Bt 134 чем заменить: Аналоги для bt134 — Аналоги – 403 — Доступ запрещён

Симисторы BT134 основные характеристики и цоколевка


Рис. 1 Цоколевка симистора BT134

BT134 выпускается в пластмассовом корпусе типа SOT-82. Симисторы BT134 серии применяются в схемах управления электродвигателями, в промышленных и бытовых осветительных приборах, студийных вспышках, операторский свет для видеосъемки, в электронагревательных приборах и другой бытовой технике.

Система обозначений симисторов, тиристоров, динисторов BT выпускаемых компанией Philips

1. ВТ — симистор Philips

2. Серия

3. не обозначается для серии 134, тип корпуса симисторов BT134 — SOT-82

4. Макс. напряжение, В

5. Ток отпирания управляющего электрода: не обозначается – 35 мА, B – 50 мА, D – 5 мА, E – 10 мА, F – 25 мА

Основные характеристики симисторов BT134

ПараметрОбозначениеЕди-
ница
Тип симистора
BT134-500BT134-600BT134-800
Максимальное обратное напряжение
Uобр.
В500600800
Макс. повторяющееся импульсное напр. в закрытом состоянииUзс.повт.макс.В500600800
Макс. среднее за период значение тока в открытом состоянииIос.ср.макс.А444
Макс. кратковременный импульсный ток в открытом состоянииIкр.макс.А252525
Наименьший постоянный ток управления,
необходимый для включения симистора
Iу.от.мин.А0.025
0.025
0.025

Симисторы и тиристоры динисторы BT, основные характеристики, аналоги и цоколевка

Полный datasheet симистора BT134 с возможностью скачать бесплатно даташит в pdf формате или смотреть в онлайн справочнике по электронным компонентам на Времонт.su

АНАЛОГИ ТИРИСТОРОВ стр.2

Зарубежные наименования тиристоров и симисторов Отечественные тиристоры и симисторы
10FCRL T10-10
10PCR
TAG10-800
TAG10-90
T112-10
101RC20 T15-160
101RA110 
101RC25
101RC30
101RC40
101RC50
101RC60
101RC70
101RC80
T161-160
100AC100 
100AC40
100AC60
TC160-100
2N683-2N685 T122-25
25KH01-125KH08 TC122-25
30TN60 T16-250
244TB1-244TB5 T143-630
2N686-2N688 
2N2888
2N2889
T222-25
10PCRL 2T112-10
2N1843A-2N1845A T112-16
TUG840 T10-40
TUG940 T131-40
TUh2040
T132-40
2SF734 T141-40
SKT24-08C 
SKT24-10C
SKT24-12C
SKT24-14C
SKT24-16C
BTW48-400
BTW48-500
BTW48-600
T232-50
2SF782 T141-80
2SF126 T142-80
2SF783 T151-80
2SF128 T152-80
2SF784 
2SF130
2SF785
C45A
C45B
C45C
C45G
C46A
C46B
C46C
C46G
C46H
T252-80
60TR20 
60TR40
60TR60
60TR80
60TR100
60TR120
80TR10
80TR20
80TR40
T143-500
662T27 
662T29
662T31
662T33
662T35
C601N
C601T
C601P
T253-1250
C148S30 
C148N30
C148T30
C148P30
C149A10
C149A20
C149B10
C149B20
C149C10
TБ151-63
T171F400EEC ТБ171-200
2N6142 TC2-10
FB150A16 TC160
PT260 TC2-63
37TB1 ТЧ50
T171F600EEC 
T171F800EEC
T171F1000EEC
T171F1200EEC
Т607011374ВТ
ТБ133-200
TKAL210 
TKAL220
TKAL240
TKAL260
TKAL280
TKAL2100
TC171-250
BCR150B20 
BCR150B24
FB150A20
FB150A24
TC161-160
T8420M 
T8410B
T8410D
T8410M
TC142-80
TKAL110 
TKAL120
TKAL180
TKAL1100
TKAL1120
100AC40
100AC60
100AC100
FB150A4
TC161-100
T120KB 
T220KB
T320KB
T420KB
T520KB
T530KB
T620KB
T820KB
T1020KB
T1220KB
TC122-20
2N2548-2N2550 
NLC178A
NLC178B
NLC178C
T171-200
81RM10 
81RM20
81RM30
81RM40
81RM50
81RL50
82RL50
81RL60
82RL60
81RL80
ТЧ125
2N6397-2N6399 T2-12
2SF932-2SF939 T16-400
C380A T133-400
2N1844-2N1850 T10-16
TAG665-500 
TAG666-500
TAG675-600
2N3668
2N3669
2N3670
T10-12
2N1842B-2N1848B T122-20
2N6168-2N6170 T10-20
2N691A
2N692A
T10-25
2N683-2N685 T122-25
BTW31-1200R 
BTW40-200R
BTW40-400R
BTW40-800R
T242-32
BTW92-1000RM T15-32
2SF122 T10-80
244TB1 T143-630
C390E T153-800
C390M T253-800
BTW92-1000RU T142-32
2N2574 T123-200
3654-3659 
PSIH800-1
PSIH800-2
PSIH800-3
PSIH800-4
T253-1000
101RC20 T15-160
BTX38-500R T15-100
30TN40 T15-250
30TN80 T123-250
30TN100 
30TN120
FT250B4
FT250B6
FT250B8
FT250B10
FT250B12
T171-250
C390EC 
C390N
C390T
C390P
FT800C4
FT800C6
FT800C8
FT800C10
FT800C12
FT800C16
T353-800
C578-10gv2 
C579-10gw2
C578-12gu2
C579-12gv2
C579-12gv3
TБ171-160
СR31-104CA
CR31-104BA
CR31-104AA
CR31-204DA
CR31-304CA
CR31-304BA
CR31-404DA
TБ1160-80
38TB1-38TB10 ТБ161-100
2N5806-2N5808 ТС2-25
BCR150B4 ТС125
T8420D ТС80
C148M30 ТЧ63
PSIE401-1STF
PSIE401-2STF
PSIE401-3STF
PSIE401-4STF
PSIE401-5STF
PSIE401-6STF
ТБ143-320
2N6151
2N6154
2N6153
2N6152
2N6155
2N6153
2N6156
ТС112-10
2N5257
2N5258
2N5259
2N5260
2N5261
ТС171-200
2N5441-2N5443
T6400M
T6406M
T640D8
T640KB
ТС132-40
2N685AS
2N690S
2N691A5
2N691AS
2N687AS-2N689AS
ТЧ25
T6001B
T6006B
T6001C
T6006B
T6001D
T6006D
T6000E
T6001E
T6006E
ТС112-16
240PAL60
240PAM70
240PAL70
240PAM80
240PAL80
240PAM90
240PAL90
240PAM100
240PAL100
240PAL110
ТБ143-400
CR24-202BB
CR24-202AB
CR24-302CB
CR24-302BB
CR24-302AB
CR24-402CB
CR24-402BB
CR24-402AB
CR24-502CB
CR24-502BB
ТЧ40
SKT24-04C Е131-50
C380B Т143-400
60TR10 Т16-500
SKT24-02C Т10-50
2SF736-2SF739
SKT16-02C
SKT16-04C
SKT16-06C
SKT16-08C
SKT16-10C
SKT16-12C
SKT16-14C
Т232-40
2SF124 Т15-80
662T25 Т173-1250
SKT24-06C Т132-50
2N2543-2N2546 Т15-200
40RCS30 Т10-63
40RSC90
40RSC100
40RSC110
40RSC120
Т252-63
40RSC40 Т141-63
BTX38-700R
BTX38-800R
Т151-100
40RSC50 Т141-63
40RSC60 Т151-63
40RSC70 Т152-63
40RSC80 Т242-63
81RK100
81RK100M
81RC100
81RK110
81RK120
81RK130
Т161-125
81RC90 Т5-125
T165F200TEC Т16-320
T165F400TEC Т123-320
T165F600TEC Т133-320
T165F800TEC
T165F900TEC
T165F1000TEC
T165F1100TEC
T165F1200TEC
T165F1300TEC
Т171-320
244TB2
244TB3
244TB4
244TB5
ATS5H
ATS6H
ATS7H
ATS8H
ATS9H
Т153-630
37TB2
37TB3
37TB4
37TB5
37TB6
37TB7
37TB8
37TB9
37TB10
37TB11
37TB12
ТБ151-50
FT250BY6
FT250BX4
FT250BY8
FT250BX6
FT250BY10
FT250BX10
ТБ133-250
500S10H ТБ153-800
T6000B ТС2-16
50AC40 ТС2-50
T8420B ТС2-80
CR31-104DA ТЧ80
C448E
C448M
C448S
C448N
C448T
C448P
C448PA
C448PB
ТБ253-1000
500SS12H
500S12H
550RBQ20
550RBQ30
550RBQ40
550RBQ50
ТБ253-800
FB150A4
FB150A6
BCR150B6
BCR150B8
ТС161-125
25KH01-25KH06
25KH08
ТС122-25
SPT260
T8421B
PT360
SPT360
PT460
SPT460
PT560
PT660
ТС142-63
FT500DY16
FT500DX16
FT500DY20
FT500DX20
FT500EY20
FT500EX20
FT500DY24
FT500DX24
FT500EY24
FT500EX24
ТБ153-630
50AS40A
50AS60
50AS60A
50AS80
50AS80A
50AS100
50AS100A
50AS120
50AS120A
ТС132-50
38TB1-38TB10 ТЧ100
2N5441-2N5446 ТС2-40

замена тиристора возможно ли заменить bt134 600 на btb16 800

Можно. Первый — вообще средней мощности, на ток 4А. Второй на 16А. У последнего ток УЭ чуть больше (не принципиально), для уверенного управления возможно надо чуть уменьшить R уэ (очень маловероятно) <a rel=»nofollow» href=»http://tec.org.ru/board/bt134_600_e/54-1-0-883″ target=»_blank»>http://tec.org.ru/board/bt134_600_e/54-1-0-883</a> и <a rel=»nofollow» href=»http://www.kontest.ru/catalog/item/6173962″ target=»_blank»>http://www.kontest.ru/catalog/item/6173962</a>

Я должен смотреть даташиты и сличать параметры? А тебе поиск вне доступа?

Можно скорее всего

А Гугл чё бает? А AllDataSheet?

смотря чего надо тебе.

Datasheet да поможет тебе, отроче!

Радиолюбительский портал — Коммутация сетевого напряжения с помощью симисторов

  В радиолюбительской практике довольно часто приходится сталкиваться с проблемой коммутации сетевого переменного напряжения. Ранее для включения и выключения сетевой нагрузки использовались электромагнитные реле, но как показало время — это не самый надежный способ: контакты реле очень подвержены износу, особенно при использовании в цепях переменного тока и особенно с индуктивной нагрузкой. Тем более, для включения мощных потребителей нужны крупногабаритные реле с существенным управляющим током в обмотке.
  К счастью, современная элементная база позволяет обойтись только полупроводниковыми приборами, не используя электро-механических. Итак, разнообразные сетевые нагрузки очень удобно коммутировать с помощью симисторов. Эти полупроводниковые приборы позволяют под действием управляющих мощностей порядка 40-50 мВт коммутировать сетевую нагрузку до десятков киловатт (в зависимости от типа прибора). Далее рассмотрим наиболее удобные схемотехнические решения управления симисторами. Общие принципы управления симистором примерно такие же, как и для обычных тиристоров: если через управляющий электрод в катод тиристора протекает постоянный ток величиной единицы-десятки миллиампер, то как только между анодом и катодом тиристора возникнет разность потенциалов около 1.2-1.5В, он открывается и пребывает в открытом состоянии до тех пор, пока ток через него не уменьшиться практически до нуля (точнее до тока удержания).
  Симистор открыть чуть сложнее, так как полярность управляющего напряжения относительно «катода» (не соединенного с корпусом вывода) должна быть такой же, как и полярность напряжения на аноде (корпусе) прибора. Следовательно, если симистор используется для коммутации переменного сетевого напряжения, то управляющее устройство должно уметь выдавать переменное управляющее напряжение, что при использовании управляющих устройств на логических ИМС довольно проблематично. Один из вариантов решения этой проблемы — использование оптрона. Ток через светодиод оптрона может быть все время одного и того же направления, а направление тока через фоторезистор будет меняться при каждом полупериоде сетевого напряжения, обеспечивая открывание симистора. Если же оптрон диодный или транзисторный, то их надо использовать два для управления одним симистором.

 

Рис. 1
Рисунок 1. Управление симистором с помощью оптрона.

 

  Не могу не упомянуть также о оптотиристорах. В одном корпусе находится тиристор и светодиод. Но, к сожалению, оптросимисторов почему-то не делают, а ведь это фактически «буржуйское» твердотельное реле — идеальный прибор для коммутации сетевого напряжения. Итак, используя оптотиристоры тоже довольно легко можно коммутировать сетевое напряжение (Рис.2)

 Рис. 2><FONT FACE=
Рисунок 2. Коммутация сетевого напряжения с использованием оптотиристоров.

 

 

  Симистором можно управлять и импульсами: управляющее напряжение присутствует на управляющем электроде только 5-50 мкс, в момент начала роста сетевого напряжения после прохождения через 0. Более того, изменяя временнОе положение управляющего импульса в пределах 0-10 мс относительно начала каждого полупериода можно регулировать мощность, отдаваемую в нагрузку в пределах от 100 до 0 процентов. Импульсное управление позволяет также сделать устройство управления более экономичным, а применение при этом еще и импульсных трансформаторов позволит гальванически развязать сеть и устройство управления. Применение трансформаторов имеет еще одно преимущество: за счет бросков самоиндукции под действием однополярного импульса формируется короткий пакет быстро затухающих разнополярных, естественно, колебаний, легко открывающих любой симистор. Если конструируемое устройство не предназначено для регулирования мощности, а должно только включать/выключать сетевую нагрузку, то управляющие импульсы можно и не синхронизировать с прохождением сетевого напряжения через 0.
  Достаточно только подавать их на управляющий электрод симистора с достаточно высокой частотой, чтобы при самых неблагоприятных условиях напряжение на закрытом симисторе не успевало вырасти более чем до нескольких вольт до прихода управляющего импульса. При таком способе управления, как ни странно, уровень помех наводимых в сеть, значительно меньше, чем при синхронизированном управлении. Практическая схема ключа сетевого напряжения, где использован описанный выше принцип подана на рисунке 3.

Рис. 3
Рисунок 3. Принципиальная схема симисторного выключателя с импульсным управлением.

 

  Трансформатор T1 выполняется на ферритовом кольце 1000-2000 НМ размером К10Х6Х4 и содержит две одинаковые обмотки примерно по 50 витков каждая. Провод для намотки в эмалевой изоляции диаметром 0.1-0.2 мм. Взаимная изоляция обмоток очень тщательная! Фазировка обмоток безразлична, так как благодаря диоду VD2 на вторичной обмотке наводятся разнополярные импульсы. Подбирая резистор R2 регулируют длительность управляющего импульса. Чем она меньше, тем меньше ток потребления управляющего устройства, но при очень коротком импульсе не все тиристоры успевают открываться, потому, если нужна повышенная экономичность, R2 придется подбирать на границе четкого открывания симистора. Можно добиться снижения потребляемого системой управления тока менее 10 мА, что очень удобно в случае применения источников питания с емкостным балластом.
  Используя показанную на рис.3 схему управления сетевую нагрузку можно включать и с помощью пары обычных тиристоров, надо только трансформатор дополнить еще одной такой же обмоткой, а симистор заменить тиристорами, как на рисунке 4. Можно также применить один тиристор, но включить его в диагональ диодного моста соответствующей мощности.

Рис. 4
Рисунок 4. Замена симистора.

 

  Сейчас для радиолюбителей стали доступны многие электронные компоненты зарубежного производства. Есть среди них и симисторы, прекрасно подходящие для включения/выключения сетевых нагрузок. Наиболее доступными и распространенными на сегодня являются симистор (triacs) производства Philips типов BT134-500 и BT136-500. Эти приборы выполнены в пластмассовых корпусах: BT134 — как у транзисторов КТ815, но без отверстия, а BT136 — как у транзисторов КТ805, с крепежным фланцем. По сведениям продавцов BT134 рассчитан на ток 6А, а BT136 — 12А, но на многих сайтах можно увидеть, что оба симистор рассчитаны на силу тока не более 4А и выдерживают напряжение 500 В в закрытом состоянии. К сожалению, автор не смог просмотреть документацию с сайта Philips, так как там все документы PDF, а просмотрщика для последних версий под ДОС нету. Отличительной особенностью названных симисторов являются не столько их малые размеры (такие же корпуса имеют отечественные ТС106-10-… в пластмассе), сколько способ управления ими: эти симистор открываются управляющим напряжением отрицательной по отношению к «катоду» полярности при любом направлении тока через симистор. А это позволяет отказаться от применения оптронов и согласующих импульсных трансформаторов.
  Практическая схема выключателя вместе с конденсаторным блоком питания показана на рисунке 5.

Рис. 5
Рисунок 5. Принципиальная схема выключателя с использованием импортных симисторов.

 

Ток потребления устройства управления в «выключенном» состоянии — 1.2 мА, а во «включенном» — 5 мА, что позволило применить в блоке питания совсем маленький конденсатор 0.2 мкФ 400 В. Устройство (рис.5) — это фактически основа для многих электронных устройств, ведь на трех свободных логических элементах DD1 можно собрать много интересных вещей. На рисунке 6(a) показана схема мигалки, 6(b) — фотореле, 6(с) — автомата для включения/выключения насоса при касании сенсора E1 поверхности воды, 6(d) — реле времени. Довольно несложно реализовать сенсорный выключатель (рис.7).

Рис. 6 Рис. 7
Рисунок 6. Конструкции на логических элементах ИМС К561ТЛ1. Рисунок 7. Принципиальная схема сенсорного выключателя.

  Правда, при построении на логических элементах генераторов, при использовании световой индикации потребляемый ток может возрасти, и тогда емкость С1 придется увеличивать. Необходимую емкость подобрать довольно просто: во всех рабочих режимах устройства измеряют ток через стабилитрон, он должен быть не менее 1-2 мА и не более 30 мА. Наиболее часто емкость С1 используется 0.47 или 0.68 мкФ*400В. Мощность нагрузки, коммутируемой устройствами, рассмотренными в этой статье, зависит только от типа симистора (тиристоров) и толщины проводов 🙂 см. таблицу 1.

Тип прибора Мощность без теплоотвода; Вт Мощность с теплоотвода; Вт Площадь теплоотвода
ВТ134 150 800 25см2
ВТ136 220 800 25см2
KHZGZH 400 (2шт) 2000 2Х50см2
TC106-1G-4 220 2000 100см2
TC11Z-16-4 300 3500 200см2
TC1ZZ-Z5-4 400 5000 400см2
T01Z5-1Q-5 800 (2шт) 2000 2Х50см2
Таблица 1. Допустимая мощность нагрузки для разных типов симисторов и тиристоров.

 

  В таблице также даны ориентировочные размеры теплоотводов. Вообще, учитывая падение напряжения на открытом симисторе, которое равно примерно 1 В, можно полагать, что мощность, рассеиваемая на симисторе численно равна току, проходящему через него. Для рассеивания такой мощности нужен теплоотвод такой же площади, как квадратная пластина, со стороной, численно равной в сантиметрах рассеиваемой мощности. В статье не приводятся данные и схемы касающиеся использования симисторов КУ208Г. Это не случайно, так как эти симисторы показали себя с наихудшей стороны и надежно не работали ни в одном устройстве. Многие образцы КУ208Г разных лет выпусков имели недопустимо большой ток в закрытом состоянии, и после длительного пребывания под напряжением именно в закрытом состоянии сильно разогревались и после наступал пробой. Может их как-то по особому включать надо? Считаю своим долгом также напомнить радиолюбителям о электробезопасности, так как многие из приведенных схем имеют гальваническую связь с сетью! Не испытывайте судьбу и отключайте от сети устройства, прежде чем лезть в них с паяльником.

Литература :

  1. Замятин В. Тиристоры // В помощь радиолюбителю: Сборник. Вып. 110 с. 49
  2. http://www.semiconductors.philips.com/acrobat/datasheets/BT134_SERIES_1.pdf

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *