Блоки питания компьютерный назначения выводов – Устройство компьютерных блоков питания и методика их тестирования

Назначение разъемов блока питания ПК.

Количество разъемов, которые выведены из БП на проводах может быть разное. В среднестатистическом блоке офисного ПК присутствует от 3-х до 5-ти типов разъемов. Все разъемы имеют «защиту от дурака» и подключить неправильно их невозможно (возможно, конечно, но нужно постараться). Особые ключи или формы разъемов, которые вставляются в ответную часть только одним способом не позволяют совершить ошибку. Рассмотрим кратко  основные,  часто используемые в системном блоке офисного ПК разъемы.
1. 20 или 24-х контактный двурядный разъем . Его еще называют MOLEX 20 PIN, 24 PIN или 20+4 pin разъем для БП стандарта АТХ (более ранние АТ). С помощью этого разъема подводится основное питание к материнской плате. Постоянное напряжение на выводах определяется по цвету проводов.

Куда подключать разъем видно по фото. Каждая ячейка розетки имеет фигурную форму. Вставить в неё разъем можно только одним способом.

Если на мат. плате ответная часть с 24 контактами, а в разъеме БП их только 20, то есть вероятность, что мат. плата будет работать. В офисном ПК точно работает. Дополнительные контакты нужны для материнских плат, потребляющих больше мощности. Повышенное потребление энергии появляется при подключении в мат. плату устройств через PCI разъемы. Это могут быть в первую очередь видео карты, сетевые карты, ТВ-тюнеры и т.п.

Если получается наоборот и в розетке на мат. плате 20 контактов, а в разъеме БП их 24, то можно отсоединить 4 доп. контакта и подключить разъем обычным образом.

         2. Четырех-контактный разъем в два ряда с желтыми и черными проводами – ATX 12VP4.

Он нужен для дополнительного питания мат. платы т.к. в 20-ти контактном разъеме из п.1 только один вывод для 12В (в 24Pin – 2 контакта 12В). Если этот разъем не подключить, то вся нагрузка перейдет на единственный контакт основного разъема (или на 2 в 24Pin), тот не выдержит большого тока и перегорит. Подключается этот разъем в соответствующую розетку см. фото.

Защелка должна попасть на зацеп. В более новых мат. платах этот разъем бывает шести- восьми- контактным.

Существуют так-же переходники 4—>6, 4—>8 контактов или MOLEX—>6 — 8.

3. Разъем типа MOLEX 4Pin служит для подачи питания в дисковод, жесткий диск или некоторым вентиляторам.

Подключается он к соответствующему ответному разъему на устройстве. С одной из сторон разъема есть скошенные уголки. По ним нужно ориентироваться при подключении. Бывает, что на жестком диске отсутствует выход для MOLEX. В этом случае переходим к п.4.

         4. Разъем для питания SATA.

Разъем подключается согласно фото ниже. На нем так же есть ключ и перепутать подключение сложно.

Если на проводах БП такого разъема нет, то необходим SATA-MOLEX переходник.

Еще в блоках питания, особенно старых, часто присутствует вот такой разъем.

Он нужен для подключения Floppy Drive (дискетный дисковод) и в современных компьютерах практически не используется. В следующей статье можно узнать как и куда в системном блоке подключать провода для обмена данными, провода кнопок, диодов и пр.

Назначение и принципы работы блоков питания

Назначение и принципы работы блоков питания

Блок питания является одним из самых ненадежных устройств компьютерной системы, т.к. в его составе имеются электронные, электрические   и электромеханические элементы. Блок питания наиболее подвержен влиянию внешних факторов и в тоже время на его работу могут повлиять элементы являющиеся его нагрузкой.

Главное назначение блоков питания — преобразование электрической энергии, поступающей из сети переменного тока, в энергию, пригодную для питания узлов компьютера. Блок питания преобразует сетевое переменное напряжение 220 В, 50 Гц (120 В, 60 Гц) в постоянные напряжения +5, +12 и  в +3,3 В. Как правило, для питания цифровых схем (системной платы, плат адаптеров и дисковых накопителей) используется напряжение +3,3 или +5 В, а для двигателей (дисководов и различных вентиляторов) — +12 В. Компьютер работает надежно только в том случае, если значения напряжения в этих цепях не выходят за установленные пределы.

Замечание    Когда фирма Intel начала выпускать процессоры, для которых требовалось напряжение 3,3 В, источников питания с таким выходным напряжением еще не было. Поэтому изготовители системных плат начали встраивать трансформаторы, преобразующие напряжение +5 в 3,3 В. Такие преобразователи генерируют большое количество теплоты, что нежелательно для персонального компьютера.

Сигнальные функции

Блок питания также  вырабатывает и отрицательные напряжения -5 и -12В.  Питание -5 В поступает на контакт В5 шины ISA (при ее наличии), а на самой системной плате оно не используется. Это напряжение предназначалось для питания аналоговых схем в старых контроллерах накопителей на гибких дисках, поэтому оно и подведено к шине. В современных контроллерах напряжение -5 В не используется; оно сохраняется лишь как часть стандарта шины ISA.

Блок питания в системе с шиной МСА (Micro Channel Architecture), a также в блоки питания SFX не имеют сигнала -5 В. В подобных системах это напряжение не используется, поскольку в них всегда устанавливаются новейшие контроллеры дисководов.

Напряжения +12 и -12 В на системной плате также не используются, а соответствующие цепи подключены к контактам В9 и В7 шины ISA. К ним могут подсоединяться схемы любых плат адаптеров, но чаще всего подключаются передатчики и приемники последовательных портов. Если последовательные порты смонтированы на самой системной плате, то для их питания могут использоваться напряжения -12 и +12 В.

Замечание        Нагрузка источников питания для схемы последовательных портов весьма незначительна. Например, работающий одновременно на два порта сдвоенный асинхронный адаптер компьютеров PS/2 для выполнения операций с портами потребляет всего 35 мА, как по цепи +12, так и -12 В.

В большинстве схем современных последовательных портов указанные напряжения не используются. Для их питания достаточно напряжения +5 В (или даже 3,3 В). Если в компьютере установлены именно такие порты, значит, сигнал +12 В от блока питания не подается.

Напряжение +12 В предназначено в основном для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Напряжение 12 В подается также на вентиляторы, которые, как правило, работают постоянно. Обычно двигатель вентилятора потребляет от 100 до 250 мА, но в новых компьютерах это значение ниже 100 мА. В большинстве компьютеров вентиляторы работают от источника +12 В, но в портативных моделях для них используется напряжение +5 В (или даже 3,3 В).

Блок питания не только вырабатывает необходимое для работы узлов компьютера напряжение, но и приостанавливает функционирование системы до тех пор, пока величина этого напряжения не достигнет значения, достаточного для нормальной работы. Иными словами, блок питания не позволит компьютеру работать при «нештатном» уровне напряжения питания. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power_Good (питание в норме). Если такой сигнал не поступил, компьютер работать не будет. Напряжение сети может оказаться слишком высоким (или низким) для нормальной работы блока питания, и он может перегреться. В любом случае сигнал Power_Good исчезнет, что приведет либо к перезапуску, либо к полному отключению системы. Если ваш компьютер не подает признаков жизни при включении, но вентиляторы и двигатели накопителей работают, то, возможно, отсутствует сигнал Power_Good. Столь радикальный способ защиты был предусмотрен фирмой IBM, исходя из тех соображений, что при перегрузке или перегреве блока питания его выходные напряжения могут выйти за допустимые пределы и работать на таком компьютере будет невозможно.

Замечание         Иногда сигнал Рower_Good используется для сброса вручную. Он подается на микросхему тактового генератора (8284 или 82284 в компьютерах PC/XT и AT). Эта микросхема управляет формированием тактовых импульсов и вырабатывает сигнал начальной перезагрузки. Если сигнальную цепь Power_Good заземлить каким-либо переключателем, то генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала Рower_Good. В результате выполняется аппаратная перезагрузка компьютера.

В компьютерах с более новыми формфакторами системной платы, типа micrо АТХ и NLX, предусмотрен другой специальный сигнал. Этот сигнал, называемый PS_ON и используется для программного отключения источника питания (и, таким образом компьютера). Сигнал PS_ON используется операционной системой (например, Windows  которая поддерживает расширенное управления питанием (Advanced Power Management — APM). Когда выбираеся команду Завершение работы из главного меню, Windows полностью автоматически отключает источник питания компьютера. Система, не обладающая этой особенностью, только отображает сообщение о том, что можно выключить компьютер.

Конструктивные размеры блоков питания

Размеры блока питания и расположение его элементов характеризуются конструктивными размерами, или формфакторами. Характеристики формфакторов также  распростроняются  на корпуса системных блоков и системные платы. Узлы одинаковых конструктивных размеров взаимозаменяемы. Проектируя компьютер, разработчики обычно выбирают одинаковые формфакторы всех компонентов PC. При разработке оригинальной конструкции блок питания получится уникальным, т.е. пригодным только для конкретной системы.  Используемый в PC источник питания, в отличие от других типов источников, высокоэффективен, генерирует минимальное количество теплоты, имеет небольшой размер и низкую цену.  

Замечание        Даже если два источника питания имеют один и тот же формфактор, они могут значительно отличаться качеством и эффективностью (КПД). Практически все новые блоки питания несовместимы с прежними моделями. Например, в блоках питания для систем АТХ используются абсолютно новые сигналы PS_ON.

Размер блока питания определяется конструкцией корпуса. Промышленными стандартами можно считать представленные ниже модели корпусов и блоков питания.

Устаревшие      

Современные

PC/XT 

 LPX   (Slimline)

AT/Desktop

АТХ 

AT/Tower

SFX

Вaby-AT

NLX

Существует множество модификаций блоков питания каждого типа, которые различают по выходным мощностям. В настоящее время практически во всех новых компьютерах иcпользуется формфактор АТХ. Ниже представлено соответствие между формфакторами сиcтемных плат и блоков питания.

формфактор системной платы  

Чаше всего используемый формфактор   блока питания                        

Другие используемые формфакторы   блока питания

Вaby-AT

LPX

Вaby-AT, AT-Tower, AT-Desk

LPX   

LPX

АТХ

АТХ

Micro- АТХ

АТХ

SFX

NLX

АТХ

Стандарт АТ

Блок питания PC АТ обычно имел стандартный конструктив и набор жгутов (кабелей) с разъемами питания для соединения с системной платой и периферийными устройствами. На задней стенке блока устанавливается входной разъем питающего кабеля, а также может быть установлен транзитный выходной разъем для питания монитора. Подключение монитора к такому разъему не только сокращает количество вилок, включаемых в розетку питания, но и обеспечивает связь «земель» монитора и системного блока. В некоторых типах блоков питания транзитный разъем может  отсутствовать. При этом монитор включают в дополнительную розетку и хорошо, если при этом соблюдают правила заземления.

Блок вырабатывает основное стабилизированное напряжение +5 В при токе 10-50 А; +12 В при токе 3,5-15 А для питания двигателей устройств и интерфейсных цепей; -12 В при токе 0,3-1 А для питания интерфейсных цепей; -5 В при токе 0,3-0,5 А (обычно не используется, присутствует только для соблюдения стандарта ISA Bus). Уровни напряжений 12 В, -12 В, -5 В обычно пропорциональны нагрузке цепи +5 В. Для регулировки выходного напряжения обычно имеется подстроечный резистор, хотя та доступа к нему может потребоваться и разборка блока питания.

Выходные цепи блоков питания формата AT выводятся гибкими жгутами проводов со стандартным набором разъемов (рис. 9). Разъемы для питания накопителей имеют ключи, исключающие возможность неправильного соединения. Однако иногда встречаются блоки с ошибочно собранными разъемами, в результате чего на шину питания +5 В попадает +12 В, чего устройства, как правило, не выдерживают. Традиционные разъемы питания системной платы PS-8, PS-9 всегда устанавливаются рядом так, чтобы четыре черных провода GND шли подряд. Их ключи весьма условны, а ошибка подключения чревата выгоранием системной платы. Цвета проводов в жгутах стандартизованы:

GND — черный;

-12V — коричневый;

+5V — красный;

-5V — голубой;

+12V — желтый;

P.G. — белый (питание в норме).

                   К системной плате       К накопителям

Рис. 9. Выходные разъемы блока питания формата AT

Стандарт АТХ

Новейшим стандартом на рынке PC-совместимых компьютеров стал АТХ (рис.10), который определил новую конструкцию системной платы и блока питания. В его основе лежит стандарт LPX (Slimline), но существует ряд особенностей, которые следует отметить. Версии используемых спецификаций АТХ постоянно совершенствуются и модифицируются.

Блок питания в стандарте АТХ значительно отличается от традиционных как по габаритным размерам, так и по электрическому интерфейсу. Вентилятор блока питается от цепи +12 В и обеспечивает охлаждение всего системного блока.

Рис. 10. Блок питания стандарта АТХ

Главная особенность данного БП состоит в том, что вентилятор теперь расположен на стенке корпуса блока питания, которая обращена внутрь компьютера, и поток воздуха прогоняется вдоль системной платы, поступая извне. Такое решение в корне отличается от традиционного, когда вентилятор располагается на тыльной стенке корпуса блока питания и воздух выдувается наружу. Поток воздуха в блоке АТХ направляется на компоненты платы, которые выделяют больше всего тепла (процессор, модули памяти и платы расширения). Поэтому исчезает необходимость в ненадежных вентиляторах для процессора, в настоящее время получивших  широкое распространение.

Другим преимуществом обратного направления воздуха является уменьшение загрязнения внутренних узлов компьютера. В корпусе создается избыточное давление, и воздух выходит в щели в корпусе, в отличие от систем другой конструкции. В АТХ-системах пыль будет «отгоняться» от устройства, поскольку внутрь воздух попадает только через одно входное отверстие на тыльной стороне блока питания. В системе, работающей в условиях повышенной запыленности, на воздухозаборнике БП можно установить фильтр, который предотвратит попадание в ПК частиц пыли.

Стандарт АТХ был разработан фирмой Intel в 1995 году и популярность завоевал после выпуска персональных компьютеров с процессором Pentium и Pentium Pro. После появления на рынке процессоров Pentium II (1997 год) и Pentium III (1999 год) этот тип корпуса стал использоваться повсеместно, заменив Baby-AT.  

Конструкция АТХ (рис.11) выполняет такие же функции, как Baby-AT и Slimline, а так-же позволяет решить две серьезные проблемы, возникающие при их использовании. Каждый   из традиционных блоков питания персональных компьютеров, применяющихся в PC, имеет два разъема, которые вставляются в системную плату. Проблема такова: если вы перепутаете разъемы, то сожжете системную плату! Большинство производителей качественных систем выпускают разъемы системной платы и блока питания с ключами, чтобы их нельзя было перепутать, но почти все дешевые системы не имеют ключей ни на системной плате, ни в блоке питания.

Чтобы предотвратить неправильное подключение разъемов блока питания, в модели АТХ предусмотрен новый разъем питания для системной платы. Он содержит 20 контактов и является одиночным разъемом с ключом. Его невозможно подключить неправильно В новом разъеме предусмотрена цепь питания на 3,3 В, что позволяет отказаться от преобразователя напряжения на системной плате.

Рис. 11. Внешний вид блока питания форм-фактора ATX/NLX

Для напряжения 3,3 В блок АТХ обеспечивает другой набор управляющих сигналов, отличающийся от обычных сигналов для стандартных блоков. Это сигналы Power_0n и Standby (последний также называется питанием малой мощности — Soft Power, или SB). 

Power_0n — это сигнал системной платы, который может использоваться такими операционными системами, как Windows 9x (они поддерживают возможность выключения и пуска системы программным путем). Это также позволяет применять для включения компьютера клавиатуру. Для этого в интерфейс блока питания введен управляющий сигнал PS-ON, включающий основные источники +5, +3,3, +12, -12 и -5 В (рис. 12). Напряжение от этих источников поступает на выход блока только при удержании сигнала PS-ON на низком логическом уровне. При высоком уровне или свободном состоянии цепи выходные напряжения этих источников поддерживаются около нулевого уровня. О нормальном напряжении питания сигнализирует сигнал PW-OK (Power O’Key). Интерфейс управления питанием позволяет выполнять программное отключение питания.

Рис. 12. Временная диаграмма интерфейса управления питанием АТХ

Сигнал 5v_Standby (дежурный) всегда активен и подает на системную плату питание ограниченной мощности, даже если компьютер выключен. Параметры описанных свойств устанавливаются с помощью программы установки параметров Setup BIOS. Дежурный источник с допустимым током нагрузки 10 мА (АТХ версии 2.01) включается при подаче сетевого напряжения. Он предназначен для питания цепей управления энергопотреблением и устройств, активных и в спящем режиме (например, факсмодема, способного по поступлении входящего звонка «разбудить» машину). В дальнейшем предполагается увеличить мощность данного источника до допустимого тока 720 мА, что позволит «будить» компьютер даже по приему пакета от дежурного адаптера локальной сети.

Сигнал FanM представляет собой выход типа «открытый коллектор» от тахометрического датчика вентилятора блока питания вырабатывающего два импульса на каждый оборот ротора. Сигнал FanC предназначен для управления скоростью вентилятора подачей напряжения в диапазоне 0…+12 В при токе до 20 мА. Если уровень напряжения выше +10,5 вентилятор будет работать на максимальной скорости. Уровень ниже +1 В означает запрос от системной платы на остановку вентилятора. Промежуточное значения уровня позволяют плавно регулировать скорость. Внутри блока питания сигнал FanC подтягивается к уровню +12 В, так что если дополнительный разъем оставить неподключенным, вентилятор будет всегда работать на максимальной скорости. На дополнительном разъеме также имеются kohtакты 1394V (+) и 1394R (-) изолированного от схемной земли источника напряжения 8-48 В для питания устройств шины IEEE-1394 (FireWire). Цепь +3.3V Sense служит для подачи сигнала обратной связи стабилизатору напряжения +3,3 

Все питающие и сигнальные провода к системной плате подключаются одним основным разъемом с надежным ключом (рис. 13а). На разъемах подключения накопителей, естественно, сохранилось традиционное назначение контактов. Расширенная спецификация для блока питания АТХ предусматривает передачу информации от датчиков вентилятора на системную плату, что обеспечивает контроль скорости вращения и температуры воздуха. Для этих целей предназначен дополнительный (необязательный) жгут с разъемом, изображенный на рис. 13 б. 

Рис. 13. а) Основной разъем питания

Рис. 13. б) Дополнительный разъем

Другая проблема, решенная в конструкции АТХ, связана с системой охлаждения. На всех современных процессорах устанавливается активный теплоотвод, который представляет собой вентилятор (кулер), который крепится к радиатору процессора для его охлаждения. Практически все процессоры, выпускаемые фирмой Intel и другими производителями, поставляются с такими вентиляторами. В системах модели АТХ для дополнительного охлаждения процессора используется заслонка рядом с блоком питания, которая направляет воздушный поток от вентилятора к процессору. Блок питания модели АТХ берет воздух извне и создает в корпусе избыточное давление, тогда как в корпусах других систем давление понижено. Направление воздушного потока в обратную сторону позволило значительно улучшить охлаждение процессора и других компонентов системы.

Замечание       Метод охлаждения, описанный в технических требованиях АТХ, не является обязательным. Изготовители могут использовать другие методы, например установку традиционного выдувающего вентилятора, а также пассивных радиаторов на системной плате АТХ. Это может оказаться лучшим решением для компьютера, если не гарантируется периодическая замена фильтра источника питания.

Стандарт NLX

Технические требования NLX, также разработанные Intel, определяют низкопрофильную системную плату, во многом похожую на АТХ. Однако в этом стандарте используется меньший формфактор. Как в предыдущих системах Slimline, системная плата NLX использует выносную плату (ризер — карту) для разъемов расширения. Системная плата NLX также разработана для упрощения доступа и обслуживания; системную плату легко выдвинуть из блока. Формфактор NLX предназначен для замены LPX (как формфактор АТХ функционально заменил Baby-AT).

Технические требования NLX не определяют новый формфактор источника питания, но существует отдельный документ, в котором приведены рекомендации для источника питания NLX. Чтобы источник питания поместился в корпус NLX, он должен соответствовать размерам формфактора LPX, но в нем должны использоваться разъем с 20 контактами, сигналы напряжения, в соответствии со спецификацией АТХ (и даже вентилятор должен быть расположен как в блоке питания АТХ). Хотя иногда можно приспособить источник питания для LPX, некоторые изготовители начали производить источники питания, специально созданные для использования в системах NLX.

Стандарт SFX (системные платы micro-ATX)

Фирма Intel разработала новые технические требования для системных плат, названных micro-ATX, Эти платы предназначены для недорогих систем; в них используется меньшее количество разъемов расширения, чем в NLX, и потому требования к источнику питания менее жесткие. Поскольку документация на платы micro-ATX определяет лишь формфактор системной платы, Intel разработала технические требования для нового источника питания, названного SFX (рис. 14).

Источник питания SFX специально разработан для использования в малых системах, содержащих ограниченное количество аппаратных средств. Блок питания может в течение длительного времени обеспечивать питание при мощности 90 Вт (135 Вт пиковой мощности) в четырех напряжениях (+5, +12, -12 и +3,3 В). Этой мощности достаточно для малой системы с процессором Pentium II, интерфейсом AGP, тремя разъемами расширения и тремя периферийными устройствами типа жестких дисков и CD-ROM.

Замечание        Источник питания SFX не имеет выходного напряжения -5 В, необходимого для шины ISA. Поэтому в компьютерах с платой micro-ATX используется только шина РСI и интерфейс AGP для всех плат расширений, установленных в компьютер, а разъемов шины ISA нет совсем.

Рис. 14. Блок питания стандарта SFX с вентиляторам диаметром 60 мм

Несмотря на то что Intel разработала технические требования к источнику питания SFX специально для системной платы с формфактором micro-ATX, SFX — это отдельный стандарт, который совместим с другими системными платами. В источниках питания SFX используется тот же разъем с 20 контактами, что и в стандарте АТХ, а также сигналы Power_0n и 5v_Standby. Отличия проявляются в расположении вентилятора.

Если используется стандартный источник питания SFX, то вентилятор диаметром 60 мм крепится на поверхности корпуса, причем он вдувает холодный воздух внутрь корпуса компьютера. Вентилятор обдувает источник питания, и через отверстия в задней панели корпуса теплый воздух удаляется. Такое расположение вентилятора уменьшает шум, но в то же время обладает недостатками, которые были характерны для систем охлаждения до введения стандарта АТХ. В любом случае необходимо использовать дополнительные охлаждающие элементы на наиболее тепловыделяющих элементах компьютера.

Для систем, которым необходимо более интенсивное отведение тепла, был разработан блок питания с вентилятором диаметром 90 мм. Этот больший по размеру вентилятор обеспечивает лучшее охлаждение элементов компьютера (рис. 15).              

Рис. 15. Блок питания стандарта SFX с вентилятором диаметром 90мм

На рис. 16 показан внешний вид блока питания стандарта SFX с верхним расположением вентилятора диаметром 90 мм.

Рис.16. Блок питания стандарта SFX с верхним расположением вентилятора диаметром 90мм

14 Блоки питания » СтудИзба

Лекция  14             Блоки питания

 

14.1   Назначение  и  принципы  работы  блоков  питания

14.2  Внутренняя проверка блока питания

14.3   Разъемы        питания системной  платы

14.4   Разъемы  питания   периферийных  устройств

14.5    Мощность блоков питания

14.6   Усовершенствованная система управления питанием

14.7    Источник резервного питания (SPS)

14.8   Источник бесперебойного питания (UPS)

14..9   Батареи RTC/NVRAM

14.1   Назначение  и  принципы  работы  блоков  питания

Блок питания является одним из самых ненадежных устройств компьютерной системы. Это жизненно важный компонент персонального компьютера, поскольку без электропитания не сможет работать ни одна компьютерная система. Поэтому для организации четкой и стабильной работы системы необходимо хорошо разбираться в функциях блока питания, иметь представление об ограничениях его возможностей и их причинах, а также о потенциальных проблемах, которые могут возникнуть в ходе эксплуатации, и способах их разрешения.

Главное назначение блоков питания — преобразование электрической энергии, поступающей из сети переменного тока, в энергию, пригодную для питания узлов компьютера. Блок питания преобразует сетевое переменное напряжение 220 В, 50 Гц (120 В, 60 Гц) в постоянные напряжения +3,3, +5 и +12 В. Как правило, для питания цифровых схем (системной платы, плат адаптеров и дисковых накопителей) используется напряжение +3,3 или +5 В, а для двигателей (дисководов и различных вентиляторов) — +12 В. Компьютер работает надежно только в том случае, если значения напряжения в этих цепях не выходят за установленные пределы.

Положительное напряжение

Как правило, цифровые электронные компоненты и интегральные схемы компьютера (системные платы, платы расширения, логические схемы дисководов) используют напряжения +3,3 и +5 В, в то время как двигатели (дисководов и вентиляторов) обычно работают с напряжением в 12 В. Список устройств и их потребляемая мощность приведены в табл. 1.

Для того чтобы система нормально работала, источник питания должен обеспечивать непрерывную подачу постоянного тока. Устройства, рабочее напряжение которых отличается от подаваемого, должны питаться от встроенных регуляторов напряжения. Например, рабочее напряжение 2,5 В для модулей памяти RIMM обеспечивается встроенным регулятором тока; процессоры подключаются к модулю стабилизатора напряжения (VRM), который обычно встраивается в системную плату.

 

 

Отрицательное напряжение

Хотя напряжения -5 и -12 В подаются на системную плату через разъемы питания, для ее работы нужен только 5-вольтный источник питания. Питание -5 В поступает на контакт B5 шины ISA, а на самой системной плате оно не используется. Это напряжение предназнача­лось для питания аналоговых схем в старых контроллерах накопителей на гибких дисках, по­этому оно и подведено к шине. В современных контроллерах напряжение -5 В не использует­ся; оно сохраняется лишь как часть стандарта шины ISA.Напряжения +12 и -12 В на системной плате также не используются, а соответствующие цепи подключены к контактам B9 и B7 шины ISA. К ним могут подсоединяться схемы любых плат адаптеров, но чаще всего подключаются передатчики и приемники последовательных портов. Если последовательные порты смонтированы на самой системной плате, то для их питания могут использоваться напряжения -12 и +12 В. В большинстве схем современных последовательных портов указанные напряжения не используются. Для их питания достаточно напряжения +5 В (или даже 3,3 В). Если в компью­тере установлены именно такие порты, значит, сигнал +12 В от блока питания не подается.

Напряжение +12 В предназначено в основном для питания двигателей дисковых накопи­телей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особен­но в компьютерах с множеством отсеков для дисководов. Напряжение 12 В подается также на вентиляторы, которые, как правило, работают постоянно. Обычно двигатель вентилятора потребляет от 100 до 250 мА, но в новых компьютерах это значение ниже 100 мА. В боль­шинстве компьютеров вентиляторы работают от источника +12 В, но в портативных моделях для них используется напряжение +5 В (или даже 3,3 В).

14.2   Внутренняя проверка блока питания

Сигнал Power_Good Блок питания не только вырабатывает необходимое для работы узлов компьютера напряже­ние, но и приостанавливает функционирование системы до тех пор, пока величина этого напря­жения не достигнет значения, достаточного для нормальной работы. Иными словами, блок пи­тания не позволит компьютеру работать при “нештатном” уровне напряжения питания. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную пла­ту посылается специальный сигнал PowerGood (питание в норме). Если такой сигнал не по­ступил, компьютер работать не будет.Уровень напряжения сигнала Power Good — около +5 В (нормальной считается величина от +3 до +6 В). Он вырабатывается блоком

Рис. 1. Блок питания стандарта ATX

питания после выполнения внутренних проверок и выхода на номинальный режим и обычно появляется через 0,1-0,5 с после включения ком­пьютера. Сигнал подается на системную плату, где микросхемой тактового генератора фор­мируется сигнал начальной установки процессора.При отсутствии сигнала PowerGood микросхема тактового генератора постоянно подает на процессор сигнал сброса, не позволяя компьютеру работать при нештатном или неста­бильном напряжении питания. Когда PowerGood подается на генератор, сигнал сброса от­ключается и начинается выполнение программы, записанной по адресу: FFFF:0000 (обычно в ROM BIOS).Если выходные напряжения блока питания не соответствуют номинальным (например, при снижении напряжения в сети), сигнал PowerGood отключается и процессор автоматиче­ски перезапускается. При восстановлении выходных напряжений снова формируется сигнал PowerGood и компьютер начинает работать так, как будто его только что включили. Благо­даря быстрому отключению сигнала PowerGood компьютер “не замечает” неполадок в сис­теме питания, поскольку останавливает работу раньше, чем могут появиться ошибки четно­сти и другие проблемы, связанные с неустойчивостью напряжения питания.

              Рис. 2. Блок питания стандарта SFX с верхним расположением вентилятора

 

14.3   Разъемы        питания   системной  платы

Каждый блок питания содержит специальные соединители, подключаемые к соответствующим разъемам системной платы, подавая напряжение на центральный процессор, модули памяти и установленные платы расширения (ISA, PCI, AGP). Неправильное подключение разъемов может привести к весьма нежелательным последствиям, вплоть до сгорания блока питания и системной платы. Более подробно разъемы системной платы, используемые различными блоками питания, рассматриваются в следующих разделах.

Главный разъем питания ATX

Новый стандарт для разъемов блоков питания используется только в новой конструкции ATX (рис. 14.3): 20-контактный разъем, разводка которого приведена в табл. 14.1. Расположение выводов разъема питания лучше показывать со стороны проводов. Это позволит правильно сориентировать разъем соединителя при его подключении к разъему системной платы.

 

Рис. 14.3. Разъемы P8 и P9

 

 

 

Таблица 14.1. Разъемы блока питания AT/LPX

 

Разъем      Контакт

Сигнал

Цвет

Разъем

Контакт

Сигнал

Цвет

Р8 (или Р1)  1

Power_Good (+5 В)

Оранжевый

Р9 (или Р2)

1

Общий

Черный

2

+5 В*

Красный

 

2

Общий

Черный

3

+12 В

Желтый

 

3

-5 В

Белый

4

-12 В

Синий

 

4

+5 В

Красный

5

Общий

Черный

 

5

+5 В

Красный

6

Общий

Черный

 

6

+5 В

Красный

14.4   Разъемы  питания   периферийных  устройств

Кроме разъемов, предназначенных для подключения системной платы, блоки питания содержат ряд силовых разъемов для подключения различных периферийных устройств, начиная с дисковых накопителей и заканчивая внутренним вентилятором охлаждения.

Разъемы питания дисковых накопителей и периферийных устройств

Разъемы питания дисковых накопителей стандартизированы в соответствии с назначени-ем выводов и цветом проводов. Разъемы питания дисковых накопителей и периферийных устройств показаны на рис. 14.4.

Обратите внимание, что нумерация выводов и обозначение напряжений этих разъемов обратно противоположны. Будьте особенно осторожны, самостоятельно изготавливая кабельный адаптер или используя его для подключения разъемов разных типов. Перемена местами красных и желтых проводов может привести к повреждению подключенного дисковода или периферийного устройства.

Чтобы отыскать вывод 1, внимательно осмотрите разъем: обычно номер указан на пластмассовом корпусе,.

 

Контакт 1  +12 В (желтый) , контакт 2  Общий (черный)

Контакт 3 Общий (черный)

Контакт 4 +5 В   (красный)

 

Рис. 14.4. Разъемы питания дисковых накопителей и периферийных устройств
Кроме разъемов, предназначенных для подключения системной платы, блоки питания содержат ряд силовых разъемов для подключения различных периферийных устройств.

 


 

Разъемы питания дисковых накопителей и периферийных устройств

Разъемы питания дисковых накопителей стандартизированы в соответствии с назначени-ем выводов и цветом проводов. Разъемы питания дисковых накопителей и периферийных устройств показаны на рис. 14.4.

Схема расположения выводов силового разъема стандартного дисковода и его цветовая кодировка приведены в табл. 14.1. В табл. 14.2 представлена схема расположения выводов силового разъема накопителя на гибких дисках.

Обратите внимание, что нумерация выводов и обозначение напряжений этих разъемов обратно противоположны. Будьте особенно осторожны, самостоятельно изготавливая кабельный адаптер или используя его для подключения разъемов разных типов. Перемена местами красных и желтых проводов может привести к повреждению подключенного дисковода или периферийного устройства.

Чтобы отыскать вывод 1, внимательно осмотрите разъем: обычно номер указан на пластмассовом корпусе, но бывает настолько мал, что его трудно заметить.

 

 

 

 

 

 

 

 

Рис. 14.5. 20-контактный разъем блока питания конструкции ATX

 

 

Цвет

Сигнал

Контакт

Контакт

Сигнал

Оранжевый

+3,3 В*

11

1

+3,3 В*

Синий

-12 В

12

2

+3,3 В*

Черный

Общий

13

3

Общий

Зеленый

PSOn

14

4

+5 В

Черный

Общий

15

5

Общий

Черный

Общий

16

6

+5 В

Черный

Общий

17

7

Общий

Белый

-5 В

18

8

PowerGood

Красный

+5 В

19

9

5v_Stby

Красный

+5 В

20

10

+12 В

* Необязательный сигнал.

 

Таблица 14.3. Схема расположения выводов разъема питания периферийных устройств (большой силовой разъем)

 

Контакт               Сигнал                Цвет

Контакт            Сигнал                Цвет

1               +12 В                  Желтый

2               Общий                 Черный

3              Общий                 Черный

4              +5 В                    Красный

 

14.5    Мощность блоков питания

Большинство производителей компьютеров предоставляют техническую информацию о блоках питания. Ее можно найти в техническом руководстве, а также на этикетке, приклеенной к блоку. Если вы знаете название компании — производителя блока питания, обратитесь непосредственно к ней Большинство производителей выпускают серии устройств с различными выходными мощностями в диапазоне 100–450 Вт.Новые источники питания вырабатывают также напряжение +3,3 В. В табл. 14.6 приведены параметры различных источников питания ATX, которые вырабатывают напряжение +3,3 В.

 

 

14.6   Усовершенствованная система управления питанием

Стандарт усовершенствованной системы управления питанием (Advanced Power Manage­ment — APM) разработан компанией Intel совместно с Microsoft и определяет ряд интерфей­сов между аппаратными средствами управления питанием и операционной системой компью­тера. Полностью реализованный стандарт APM позволяет автоматически переключать ком­пьютер между пятью состояниями в зависимости от текущего состояния системы. Каждое последующее состояние в приведенном ниже списке характеризуется уменьшением потреб­ления энергии.

■   Full On. Система полностью включена.

■   APM Enabled. Система работает, некоторые устройства являются объектами управле­ния для системы управления питанием. Неиспользуемые устройства могут быть вы­ключены, может быть также остановлена или замедлена (т.е. снижена тактовая часто­та) работа тактового генератора центрального процессора.

■   APM Standby (резервный режим). Система не работает, большинство устройств нахо­дятся в состоянии потребления малой мощности. Работа тактового генератора цен­трального процессора может быть замедлена или остановлена, но необходимые пара­метры функционирования хранятся в памяти. Пользователь или операционная система могут запустить компьютер из этого состояния почти мгновенно.

■   APM Suspend (режим приостановки). Система не работает, большинство устройств пассивны. Тактовый генератор центрального процессора остановлен, а параметры функционирования хранятся на диске и при необходимости могут быть считаны в па­мять для восстановления работы системы. Чтобы запустить систему из этого состоя­ния, требуется некоторое время.

■   Off (система отключена). Система не работает. Источник питания выключен.

Для реализации режимов APM требуются аппаратные средства и программное обеспече­ние. Источниками питания ATX можно управлять с помощью сигнала PowerOn и факульта­тивного разъема питания с шестью контактами. (Необходимые для этого команды выдаются программой.) Изготовители также встраивают подобные устройства управления в другие элементы системы, например в системные платы, мониторы и дисководы.

Операционные системы (такие, как Windows 9x), которые поддерживают APM, при на­ступлении соответствующих событий запускают программы управления питанием, “наблюдая” за действиями пользователя и прикладных программ. Однако операционная сис­тема непосредственно не посылает сигналы управления питанием аппаратным средствам.

Система может иметь множество различных аппаратных устройств и программных функ­ций, используемых при выполнении функций APM. Чтобы разрешить проблему сопряжения этих средств в операционной системе и аппаратных средствах предусмотрен специальный абст­рактный уровень, который облегчает связь между различными элементами архитектуры APM.

При запуске операционной системы загружается программа — драйвер APM, который связывается с различными прикладными программами и программными функциями. Именно они запускают действия управления питанием, причем все аппаратные средства, совместимые с APM, связываются с системной BIOS. Драйвер APM и BIOS связаны напрямую; именно эту связь использует операционная система для управления режимами аппаратных средств.

Таким образом, чтобы функционировали средства APM, необходим стандарт, поддержи­ваемый схемами, встроенными в конкретные аппаратные устройства системы, системная BIOS и операционная система с драйвером APM. Если хотя бы один из этих компонентов от­сутствует, APM работать не будет.

14.7    Источник резервного питания (SPS)

SPS включается только тогда, когда исчезает или становится очень низким сетевое напряжение. В этом случае срабатывает соответствующий датчик, и к установленному в блоке преобразователю постоянного напряжения в переменное подключается аккумуляторная бата-рея. Начинает вырабатываться переменное напряжение, которое, в свою очередь, поступает на выход устройства вместо сетевого.

SPS в принципе работают неплохо, но в некоторых моделях переключение на резервное питание происходит недостаточно быстро. При этом компьютер может отключиться или перезагрузиться. Естественно, что такое “резервирование” мало кого устроит. В высококачественных SPS устанавливаются феррорезонансные стабилизаторы. Это довольно громоздкие устройства, позволяющие запасать некоторое количество энергии, используемой для питания компьютера во время переключения схемы.

В рассматриваемых блоках могут устанавливаться фильтры-стабилизаторы, но в дешевых моделях их, как правило, не бывает, и напряжение в нормальных условиях поступает на компьютер непосредственно из сети, без всякой фильтрации и стабилизации. В SPS с феррорезонансными стабилизаторами выходное напряжение поддерживается постоянным, к остальным же для большей надежности следует дополнительно подключать фильтр-стабилизатор. В зависимости от качества и выходной мощности, стоимость SPS колеблется от ста до нескольких тысяч долларов.

14.8   Источник бесперебойного питания (UPS)

Лучшим решением всех проблем, возникающих в цепях питания, является установка источника бесперебойного питания, который одновременно выполняет функции фильтра-стабилизатора и источника аварийного питания. В отличие от SPS, которые включаются периодически, источники бесперебойного питания работают постоянно, и напряжение на компьютер поступает только от них. Поскольку некоторые фирмы продают источники резервного питания SPS как UPS (так как они предназначены для одних целей), последние иногда называют “истинными источниками бесперебойного питания” (“True UPS”). Хотя схема и конструкция UPS во многом похожи на SPS, главное различие между ними заключается в том, что в настоящем UPS отсутствует переключатель — питание компьютера всегда осуществляется от аккумулятора.

В UPS постоянное напряжение 12 В от аккумуляторной батареи преобразуется в перемен­ное. В вашем распоряжении фактически будет свой автономный источник питания, не зави­сящий от электрической сети. От нее осуществляется только подзарядка аккумулятора, при­чем ток заряда либо равен потребляемому нагрузкой, либо несколько больше (при частично разряженной батарее).

Даже если напряжение в сети пропадает, UPS продолжает работать, поскольку при этом лишь прекращается процесс подзарядки батареи. Никаких переключений в схеме не происхо­дит, а потому не возникает даже кратковременных провалов питающего напряжения. Батарея в этом режиме, конечно, разряжается, и интенсивность разряда зависит от мощности, потреб­ляемой компьютером. Но практически в любом случае вы успеете спокойно завершить рабо­ту и подготовить компьютер к нормальному выключению питания. UPS функционирует не­прерывно, используя заряженный аккумулятор. После восстановления сетевого напряжения аккумулятор сразу, без дополнительных переключений, начинает подзаряжаться, и вы снова можете включить компьютер и спокойно работать.

 

14..9   Батареи  RTC/NVRAM

Все 16-разрядные или более современные системы имеют микросхему особого типа, в которой находятся часы реального времени (Real-Time Clock — RTC), а также хотя бы 64 байт (включая данные часов) энергонезависимого ОЗУ (Non-Volatile RAM — NVRAM). Эта микросхема официально называется микросхемой RTC/NVRAM, но обычно на нее ссылаются как на микросхему CMOS, или CMOS-память. Такие микросхемы потребляют питание от батарей и могут хранить информацию несколько лет.

Она содержит часы реального времени, оповещающие программу о текущем времени и дате, причем и время и дата будут представляться правильно даже при отключении системы.

Часть микросхемы, называемая NVRAM, имеет другие функции. Она предназначена для хранения данных о конфигурации системы, включая объем установленной памяти, типы накопителей на гибких и жестких дисках, а также другую подобную информацию. Некоторые новые системные платы для хранения данных о конфигурации имеют микросхемы расширения NVRAM объемом 2 Кбайт и более. Это особенно актуально для систем Plug and Play, конфигурация которых содержит параметры не только системной платы, но и установленных адаптеров. После включения питания эта информация может быть прочитана в любой момент.

Чтобы предотвратить стирание NVRAM и сбой часов в то время, когда система выключена, к этим микросхемам подводят питание от специальной батарейки. Чаще всего используется литиевая батарейка, поскольку она имеет довольно продолжительное время работы, особенно если питает микросхему RTC/ NVRAM, потребляющую мало энергии.

Самые современные высококачественные системы содержат новый тип микросхем, в которые встроена батарейка. При нормальных условиях срок службы таких батарей измеряется десятью годами, что намного превышает срок эксплуатации компьютера. Если в вашей системе используется один из таких блоков, то батарея и микросхема заменяются одновременно, поскольку они конструктивно объединены. В некоторых системах батареи вообще не применяются. Например, Hewlett-Packard использует специальный аккумулятор, который автоматически перезаряжается при каждом включении системы. Если система не включена, аккумулятор будет обеспечивать RTC/NVRAM энергией, необходимой для работы, на протяжении недели или дольше. Но если компьютер останется выключенным на более длительное время, данные, хранящиеся в NVRAM, будут потеряны. В таком случае система может перезагрузить NVRAM из архивной микросхемы ROM, установленной на системной плате. Единственная информация, которую можно потерять, — текущая дата и время, но ее можно ввести заново. При использовании аккумулятора в сочетании с архивом в ROM получается довольно надежная система, оснащенная всем необходимым для хранения информации.

 

Контрольные вопросы

1         Какую роль выполняют блоки питания в компьютерной системе?

2         Какие устройства используют положительное напряжение?

3         Какие устройства используют отрицательное  напряжение?

4         Описать внутреннюю проверку блока питания.

5         Описать  разъемы      питания   системной  платы.

6         Описать разъемы  питания   периферийных  устройств.

7         Описать разъемы дисковых накопителей.

8         Описать систему управления питанием.

9         Описать источник резервного питания.

10    Описать источник бесперебойного питания (UPS).

11    Для чего применяются  батареи  RTC/NVRAM?

 

 

назначение и основные параметры выбора устройства

К основным составляющим компьютера относится блок питания, не менее важный, чем остальные элементы устройства. При этом выбирать его придется достаточно тщательно, потому что хороший блок питания ПК сможет обеспечить работу нескольким поколениям систем. Стоит брать во внимание этот факт перед совершением покупки, так как данный прибор оказывает прямое влияние на работу всего устройства.

Назначение БП

Его главной функцией является обеспечение электропитания, требующегося для работы всех частей компьютера. Основное напряжение обычно составляет +12 В., +5 В., а также бывает и напряжение -12 В., -5 В. Еще одно назначение БП — это выполнение гальванической развязки между сетью и элементами ПК. Это требуется для того, чтобы устранить токи утечек, благодаря чему во время эксплуатации прибор не бьется током и не допускает возникновения паразитных токов при работе с сопряженным оборудованием.

Чтобы выполнить гальваническую развязку, требуется использовать трансформатор, который обладает необходимым числом обмоток. При этом сегодня для питания современных ПК требуется достаточно большая мощность. Вот почему, чтобы сделать это, пришлось бы применять трансформатор, который бы много весил и был бы некомпактный по размеру . Но благодаря тому, что с ростом частоты тока питания трансформатора для образования такого же магнитного потока понадобится меньшее число витков с меньшим сечением примененного магнитопровода, БП, созданные с помощью преобразователя, оказываются небольшие и легкие.

Основные параметры, которые нужно учитывать при выборе

Применяемый блок питания должен справляться со следующими функциями и иметь такие особенности:

  • создавать стабильное напряжение на выходе. В идеале оно должно быть прерывистое, то есть гуляющее в пределе 0,5 В;
  • обладать хорошей системой деления линии, так как плохая может приводить к возникновению копоти на платах;
  • установленные компоненты должны быть выполнены из качественных материалов, так как обычно поломки БП происходят из-за дешевых конденсаторов, а также отсутствия предохранителей.

Если перечисленные условия не соблюдены, то подобные дешевые приборы способны вылетать из установленных значений на 2 В, что в итоге будет приводить к перегрузке компьютера без видимых на то причин.

Характеристики блоков питания

Мощность — это основной параметр, который должен совпадать с суммарной мощностью, потребляемой всеми комплектующими ПК, а при нормальном выборе она должна превышать это значение минимум на 100 Вт. При несоблюдении данного условия во время пиковой нагрузки компьютер может перезагружаться или блок питания сгорит, а с ним и ряд деталей гаджета.

И последнее, на что стоит обратить внимание перед покупкой — это вес БП. Качественный блок питания не может весить меньше 2 кг., ведь это может свидетельствовать о том, что производитель сэкономил на комплектующих.

Выгодную покупку такого прибора поможет сделать ресурс сравнения цен Прайс.юа, где можно найти самые актуальные предложения.



принципы работы и основные узлы

… пост о блоках питания. И действительно: мало кто обращает внимание при покупке домашнего компьютера на данный, не маловажный узел. А зря. Бывает что безимянный «китаец» работает «вечность»; а бывает и иначе. Горит само устройство, и тянет за собой в историю материнскую плату. При этом: изрядно забрызгивая электролитом и видеокарту. В общем: последствия болезненны и плачевны. «Умирает» практически все, кроме процессора, оперативной памяти и подключаемых устройств.

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера, мало кто обращает внимание на марку предустановленного в системе БП. Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК. Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр [1], в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения [2]. В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц. Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности. Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор [3] преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600–700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой [4].

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе [5]. Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель [6] сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений. Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. 

Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей. Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Типичная информационная наклейка БП. Основная задача – информирование пользователя о максимально допустимых токах по линиям питания, максимальных долговременной и кратковременной мощностях, итоговой комбинированной мощности, которую способен отдать БП

Конструкция модульных разъемов блоков питания может быть самой разной. Их применение допускает отключение силовых кабелей, не востребованных в отдельно взятом системном блоке.

Кроме силовых узлов в блоке есть дополнительные – сигнальные. Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах [7], и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме [9]. Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

 Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания. В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. 

Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался. Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Кожух блока питания с установленным 120-миллиметровым вентилятором. Часто для формирования необходимого воздушного потока используются специальные вставки-направляющие.

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами [8]. При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания. Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них – двухрядный – служит для питания материнской платы. Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора. Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V).

 Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. 

Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»). Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 – для последовательных портов RS-232 на плате.

На данном рисунке показана распиновка контактов блоков питания, традиционно используемых в современных ПК.

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей. Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В. Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10–15 А, а видеокарты до 20–25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500–700 Вт. Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15–25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания. Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току. Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. 

Простая математика: 240 ВА/12 В = 20 А. Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18–20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя. Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, – не более чем умелая маркетинговая уловка для непосвященных.

Качественное тестирование современных блоков питания можно провести лишь на специализированных стендах. На фото показана электронная начинка одного из них. Для теплового рассеивания больших мощностей применяется массивный радиатор, обдуваемый скоростными вентиляторами.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования. Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой. Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Краткий словарь терминов

Суммарная мощность – долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит – устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель – свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод – электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения.
Трансформатор – элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX – международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации – импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF) – соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC) – импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC) – пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

http://torrent-windows.net/programmy/portable/9866-power-watts-pc-23-portable-2012-russkiy.html — программа для расщета мощности блока питания.
http://technoportal.ua/articles/consumer/10049.html — как выбрать блок питания для П.К.
http://cxem.net/arduino/arduino44.php — распиновка Блока питания.
http://www.reviews.ru/clause/article.asp?id=3605 – тест блоков питания Gembird/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *