domain, Prestressed (Исследование в частотной области с предварительным напряжением) в конфигурации солвера для исследования частотного отклика выставляется опция Linear Perturbation. Если исследование использует технику суперпозиции мод, то оно также всегда будет настроено с опцией Linear Perturbation.

Интерпретация полученных результатов

Результаты расчета в частотной области являются комплекснозначными, а их гармоническое изменение — неявное. {i \phi})

Фазовый угол Φ представляет собой свойство, задаваемое в наборе данных исследовании, где его можно изменить.


Задание ненулевого фазового угла в наборе данных.

В большинстве случаев при проведении расчета в частотной области требуется установить зависимость амплитуды искомой величины v от частоты. Это означает, что анализировать следует не саму величину v, а её модуль abs(v). Их отличия показаны на следующем рисунке.


Пример графика частотного отклика. Обратите внимание на то, что график для «u» идентичен графику для «real(u)».

Для более детального анализ можно добавить на график мнимую часть и аргумент результирующей величины:


Пример графика частотного отклика с отображением фазы.

Для низких частот действительная часть близка к абсолютной величине. Вблизи собственной частоты мнимая часть, наоборот, вносит свой основной вклад. Это означает, что отклик не синфазен с возбуждающей нагрузкой.

А теперь посмотрим, что произойдет, если значение фазового угла в наборе данных будет изменено на 45°.


Частотный отклик при задании величины 45° для фазового угла в наборе данных.

Как и ожидалось, график амплитуды остается неизменным. При этом графики действительной и мнимой частей меняются, а кривая фазы сдвигается вверх на π/4. На самом деле, такой же график получился бы при добавлении фазового угла 45° к нагрузке.


Задание сдвига по фазе в нагрузке.

Вместо ввода фазового угла можно эквивалентным образом указать нагрузку напрямую, используя комплексный формализм:


Комплексное представление нагрузки, аналогичное варианту на изображении выше.

Возможность задать фазовый угол определенно очень важна для случая, когда нагрузки не совпадают по фазе. Например, вращающуюся несбалансированную массу можно описать традиционным способом, указав для нагрузки по оси y фазовый сдвиг на 90° относительно нагрузки по оси x.

Результаты исследования при учете гармонических возмущений

При использовании исследования, в котором учитываются гармонические возмущения (на фоне стационарной нагрузки), будет сформировано два набора результатов: решение для предварительного напряжения и решение для гармонического возмущения. В данном случае при настройке графиков или операций вычисления появится дополнительная настройка: Expression evaluated for.


Выбор способа расчета величины в рамках исследования, в котором учитываются гармонические возмущения.

Здесь можно выбрать для какого решения нужно вывести/рассчитать величину: для решения с расчетом гармонических возмущений, для решения с расчетом предварительного напряжения или для их сочетания. В случае выбора решения с расчетом гармонических возмущений также будет доступна еще одна дополнительная опция: чекбокс Compute differential.


Активация чекбокса Compute differential.

Последняя настройка влияет на обработку нелинейных выражений. 2 будет рассчитано как 2*u0*u, где u0 — значение в точке линеаризации.

Преобразование данных из частотной во временную область

В некоторых ситуациях может потребоваться непосредственно визуализировать гармонический отклик, полученный в рамках расчета в частотной области, как функцию от времени. В частности, это может быть полезно при наличии нескольких возбуждающих нагрузок с разными частотами.


Отклик на возбуждение от двух нагрузок с разными частотами.

Провести конвертацию данных из частотной области во временную можно возможно посредством шага исследования Frequency to Time FFT (Быстрое преобразование Фурье из частотной области во временную область).


Последовательность исследований для перевода результатов из частотной области во временную.

Этот метод используется в следующих учебных моделях:

Заключение

Расчет в частотной области представляет собой мощное средство для анализа линейных систем, подверженных воздействию гармонического возбуждения. На самом деле, можно свести к исследованию в частотной области любую задачу с периодической формой возбуждающего сигнала нагрузки за счет конвертации его с использованием преобразования Фурье.

В Галерее приложений доступно множество примеров анализа частотного отклика механических систем, например:

Страница не найдена — ООО «АСМ Тесты и измерения»

Н О В О С Т И
Наш новый партнер Teledyne Reson

Наша компания начала сотрудничать с датской фирмой Teledyne Reson, которая является ведущим поставщиком высококачественных решений для подводной акустики.


Ремонт портативных калибраторов акселерометров

Уважаемые клиенты! Если у Вас имеется портативный калибратор акселерометров HI-803, Endevco 28959FV или такой же калибратор другого производителя вы можете столкнуться с проблемой, что прибор выключается сразу после загрузки селфтеста.


Мониторы шума (Hlukové monitory)

Мониторы шума от Чешской компании «Hlukové monitory». Визуализация шума, для легкой и эффективной возможности его контролировать.


Сервисный центр

Сервисное обслуживание и ремонт измерительных приборов Bruel & Kjaer, Dewesoft, OnoSokki, LDS


Сергей Собянин предложил оборудовать дорожные камеры шумомерами

Распродажа оборудования со склада в Москве

Выставка PRO // Движение.Экспо

Приглашаем Вас посетить наш стенд на выставке PRO // Движение.Экспо, который будет находится в павильоне №1 в бизнес-лаунже № E7.8/1.


Новый партнер Microtech Gefell GmbH

Мы подписали эксклюзивное дистрибьюторское соглашение с компанией Microtech Gefell GmbH. Компания была основана в 1928 году в Германии и занимается производством микрофонов студийных и измерительных. В советское время эта компания была известна в нашей стране под брендом RFT, который был известен своим качеством и надежностью, и ни в чем не уступали другому известному бренду Bruel & Kjaer.


Представляем Вам нашего нового партнера — компания Dynalabs.

Первый сертифицированный бюджетный микрофон фирмы ACO (Япония)

Сертифицирована система поверки акселерометров 3629

Приглашаем на работу

ИДЕТ РЕГИСТРАЦИЯ НА СЕМИНАР

Частота резонанса

— обзор

Влияние уровней насыщения кислородом на сигналы ядерного магнитного резонанса

Частота ЯМР ядер с ненулевым спином пропорциональна ядерному гиромагнитному отношению и силе локального поля, испытываемого ядром. Таким образом, изменения в распределении поля внутри и вокруг эритроцитов влияют на несколько параметров ЯМР, включая резонансную частоту и времена релаксации ЯМР. Эти два параметра будут обсуждаться отдельно в следующих нескольких абзацах.Обсуждение будет сосредоточено на ядрах водорода, наиболее часто изучаемых ядерных частицах в биомедицинских ЯМР и МРТ. Наибольшая часть сигналов ЯМР водорода от живых организмов исходит от несвязанной воды, которая присутствует в высокой молярной концентрации во многих тканях, включая кровь. Высокая концентрация, большое гиромагнитное отношение и высокое содержание изотопов значительно увеличивают чувствительность ЯМР-обнаружения водорода, что позволяет получать МР-изображения живых организмов с высоким разрешением.

Локальное микроскопическое поле, испытываемое ядром в однородной среде с заданной восприимчивостью χ , погруженное во внешнее приложенное поле B 0 isBL − B0 = Ds − 23χ − χ0B0, где D — размагничивающий фактор зависит от геометрии образца, а 2/3 — геометрический фактор сферы, нарисованной вокруг ядра. Эту конструкцию обычно называют «сферой Лоренца», условной сферической вакуумной полостью, окружающей ядро, что объясняет тот факт, что в атомном масштабе среда не может быть представлена ​​как континуум.Интересно отметить, что для сферического образца D s = 2/3 и резонансная частота не зависит от изменений χ . Для эритроцитов геометрия далека от сферической, и следует ожидать сдвига резонансной частоты для молекул воды в суспензии эритроцитов при изменении восприимчивости клеток. Действительно, разница в 0,33 ppm в резонансной частоте ядер водорода в оксигенированной и деоксигенированной крови человека была измерена Thulburn и его коллегами в экспериментах, проведенных in vitro в сильных магнитных полях.Чтобы рассчитать влияние чувствительности на сигналы ЯМР в такой сложной среде, как кровь, необходимо уточнить теоретические основы.

В однородном материале фактический размер сферы Лоренца явно не появляется в расчетах. Однако кровь очень неоднородна, гемоглобин разделен на дискретные единицы (эритроциты), встроенные в плазму. Количественный расчет сдвига линии ЯМР протонов в крови требует немного более сложной конструкции, чтобы учесть различные масштабы характерной длины вкладов в локальное поле, обусловленных удаленными эритроцитами и гемоглобином.Сначала рисуется сфера Лоренца вокруг ядра достаточного размера, чтобы содержать большое количество эритроцитов, так что вклады в локальное поле от удаленных источников вокруг сферы плавно меняются. Поле, испытываемое ядром в центре сферы, равно BL = B0 + Ds − 23χbloodB0 + Bi, где B i обозначает вклады в локальное поле от источников внутри сферы, а χ кровь восприимчивость крови (сфера велика в клеточном масштабе, а внешняя среда выглядит как континуум). χ кровь зависит от относительного объема, занимаемого RBC V rbc (т. Е. Гематокрита): χblood = Vrbc × χrbc + Vrbc − 1χpl Для оценки B i , секунда нарисована сфера Лоренца, меньше клетки, но большая в молекулярном масштабе. Если эта сфера полностью находится внутри внутриклеточного пространства: Bi = Drbc − 23χrbc − χplB0

Для сложной формы RBC геометрический фактор D rbc должен быть оценен численно с помощью процедур, аналогичных тем, которые используются для расчета распределение поля, показанное на рисунке 3, и зависит от ориентации ячейки по отношению к внешнему магнитному полю.В сильных полях, используемых Тулберном и его сотрудниками, эритроциты полностью ориентированы в конфигурации с минимальной энергией, и D rbc = 0,75.

Используя эту конструкцию, можно рассчитать частичные изменения локального поля, испытываемые ядрами, для компартментов плазмы и эритроцитов: ΔBpl / B0 = Ds − 23VrbcΔχrbcΔBrbc / B0 = Ds − 23VrbcΔχrbc + Drbc − 23Δχrbc

молекул воды быстро диффундируют. вне ячейки и динамически усреднять все распределение поля в типичной шкале времени ЯМР.В этом режиме быстрого обмена сигнал ЯМР состоит из узкого резонанса, центральная частота которого отражает среднее поле, испытываемое ядром. Таким образом, резонансный сдвиг для ядер водорода молекулы воды в крови пропорционален среднему значению изменений локального поля во внутри- и внеклеточной среде, взвешенных по относительным размерам водных компартментов (0,3 и 0,7 для эритроцитов и эритроцитов). плазма соответственно).

Для изменения внутриклеточной магнитной восприимчивости Δ χ rbc = 2.5 × 10 −6 , что соответствует разнице между оксигенированными и деоксигенированными эритроцитами, и для цилиндрической пробы крови с гематокритом 40% эти расчеты предсказывают сдвиг водородного резонанса на 0,3 ppm, что хорошо согласуется со сдвигом, измеренным с помощью Thulburn и его сотрудники в аналогичных условиях. Приведенная выше теоретическая оценка показывает, что этот сдвиг можно почти полностью объяснить изменениями магнитной восприимчивости крови, а не прямым взаимодействием молекул воды с парамагнитными центрами.

Сдвиг резонансной частоты — не единственное и не самое сильное влияние магнитных свойств крови, зависящих от оксигенации, на параметры ЯМР. Быстрая диффузия молекул воды в градиентах поля внутри и снаружи клеток, а также вблизи небольших капилляров способствует необратимой потере фазовой когерентности ядерной спиновой системы. Характерное время этого процесса называется временем спин-спиновой релаксации, или T 2 . Для более крупных кровеносных сосудов несоответствие восприимчивости крови и окружающей ткани приводит к градиентам магнитного поля в большем масштабе, чем измеренный при диффузии молекул воды.Частично обратимая дефазировка спинов, вызванная этими более протяженными в пространстве градиентами, регулируется постоянной времени, называемой T2 *.

Оба механизма релаксации более эффективны в присутствии более сильных градиентов, а T 2 и T2 * короче в деоксигенированной крови. Важно отметить, что изменения оксигенации крови не только влияют на время ЯМР-релаксации ядерных спинов в крови, но и в окружающей ткани. Сосудистая сеть сильно структурирована, мельчайшие капилляры имеют диаметр всего несколько микрон и разделены несколькими десятками микрон.Следовательно, изменение оксигенации крови влияет на время релаксации большого количества спинов как во внутри-, так и во внесосудистом отделах, а времена релаксации ЯМР более чувствительны, чем относительно небольшой сдвиг резонансной частоты, к изменениям уровней оксигенации крови. МР-изображения могут быть сенсибилизированы к T 2 и T2 * с помощью соответствующих последовательностей радиочастотных импульсов, что позволяет использовать эритроциты в качестве эндогенного источника контраста. Применение этих методов для отображения паттернов мозговой активности обсуждается в следующем разделе.

Собственная частота: хорошее, плохое и катастрофическое

Крошащиеся мосты, разбитое стекло, кричащие дети, тяжелые басы — тот, кто считает, что у этих вещей нет ничего общего, ошибается. Все они создаются посредством вибраций, и, в частности, сильные вибрации создаются собственными частотами. Читайте дальше, пока мы объясним науку, лежащую в основе этого принципа, и что такое резонансные катастрофы, а также рассмотрим игру резонанса крена, когда дело доходит до громкоговорителей.

Все вибрирует, а как?

Вибрация наушников всегда является реакцией на импульс энергии. Рука может запустить маятник в движение, ветер может раскачать небоскреб, а катушка с помощью магнита может сдвинуть мембрану громкоговорителя. Насколько сильно что-то вибрирует, зависит от приложенной мощности вибрации, а также от материала, включая конструкцию колебательной системы. С другой стороны, большое значение имеет частота, с которой действуют импульсы энергии.Ведь если частота подаваемой энергии совпадает с собственной частотой тела, тело вибрирует с особенно высокой амплитудой.

Как выглядит явление резонансной частоты на практике, можно понять с помощью маятника: если пружинный маятник является периодическим, то есть через регулярные промежутки времени, на который подается энергия, соответствующая собственной частоте маятника, отклонение маятника составляет его величайший. Если импульсы энергии имеют более низкую или более высокую частоту, чем собственная частота, отклонение маятника будет меньше.

На качелях вы можете попробовать на себе, как работает резонансная частота. Когда вы ударяете качелями в наивысшую точку, подача энергии точно соответствует собственной частоте системы. Вот почему качели имеют такой большой импульс качания. Если вы ударите до или после того, как замах достигнет своей наивысшей точки, сила передается менее эффективно или даже никуда не денется.

От хороших к плохим колебаниям

Корпус акустической гитары, качелей, стекла или моста может вибрировать с соответствующей резонансной частотой.Но это не везде желательно и даже может нанести большой ущерб. Это связано с тем, что системы могут так сильно вибрировать, что конструкция не может выдержать нагрузку.

Это явление можно наблюдать, когда человек направляет голос на бокал с вином с небольшого расстояния. Если высота голоса в точности соответствует собственной частоте стекла, оно через относительно короткое время разбивается — происходит так называемая резонансная катастрофа. Если голосовые связки заставляют молекулы воздуха колебаться с большей или меньшей частотой, стекло остается неповрежденным.Собственную частоту стекла можно услышать, когда вы ударите его каким-либо предметом.

Одна из самых известных резонансных катастроф произошла в США в 1940 году, когда ветер вызвал такую ​​сильную вибрацию моста Tacoma Narrows Bridge, которая разрушила его.

Чтобы избежать резонансных катастроф, кодекс автомобильных дорог запрещает группам людей, например, военным частям, шагать по мостам.

С другой стороны, для музыкальных инструментов резонанс — это преднамеренный эффект для увеличения громкости звука.В акустической гитаре корпус действует как механический усилитель звуковых волн, которые запускаются струнами. Корпус гитары устроен таким образом, что резонансная частота возникает даже на разных тонах.

Громкоговорители Teufel

Резонансные эффекты в громкоговорителях нежелательны — за одним исключением

Резонансная частота в громкоговорителях не приветствуется. Громкоговорители сконструированы таким образом, что различные компоненты не вибрируют на своей резонансной частоте.Это означало бы, что звуки в том же частотном диапазоне, что и отдельные компоненты, будут воспроизводиться намного громче, чем другие. Именно здесь вступает в игру кроссоверная сеть: в многоканальных системах она направляет сигналы на динамики в соответствии с их частотой.

Резонансные эффекты также не должны возникать в корпусе громкоговорителя. Это может произойти, когда мембрана на задней стороне излучает звук внутрь громкоговорителя. Этот звук может вызвать вибрацию корпуса и, таким образом, негативно повлиять на звуковой образ.Чтобы предотвратить это, корпус громкоговорителя снабжен демпфером, который поглощает звуковые волны, излучаемые внутрь.

Исключением из этого правила являются фазоинверторные колонки. Эти шкафы имеют трубчатое отверстие, через которое излучаемый внутрь звук на определенных низких частотах может выходить в комнату. Это работает по принципу резонатора Гельмгольца, который мы объяснили в нашем тексте о сабвуферах.

Нам нужны басы: бас Teufel для более глубоких вибраций

Der Subwoofer der Kombo 42 BT Power Edition verleiht den Regallautsprechern ordentlich Wumms
  • ▶ Моно-сабвуфер US 2106/1 SW: Этот сабвуфер для новичков предлагает мощные басы, не нарушая шума потока, несмотря на свой компактный размер.Это достигается с помощью двух ламп фазоинвертора.
  • ▶ Ultima 40/20 «2.0> 5.1 Extension Set Surround»: динамики HiFi Ultima 40/20 — настоящая дьявольская классика для дома. С помощью этого набора вы можете расширить свою стереосистему до объемного звука 5.1. Сабвуфер T 10 обеспечивает хороший резонанс в диапазоне низких частот.
Еще товары от Teufel

Вывод: Полезна резонансная частота

  • На резонансной частоте собственная частота колебательной системы совпадает с частотой подводимой энергии.
  • В случае резонанса отклонение колебаний увеличивается.
  • В акустике более высокая амплитуда звуковых волн означает более высокое звуковое давление и, следовательно, большую громкость.
  • Резонансные частоты обычно нежелательны для громкоговорителей.
  • Громкоговорители с фазоинвертором являются исключением. Они усиливают низкие частоты по принципу резонатора Гельмгольца.

Наконец, классический «Багз Банни» на эту тему:

Механическая резонансная частота и как ее анализировать

В какой-то момент своей карьеры системные инженеры, вероятно, столкнутся с ситуацией, когда резонансная реакция системы вызывает проблемы с движением и / или слышимое раздражение.Этот резонанс или вибрация нежелательны и могут привести к значительному снижению производительности. Например, фрезерный станок с ЧПУ (который обычно имеет высокую резонансную частоту из-за высокой жесткости) [1] будет дрожать вокруг желаемой траектории фрезерования при возбуждении резонансной частоты. Другой пример — фармацевтический инструмент для работы с жидкостью, в котором возникают неожиданные вибрации, вызывающие перемешивание транспортируемого жидкого раствора. В этой статье будет рассмотрено, почему присутствуют резонансы и какие инструменты можно использовать для их анализа.

Почему механические системы демонстрируют резонансную частоту?

Первым шагом в ответе на этот вопрос является создание модели механической системы. Для определения положения массы с учетом трения и податливости требуется, чтобы модель была системой одного или нескольких дифференциальных уравнений 2-го порядка (или выше). Чтобы найти решение, а также упростить анализ поведения, нерешенные уравнения временной области преобразуются в s-область с помощью преобразования Лапласа .Это облегчает создание передаточной функции системного уровня, которую также называют «характеристическим уравнением».

Знаменатель передаточной функции содержит переменные состояния порядка n. Значения s (действительные и / или мнимые), где знаменатель равен нулю, называются корнями знаменателя, которые называются «полюсами». Числитель может быть константой или содержать переменные состояния порядка n, аналогичные знаменателю. Значения s (действительные и / или мнимые), где числитель равен нулю, называются корнями числителя, которые называются «нулями».Если числитель постоянный, то нулей нет. Эта информация может быть использована для формулирования решения модели во временной области. Однако используемый здесь частотный анализ будет ограничен s-областью для простоты вычислений.

Полюса и нули очень полезны для определения поведения и стабильности. Например, критерии устойчивости диктуют, что порядок знаменателя (количества полюсов) не должен быть меньше порядка числителя (количества нулей). Кроме того, действительная часть доминирующих полюсов должна быть отрицательной (левая часть s-плоскости), чтобы система считалась стабильной.Полюса будут использоваться здесь для объяснения существования резонансной частоты.

Инерциальные системы имеют резонансную частоту, которая существует из-за внутренних свойств. Однако система должна быть более сложной, чем инерция чисто твердого тела, иначе ее характеристическое уравнение будет иметь только полюсы в нуле. Другие члены в характеристическом уравнении, которые могут быть такими же простыми, как член податливости (пружина), будут вводить ненулевые частотные составляющие (корни с мнимыми частями) в характеристическое уравнение.Чисто инерциальные системы будут иметь полюса на нуле и, следовательно, не будут показывать резонансную частоту.

«Твердое тело» — это просто академическая конструкция, которой не существует в реальном мире, поэтому даже простые инерционные системы могут демонстрировать механическую резонансную частоту, когда к ним добавляются пружинные элементы (податливость) и / или демпфирующие компоненты (вязкое трение). модель. Некоторые системы достаточно демпфированы, чтобы подавить резонансную частоту. В этом случае резонансная частота все еще существует (мнимая часть корней), но она едва заметна, так как действительные части корней доминируют в отклике.

Демонстрационная установка

Система, используемая в этой демонстрации (рис. 1), представляет собой массу в верхней части металлической линейки, которая действует как пружина. Нижняя часть пружины прикреплена к ступени линейного двигателя. Для простоты анализируется только движение в направлении линейного двигателя. Движение м 2 будет рассматриваться как линейное, что является допустимым приближением для малых углов. Это упрощение все еще актуально в контексте описания источника резонансной частоты.Кроме того, измеряется только положение двигателя, м 1 .

Модель содержит коэффициент демпфирования системы, b s , который передает силу, пропорциональную скорости и противоположную направлению движения. Это свойство обычно называется «вязким трением» и представляет собой любые фрикционные свойства, пропорциональные скорости. Сила, прикладываемая к системе магнитным полем двигателя, регулируется путем изменения тока в обмотках двигателя.


Рисунок 1 — Демонстрационная система

Реакция положения м 1 на силу, действующую на эту систему, выражается следующим образом:

(Уравнение 1) — получено из реакции на скорость кручения в ссылке 1

Обратите внимание, что член слева от правой части уравнения — это «несвязанный» отклик. Если пружина имеет бесконечную жесткость, крайний правый член равен единице, а две массы жестко прикреплены и действуют как одна масса.В этом случае есть только полюса на нуле и, следовательно, нет резонансной частоты.

Термин справа вводит корни с мнимыми компонентами, тем самым создавая потенциал для частотной характеристики. Для случая, когда b s равно нулю, корни этого члена становятся:


(ур. 2)

Введение умеренного демпфирующего члена ( 0,1K s s <0,6K s / w n ) [2], вводит реальный компонент в корни и перемещает их так, что резонансная частота немного меньше собственной незатухающей частоты.Более сильный демпфирующий член ( b s <0,6K s / w n ) [2] еще больше уменьшит резонансную частоту, но отклик на частоте будет ослаблен и окажет небольшое влияние. В этом случае преобладают настоящие части корней.

Из-за нуля в числителе эта модель также будет показывать «антирезонансную» частоту. Это можно наблюдать как уменьшение отклика при заданном антирезонансе. Системы со связанными массами, подобные анализируемой здесь, будут содержать антирезонансную частоту чуть ниже резонансной частоты.

За пределами резонансной частоты отклик больше, чем у системы, в которой массы жестко связаны. В последнем случае вибрация создает больше всего проблем [1].

Экспериментальное определение резонансной частоты

Использование в качестве определения резонансной частоты «частота, на которой система будет демонстрировать локализованный максимальный отклик» означает, что эксперимент может быть проведен в системе, где отклик как функция частоты измеряется.

Один инструмент, называемый частотной разверткой, вводит в систему сигнал переменной частоты. Частотный ввод начинается с предварительно определенного значения и непрерывно изменяется до тех пор, пока не будет достигнуто определенное максимальное значение. Большинство механических систем имеют резонансные частоты в сотни герц или ниже. Если резонансная частота значительна, она обычно производит слышимый звук, который может воспринимать слушатель.

Аналогичный, но более точный инструмент, график Боде, анализирует усиление и фазу отклика и генерирует график в частотной области.Чтобы упростить вычисления на цифровом процессоре, дискретизируется набор дискретных частот, а результаты обрабатываются с помощью БПФ (быстрое преобразование Фурье).

Это видео на YouTube демонстрирует использование различных инструментов в Pro-Motion® для определения резонансной частоты системы на Рисунке 1:

Метод № 1: Расчет на основе трассировки фактического положения реакции на возмущение.

В систему введено нарушение.Функция Pro-Motion SCOPE используется для отслеживания реакции положения м 1 . Резонансная частота — это величина, обратная периоду времени между одним пиком и другим. Из видео видно, что период довольно близок к 100 мс. Это соответствует резонансной частоте 10 Гц.

Метод № 2: развертка по частоте используется для перехода от низкой к высокой частоте.

На систему действует синусоидальная сила (через магнитное поле двигателя).Колебания системы наблюдаются визуально (или на слух). Отмечается частота локального максимума отклика. Из метода №1 уже известна приблизительная резонансная частота. Однако, если система быстро настраивается в ответ на введенный «импульс» метода №1, то данных может не хватить для определения резонансной частоты. Непрерывное возмущение, вводимое методом № 2, предоставит больше данных в этом отношении, поскольку система никогда не успокаивается.

Как видно на видео, амплитуда колебаний фактического положения начинает увеличиваться около 5.2-секундная отметка (11 Гц). Частота продолжает увеличиваться до 14 Гц, и отклик гаснет после прохождения резонансной частоты. Затем развертка меняет направление и перемещается с 14 Гц на 10,5 Гц и остается там. Как и ожидалось, амплитуда отклика увеличивается по мере приближения к резонансной частоте.

Метод № 3: создается диаграмма Боде системы, охватывающая тот же диапазон частот.

И снова на систему действует синусоидальная сила.На этот раз реакция положения по отношению к приложенной силе используется для расчета усиления и фазы отклика. В этом случае пользователю не нужно полагаться на визуальные или звуковые подсказки. Пользователь может анализировать данные усиления, чтобы найти локальный максимум и частоту, связанную с этим максимумом. Для более детального анализа числовые данные могут быть перенесены в электронную таблицу и проанализированы.


Рис. 2: Данные об усилении Боде в виде электронной таблицы.

Рисунок 2 демонстрирует более точное определение резонансной частоты (10.6 Гц). Антирезонансная частота также может наблюдаться на рисунке 2 примерно на уровне 10,1 Гц.

В конце дня…

Поскольку никакая инерциальная система не содержит истинных масс «твердого тела», все механические системы имеют ненулевую резонансную частоту. Возбуждение резонансной частоты ухудшит работу системы как с точки зрения кратковременной точности, так и с точки зрения долгосрочного технического обслуживания.

Продемонстрированы три метода экспериментального определения резонансной частоты.Метод №1 обеспечил результат в пределах 10%, но этот метод был ограничен системами, которые имеют недостаточно затухающий отклик на импульс. Метод № 2, который полагается на визуальные и звуковые подсказки, дал эквивалентную точность и работает как в системах с избыточным, так и с недостаточным демпфированием. Метод № 3 предоставил наиболее подробную информацию о частотной характеристике системы. Значительно улучшена точность оценки резонансной частоты. Кроме того, этот метод также позволил идентифицировать антирезонансную частоту.

Артикул:

1 Г. Эллис, Лекарства от механического резонанса в промышленных сервосистемах
2 Дж. Д’Аццо и К. Хупис, Анализ и проектирование линейных систем управления: обычные и современные, McGraw-Hill, Inc, 1995, стр. 292-293.

Продукты PMD, поддерживающие серводвигатели

PMD производит ИС, которые обеспечивают расширенное управление движением щеточных и бесщеточных двигателей постоянного тока более двадцати пяти лет. С тех пор мы также встраивали эти ИС в модули plug and play и платы управления движением.Несмотря на разную упаковку, все эти продукты контролируются C-Motion, простым в использовании языком управления движением PMD, и они идеально подходят для использования в медицинских, лабораторных, полупроводниковых, роботизированных и промышленных приложениях управления движением.

Программное обеспечение для анализа движения Pro-Motion

Pro-Motion — это простая в использовании программа для упражнений и анализа движения PMD на базе Windows. Он предлагает готовые возможности, которыми сможет поделиться вся ваша команда разработчиков. Пошаговый мастер настройки осей позволяет разработчикам быстро и легко настраивать контур положения, контур тока и параметры управляющего двигателя с ориентацией на поле.Опытные пользователи могут получить доступ к полному пакету анализа движения с генерацией графиков Боде и автоматической настройкой.

Подробнее >>

ИС серии MC58113

ИС серии MC58113 являются частью популярного семейства микросхем Magellan Motion Control от PMD и обеспечивают расширенное управление положением для шаговых двигателей, BLDC и щеточных двигателей постоянного тока. Стандартные функции включают автонастройку, профилирование s-образной кривой, FOC (полевое управление), управление сигналом переключения высокого / низкого уровня, прямой энкодер, ввод импульсов и направления и многое другое.ИС семейства MC58113, используемые для автоматизации лабораторий, управления насосами, систем наведения или универсальной автоматизации, являются идеальным решением для вашей следующей конструкции машины.

Подробнее >>

Цифровые приводы ION

Цифровые приводы ION объединяют одноосную микросхему Magellan и сверхэффективный цифровой усилитель в компактном прочном корпусе. В дополнение к расширенному управлению серводвигателем, ION обеспечивают перемещение от точки к точке с S-образной кривой, управление питанием i2T, загружаемый код пользователя и ряд функций безопасности, включая обнаружение перегрузки по току, перенапряжения и перегрева.ION — это простые в использовании устройства plug and play, которые мгновенно запускают ваше приложение.

Подробнее >>

Платы управления движением Prodigy

Платы Prodigy® / CME Machine-Controller обеспечивают высокопроизводительное управление движением для медицинских, научных, автоматических, промышленных и роботизированных приложений. Доступные в конфигурациях с 1, 2, 3 и 4 осями, эти платы поддерживают щеточные двигатели постоянного тока, бесщеточные двигатели постоянного тока и шаговые двигатели и позволяют загружать и запускать написанный пользователем код на языке C непосредственно на плате.Машинный контроллер Prodigy / CME имеет встроенные усилители Atlas , которые устраняют необходимость во внешних усилителях. Для построения полностью функционирующей системы требуется только один высоковольтный источник питания, двигатели и кабели. Опции хост-интерфейса включают Ethernet UDP и TCP, CANbus, RS-232 и RS-485.

Подробнее >>

Вас также может заинтересовать:

Учебное пособие по физике: Резонанс

Цель урока 11 учебного курса по физике — развить понимание природы, свойств, поведения и математики звука и применить это понимание к анализу музыки и музыкальных инструментов.До сих пор в этом модуле принципы звуковых волн применялись к обсуждению ударов, музыкальных интервалов, акустики концертного зала, различий между шумом и музыкой, а также воспроизведения звука музыкальными инструментами. В Уроке 5 основное внимание будет уделено применению математических соотношений и концепций стоячей волны к музыкальным инструментам. Будут исследованы три основные категории инструментов: инструменты с вибрирующими струнами (которые будут включать струны гитары, струны скрипки и струны фортепиано), инструменты с открытой воздушной колонной (которые будут включать медные инструменты, такие как тромбон, и деревянные духовые инструменты, такие как флейта и блок-флейта), а также инструменты с воздушной колонной закрытого типа (которые будут включать в себя органную трубу и флаконы поп-бутылочного оркестра ).Четвертая категория — вибрационные механические системы (в которую входят все ударные инструменты) — обсуждаться не будет. Эти категории инструментов могут быть необычными для некоторых; они основаны на общности их моделей стоячих волн и математических соотношениях между частотами, производимыми инструментами.

Резонанс

Как упоминалось в Уроке 4, музыкальные инструменты приводятся в колебательное движение с их естественной частотой, когда человек ударяет, ударяет, звенит, щиплет или каким-то образом трогает предмет.Каждая собственная частота объекта связана с одним из множества паттернов стоячих волн, с помощью которых этот объект может вибрировать. Собственные частоты музыкального инструмента иногда называют гармониками инструмента. Инструмент можно заставить вибрировать на одной из своих гармоник (с одной из его моделей стоячих волн), если другой взаимосвязанный объект толкает его с одной из этих частот. Это известно как резонанс — когда один объект вибрирует с той же собственной частотой, что и второй объект, заставляет этот второй объект совершать колебательные движения.

Слово «резонанс» происходит от латинского и означает «звучать» — звучать вместе с громким звуком. Резонанс — частая причина звукоизвлечения музыкальных инструментов. Одна из наших лучших моделей резонанса в музыкальном инструменте — это резонансная трубка (полая цилиндрическая трубка), частично заполненная водой и вызываемая вибрацией с помощью камертона. Камертон — это объект, который заставил воздух внутри резонансной трубки войти в резонанс. Поскольку зубцы камертона вибрируют на своей собственной частоте, они создают звуковые волны, которые сталкиваются с отверстием резонансной трубки.Эти падающие звуковые волны, создаваемые камертоном, заставляют воздух внутри резонансной трубки вибрировать с той же частотой. Тем не менее, в отсутствие резонанса звук этих вибраций недостаточно громкий, чтобы его можно было различить. Резонанс возникает только тогда, когда первый объект вибрирует с собственной частотой второго объекта. Таким образом, если частота, на которой вибрирует камертон, не идентична одной из собственных частот воздушного столба внутри резонансной трубки, резонанса не произойдет, и два объекта не будут издавать звук вместе с громким звуком.Но расположение уровня воды можно изменить, поднимая и опуская резервуар с водой, тем самым уменьшая или увеличивая длину столба воздуха. Как мы узнали ранее, увеличение длины колебательной системы (здесь воздух в трубке) увеличивает длину волны и снижает собственную частоту этой системы. И наоборот, уменьшение длины колебательной системы уменьшает длину волны и увеличивает собственную частоту. Таким образом, повышая и понижая уровень воды, собственная частота воздуха в трубке может быть согласована с частотой, с которой вибрирует камертон.Когда согласование достигается, камертон заставляет столб воздуха внутри резонансной трубки вибрировать с собственной собственной частотой, и достигается резонанс. Результатом резонанса всегда является сильная вибрация, то есть громкий звук.


Еще одна распространенная физическая демонстрация, которая служит отличной моделью резонанса, — это знаменитая демонстрация «поющего жезла». В центре держится длинный полый алюминиевый стержень. Будучи профессиональным музыкантом, учитель достает канифольный пакет, чтобы подготовиться к мероприятию.Затем с большим энтузиазмом он / она медленно проводит рукой по длине алюминиевого стержня, заставляя его издавать громкий звук. Это пример резонанса. Когда рука скользит по поверхности алюминиевого стержня, трение между рукой и стержнем вызывает колебания алюминия. Колебания алюминия заставляют воздушный столб внутри стержня колебаться с собственной частотой. Согласование колебаний столба воздуха с одной из собственных частот поющего стержня вызывает резонанс.Результатом резонанса всегда является сильная вибрация, то есть громкий звук.

Знакомый шум моря , который слышится, когда морская ракушка подносится к уху, также объясняется резонансом. Даже в кажущейся тихой комнате есть звуковые волны с разными частотами. Эти звуки в основном неслышны из-за их низкой интенсивности. Этот так называемый фоновый шум наполняет морскую ракушку, вызывая колебания внутри ракушки.Но у морской ракушки есть набор собственных частот, на которых она будет вибрировать. Если одна из частот в комнате заставляет воздух внутри ракушки вибрировать с собственной частотой, возникает резонансная ситуация. И всегда результатом резонанса является сильная вибрация, то есть громкий звук. На самом деле звук достаточно громкий, чтобы его можно было услышать. Поэтому в следующий раз, когда вы услышите звук моря в морской раковине, помните, что все, что вы слышите, — это усиление одной из многих фоновых частот в комнате.

Резонансные и музыкальные инструменты

Музыкальные инструменты воспроизводят выбранные звуки таким же образом. Медные инструменты обычно состоят из мундштука, прикрепленного к длинной трубке, наполненной воздухом. Трубку часто скручивают, чтобы уменьшить размер инструмента. Металлическая трубка служит лишь контейнером для столба воздуха. Именно вибрации этой колонны производят звуки, которые мы слышим.Длину вибрирующего столба воздуха внутри трубки можно регулировать, сдвигая трубку для увеличения и уменьшения ее длины или открывая и закрывая отверстия, расположенные вдоль трубки, чтобы контролировать, где воздух входит и выходит из трубки. Медные духовые инструменты включают в себя вдувание воздуха в мундштук. Вибрации губ относительно мундштука создают диапазон частот. Одна из частот в диапазоне частот соответствует одной из собственных частот воздушного столба внутри медного инструмента.Это заставляет воздух внутри колонны испытывать резонансные колебания. Результатом резонанса всегда является сильная вибрация, то есть громкий звук.

Деревянные духовые инструменты работают аналогичным образом. Только источником вибраций являются не губы музыканта, соприкасающиеся с мундштуком, а вибрация трости или деревянной полоски. Работа деревянных духовых инструментов часто моделируется на уроках физики с помощью пластиковой соломинки. Концы соломки обрезаются ножницами, образуя коническую трость .Когда воздух проходит через тростник, тростник вибрирует, создавая турбулентность с диапазоном частот колебаний. Когда частота вибрации язычка совпадает с частотой вибрации столба воздуха в соломе, возникает резонанс. И еще раз, результатом резонанса является сильная вибрация — язычок и столб воздуха излучаются вместе, создавая громкий звук. Как будто этого было недостаточно, длину соломинки обычно сокращают, отрезая маленькие кусочки от противоположного конца. По мере того как соломинка (и столб воздуха, который в ней содержится) укорачивается, длина волны уменьшается, а частота увеличивается.По мере укорачивания соломы наблюдаются все более высокие шаги. Деревянные духовые инструменты издают звуки, похожие на соломенную демонстрацию. Вибрирующий язычок заставляет столб воздуха вибрировать на одной из собственных частот. Только для духовых инструментов длина столба воздуха регулируется путем открытия и закрытия отверстий в металлической трубке (поскольку трубки немного трудно разрезать и их слишком дорого заменять каждый раз, когда их разрезают).

Резонанс — причина образования звука в музыкальных инструментах.В оставшейся части Урока 5 математика стоячих волн будет применена для понимания того, как резонирующие струны и воздушные колонны создают свои определенные частоты.



Резонанс

: определение и передача волн — видео и стенограмма урока

Резонансная частота

Мы уже знаем, что волны возникают из-за вибраций.Звуковые волны возникают в результате механических колебаний твердых тел, жидкостей и газов. Световые волны возникают из-за вибрации заряженных частиц.

Объекты, заряженные частицы и механические системы обычно имеют определенную частоту, с которой они склонны колебаться. Это называется их резонансной частотой или их собственной частотой.

Некоторые объекты имеют две или более резонансных частоты. Вы знаете, когда вы едете по ухабистой дороге, и ваша машина начинает подпрыгивать вверх и вниз? Ваш автомобиль колеблется на своей резонансной частоте; или действительно резонансная частота амортизаторов.Вы можете заметить, что когда вы едете в автобусе, частота подпрыгивания немного ниже. Это потому, что амортизаторы автобуса имеют более низкую резонансную частоту.

Когда звуковая или световая волна ударяет по объекту, он уже вибрирует с определенной частотой. Если эта частота совпадает с резонансной частотой объекта, в который он попадает, вы получите так называемый резонанс . Резонанс возникает, когда амплитуда колебаний объекта увеличивается за счет соответствующих колебаний другого объекта.

Эти отношения сложно представить без примера. Итак, давайте рассмотрим резонанс дальше в контексте световых волн.

Прохождение и резонанс световых волн

Возьмем типичную световую волну. Мы скажем, что это поток белого света, исходящий от солнца. И возьмем темный объект, например, западную крысиную змею, скользящую по вашему двору.

Молекулы в коже змеи имеют набор резонансных частот. То есть электроны в атомах имеют тенденцию колебаться на определенных частотах.

Свет, исходящий от солнца, — белый свет. Итак, у него не одна, а множество частот волн. Он имеет частоты красного и зеленого, синего и желтого, оранжевого и фиолетового цветов. Каждая из этих частот поражает кожу змеи.

И каждая частота заставляет колебаться свой электрон. Желтая частота резонирует с электронами, резонансная частота которых желтая. Синяя частота резонирует с электронами, резонансная частота которых синего цвета. Итак, кожа змеи в целом резонирует с солнечным светом.

Змея кажется черной, потому что ее кожа поглощает все частоты солнечного света.

Когда световые волны резонируют с объектом, они заставляют электроны колебаться с большой амплитудой. Световая энергия поглощается объектом, и мы вообще не видим, как этот свет возвращается к нам. Объект кажется черным. Поскольку западная крысиная змея поглощает все частоты солнечного света, она выглядит как черная змея.

Что делать, если объект не поглощает солнечный свет? Что, если ни один из его электронов не резонирует со световыми частотами? Если резонанса не происходит, то вы получите пропускание , прохождение световых волн через объект.

Стекло кажется прозрачным, потому что оно не поглощает солнечный свет.

Свет по-прежнему вызывает колебания электронов. Но, поскольку это не соответствует резонансным частотам электронов, колебания очень малы, и они проходят от атома к атому на всем протяжении объекта. Объект без резонанса будет демонстрировать нулевое поглощение и 100% пропускание. Итак, объект в этом случае не был бы белым; он был бы прозрачным, как стекло или вода.

Мы поговорим больше о передаче и поглощении на следующем уроке. А пока давайте переключимся и поговорим о том, как работает резонанс в звуковых волнах.

Музыка и резонанс звуковых волн

Резонанс звука работает так же, как и свет. Когда один объект вибрирует с резонансной частотой второго объекта, тогда первый объект заставляет второй вибрировать с высокой амплитудой.

Допустим, вы собираетесь играть на трубе.Вы прижимаете губы к мундштуку трубы и готовите пальцы. Когда вы играете, ваши губы вибрируют, соприкасаясь с мундштуком, создавая множество звуковых волн малой амплитуды на самых разных частотах. Звуки из ваших губ очень мягкие, поэтому их никто не слышит. Но одна из тех частот, которые вы производите, будет резонировать с молекулами воздуха внутри трубы.

Когда вы заставляете пальцы играть одну ноту, вы создаете столб воздуха определенной длины и ширины.Этот столб воздуха имеет собственную резонансную частоту, и она соответствует одной из частот, исходящих от ваших губ. Энергия ваших вибраций поглощается столбом воздуха. Он усиливается воздушным столбом и издает громкий звук. Если вы измените аппликатуру, столбец сбрасывается, и теперь у вас есть другая резонансная частота для соответствия.

Резонанс вызывает такое увеличение амплитуды этой частоты, что люди слышат громкий одночастотный звук вашей трубы. Этот звук — лишь одна из многих частот, которые вы производите.Но это единственный звук, который мы слышим, потому что он единственный, который усиливается за счет своего резонанса с воздушным столбом.

Резонанс увеличивает амплитуду частоты, что приводит к появлению звука.

Вы когда-нибудь пробовали заставить бокал петь? Вы можете сделать это, просто намочив палец и проведя им по краю стакана. Движение вызывает небольшие вибрации, потому что ваш палец на самом деле скользит по стеклу в чередующемся порядке.

Эффект скольжения создает звуковые волны многих частот, одна из которых будет резонировать с самим бокалом. Из стекла раздается чистый, звонкий звук, который соответствует резонансной частоте стекла. Некоторые люди могут использовать эти тона для создания красивой музыки!

Теперь, если хотите, можете попробовать разбить стекло своим голосом! Просто найдите резонансную частоту, спойте ноту как можно громче и отчетливее и подождите, пока бокал не разобьется.Вибрации высокой амплитуды, которые вы создаете своим голосом, вызовут еще более сильные вибрации в стекле. В какой-то момент стекло будет так сильно вибрировать, что не сможет сохранять форму. Вибрации деформируют стекло до разрыва, и вы сможете поразить своих друзей своими талантами! Только не забудьте потом забрать разбитое стекло.

Краткое содержание урока

Принцип резонанса влияет на то, как мы воспринимаем звуковые и световые волны. Все объекты обладают естественной или резонансной частотой, на которой они склонны колебаться.Когда колебания от одного объекта совпадают с резонансной частотой другого объекта, говорят, что они резонируют, потому что первый объект усиливает колебания второго объекта.

Резонанс в световых волнах приводит к поглощению световой частоты. Когда резонанса нет, свет проходит через объект. Для звуковых волн резонанс дает громкий звук, соответствующий резонансной частоте инструмента. В любом случае резонанс всегда возникает из-за того, что один объект вибрирует на резонансной частоте другого.

Результаты обучения

После этого урока вы сможете:

  • Определить резонанс и резонансную частоту
  • Объясните, почему некоторые объекты кажутся черными, а другие прозрачными из-за резонанса
  • Опишите, как громкие звуки создаются с помощью резонанса

Влияние резонанса и резонансной частоты в звуковом дизайне

Практически все инженеры знакомы с концепцией резонанса и ее многочисленными последствиями при проектировании системы.Электрический, механический или смешанный резонанс может быть использован для обеспечения преимуществ конструкции или может быть вредным и отрицательно повлиять на общую производительность. В этом блоге будет представлен обзор проблем, связанных с резонансом, включая резонансную частоту, факторы, влияющие на резонанс в аудиоустройствах, как использовать кривую частотной характеристики, а также проблемы, связанные с саморезонансом в зуммерах и динамиках.

Что такое резонанс и резонансная частота?

Резонанс возникает, когда физический объект или электронная схема поглощает энергию от начального смещения или источника, а затем поддерживает возникающие механические или электрические колебания без дополнительной силы или энергии, действующей на него.Частота, на которой возникает эта вибрация, известна как резонансная частота, обозначенная F0.

Примеры резонанса

Резонанс — это физическое явление, которое проявляется во многих формах и может происходить в любом месте частотного спектра от низких звуковых частот до радиочастотных частот на уровне ГГц. Вот лишь несколько примеров резонанса на практике:

  • Детские качели представляют собой резонансный маятник, частота которого определяется длиной веревки.
  • В некоторых лазерах используется резонанс, основанный на отражениях между противоположными зеркальными поверхностями.
  • В механических системах машина может трястись и чрезмерно вибрировать на своей резонансной частоте, когда скорость ее двигателя увеличивается от более низких до более высоких оборотов в минуту.
  • В электронике стимулированный LC-фильтр будет резонировать как настроенный контур резервуара, чтобы установить рабочую частоту.
  • Пьезоэлектрический кварцевый генератор, обеспечивающий синхронизацию системы или синтезатора, является примером электромеханического резонанса.
  • Громкоговоритель будет иметь резонансную частоту, на которой он наиболее эффективно преобразовывает входную электрическую мощность в выходную мощность звука.

Как и многие системные атрибуты, резонанс может быть хорошим и использоваться, чтобы подчеркнуть желаемый атрибут или проблему, которую необходимо контролировать и даже подавлять. Он обеспечивает выполнение основных функций контуров резервуаров LC и кварцевых генераторов, но может вызвать самоуничтожение оборудования. Для аудиоисточников, таких как зуммеры или динамики, он максимизирует звуковое давление, но также может способствовать возникновению нежелательных гармоник, которые иногда создают раздражающее жужжание и дребезжание корпуса или окружающих предметов.

Резонансные частоты аудиокомпонентов

Механический резонанс зависит от веса и жесткости, которые соединяют вместе различные массы. В случае стандартного динамика рассматриваемой массой будет диффузор (или диафрагма), а жесткость будет зависеть от гибкости подвески, которая соединяет диффузор с рамой. Однако существует множество способов изготовления динамиков, а используемые материалы и способ их монтажа позволяют каждому типу динамиков воспроизводить разные резонансные частоты.

Стандартная конструкция динамика

Как уже упоминалось, стандартные динамики имеют диффузор, соединенный с рамой через подвеску. К задней части конуса прикреплен магнит электромагнита, который влияет на вес. В зависимости от материала, используемого для конуса, толщины подвески и размера электромагнита, резонансная частота будет изменяться. Как правило, более легкие, но более жесткие материалы и более гибкие подвески дают более высокие резонансные частоты. По этой причине высокочастотные твитеры имеют небольшие размеры, а значит, легкие и, как правило, имеют жесткие лавсановые диффузоры и очень гибкие подвески.Обычно, изменяя эти факторы, стандартные динамики имеют частотный диапазон где-то между 20 Гц и 20 000 Гц.

Зуммеры с магнитным преобразователем — это еще одно аудиоустройство, но они отделяют приводной механизм от звукового механизма иначе, чем стандартный динамик. Диафрагма легче и жестче крепится к раме, что увеличивает их нормальный частотный диапазон, а также уменьшает их диапазон. Зуммеры с магнитными преобразователями обычно издают звук в диапазоне 2-3 кГц и не требуют такого большого тока, как стандартный динамик с тем же уровнем звукового давления.

Типичная конструкция магнитного зуммера

Наконец, пьезоэлектрические преобразователи — это третий способ генерации звука. Они используют пьезоэлектрический эффект, используя переменное электрическое поле, заставляющее материал изгибаться сначала в одну, а затем в другую сторону. Пьезо материалы обычно довольно жесткие, а детали, используемые в пьезоэлектрических преобразователях, довольно маленькие и тонкие. Из-за этого, как и зуммеры магнитных преобразователей, они производят высокочастотный шум, обычно от 1 до 5 кГц, с узким частотным диапазоном.Они даже более эффективны, чем магнитные зуммеры, поскольку обычно производят даже более высокий уровень звукового давления, чем магнитные зуммеры с той же силой тока.

Типовая конструкция пьезоэлектрического зуммера

Чтение резонанса на кривых частотной характеристики

Хотя можно запустить тесты для определения резонансной частоты аудиоустройства, обычно в этом нет необходимости. Большинство производителей предоставляют график зависимости звукового давления от частоты в таблице данных, который показывает резонансную частоту вместе с общей частотной характеристикой.Однако производители не могут учесть какие-либо изменения в этой спецификации резонансной частоты из-за монтажа, размера корпуса, конструкции и материала, используемого для интеграции аудиоустройства в общую систему. Несмотря на это, они являются полезным ресурсом, который может послужить отправной точкой для выбора и дизайна.

Ниже приведен пример графика частотной характеристики зуммера магнитного преобразователя CMT-4023S-SMT-TR. В его техническом описании указана резонансная частота 4000 Гц, которая четко обозначена пиком на диаграмме частотной характеристики.

Кривая АЧХ для зуммера магнитного преобразователя CMT-4023S-SMT-TR

Звуковые индикаторы, использующие либо магнитную, либо пьезоэлектрическую технологию, также являются опцией. Благодаря встроенной схеме привода эти устройства с внутренним приводом не нуждаются в графике частотной характеристики, поскольку они работают на фиксированной номинальной частоте. Они предназначены для максимального увеличения звукового давления в этом частотном окне и упрощения проблем с резонансом.

В качестве другого примера, динамик CSS-10246-108 указывает в своем техническом описании резонансную частоту 200 Гц ± 40 Гц, но на его графике частотной характеристики также показан еще один резонансный всплеск примерно на 3.5 кГц, а также резонансная зона примерно от 200 Гц до 3,5 кГц.

Кривая частотной характеристики динамика CSS-10246-108

В целом, каждое аудиоустройство будет иметь частоты, на которых оно будет усиливать звук, и частоты, на которых оно будет уменьшать или ослаблять звук. Управляя зуммером или динамиком входным сигналом, который имеет частоту, равную или близкую к резонансной частоте или резонансным зонам аудиоустройства, разработчики могут создать максимальный уровень звукового давления при минимальной входной мощности. Однако большинство приложений не работают только на одной частоте.В то время как резонансная частота — это то место, где достигается максимальный уровень звукового давления, динамик или зуммер можно использовать во всем частотном диапазоне в соответствии с его спецификацией, при условии, что уровень звукового давления достаточен для предполагаемого применения.

Проблемы дизайна резонанса

После того, как разработчики узнают резонансную частоту устройства, у них остаются две проблемы, связанные с резонансом: во-первых, использование собственной резонансной частоты и резонансной зоны для максимального уровня звукового давления, а во-вторых, предотвращение нежелательного гудения и дребезжания в установке из-за резонансные эффекты.

Хотя комплексная проверка и приблизительная оценка важны на этапе предварительного проектирования, ничто не заменит создание прототипа и использование методом проб и ошибок эмпирического создания оптимального корпуса для конкретного источника звука. Любая реализация должна также учитывать диапазон допусков компонентов и производственных вариаций.

Кроме того, особенно для динамиков, важно обеспечить достаточный кубический объем в корпусе, чтобы выходной аудиосигнал не ослаблялся из-за нехватки места для распределения звуковой энергии.Даже небольшое снижение уровня звукового давления на 3 дБ, вызванное покрытием или материалами корпуса, соответствует снижению выходной звуковой мощности на 50%. В нашем блоге «Как спроектировать корпус для микро-динамика» можно найти полезные сведения по этому вопросу и советы по правильному дизайну корпуса.

В целом, важно смотреть на полный спектр отклика аудиоустройства и использовать более широкий диапазон частот по обе стороны от резонансной частоты. Конечная цель проекта — оптимизировать выходной уровень звукового давления и частоту для заданной мощности, подаваемой на зуммер или динамик.Чтобы достичь этого, частота, на которой работает устройство, должна быть согласована с резонансом, а также с более широким спектром отклика. Имейте в виду, что резонансная частота не является точным числом и не обязательно узким, поэтому, вероятно, будет желаемый отклик по обе стороны от числа, указанного в таблице данных.

Заключение

При разработке аудиоустройства и его вывода в приложение инженеры должны учитывать резонансную частоту устройства, чтобы конечный продукт максимально увеличивал звуковое давление, избегая при этом нежелательного гудения и дребезжания.Это требует использования цифр, предоставленных поставщиком, в частности, резонансной частоты, а затем оптимизации конструкции в резонансной зоне выше и ниже этого значения. После завершения первоначального проектирования следует выполнить практическую проверку взаимодействия между корпусом и монтажом для подтверждения теоретических расчетов. Результатом будет аудиовыход, который соответствует целям продукта, удовлетворяя как пользовательские, так и производственные требования.

Дополнительные ресурсы


У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу cuiinsights @ cuidevices.ком

Отчет Кальво: резонансные частоты, часть 1

Человеческое тело, а также твердые и мягкие объекты вокруг нас, вода, воздух и газ, все вибрируют на определенных резонансных частотах.

Тестирование показывает, что человеческое тело резонирует между 5 и 10 Гц. («Гц» — это сокращение от Герц, единица измерения, обозначающая частоту как количество колебаний в секунду.) Это очень низкая частота — высота звука, которая не слышна человеческому уху.Но можем ли мы почувствовать этих вибраций, когда вступаем в тесный контакт с другими людьми? Я верю, что сможем. Для меня это то, что означают термины «хорошие флюиды» или «плохие флюиды», когда мы говорим о человеке, месте или физическом столкновении.

Итак, каковы наши личные резонансы и как они влияют на нашу жизнь, возможности и окружающих? Однажды я спросил своего друга-барабанщика, как он все время сохраняет такое веселое и оптимистичное настроение. Его ответ заключался в том, что он думал о себе как о положительной энергии, которая течет между всеми вещами.Его присутствие на сессии или концерте определенно сделало всех в группе счастливее, и мы всегда продуктивно и хорошо проводили время.

Если вы привнесете свой высочайший резонанс в любую ситуацию, это повысит энергию в комнате. Это заразительный атрибут, который каждый может почувствовать сразу. Взаимодействие станет более плавным, и люди захотят проводить больше времени в вашей компании. И наоборот, все мы слышали термин «эмоциональный вампир»: человек, высасывающий позитив из окружающих, включая друзей и семью.

Всегда помогает сохранять позитивный настрой, потому что, на мой взгляд, то, что вы думаете, также является резонансной частотой. И, как показали многочисленные исследования, мысли могут буквально влиять на вашу физическую силу, жизнь и благополучие.

Кинетическое сопротивление — это простой тест, демонстрирующий силу позитивных и негативных мыслей. Попросите друга поднять перед ним левую руку и подумать о позитивных, счастливых мыслях. Скажите им, чтобы они держали руку в этом положении и давили на нее после того, как они установили эти воспоминания; вы почувствуете сильное сопротивление вашим попыткам опустить руку.Затем попросите их снова поднять руку и подумать о негативных, несчастных мыслях. Когда вы на этот раз надавите на их руку, сопротивление и усилия по поддержанию напряжения руки уменьшатся. Я делал это со многими людьми, и это отличный способ продемонстрировать силу позитивных мыслей.

Возможно, вы испытали множество способов, которыми ваш разум может повлиять на исход ситуации. Например, боязнь сцены — очень частое явление среди артистов и ораторов. Я изучил это довольно много и обнаружил, что то, что мы думаем, может буквально саботировать нашу мышечную память и ухудшать производительность, речь и социальное взаимодействие.Я противодействую этому, заранее готовясь к любому публичному выступлению или собеседованию, используя ряд вербальных и визуализационных техник, чтобы подтвердить свои навыки и создать идеальное представление в моем воображении.

Важность утверждений

Устные утверждения (короткие личные утверждения, подтверждающие положительные качества) — отличный способ прояснить и укрепить то, что мы думаем о себе. Их также можно использовать для замены негативных комментариев, которые часто возникают в нашей голове ежедневно.Вы понимаете, о чем я: «тихий голос», который поддерживает постоянный диалог обо всем, что мы делаем!

Когда начинается это внутреннее повествование, решите, положительный он или отрицательный. Если мысли негативные, немедленно прекратите их и замените диалог добрым заявлением или личным подтверждением. Вы обнаружите, что более легкий и умиротворенный ум способствует продуктивности и успокаивает ваше физическое существо … и окружающие заметят ваше более счастливое представление о себе.

Вы можете создавать свои собственные утвердительные утверждения для всего, что вы хотите укрепить, расширить возможности или увидеть изменения в своей жизни.Аффирмации в настоящем времени лучше всего, поскольку они заявляют, что изменение уже произошло. «Я всегда спокоен, умиротворен, расслаблен и радостен» — отличное утверждение, которое утверждает, что в настоящее время вы придерживаетесь такого образа мыслей. Но аффирмации, начинающиеся с «я хочу» или «я буду», только подтверждают представление о том, что ваши желания еще не реализованы и находятся где-то в эфире, ожидая, когда вы потребуете их.

Резонанс и музыка

Как все это относится к музыке? Просто: резонансные частоты — это тоже музыкальные ноты.Неслышимое человеческое тело на 5 Гц, средняя до фортепиано на 261,63 Гц, открытая пятая струна вашей гитары на 440 Гц — все это колебания на определенных частотах.

Когда мы объединяем ноты и инструменты для воспроизведения музыки, эти вибрации создают гармоничное и мелодичное содержание, которое мы слышим… и, что, возможно, более важно, «чувствуем». Музыкальная информация передается по воздуху в виде вибраций, которые улавливаются нашими ушами. Оттуда они отправляются по нервным путям в наш мозг, который обрабатывает информацию как приятную, так и неприятную.Но я бы сказал, что то, что мы воспринимаем как (в отличие от того, что мы слышим как ), также играет важную роль в формировании наших предпочтений.

Леди Гага.

Например, мне очень нравится песня Леди Гаги «Poker Face» по разным причинам. Во-первых, производство обманчиво простое. Низкий пульс ударных и баса ощущается в области груди, мужской вокал звучит ниже аккордов синтезатора, а голос Гаги находится в ее нижнем частотном диапазоне для частей куплета.Когда песня переходит в припев, высота тона вокальной мелодии повышается, чтобы добавить интенсивности и приподнять песню. После первого припева высота голоса снова понижается, а мужские и женские партии бэк-вокала добавляют богатую ритмическую окраску. Каждая из частот в миксе была тщательно продумана, чтобы смешаться как единое вибрационное целое, от низких до высоких и всего, что находится между ними.

Название альбома

Гаги, Artpop , кратко описывает ее театральный стиль видео и живого перформанса.Эта комбинация стимулов, возможно, является ключом к тому, почему ее работы находят отклик у стольких людей… что приводит меня к вибрационному аспекту цвета.

Резонанс и цвет
Все

цветов имеют резонансную частоту в терагерцовом диапазоне, где один ТГц равен одной тысяче тысяч Гц (то есть один триллион Гц). Мы не можем слышать такие высокие частоты, но можем их видеть. Фактически, самая высокая цветовая частота, которую люди могут различить, — это действительно приятный синий цвет, прежде чем он станет фиолетовым, около 770 ТГц.

Фактически того же цвета, что и одежда Леди Гаги в видео «Poker Face» .

Совпадение? Думаю, нет. Синий часто изображается на нотном стане как нота B. А «Poker Face» — в тональности G # минор, которая является относительной минорой по отношению к B мажору.

Не разговаривая с Леди Гагой или ее продюсером, я не могу сказать это с абсолютной уверенностью, но я считаю, что использование этого цвета в видео было тщательно организованным вибрационным компонентом — компонентом, который внес большой вклад в музыкальный шедевр. .В конце концов, для создания популярной поп-песни требуется больше, чем просто музыка! Эта песня была продана тиражом более 14 миллионов копий и является одним из самых продаваемых синглов всех времен.

Общий визуальный аспект клипа на песню, на мой взгляд, сыграл огромную роль в успехе «Poker Face».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *