Буква сила тока: Эта страница ещё не существует

Содержание

какой буквой обозначается сила тока и в каких единицах измеряется?1.

Якого заряду набула б мідна куля, радіус якої R = 10 см, якби вдалося забрати в неї всі електрони провідності. Вважати, що на кожний атом міді припада … є один електрон провідності.Помогите плизз​

PA 146. Вычислите работу идеального газа в процессе 1-2-3-4: 14 5pol Зро2 рој А) броо C) 2povo E) 15povo В) 12povo D) 9povo 1: 0 Vo 3V, V​

Координата тела, подвешенного на пружине, изменяется по закону x = A sin ωt, где A=12 cm, ω=24 rad/s. Чему равен период (s) колебаний? π=3

Тело бросили с высокой башни вертикально вверх со скоростью 10 m/s. Найти перемещение (m) тела за 3 s.

5. Ветер, не встречающий преград в степи, способен достичь силы урагана. Особенно этот ветер опасен в Джунгарской и Гашунской Гоби, где он срывает кры … ши с домов, опрокидывает и уносит юрты на 3-5 км. Считая действие ветра кратковременным, определите начальную скорость ветра, направленного под углом 45° к горизонту.

Ответ: 5,3 м/с. Можно пожалуйста с рисунком. даю 50 баллов

Как изменилась сила тяги грузового автомобиля, если при увеличении его массы в 2 раза ускорение движения также возросло в 2 раза?

Плотность машинного масла ?

Від яких величин залежить повна енергія гармонічних коливань?​

1. Почему еденицы силы тока, напряжения и сопротивления пишут с заглавных букв? В честь кого они названы? Какие открытия сделали эти учёные? 2. Как, п … о вашему мнению, соединённые лампы в одной ветке ёлочной гирлянды? соединены разное ветки гирлянды? Для чего в гирляндах применяют несколько веток ламп? 3. Почему электроприборы, которыми мы пользуемся в быту, обычно рассчитаны на одинаковое напряжение (220 В)?

1. Приведите примеры потребителей электрического тока. Какие преобразования энергии в них происходит? 2. Нагревательный элемент утюга, к концам которо … го проложены напряжение 220 В, 0,5 мин прошел заряд 300 Кл. Определите силу тока в нагревательном элементе и сопротивление элемента. 3. Что, по вашему мнению, общее в течения жидкости и электрического тока? Физические величины, характеризующие движение жидкости, аналогичны силе тока; напряжению; сопротивлению; заряда?

Почему сила тока обозначается буквой i. Единица измерения силы тока

С самого рождения и в течение всей жизни человека окружают электрические приборы. К ним относятся: бытовая техника, освещение наших жилищ и улиц, средства мобильной связи, даже современные автомобили переходят на электроэнергию. Все эти приборы потребляют электрический ток, одни берут его из электросетей, другие черпают от батарей и аккумуляторов, третьи от альтернативных источников энергии («ветряки», солнечные батареи и прочее). А многие ли из людей знают, какова единица измерения и что такое электрический ток? В данной статье мы ответим на эти вопросы.

Начнем, пожалуй, с основных понятий. называют направленное упорядоченное движение в проводнике заряженных частиц. Рассмотрим условия существования тока:

  • наличие свободных электронов в металлическом проводнике;
  • наличие электрического поля (такое поле создается благодаря источнику тока).

Теперь перейдем к рассмотрению такого понятия, как единица измерения силы тока. Эта скалярная величина обозначается латинской литерой I. Определение единицы силы тока осуществляется отношением заряда q, проходящего через поперечное сечение металлического проводника, к отрезку времени t, за которое электрический ток прошел через проводник. Соответственно формула имеет следующий вид: I = q/ t. Единица измерения силы тока показывает, какой заряд пройдет через поперечное за единицу времени.

Все довольно элементарно. Теперь разберем, какие существуют общепринятые единицы измерения силы тока. Для этого достаточно заглянуть в международную систему единиц (СИ). Из нее следует, что единица измерения силы тока — Ампер. Эта единица получила свое название в честь французского физика-математика Андре-Мари Ампера (1775-1836). Он ввел такие термины, как электродинамика, электростатика, соленоиды, ЭДС, гальванометр, электрический и другие. Ученый А. М. Ампер предугадал возникновение такой науки, как «кибернетика», он стал первооткрывателем механического взаимодействия проводников с электрическим током, ввел правило определения

Теперь попробуем разобрать это понятие с точки зрения элементарной физики.

Для этого необходимо осветить свойства прохождения электрического тока по двум параллельным проводникам. Если заряженные частицы движутся по двум проводам в одном направлении, то такие проводники начнут притягиваться, а если частицы будут двигаться в разных направлениях, то проводники будут стремиться оттолкнуться друг от друга. За единицу силы тока в один ампер принято считать такую силу, благодаря которой два параллельных провода длиной в один метр, разнесенных на расстояние одного метра, начнут взаимодействовать с силой 0,0000002Н.

Подведя итог, скажем, что знание о таком понятии, как сила тока, поможет определить количество потребляемой энергии электрическими приборами. Благодаря этому легко рассчитать нагрузку проводки в вашем доме и, соответственно, обезопасить свое жилье от пожара или повреждения электрооборудования, которое часто возникает при неправильном распределении бытовых электрических приборов.

На этой страничке кратко излагаются основные величины и меры тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами.

Сила тока – количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения — Ампер (А). Сила тока обозначается буквой –

I .
Следует добавить, что постоянный и переменный ток низкой частоты, течёт через всё сечение проводника. Высокочастотный переменный ток течёт только по поверхности проводника – скин-слою. Чем выше частота тока, тем тоньше скин-слой проводника, по которому течёт высокочастотный ток. Это касается любых высокочастотных элементов — проводников, катушек индуктивности, волноводов. Поэтому, для уменьшения активного сопротивления проводника высокочастотному току, выбирают проводник с большим диаметром, кроме того, его серебрят (как известно, серебро имеет очень малое удельное сопротивление).

Напряжение (падение напряжения) – количественная мера разности потенциалов (электрической энергии) между двумя точками электрической цепи. Напряжение источника тока – разность потенциалов на выводах источника тока. Измеряется напряжение вольтметром. Единица измерения — Вольт (В). Напряжение обозначается буквой – U , напряжение источника питания (синоним — электродвижущая сила) может обозначаться буквой – Е .

Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт). Мощность электрического тока обозначается буквой –

Р . Мощность определяется зависимостью:

http://pandia.ru/text/78/385/images/image002_212.gif» alt=»Зависимость»>

где U – падение напряжения на элементе электрической цепи, I – ток, протекающий через элемент цепи.

Поглощаемая мощность элемента электрической цепи – значение мощности падающей на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя).

Поглощающая мощность резисторов обозначается в его названии (например: двух ваттный резистор — ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой поглощаемой мощности элемента цепи рассчитывается по формулам:

http://pandia.ru/text/78/385/images/image003_161.gif» alt=»Зависимость поглощаемой мощности от протекающего тока и сопротивления элемента цепи»> ,

Для надёжной работы, определённое по формулам значение мощности элемента умножается на коэффициент 0,8 , учитывающий то, что должен быть обеспечен запас по мощности.

Проводимость элемента цепи – способность элемента цепи проводить электрический ток. Единица измерения проводимости – сименс (См). Обозначается проводимость буквой —

σ . Проводимость — величина обратная сопротивлению, и связана с ним формулой:

http://pandia.ru/text/78/385/images/image006_105.gif» alt=»Связь частот»>

Период электрического тока – величина обратная частоте, показывающая, в течение, какого времени электрический ток совершает одно циклическое колебание. Измеряется период, как правило, с помощью осциллографа. Единица измерения периода — секунда (с). Период колебания электрического тока обозначается буквой – Т . Период связан с частотой электрического тока выражением:

http://pandia.ru/text/78/385/images/image008_83.gif» alt=»Связь»>

Электрическая ёмкость – количественная мера, характеризующая способность накапливать энергию электрического тока в виде электрического заряда на обкладках конденсатора. Обозначается электрическая ёмкость буквой – С . Единица измерения электрической ёмкости — Фарада (Ф).

Магнитная индуктивность – количественная мера, характеризующая способность накапливать энергию электрического тока в магнитном поле катушки индуктивности (дросселя). Обозначается магнитная индуктивность буквой – L . Единица измерения индуктивности — Генри (Гн).

Реактивное сопротивление конденсатора (ёмкости) – значение внутреннего сопротивления конденсатора переменному гармоническому току на определённой его частоте. Реактивное сопротивление конденсатора обозначается — Х С и определяется по формуле:

http://pandia.ru/text/78/385/images/image010_70.gif» alt=»Реактивное»>

Резонансная частота колебательного контура – частота гармонического переменного тока, на которой колебательный контур имеет выраженную амплитудно-частотную характеристику (АЧХ). Резонансная частота колебательного контура определяется по формуле:

http://pandia.ru/text/78/385/images/image012_54.gif» alt=»Резонансная частота»>

Добротность колебательного контура — характеристика, определяющая ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки. Добротность обозначается буквой – Q .
Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

http://pandia. ru/text/78/385/images/image014_51.gif» alt=»Добротность»>

Сила тока

Сила тока – это такая физическая величина, которая показывает скорость прохождения заряда q через S поперечное сечение проводника за одну секунду t.

Сила тока – пожалуй, одна из самых основополагающих характеристик электрического тока. Она обозначает заглавной буквой I латинского алфавита и равняется Δq разделить на Δt, где Δt – это время, в течение которого через сечение проводника протекает заряд Δq.

По сути, сила тока измеряется в кулонах Кл разделенных на секунды с в системе единиц СИ, но для Кл/с было введено специальное название – ампер, в честь соответствующего ученого, которого также завали Ампером. И так размерность в системе СИ для силы тока – это амперы, то есть ток измеряется в амперах и обозначается как — 1А.

Что же физически иллюстрирует это понятие? Упрощенно электрический ток можно рассматривать как течение воды по трубе, то есть протекание электрических зарядов по проводу можно сопоставить с протекание воды по трубе. Так вот, по сути, скорость этой «воды», а именно скорость зарядов в проводе, она и будет прямым образом связана с силой тока. И чем быстрее «вода» течет по «трубе», а именно чем быстрее вместе все носители заряда двигаются по поводу, тем сила тока будет больше.

Как вы думаете, большая ли это сила тока в 1 ампер? Да, это большая сила тока, но на практике можно встретить различные силы тока: и миллиамперы, и микроамперы, и амперы, и килоамперы, и все они довольно разные.

Измерение силы тока

В былые времена первые ученые-физики могли обнаружить ток только с помощью личных ощущений, а то и вовсе пропуская его через себя, так как в то время измерительных приборов просто не существовало.

В современном мире имеются разные виды измерительных приборов. Для измерения силы тока используют такой прибор, как амперметр.

Амперметры бывают абсолютной разных конструкций. Для школьных нужд, в целях демонстрационных опытов, чаще всего используют амперметр, который изображен на рисунке.



Что понимают под силой тока?

Давайте взглянем на рисунок 21б, где обозначено поперечное сечение проводника, через которое, как вы уже знаете, проходят заряженные частицы, если в проводнике есть в наличии электрический ток. Для металлического проводника такими частицами выступают свободные электроны, которые, двигаясь по проводнику, переносят какой-то заряд. А далее, как уже вы знаете из формулы, чем быстрее электроны двигаются и чем их больше, тем больший заряд будет перенесен ими за одно и то же время.


Давайте рассмотрит на примере. Если за время t = 5 c носителями тока через поперечное сечение проводника переносится заряд в q = 20 Кл, то сила тока I = q / t = 20 / 5 = 4 A. Заряд, который будет перенесен за 1 с, в данной ситуации будет в 5 раз меньший, т.е. при t = 1 c, q = 4 Кл, а сила тока – 4 А.

А вы знаете, что кроме того, что Андрэ-Мари Ампер ввел в физику понятие «электрический ток», он так же в 1830 году ввел такой научный оборот, как «кибернетика», а в механике именно ему принадлежит термин «кинематика».

Андрэ-Мари Ампер был очень разноплановым и разносторонне развитым ученым, некоторые его исследования касались таких смежных с физикой наук, как химия, ботаника и даже философия! И именно А.М.Ампер изобрел такие важные и полезные для людей устройства, как электромагнитный телеграф и коммутатор.

Вопросы для самопроверки

1. Так что же такое «сила тока»? Какой буквой латинского алфавита она обозначается?
2. Какая формула для нахождения силы тока?
3. В каких единица системы СИ измеряется силы тока? А как она обозначается? В честь какого ученого она названа?
4. Прибором для измерения силы тока является …. А как он обозначается на схемах?
5. Если мы знаем силу тока и время, за которое он проходит через поперечное сечение, то с помощью какой формулы можно найти электрический заряд?

Формула силы тока в физике

Содержание:

Определение и формула силы тока

Определение

Электрическим током называют упорядоченное движение носителей зарядов. В металлах таковыми являются электроны, отрицательно заряженные частицы с зарядом, равным элементарному заряду. Направлением тока считают направление движения положительно заряженных частиц.

Силой тока (током) через некоторую поверхность S называют скалярную физическую величину, которую обозначают I, равную:

$$I=\frac{d q}{d t}$ (1)$

где q – заряд, проходящий сквозь поверхность S, t – время прохождения заряда. Выражение (1) определяет величину силы тока в момент времени t (мгновенное значение величины силы тока).

Некоторые виды силы тока

Ток носит название постоянного, если его сила и направление с течением времени не изменяются, тогда:

$$I=\frac{q}{t}(2)$$

Формула (2) показывает, что сила постоянного тока равна заряду, который проходит сквозь поверхность S в единицу времени.

Если ток является переменным, то выделяют мгновенную силу тока (1), амплитудную силу тока и эффективную силу тока. Эффективной величиной силы переменного тока (Ieff) называют такую силу постоянного тока, которая выполнит работу равную работе переменного тока в течение одного периода (T):

$$I_{e f f}=\sqrt{\frac{1}{T} \int_{0}^{T} I^{2} d t}(3)$$

Если переменный ток можно представить как синусоидальный:

$$I=I_{m} \sin \omega t$$

то Im – амплитуда силы тока ($\omega$ – частота силы переменного тока).

Плотность тока

Распределение электрического тока по сечению проводника характеризуют при помощи вектора плотности тока ($\bar{j}$). При этом:

$$j_{n}=j \cos \alpha=\frac{d I}{d S}(5)$$

где $\alpha$ – угол между векторами $\bar{j}$ и $\bar{n}$ ( $\bar{n}$ – нормаль к элементу поверхности dS), jn – проекция вектора плотности тока на направление нормали ($\bar{n}$).

Сила тока в проводнике определяется при помощи формулы:

$$I=\int_{S} j d S(6)$$

где интегрирование в выражении (6) проводится по всему поперечному сечению проводника S ($\alpha \equiv 0$)

Для постоянного тока имеем:

$I = jS (7)$

Если рассматривать два проводника с сечениями S1 и S2 и постоянными токами, то выполняется соотношение:

$$\frac{j_{1}}{j_{2}}=\frac{S_{2}}{S_{1}}(8)$$

Сила тока в соединениях проводников

При последовательном соединении проводников сила тока в каждом из них одинакова:

$$I=I_{1}=I_{2}=\cdots=I_{i}(9)$$

При параллельном соединении проводников сила тока (I) вычисляется как сумма токов в каждом проводнике (Ii):

$$I=\sum_{i=1}^{n} I_{i}(10)$$

Закон Ома

Сила тока входит в один из основных законов постоянного тока – закон Ома (для участка цепи):

$$I=\frac{\varphi_{1}-\varphi_{2}+\varepsilon}{R}(11)$$

где $\varphi_{1}$ — $\varphi_{2}$ – разность потенциалов на концах, рассматриваемого участка, $\varepsilon$ — ЭДС источника, который входит в участок цепи, R – сопротивление участка цепи. {6}=(30-6)=24$ (Кл)

Ответ. q=24 Кл

Слишком сложно?

Формула силы тока не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Плоский конденсатор составлен из двух квадратных пластин со стороной A, находящихся на расстоянии dдруг от друга. Этот конденсатор подключен к источнику постоянного напряжения U. Конденсатор погружают в сосуд с керосином (пластины конденсатора вертикальны) со скоростью v=const. Какова сила тока, которая будет течь по подводящим проводам в описанном выше процессе. Считать, что диэлектрическая проницаемость керосина равна $\varepsilon$.

Решение. Основой для решения задачи станет формул для вычисления силы тока вида:

$$I=\frac{d q}{d t}(2.1)$$

При погружении в керосин на глубину xописанной выше системы мы получаем два конденсатора, соединенных параллельно (над керосином и в керосине) рис. 2. Для такой системы конденсаторов напряжение на каждом из них одинаково, поэтому уравнение для изменения заряда при движении удобно искать в виде:

$dq = UdC (2. {2}-A v t\right) \rightarrow C_{2}=\frac{\varepsilon \varepsilon_{0}(A v t)}{d}(2.4)$$

где $\varepsilon_{0}$ – электрическая постоянная, переменной величиной при погружении системы в керосин является площадь обкладок S:

$$S_{2}=A \cdot v \cdot t ; S_{1}=A \cdot(A-v t)$$

Из выражений (2.4), (2.5) и условий задачи имеем:

$$d C=d C_{1}+d C_{2}=\frac{\varepsilon \varepsilon_{0} A v d t}{d}-\frac{\varepsilon_{0}}{d} A v d t(2.6)$$

Тогда подставив dC в формулу для силы тока (2.1) получаем:

$$I=U\left(\frac{\varepsilon \varepsilon_{0} A v}{d}-\frac{\varepsilon_{0}}{d} A v\right)=\frac{\varepsilon_{0} U A v}{d}(\varepsilon-1)$$

Ответ. $I=\frac{\varepsilon_{0} U A v}{d}(\varepsilon-1)$

Читать дальше: Формула силы.

как и в чём измеряется, по каким формулам находится, как обозначается

Определение понятия силы тока звучит так: это заряженные частицы (электрические заряды), которые двигаются в определённом направлении и называются электронами.

Представим, что через участок цепи проходит определённое количество электричества, например, один кулон.

Он может пройти за одну секунду, а может за целый час. Поэтому сила его определяется именно количеством электричества, которое проходит через проводник за конкретную единицу времени — секунду.

Виды тока и единицы измерения

Ток бывает двух видов:

  • Постоянный — это тот, что не меняется со временем.
  • Переменный — это тот, что находится в розетке.

Обычные батарейки или аккумуляторы телефонов выдают именно постоянный. А переменный может изменяться. Когда вы включаете в одну розетку настольную лампу, которой не требуется большая сила, и вместе с ней включаете, например, мощный пылесос, то работают оба прибора, так как ток в сети переменный, в отличие от напряжения, он «подстроился» под приборы. Если бы он был постоянным, то в зависимости от его величины у вас либо сгорит лампа, либо не заработает пылесос.

Измеряется в амперах (А) — эта единица измерения одна из основных в СИ, обозначается величина английской буквой I.

Сила может измеряться основными и вспомогательными единицами:

  • Ампер (А).
  • миллиампер (мА) — это одна тысячная ампера.
  • микроампер (мкА) — одна миллионная ампера.

Если в замкнутой простой цепи проходит постоянный тoк, то в каждом месте цепи за секунду или минуту проходит абсолютно равное его количество, так как он не может накапливаться в отдельных участках цепи. Если рассматривать сложные цепи, то это правило тоже работает, но уже для отдельных участков цепи, которые можно считать простыми.

Количество его измеряется в кулонах. Если через поперечное сечение проводника за одну секунду проходит точно один кулон — то это один ампер. Для нахождения её можно использовать специальные приборы либо формулы.

Формулы для расчета величины

Начнём с формул, по которым можно вычислить эту самую силу. Например, если знать, сколько электричества прошло через проводник за определённый и известный промежуток времени, то можно узнать его силу по такой формуле: I = q/t, где:

  • q — это электрический заряд, который измеряется в кулонах;
  • t — время прохождения этого заряда, измеряется в секундах.

Закон Ома звучит так: сила тока в цепи обратно пропорциональна сопротивлению и прямо пропорциональна напряжению. Этот закон применяется для вычисления силы постоянного тока.

Если вам нужно найти значение для переменного, то результат формулы нужно разделить на корень из двух.

Если опустить слова и перейти к обозначениям, то выглядит формула так: I = U/R. Буква I — сила тока в амперах. Буквой U обозначается напряжение в цепи, которое измеряется в вольтах. Буква R — это сопротивление, оно измеряется в Омах.

Зная эту формулу, можно без проблем вычислять и напряжение или сопротивление в цепи.

Можно ещё встретить такую запись закона: I = U/R+r. Это полный Закон Ома, который, помимо сопротивления внешних элементов цепи, учитывает сопротивление внутри источника питания и позволяет вычислить потребляемый ток.

Измерение с помощью приборов

Амперметр — специальный прибор, с помощью которого можно узнать, какая в цепи сила тока. Обозначение на амперметре покажут вам результат. Он подключается в разрыв таким образом, чтобы электричество протекало через прибор. Такое подключение называется последовательным. Подключать можно в любом месте, так как сила одинакова на любом участке замкнутой цепи. Применяется этот метод для измерения постоянного тока.

Если амперметра нет под рукой, то можно воспользоваться вольтметром — прибором для измерения напряжения в цепи. Для этого его нужно подключить параллельно в электрическую цепь. Замерив напряжение в цепи и зная сопротивление, мы можем высчитать силу тока по формуле Ома.

Также существует электромагнитный способ измерения постоянного и переменного тoка. Для этого требуется специальный магнитомодульный датчик. Он находит нужное значение, анализируя электромагнитное поле.

Не стоит забывать, что ток, как огонь — он полезен точно так же, как и опасен. Даже одна десятая ампера может быть опасна и даже смертельна для человека. А ведь в некоторых бытовых приборах он может достигать 10 и больше ампер. Даже в обычной лампочке накаливания его может быть достаточно для того, чтобы убить человека. Не говоря уже про технику где-нибудь на производствах, где он порой достигает нескольких тысяч ампер. Так что будьте осторожны.

Буквы латинского и греческого алфавита, принятые для обозначения электрических и

Единицы измерения физических величин в системе СИ

Буквы латинского алфавита

А — плотность тока линейная; потенциал магнитный векторный

В — индукция магнитная

В, b — проводимость реактивная

С — емкость

с — скорость распространения электромагнитных волн (c0 — в вакууме)

D — смещение электрическое

Е — напряженность электрического поля

Е, е — электродвижущая сила (ЭДС)

F — магнитодвижущая сила

f — частота колебаний (tq — резонансная)

G, g — проводимость активная

Н — напряженность магнитного поля; передаточная функция

I, i — ток

J — плотность тока; момент инерции

к — коэффициент связи

L — индуктивность собственная

М — индуктивность взаимная; намагниченность; вращающий момент дви­гателя

m — магнитный момент; число фаз многофазной системы цепей

N — число витков; коэффициент размагничивания

n — коэффициент трансформации; отношение чисел витков

Р — мощность; мощность активная; поляризованность

 p — момент электрический; мощность удельная; число пар полюсов

 Q — мощность реактивная; добротность; количество теплоты

Q, q — заряд

 R, г — сопротивление электрическое; сопротивление активное

  S — мощность полная; сечение проводников

 Т — период колебаний

 U, u — напряжение

  W — энергия электромагнитная

 w — число витков; энергия электромагнитная удельная

 X, х — сопротивление реактивное

 Y, у — проводимость полная

 Z, г — сопротивление полное

Буквы греческого алфавита

А — постоянная ослабления

α — коэффициент ослабления

В — постоянная фазы

β — коэффициент фазы

Г — постоянная передачи

γ — коэффициент распространения; проводимость электрическая удель­ная

δ — коэффициент затухания; угол потерь

ε — проницаемость диэлектрическая (ε0 — электрическая постоянная)

θ — декремент колебаний логарифмический

х — восприимчивость магнитная

X — длина электромагнитной волны; коэффициент мощности

λ — проницаемость магнитная (jig — магнитная постоянная)

П — вектор Пойнтинга

ρ — коэффициент отражения; плотность электрического заряда объем­ная; сопротивление электрическое удельное

σ — плотность электрического заряда поверхностная; проводимость электрическая удельная

 ζ— плотность электрического заряда линейная; постоянная времени Ф — магнитный поток

φ — потенциал электрический; сдвиг фаз между напряжением и током

X — восприимчивость диэлектрическая

Ψ —  потокосцепление

Ω, ω — частота колебаний угловая; частота вращения угловая

 

Примеры применения индексов

εа — абсолютная диэлектрическая проницаемость

Za — волновое сопротивление

rвн — внутреннее сопротивление

zc — характеристическое сопротивление

Uвх —  входное напряжение

Uвых —  выходное напряжение

Lдиф — индуктивность дифференциальная

rк — сопротивление короткого замыкания

WM —  энергия магнитная

lМ —  амплитуда тока

lmax —  максимальное значение тока

lmin — минимальное значение тока

μг —  относительная магнитная проницаемость

lΣ —  суммарный ток

Uф —  фазное напряжение

rх — сопротивление холостого хода

а* = а/а0 — отнесенная к базисному значению (ад) величина

 

Примечание. Прописными буквами обозначают, как правило, установившееся значение тока, напряжения, мощности; строчными буквами обозначаются мгновенные или неустановившиеся значения этих величин.



Работа электрического тока — Основы электроники

Протекая по цепи электрический ток совершает работу. Опять сравним протекание электрического тока с потоком воды в трубе. Если этот поток направить, например, на лопасти генератора, то поток будет совершать работу, вращая генератор. Таким же образом электрический ток совершает работу, протекая по проводнику. И эта работа тем больше, чем больше сила тока и напряжение в цепи.

Таким образом, работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока в цепи, напряжению на этом участке и времени действия тока. Работа электрического тока обозначается латинской буквой A.

Формула работы электрического тока имеет вид:

A = I*U*t

Произведение I*U есть не что иное, как мощность электрического тока.

Тогда формула работы электрического тока примет вид:

A = P*t

Работа электрического тока измеряется в ваттсекундах или иначе говоря в джоулях.

Поэтому, если мы хотим узнать, какую работу про­извел ток, протекая по цепи в течение нескольких секунд, мы должны умножить мощность на это число секунд.

Например, через реостат с сопротивлением 5 Ом протекает ток си­лой 0,5 А. Нужно определить, какую работу произведет ток в течение 4 часов (14 400 сек.). Так как работа тока в одну секунду будет равна:

P=I2R = 0,52*5= 0,25*5 =1,25 Вт,

то за время t=14400 сек. она будет в 14 400 раз больше. Следователь­но, работа электрического тока А будет равна:

А = Р*t= 1,25*14 400= 18 000 вт-сек.

Ваттсекунда (джоуль) являет­ся слишком малой единицей для измерения работы тока. По­этому на практике пользуются единицей, называемой ваттчас (втч).

Один ваттчас равен 3 600 Дж, так как в часе 3 600 сек.

1втч = 3 600 Дж.

В нашем последнем примере работа тока, выраженная в ваттчасах, будет равна:

А = 1,25*4=5 втч.

В электротехнике для измерения работы тока применяют­ся еще большие единицы, называемые гектоваттчас (гвтч) и киловаттчас (квтч):

1 квтч =10 гвтч =1000 втч = 3600000 Дж,

1 гвтч =100 втч = 360 000 Дж,

1 втч = 3 600 Дж.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Измерение единицы работы силы в физике

Прежде чем раскрывать тему «В чём измеряется работа», необходимо сделать небольшое отступление. Всё в этом мире подчиняется законам физики. Каждый процесс или явление можно объяснить на основе тех или иных законов физики. Для каждой измеряемой величины существует единица, в которой её принято измерять. Единицы измерения являются неизменными и имеют единое значение во всём мире.

Система международных единиц

Причиной этого является следующее. В тысяча девятьсот шестидесятом году на одиннадцатой генеральной конференции по мерам и весам была принята система измерений, которая признана во всём мире. Эта система получила наименование Le Système International d’Unités, SI (СИ система интернационал). Эта система стала базовой для определений принятых во всём мире единиц измерения и их соотношения.

Физические термины и терминология

В физике единица измерения работы силы называется Дж (Джоуль), в честь английского учёного физика Джеймса Джоуля, сделавшего большой вклад в развитие раздела термодинамики в физике. Один Джоуль равен работе, совершаемой силой в один Н (Ньютон), при перемещении её приложения на один М (метр) в направлении действия силы. Один Н (Ньютон) равен силе, массой в один кг (килограмм), при ускорении в один м/с2 (метр в секунду) в направлении силы.

Формула нахождения работы

К сведению. В физике всё взаимосвязано, выполнение любой работы связано с выполнением дополнительных действий. В качестве примера можно взять бытовой вентилятор. При включении вентилятора в сеть лопасти вентилятора начинают вращаться. Вращающиеся лопасти воздействуют на поток воздуха, придавая ему направленное движение. Это является результатом работы. Но для выполнения работы необходимо воздействие других сторонних сил, без которых выполнение действия невозможно. К ним относятся сила электрического тока, мощность, напряжение и многие другие взаимосвязанные значения.

Электрический ток, по своей сути, – это упорядоченное движение электронов в проводнике в единицу времени. В основе электрического тока лежит положительно или отрицательно заряжённые частицы. Они носят название электрических зарядов. Обозначается буквами C, q, Кл (Кулон), названо в честь французского учёного и изобретателя Шарля Кулона. В системе СИ является единицей измерения количества заряженных электронов. 1 Кл равен объёму заряженных частиц, протекающих через поперечное сечение проводника в единицу времени. Под единицей времени подразумевается одна секунда. Формула электрического заряда представлена ниже на рисунке.

Формула нахождения электрического заряда

Сила электрического тока обозначается буквой А (ампер). Ампер – это единица в физике, характеризующая измерение работы силы, которая затрачивается для перемещения зарядов по проводнику. По своей сути, электрический ток – это упорядоченное движение электронов в проводнике под воздействием электромагнитного поля. Под проводником подразумевается материал или расплав солей (электролит), имеющий небольшую сопротивляемость прохождению электронов. На силу электрического тока влияют две физические величины: напряжение и сопротивление. Они будут рассмотрены ниже. Сила тока всегда прямо пропорциональна по напряжению и обратно пропорциональна по сопротивлению.

Формула нахождения силы тока

Как было сказано выше, электрический ток – это упорядоченное движение электронов в проводнике. Но есть один нюанс: для их движения нужно определённое воздействие. Это воздействие создаётся путём создания разности потенциалов. Электрический заряд может быть положительным или отрицательным. Положительные заряды всегда стремятся к отрицательным зарядам. Это необходимо для равновесия системы. Разница между количеством положительно и отрицательно заряжённых частиц называется электрическим напряжением.

Формула нахождения напряжения

Мощность – это количество энергии, затрачиваемое на выполнение работы в один Дж (Джоуль) за промежуток времени в одну секунду. Единицей измерения в физике обозначается как Вт (Ватт), в системе СИ W (Watt). Так как рассматривается мощность электрическая, то здесь она является значением затраченной электрической энергии на выполнение определённого действия в промежуток времени.

Формула нахождения электрической мощности

В заключение следует отметить, что единица измерения работы является скалярной величиной, имеет взаимосвязь со всеми разделами физики и может рассматриваться со стороны не только электродинамики или теплотехники, но и других разделов. В статье кратко рассмотрено значение, характеризующее единицу измерения работы силы.

Видео

Оцените статью:

Законы Ома и Ватта | SpazzTech

Что такое закон Ома и закон Ватта ?:

Закон Ома определяет одно из самых фундаментальных соотношений в электронике. Это соотношение между напряжением, током и сопротивлением. Закон Ватта определяет еще одно из самых фундаментальных соотношений в электронике. Это соотношение между мощностью и величинами, определенное законом Ома. Мы не сможем углубиться в электронику, пока эти концепции не будут поняты.

Вольт:

Единицей измерения параметра напряжения является вольт. Символ, который используется для обозначения вольт, — это буква «V». В зависимости от ситуации используются как верхний, так и нижний регистры. Символом параметра напряжения также является буква «V». Если бы электрическая цепь представляла собой садовый шланг, напряжение было бы аналогично давлению в шланге. Единица V равна количеству энергии в Джоулях, необходимой для перемещения одного кулона электронов между двумя точками.Напряжение иногда называют «потенциалом», потому что оно может перемещать эти электроны.

Ампер или Ампер:

Единицей измерения параметра тока является ампер. Ампер часто сокращается до ампер. Символ, используемый для обозначения усилителя, — это буква «А». В зависимости от ситуации используются как верхний, так и нижний регистр. Символ, используемый для представления параметра тока, — это буква «I». Если бы электрическая цепь представляла собой садовый шланг, ток был бы подобен скорости потока воды в шланге.Единица A равна количеству кулонов, проходящих через контур за одну секунду.

Ом:

Единицей измерения параметра сопротивления является ом. Для обозначения сопротивления используется символ Ω. Символ, используемый для обозначения параметра сопротивления, — это буква «R». Если бы электрическая цепь была садовым шлангом, сопротивление было бы любым клапаном или другим ограничением в шланге. Единица Ω равна сопротивлению, которое существует, когда 1 А протекает между двумя точками с напряжением 1 В между этими двумя точками.Это составляет основу форм закона Ома, приведенных в следующем разделе.

Формы закона Ома:

Мощность:

Единицей измерения мощности в электронике чаще всего является ватт. Символ, используемый для обозначения ватта, — это заглавная буква «W». По сути, мощность — это скорость выполнения работы. Фактически, один ватт равен одному джоулю в секунду. Из определений, данных для вольт и ампер, данных выше, мы можем сказать, что один ватт также равен одному вольту, умноженному на один ампер, потому что вольт — это мера джоулей на кулон, а ампер — мера кулонов в секунду.Кулоны сокращаются, и у нас остаются джоули в секунду.

Формы закона Ватта:

Объединенная взаимосвязь закона Ома и закона Ватта Настенная диаграмма:

Объединив закон Ома и закон Ватта, нам нужно знать только две величины, чтобы определить две другие. Эти величины представляют собой напряжение (В) в вольтах, ток (I) в амперах, сопротивление (R) в омах и мощность (P) в ваттах. Все отношения между этими количествами приведены в таблице ниже.

© Copyright 2014-2017 SpazzTech LLC. Все права защищены

Ампер Вопрос

Толщина (и тип) свариваемого металла определяет, сколько ампер (сколько мощности) необходимо для правильной / успешной сварки этого металла.

Число ампер указывает, какой размер и тип (ы) проводов могут выдержать эту силу тока.

Сузив значения силы тока, сечения и типа проводов, вы сузите, какое напряжение требуется от машины, чтобы обеспечить такую ​​силу тока.

И вы проверяете газ или газовую смесь, чтобы сделать их совместимыми с параметрами, которые вы сужаете.

Затем вы еще раз проверяете, может ли выбранная вами машина (или ваша -только-машина) делать то, для чего, как вы думаете, вы ее выбираете.

Пример: вы действительно не собираетесь выбирать сплошную проволоку ER70S-6 диаметром 0,045 дюйма (например, проволоку Lincoln L-56), чтобы попытаться сварить тонкий листовой металл из углеродистой стали 22 калибра с CO2 в режиме передачи короткого замыкания. У вас есть модная импульсная машина GMAW $$. Тип проволоки хороший, но диаметр слишком велик для толщины металла, а это означает, что дуга попадает в довольно много ампер.А это значит, что вы плавите насквозь тонкий листовой металл.

Как насчет выбора проволоки 0,025 L-56 и C25 для сваривания пластины 1/2 дюйма? Опять же, этот провод слишком мал для толщины металла.

Но проволока 0,025 L-56 и проволока C25 обычно были бы неплохим выбором для сварки листового металла 22-го калибра.

И эта проволока 0,045 L-56 больше подходит для сварки этой пластины размером 1/2 дюйма. Но вы можете использовать другой газ (смесь), например 98-2 аргон-O2, вместо прямого CO2, и работать в режиме распыления (режим передачи гораздо более высокой энергии, чем передача при коротком замыкании).Но это ограничивает вас работать в горизонтальном положении и не выполнять сварные швы вне положения, потому что сварочная лужа будет такой жидкой из-за всего тепла / энергии. Опять же, если у вас нет причудливой системы импульсного распыления $$$ GMAW.

Работаете на свежем воздухе? Возможно, вы захотите выбрать провод FCAW-S вместо провода GMAW (он же MIG), чтобы вам не нужно было беспокоиться о ветре, уносящем ваш защитный газ, или чтобы вам не пришлось повсюду устанавливать ветрозащитные палатки / брезент. .

и т. Д. И т. Д. И т. Д.

Для большинства домашних вещей в значительной степени следуйте рекомендациям дверной таблицы о размере / типе проводов и настройках газа и машины. И это зависит от толщины свариваемого металла.

Эд, извините за неправильное написание слова «Broccoli». Ой.

Калькулятор закона

Ом

Калькулятор закона Ома [На главную I Ссылки I Глоссарий I Основы I F.A.Q. I Lights I Circuits I Ohms-Law]

Калькулятор закона Ома

Калькулятор прибора

Закон Ома

Единица сопротивления названа Ом в честь немецкого ученого по имени Георг Симон Ом, который обнаружил, что когда проводник имеет сопротивление 1 Ом, то эдс в 1 вольт вызывает протекание тока в 1 ампер. дирижер.
Закон Ома. I = E / R или R = E / I или E = IR.
DC. или «Постоянный ток» означает, что ток всегда течет в одном направлении.
Буква, обозначающая ток — I, выражается в амперах.
Напряжение обозначается буквой E и выражается в вольтах.
Буква R для обозначения сопротивления выражается в омах.
Буквы для обозначения мощности или мощности — P и W и обозначают мощность и ватты.
Формулы закона Ома.
Если вы знаете R — сопротивление и E — напряжение, формула для определения тока I будет иметь вид I = E / R.
Если вы знаете E напряжение и I ток, формула для сопротивления R будет R = E / I.
Если вы знаете, что I — ток, а R — сопротивление, формула для напряжения E будет E = IR.
Если вы знаете I ток и E напряжение, формула для мощности P или Вт ватт будет P = EI.
Если вы знаете Вт ватт и I ток, формула для напряжения E будет E = P / I.
Если вам известны Вт Вт и напряжение E, формула для тока I имеет вид I = P / E.
Пример Если у вас электрическое устройство мощностью 1200 Вт или 1,2 кВА и напряжение составляет 120 вольт, номинальная сила тока для этого устройства составляет примерно 10 ампер.I сила тока = P или ватт, разделенный на напряжение E. K в кВА означает 1000.
AC. или Переменный ток — это ток, который периодически меняет направление.
Формулы для переменного тока включают импеданс, эффективное значение и коэффициент мощности. Но для домашних устройств, таких как фонари и бытовые приборы, при использовании приведенных выше формул закона Ома особых изменений не произойдет.

[На главную I Ссылки I Глоссарий I Основы I F.A.Q. I Освещение I Цепи I Закон Ома]

Отправить отзыв!

Произошла ошибка | wordhelp.com

Сожалеем, но произошла ошибка. Причина этой ошибки: « Недопустимые буквы в поиске анаграммы ». Посетите нашу страницу с советами и рекомендациями по поиску.

Последние поиски

Таблица результатов Scrabble

Обзор того, сколько очков даст вам каждая буква в настольной игре Scrabble. От одного балла за самые распространенные буквы до 10 баллов за редкие.Не забывайте играть буквами, которые приносят вам наибольшее количество очков!

Оценка Письмо
1л. E А я О N р Т L S U
2п. D грамм
3п. B C M п
4п. F ЧАС V W Y
5стр. K
8п. J Икс
10п. Q Z

Случайное слово с рекордами

44п.ВИКТОРИНА

Обновить

Сила тока без расшифровки (8 слов с расшифровкой силы тока)

Сила тока без расшифровки (8 слов без расшифровки силы тока)

ИСПОЛЬЗУЯ НАШИ УСЛУГИ, ВЫ СОГЛАШАЕТЕСЬ НА ИСПОЛЬЗОВАНИЕ КУКИ

8 слов, расшифрованных из букв ампераж.

8 слов составленных путем расшифровки букв из слова amperage (aaeegmpr).Расшифрованные слова действительны в Scrabble. Используйте слово unscrambler, чтобы расшифровать другие анаграммы с некоторыми буквами в силе тока.

Слова, состоящие из расшифровки букв силы тока

4-буквенные слова с несшифрованной силой тока

8-буквенные слова без расшифровки силы тока

Слова A без расшифровки силы тока

M слов без расшифровки силы тока

P слов с несшифрованной силой тока

P-слов с несшифрованной амперой

слов с несшифрованной амперой

R

неперешифрованных слов

G слов без расшифровки силы тока

Word определение силы тока

Прочтите определение силы тока из словаря.Все определения этого слова.

1. Сила электрического тока, измеряемая в амперах

Является ли сила тока официальным словом Scrabble?

Можно ли использовать слово amperage в Scrabble? Да. Это слово является официальным словом Scrabble в словаре.

Нескремблированная сила тока Оценка скрэббла

Какие гласные и согласные звуки получают наибольшее количество очков? Значения расшифровки букв Scrabble:

Чем больше слов вы знаете с помощью этих ценных плиток, тем больше у вас шансов на выигрыш.

Расшифровка слов с помощью букв в амперах

Как расшифровать буквы с помощью силы тока, чтобы составить слова? Слово unscrambler меняет порядок букв для создания слова. Совет! Чтобы найти больше слов, добавьте или удалите букву.

Расшифровка слов, сделанных из файла

Расшифровка силы тока привела к списку из 8 найденных слов. Слово unscrambler показывает точные совпадения «a m p e r a g e» , а также слова, которые можно составить, добавив одну или несколько букв.

Анаграммы силы тока

Расшифруйте восьмибуквенные анаграммы силы тока. Решатель анаграмм расшифровывает ваши перемешанные буквы в слова, которые вы можете использовать в словесных играх.

Расшифровка слов, начинающихся с префикса

Поиск слова:

Расшифровка слов, оканчивающихся на e

Поиск суффикса для слов e:

Электродвигатель

— кодовые обозначения конструкции с заторможенным ротором

NEMA — Национальная ассоциация производителей электрооборудования — которая устанавливает стандарты проектирования двигателей, установила буквенное обозначение кода NEMA для классификации двигателей по соотношению кВА с заторможенным ротором на мощность в лошадиных силах.

4 — и выше
Кодовое обозначение NEMA
кВА / л. 3,3
C 3,55 — 3,99 3,8
D 4,0 — 4,49 4,3
E 4,5 — 4.99 4,7
F 5,0 — 5,59 5,3
G 5,6 — 6,29 5,9
H 6,3 — 7,09 627 9027 9027 9027 9027 9027 9027 7,1 — 7,99 7,5
K 8,0 — 8,99 8,5
L 9,0 — 9,99 9,5
M 10.0 — 11,19 10,6
N 11,2 — 12,49 11,8
P 12,5 — 13,99 13,2
14,027 — 16,0 — 17,99
T 18,0 — 19,99
U 20,0 — 22,39
V

Пусковая кВА, необходимая для запуска двигателя при полном напряжении, определяется по паспортной табличке двигателя или у производителя.

В целом считается, что для небольших двигателей требуется более высокая пусковая кВА, чем для двигателей большего размера. Стандартные трехфазные двигатели часто имеют следующие коды заторможенного ротора:

  • менее 1 л.с.: код заторможенного ротора L, 9,0–9,99 кВА
  • 1 1/2–2 л.с.: код заторможенного ротора L или M, 9,0–11.19 кВА
  • 3 л.с.: код заторможенного ротора K, 8,0 — 8,99 кВА
  • 5 л.с.: код заторможенного ротора J, 7,1 — 7,99 кВА
  • 7,5 — 10 л.с. 15 л.с.: код заторможенного ротора G, 5,6 — 6,29 кВА
Закон

Ом

  • Изучив этот раздел, вы сможете:
  • Опишите закон Ома для металлических проводников:
  • • Сопротивление, напряжение и ток.
  • Определить:
  • Ом, Ампер и Вольт.

Ом, вольт и ампер.

Сопротивление проводника измеряется в Омах, а Ом — это единица измерения, названная в честь немецкого физика Джорджа Симона Ома (1787–1854), который первым показал взаимосвязь между сопротивлением, током и напряжением. При этом он разработал свой закон, который показывает взаимосвязь между тремя основными электрическими свойствами сопротивления, напряжения и тока.Он демонстрирует одну из самых важных взаимосвязей в электротехнике и электронной технике.

Закон Ома гласит: «В металлических проводниках при постоянной температуре и нулевом магнитном поле протекающий ток пропорционален напряжению на концах проводника и обратно пропорционален сопротивлению проводника. »

Проще говоря, при условии, что температура постоянна и электрическая цепь не подвержена влиянию магнитных полей, тогда:

• В цепи постоянного сопротивления, чем больше напряжение, приложенное к цепи, тем больше будет протекать ток.

• При постоянном напряжении, чем больше сопротивление цепи, тем меньше будет протекать ток.

Обратите внимание, что закон Ома гласит: «В металлических проводниках». Это означает, что закон применим для большинства металлических материалов, но не для всех. Например, вольфрам, используемый для накаливания накала лампочек, имеет сопротивление, которое изменяется в зависимости от температуры нити, отсюда в законе Ома ссылка на «при постоянной температуре». В электронике также используются компоненты, которые имеют нелинейную зависимость между тремя электрическими свойствами: напряжением, током и сопротивлением, но их можно описать разными формулами.Для большинства схем или компонентов, которые могут быть описаны законом Ома:

Вместо того, чтобы пытаться запомнить весь закон Ома, три электрических свойства напряжения, тока и сопротивления отдельными буквами:

Сопротивление обозначается буквой R и измеряется в единицах Ом, которые имеют символ Ω (греческая заглавная буква O).

Напряжение обозначается буквой V (или иногда E, сокращением от Electromotive Force) и измеряется в вольтах, которые имеют символ V.

Ток обозначается буквой I (не C, поскольку он используется для обозначения емкости) и измеряется в единицах ампер (часто сокращается до ампер), которые имеют символ A.

Используя буквы V, I и R для выражения отношений, определенных в Законе Ома, дает три простые формулы:

Каждый из них показывает, как найти значение любой из этих величин в цепи, если известны две другие. Например, чтобы найти напряжение V (в вольтах) на резисторе, просто умножьте ток I (в амперах) через резистор на значение резистора R (в омах).

Обратите внимание, что при использовании этих формул значения V I и R, записанные в формулу, должны быть в ее БАЗОВЫХ ЕДИНИЦАХ, т.

Вкратце 15 кОм (килоом) вводится как 15 EXP 03, а 25 мА (миллиампер) вводится как 25 EXP-03 и т. Д. Это проще всего сделать с помощью научного калькулятора.

Как пользоваться калькулятором с инженерными обозначениями, широко используемыми в электронике, объясняется в нашем бесплатном буклете под названием «Подсказки по математике». Загрузите его со страницы загрузки.

Определение сопротивления, ампера и напряжения

1 Ом

Может быть определено как «Величина сопротивления, которая создаст разность потенциалов (p.d.) или напряжение в 1 вольт на нем, когда через него протекает ток в 1 ампер».

1 АМПЕР

Можно определить как «Величина тока, которая при прохождении через сопротивление в 1 Ом создает разность потенциалов на сопротивлении в 1 Вольт».

(Хотя доступны более полезные определения ампера)

1 ВОЛЬТ

Можно определить как «Разность потенциалов (напряжений), возникающая на сопротивлении 1 Ом, через которое протекает ток силой 1 Ампера.«

Эти определения относятся к Вольтам, Амперам и Ом в пределах величин, описанных в Законе Ома, но также могут использоваться альтернативные определения с использованием других величин.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *