Блок питания постоянного тока – Плата-конструктор регулируемого блока питания, или правильный блок питания должен быть тяжелым

Содержание

Лабораторный источник постоянного напряжения из блока питания / Habr

Несколько недель назад мне для некого опыта потребовался источник постоянного напряжения 7V и силой тока в 5A. Тут-же отправился на поиски нужного БП в подсобку, но такого там не нашлось. Спустя пару минут я вспомнил о том, что под руки в подсобке попадался блок питания компьютера, а ведь это идеальный вариант! Пораскинув мозгами собрал в кучу идеи и уже через 10 минут процесс начался.

Для изготовления лабораторного источника постоянного напряжения потребуется:
— блок питания от компьютера
— клеммная колодка
— светодиод
— резистор ~150 Ом
— тумблер
— термоусадка
— стяжки

Блок питания, возможно, найдётся где-то не нужный. В случае целевого приобретения — от $10. Дешевле я не видел. Остальные пункты этого списка копеечные и не дефицитные.

Из инструментов понадобится:
— клеевой пистолет a.k.a. горячий клей (для монтажа светодиода)
— паяльник и сопутствующие материалы (олово, флюс…)
— дрель
— сверло диаметром 5мм
— отвертки
— бокорезы (кусачки)

Изготовление

Итак, первое, что я сделал — проверил работоспособность этого БП. Устройство оказалось исправным. Сразу можно отрезать штекера, оставив 10-15 см на стороне штекера, т.к. он вам может пригодиться. Стоит заметить, что нужно рассчитать длину провода внутри БП так, чтобы его хватило до клемм без натяжки, но и чтобы он не занимал всё свободное пространство внутри БП.

Теперь необходимо разделить все провода. Для их идентификации можно взглянуть на плату, а точнее на площадки, к которым они идут. Площадки должны быть подписаны. Вообще есть общепринятая схема цветовой маркировки, но производитель вашего БП, возможно, окрасил провода иначе. Чтобы избежать «непоняток» лучше самостоятельно идентифицировать провода.

Вот моя «проводная гамма». Она, если я не ошибаюсь, и есть стандартной.
С жёлтого по синий, думаю, ясно. Что означают два нижних цвета?
PG (сокр. от «

power good«) — провод, который мы используем для установки светодиода-индикатора. Напряжение — 5В.
ON — провод, который необходимо замкнуть с GND для включения блока питания.

В блоке питания есть провода, которые я здесь не описывал. Например, фиолетовый +5VSB. Этот провод мы использовать не будем, т.к. граница силы тока для него — 1А.

Пока провода нам не мешают, нужно просверлить отверстие для светодиода и сделать наклейку с необходимой информацией. Саму информацию можно найти на заводской наклейке, которая находится на одной из сторон БП. При сверлении нужно позаботиться о том, чтобы металлическая стружка не попала вовнутрь устройства, т.к. это может привести к крайне негативным последствиям.

На переднюю панель БП я решил установить клеммную колодку. Дома нашлась колодка на 6 клемм, которая меня устроила.

Мне повезло, т.к. прорези в БП и отверстия для монтажа колодки совпали, да еще и диаметр подошел. Иначе, необходимо либо рассверливать прорези БП, либо сверлить новые отверстия в БП.

Колодка установлена, теперь можно выводить провода, снимать изоляцию, скручивать и лудить. Я выводил по 3-4 провода каждого цвета, кроме белого (-5V) и синего (-12V), т.к. их в БП по одному.


Первый залужен — вывел следующий.


Все провода залужены. Можно зажимать в клемме.

Устанавливаем светодиод

Я взял обычный зелёный индикационный светодиод обычный красный индикационный светодиод (он, как выяснилось, несколько ярче). На анод (длинная ножка, менее массивная часть в головке светодиода) припаиваем серый провод (PG), на который предварительно насаживаем термоусадку. На катод (короткая ножка, более массивная часть в головке светодиода) припаиваем сначала резистор на 120-150 Ом, а к второму выводу резистора припаиваем черный провод (
GND
), на который тоже не забываем предварительно надеть термоусадку. Когда всё припаяно, надвигаем термоусадку на выводы светодиода и нагреваем ее.


Получается вот такая вещь. Правда, я немного перегрел термоусадку, но это не страшно.

Теперь устанавливаю светодиод в отверстие, которое я просверлил еще в самом начале.

Заливаю горячим клеем. Если его нет, то можно заменить супер-клеем.

Выключатель блока питания

Выключатель я решил установить на место, где раньше у блока питания выходили провода наружу.


Измерял диаметр отверстия и побежал искать подходящий тумблер.


Немного покопался, и нашел идеальный выключатель. За счёт разницы в 0,22мм он отлично встал на место. Теперь к тумблеру осталось припаять ON и GND, после чего установить в корпус.

Основная работа сделана. Осталось навести марафет.


Хвосты проводов, которые не использованы нужно изолировать. Я это сделал термоусадкой. Провода одного цвета лучше изолировать вместе.


Все шнурки аккуратно размещаем внутри.


Прикручиваем крышку, включаем, бинго!

Этим блоком питания можно получить много разных напряжений, пользуясь разностью потенциалов. Учтите, что такой приём не прокатит для некоторых устройств.
Вот тот спектр напряжений, которые можно получить.
В скобках первым идёт положительный, вторым — отрицательный.
24.0V — (12V и -12V)
17.0V — (12V и -5V)
15.3V — (3.3V и -12V)
12.0V — (12V и 0V)
10.0V — (5V и -5V)
8.7V — (12V и 3.3V)
8.3V — (3.3V и -5V)
7.0V — (12V и 5V)
5.0V — (5V и 0V)
3.3V — (3.3V и 0V)

1.7V — (5V и 3.3V)
-1.7V — (3.3V и 5V)
-3.3V — (0V и 3.3V)
-5.0V — (0V и 5V)
-7.0V — (5V и 12V)
-8.7V — (3.3V и 12V)
-8.3V — (-5V и 3.3V)
-10.0V — (-5V и 5V)
-12.0V — (0V и 12V)
-15.3V — (-12V и 3.3V)
-17.0V — (-12V и 5V)
-24.0V — (-12V и 12V)




Вот так мы получили источник постоянного напряжения с защитой от КЗ и прочими плюшками.

Рационализаторские идеи:
— использовать самозажимные колодки, как предложили тут, либо использовать клеммы с изолированными барашками, чтобы не хватать в руки отвёртку лишний раз.

их определение, технические детали и возможности

Блок питания для аккумуляторных изделий.

Блок питания для аккумуляторных изделий.
Другой термин используемый при определении блока питания — источник питания постоянного тока. Что из себя представляет данный механизм? Это своеобразное устройство, которое позволяет получить приемлемое стабильное постоянное напряжение. Ну или же просто постоянный ток. Когда, допустим, блок питания 24в постоянного тока выполняет работу и находится в режиме функции стабилизирования напряжения, он изначально способен поддерживать требуемый заданный показатель силы тока даже в случае и некоего изменения напряжения.

Особенности и классификация по мощности

Самым наиболее распространённым принципом классификации блоков питания является классификация по мощности. То есть то количество приборов, функционирующих от электричества, которое блок способен поддерживать.

Если устройство превышает допустимый предел потребляемого тока, то блок снижает потребление в сети, таким образом, предотвращая выход приборов из строя и поломку аппаратуры. Если вам необходимо

обеспечить током электрическое оборудование, системы контроля, системы наблюдения (видеонаблюдения), а также всевозможных прочих устройств, которым нужно электричество и постоянное напряжение, то подобные блоки подойдут как нельзя лучше потому, что часто спроектированы для стационарного применения.

Главными выделяющимися моментами и интересующими нас качествам в подобных блоках являются:

  1. долгий срок службы, если не случается экстремальных ситуаций и воздействий
  2. высокий коэффициент полезного действия
  3. естественная конвекция воздуха
  4. подстройка выходного напряжения обладает потенциометром
  5. крепление возможно как на DIN-рейку, так и на стену
  6. большая надёжность устройства
  7. защита, которая срабатывает в случае перегрузки, перенапряжения
  8. качество исполнения — высокое

Типы блоков питания

Вообще, источники питания можно разделить на несколько типов:

  1. вторичный источник электропитания;
  2. трансформаторный или, как ещё такой называют, сетевой источник питания;
  3. импульсный источник питания.

Вторичный блок

Как работает вторичный источник электропитания.

Как работает вторичный источник электропитания.
Вкратце их различия можно описать так. Вторичный источник питания — своеобразное устройство, предназначаемое для обеспечения питания электроприбора энергией, при учёте напряжения и тока, путём преобразования электрической энергии других источников. Согласно правилам ГОСТа при определении в документах и бумагах слово «вторичный» благоразумно опускается.

Источник электропитания способен быть интегрированным в некую общую схему. Это либо в простых устройствах случается, либо в вариантах, когда падение напряжения на каких-то подводящих проводах, даже и незначительное, недопустимо — материнская плата какого-либо компьютера, например.

Встроенные преобразователи напряжения, которые она имеет, для питания процессора отвечают за это. Источник может также быть выполнен и расположен вообще в отдельном помещении. Распространённый пример для данного случая —

расположение в отдельном помещении цеха питания. Источник может быть выполненным в виде некоего варианта модуля стойки электропитания, наиболее обычного блока, распространённого в ассоциациях и представлениях многих.

Часто и в наиболее распространённых аспектах вторичные блоки преобразуют энергию из сети переменного тока обычной промышленной частоты. Если мы рассмотри разные страны, в Российской Федерации она составляет 220 в и 50 Гц, а в Америке — 120 в и 60 Гц.

Трансформаторный блок

Трансформаторные блоки питания высокой мощности часто применяют в промышленности.

Трансформаторные блоки питания высокой мощности часто применяют в промышленности.
Трансформаторный блок питания является самым классическим. Ещё его называют сетевым. Обычно он состоит из автотрансформатора или, как вариант, понижающего трансформатора. Первичная обмотка при этом рассчитана на сетевое напряжение, после чего идёт выпрямитель.

Это устройство преобразует переменное напряжение в пульсирующее однонаправленное, говоря стандартным языком — постоянное. Выпрямитель же в данной кострукции состоит из одного диода в большинстве случаев. Или четырёх диодов, которые образуют из себя диодный мост. Бывает, что и используются более редкие, другие схемы, например, если мы взаимодействуем с выпрямителем с удвоением напряжения.

Когда выпрямитель уже на нужном месте, дальше идёт фильтр, сглаживающий колебания, именуемые проще пульсациями. Как стандартный вариант это устройство представляет из себя просто несколько большой по используемой ёмкости обычный конденсатор. В схеме, помимо вышеупомянутого, могут стоять защиты от КЗ, фильтры высокочастотных помех, а также всплесков (варисторы), стабилизаторы тока и напряжения.

Трансформаторные источники имеют свои достоинства. И относительно их можно сказать следующее. У них хорошо доступна элементная база. Они просты в своей уникальной конструкции . Их надёжность — один из их высших и важных приоритетов. Трансформаторные источники питания, тем не менее, имеют и свои минусы и о них можно рассказать следующее. Они слабостойки к броскам напряжения и пропаданию нейтрали, которая в итоговом случае ведёт к образованию фазного напряжения. У них большие габариты и вес, они металлоёмки. Для обеспечения стабильности им нужен стабилизатор, вносящий свои дополнительные потери.

Импульсный блок

Как работает импульсный блок питания и где он применяется.

Как работает импульсный блок питания и где он применяется.Импульсные блоки питания — по сути являются инвенторной системой. Переменное входное напряжение первоначально выпрямляется в импульсных блоках.

Напряжение, что получено изначально, преобразуется в прямоугольные импульсы, частота у них повышена, а скважность же определённая, которые подаются на трансформатор или же на выходной фильтр нижних частот.

В случае когда импульсные блоки питания обладают гальванической развязкой прямо от питающей сети, то прямоугольные импульсы подаются на трансформатор, а если импульсные блоки питания не обладают гальванической развязкой, то на фильтр.

В импульсных блоках питаниях вполне могут применяться малогабаритные трансформаторы. Эффективность работы, как можно определить, с ростом частоты повышается и, соответственно, уменьшается требование к габаритам сердечника, его сечению, которое нужно для передачи достаточной необходимой эквивалентной мощности. Это всё объясняет. В наибольшем количестве случаев такой сердечник выполняется из ферромагнитных материалов и тем довольно-таки отличается от сердечников низкочастотных трансформаторов. Они выполняются из электротехнической стали.

Источник тока постоянного и переменного - удобное оборудование.

Источник тока постоянного и переменного - удобное оборудование.Стабилизация напряжения в них поддерживается при посредстве обратной отрицательной связи. Отрицательная связь позволяет поддерживать искомое выходное напряжение, при этом и вне зависимости от колебаний входного, а также величины нагрузки, на относительно достаточно постоянном уровне. Если импульсный источник с гальванической развязкой, то наиболее популярным способом является использование одной из выходных обмоток или может использоваться оптрон. Так организуется обратная связь.

В зависимости от величины сигнала, которая зависит от выходного напряжения, скважность импульсов изменяется на выходе ШИМ-контроллера. При этом резистивный делитель напряжения используется, как правило, если развязка не требуется. Данный блок питания поддерживает нужное стабильное напряжение именно таким образом.

Импульсные источники не создают радиопомехи за счёт гармонических составляющих, в отличие от трансформаторных.

Вторичный источник электропитания — Википедия

Вторичный источник электропитания — устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.[1]

Источник вторичного электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда необходимо регулирование (установка, изменение) и стабилизация напряжения в определённом диапазоне в т. ч. динамически — например материнские платы разнообразных компьютеров имеют встроенные преобразователи напряжения для питания ЦП и др. различных ИМС, модулей и ПУ; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах), выполненным в виде модуля (блока питания, стойки электропитания и так далее), или даже расположенным в отдельном помещении (цехе электропитания).

Задачи вторичного источника электропитания[править | править код]

  • Обеспечение передачи мощности — источник электропитания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
  • Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
  • Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины, для питания различных цепей.
  • Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
  • Защита — напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
  • Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.
  • Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
  • Управление — может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
  • Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (например, в России — 240 В 50 Гц, в США — 120 В 60 Гц).

Две наиболее типичных конструкции — это трансформаторные и импульсные источники питания.

Линейный блок питания Схема простейшего трансформаторного источника питания без стабилизации с двухполупериодным выпрямителем

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от короткого замыкания (КЗ), стабилизаторы напряжения и тока.

Габариты трансформатора[править | править код]

Из 3-го уравнения Максвелла rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},} являющегося математической записью закона электромагнитной индукции Фарадея следует, что ЭДС E1{\displaystyle E_{1}}, наводимая в одном витке обмотки, охватывающем изменяющийся во времени магнитный поток Φ{\displaystyle \Phi } равна:

E1=dΦdt.{\displaystyle E_{1}={\frac {d\Phi }{dt}}.}

При синусоидальном изменении Φ{\displaystyle \Phi } вида:

Φ(t)=Φ0⋅sin(ωt),{\displaystyle \Phi (t)=\Phi _{0}\cdot sin(\omega t),}
где Φ0{\displaystyle \Phi _{0}} — амплитудное (максимальное) значение Φ,{\displaystyle \Phi ,}
ω{\displaystyle \omega } — угловая частота,
t{\displaystyle t} — время,

следует:

E1(t)=Φ0⋅ω⋅sin(ωt),{\displaystyle E_{1}(t)=\Phi _{0}\cdot \omega \cdot sin(\omega t),}

Магнитный поток связан с магнитной индукцией B{\displaystyle B}[2] формулой:

Φ=B⋅S,{\displaystyle \Phi =B\cdot S,}
где S{\displaystyle S} — площадь витка.

При практически важном в трансформаторах синусоидальном изменении B(t){\displaystyle B(t)} по закону:

B(t)=B0⋅sin(ωt),{\displaystyle B(t)=B_{0}\cdot sin(\omega t),}
где B0{\displaystyle B_{0}} — амплитудное (максимальное) значение индукции в сердечнике (магнитопроводе) трансформатора.

Поэтому ЭДС одного витка вторичной обмотки в трансформаторах, первичная обмотка которых питается синусоидальным током и ферромагнитный магнитопровод которых не заходит в магнитное насыщение выражается формулой:

E1(t)=B0⋅S⋅ω⋅sin(ωt).{\displaystyle E_{1}(t)=B_{0}\cdot S\cdot \omega \cdot sin(\omega t).}

На практике и при расчётах трансформаторов применяется не амплитудное, а среднеквадратическое (эффективное) значение ЭДС или напряжения, которое в случае синусоидального изменения связано с амплитудным значением ЭДС выражением:

Eeff=22E0.{\displaystyle E_{eff}={\frac {\sqrt {2}}{2}}E_{0}.}

Подставляя последнюю формулу в выражение ЭДС для одного витка и учитывая, что

ω=2⋅π⋅f,{\displaystyle \omega =2\cdot \pi \cdot f,} f{\displaystyle f} — частота, имеем основную формулу для расчёта числа витков обмоток трансформатора так как ЭДС обмотки прямо пропорционально числу витков в обмотке:

Eeff1=2⋅π⋅B0⋅S⋅f≈4,43⋅B0⋅S⋅f,{\displaystyle E_{eff1}={\sqrt {2}}\cdot \pi \cdot B_{0}\cdot S\cdot f\approx 4,43\cdot B_{0}\cdot S\cdot f,}

где Eeff1{\displaystyle E_{eff1}} — эффективная ЭДС одного витка.

Мощность P{\displaystyle P}, отдаваемая вторичной обмоткой трансформатора:

P=U⋅I,{\displaystyle P=U\cdot I,}
где U{\displaystyle U} — напряжение обмотки под нагрузкой,
I{\displaystyle I} — ток обмотки.

Так как максимальный ток обмотки ограничен предельной плотностью тока в проводниках обмотки при заданном их сечении и U∼Eeff1{\displaystyle U\sim E_{eff1}}, отсюда следует, что для повышения мощности трансформатора без изменения его размеров следует повышать B0{\displaystyle B_{0}} и/или f{\displaystyle f}.

Существенному повышению B0{\displaystyle B_{0}} препятствует явление магнитного насыщения сердечника. При насыщении, которое наступает в экстремумах тока первичной обмотки в течение периода, во-первых, падает реактивное сопротивление первичной обмотки, что вызывает увеличение тока холостого хода и увеличение нагрева обмотки за счёт омического сопротивления, и, во-вторых, увеличиваются потери на гистерезис, вызванные перемагничиванием магнитопровода, так как увеличивается площадь петли гистерезиса, что вызывает повышение потерь на тепло в магнитопроводе.

С точки зрения потерь в магнитопроводе следует как можно больше снижать максимальную индукцию в магнитопроводе (Bm{\displaystyle B_{m}}), но такой подход экономически нецелесообразен, так как при прочих равных увеличивает габариты и материалоёмкость трансформатора. Поэтому Bm{\displaystyle B_{m}} в магнитопроводе выбирают исходя из разумного компромисса. Причем для трансформаторов малой мощности Bm{\displaystyle B_{m}} увеличивают, а для мощных трансформаторов — уменьшают. Это обусловлено тем, что магнитопровод у малогабаритного трансформатора охлаждается эффективнее, чем у крупных трансформаторов. Для электротехнических сталей в трансформаторах промышленной частоты Bm{\displaystyle B_{m}} выбирают в пределах 1,1—1,35 Тл в трансформаторах мощностью до сотен Вт и от 0,7 до 1,0 Тл для мощных трансформаторов распределительных подстанций.

Исходя из Bm{\displaystyle B_{m}} применяется практическая формула, полученная подстановкой в теоретическое значение ЭДС витка заданного значения Bm{\displaystyle B_{m}} и частоты 50 Гц:

Eeff1=S33…70,{\displaystyle E_{eff1}={\frac {S}{33…70}},}

Здесь S{\displaystyle S} выражено в см2, Eeff1{\displaystyle E_{eff1}} — в вольтах. Меньшие значения знаменателя выбирают для маломощных трансформаторов, большие — для мощных.

Другой путь повышения мощности трансформатора — повышение рабочей частоты. Приблизительно можно считать, что при заданных размерах трансформатора его мощность прямо пропорциональна рабочей частоте. Поэтому увеличение частоты в k{\displaystyle k} раз при неизменной мощности позволяет уменьшить размеры трансформатора в ∼k{\displaystyle \sim {\sqrt {k}}} раз (площадь сечения магнитопровода уменьшается в ∼k{\displaystyle \sim k} раз), или, соответственно, его массу в ∼k3/2{\displaystyle \sim {\sqrt[{3/2}]{k}}} раз.

В частности, в том числе и этими соображениями, в силовых бортовых сетях летательных аппаратов и судов обычно применяется частота 400 Гц с напряжением 115 В.

Но повышение частоты ухудшает магнитные свойства магнитопроводов, в основном из-за увеличения потерь на гистерезис, поэтому при рабочих частотах свыше единиц кГц применяют ферродиэлектрические магнитопроводы трансформаторов, например, ферритовые или изготовленные из карбонильного железа.

Современные источники вторичного электропитания различной бытовой техники, компьютеров, принтеров и др. сейчас практически полностью выполняются по схемам импульсных источников и практически полностью вытеснили классические трансформаторы. В таких источниках гальваническое разделение питаемой цепи и питающей сети, получение набора необходимых вторичных напряжений, производится посредством высокочастотных трансформаторов с ферритовыми сердечниками. Источником высокочастотного напряжения являются импульсные ключевые схемы с полупроводниковыми ключами, обычно транзисторными. Применение таких устройств, часто называемых инверторами позволяет многократно снизить массу и габариты устройства, а также, дополнительно — повысить качество и надёжность электропитания, так как импульсные источники менее критичны к качеству электропитания в первичной сети, — они менее чувствительны к всплескам и провалам сетевого напряжения, изменениям его частоты.

Достоинства и недостатки[править | править код]

Достоинства трансформаторных БП.
  • Простота конструкции.
  • Надёжность.
  • Доступность элементной базы.
  • Отсутствие создаваемых радиопомех[прим 1] (в отличие от импульсных, создающих помехи за счёт гармонических составляющих[3]).
Недостатки трансформаторных БП.
  • Большой вес и габариты, пропорционально мощности.
  • Металлоёмкость.
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.
{\displaystyle \sim {\sqrt[{3/2}]{k}}} Импульсный блок питания компьютера (ATX) со снятой крышкой
A — входной выпрямитель. Ниже виден входной фильтр
B — входные сглаживающие конденсаторы. Правее виден радиатор высоковольтных транзисторов
C — импульсный трансформатор. Правее виден радиатор низковольтных ключей
D — дроссель групповой стабилизации (ГДС)
E — конденсаторы выходного фильтра

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определённой скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной фильтр нижних частот (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространёнными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящего от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

Достоинства и недостатки[править | править код]

Достоинства импульсных БП

Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

  • меньшим весом за счёт того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжёлых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме. Кроме того, благодаря повышенной частоте преобразования, значительно уменьшаются габариты фильтра выходного напряжения (можно использовать конденсаторы значительно меньшей ёмкости, чем для выпрямителей, работающих на промышленной частоте). Сам выпрямитель может быть выполнен по простейшей однополупериодной схеме, без риска увеличения пульсаций выходного напряжения;
  • значительно более высоким КПД (вплоть до 90-98 %) за счёт того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (то есть либо включён, либо выключен) потери энергии минимальны[4];
    • из этого прямо следует, что, при одной и той же схемотехнике и элементарной базе, КПД растёт с понижением частоты преобразования, так как переходные процессы занимают пропорционально меньшую часть времени. При этом, однако, растут габариты моточных элементов — но это даёт и выигрыш, из-за снижения омических потерь.
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надёжностью.
    Блоки питания вычислительной техники, оргтехники, бытовой электроники почти исключительно импульсные. Линейные БП малой мощности сохранились в основном только в следующих областях:
    • для питания слаботочных плат управления высококачественной бытовой техники вроде стиральных машин, микроволновых печей и отопительных котлов и колонок;
    • для маломощных управляющих устройств высокой и сверхвысокой надёжности, рассчитанной на многолетнюю непрерывную эксплуатацию при отсутствии обслуживания или затруднённом обслуживании, как, например, цифровые вольтметры в электрощитах, или автоматизация производственных процессов.
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира — Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.
Недостатки импульсных БП
  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП.
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры[3].
  • Как правило, импульсные блоки питания имеют ограничение на минимальную мощность нагрузки. Если мощность нагрузки ниже минимальной, блок питания либо не запускается, либо параметры выходных напряжений (величина, стабильность) могут не укладываться в допустимые отклонения.
  • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.
Комментарии
  1. ↑ Однако в мощных трансформаторных БП возникают импульсные помехи из-за того, что ток, протекающий через выпрямительные диоды (и вторичную обмотку трасформатора) имеет форму коротких импульсов, потому что диод открыт не весь полупериод, а короткое время вблизи максимума синусоиды, когда мгновенное значение переменного напряжения на вторичной обмотке превышает постоянное напряжение на фильтрующей ёмкости).
Источники

советы и рекомендации как правильно выбрать, схема, фото, видео

Казалось бы, не такой уж и важный этот прибор – блок питания, ведь рынок просто завален ими от разных производителей, и частенько качество оставляет желать лучшего. И тот, кто стоит перед проблемой выбора, часто даже и не задумывается, что именно от этого небольшого прибора зависит качество и корректность работы остальных приборов, напрямую связанных с ним. Особенно это касается систем охраны и сигнализации. Необходимо отметить, что блок питания 24В постоянного тока или переменного тока – это самый простой прибор в системе охранной сигнализации и в плане их функциональности, и в плане конструкции.

Блок питания постоянного тока 24В

Но самое главное состоит в том, что именно эта самая простота и привела на рынок такое огромное количество производителей. А к чему это обычно приводит? К конкуренции, где некоторые производители просто обманывают потребителей, рекламируя низкого качества товар, уверяя, что он самый лучший. Обычно на это потребители и ведутся. А так как каких-то общепринятых стандартов относительно блоков питания отсутствуют, то предъявить претензии за низкое качество просто невозможно.

Многие могут сказать, мол практически все блоки питания, присутствующие на современном рынке, имеют сертификат качества. Скажем так, сертификат не является гарантом. Ведь в нем указаны лишь проверенные параметры прибора, которые производителем заявляются в технической документации.

Классификация блоков постоянного тока

Если говорить о типе использования, то все блоки можно разделить на две группы:

  1. Блоки бесперебойного питания – ББП.
  2. Блоки резервного питания – БРП.
Блок бесперебойного питанияБлок бесперебойного питания

ББП

Обычно эти приборы используются в тех случаях, когда в аппаратуре нет своего собственного источника питания. Само названия прибора говорит о том, что блок обеспечивает аппаратуру питанием с определенной нагрузкой. И эта нагрузка всегда постоянная. Поэтому устройство состоит из мощного сетевого источника питания, аккумулятора, зарядного устройства для аккумулятора и переключателя, который переводит нагрузку с источника питания на аккумулятор. Кстати, переключатель – это простейшая схема.

БРП

Этот вариант предназначается для обеспечения питанием электрических или электронных систем в тех случаях, когда отсутствует основной источник, то есть, отключена подача электроэнергии из сети напряжением 220 вольт. Их обычно устанавливают к аппаратуре, в которой отсутствует выход к резервному питанию и отсутствует встроенный источник питания. Если говорить простым языком, то это обычные зарядные устройства для аккумуляторных батарей или систем защиты.

Блок резервного питанияБлок резервного питания

 

Внимание! Блок бесперебойного питания постоянного тока можно использовать и в качестве резервного. А вот БРП использовать как ББП нельзя. К тому же резервные блоки питания практически на порядок дешевле постоянных. Все дело в отсутствии в их конструкции сетевого преобразователя большой мощности.

Есть еще один нюанс, на который потребители мало обращают внимание. Обозначить его можно так. Есть некоторые модели блоков питания, которые в режиме постоянного действия выдают ток меньшего значения, чем в режиме резервного питания. Почему так происходит? В виду того, что резервное питание – это подача электроэнергии от аккумуляторной батареи, то необходимо понимать, что аккумулятор может выдавать ток большой мощности. В некоторых ситуациях это нежелательно, поэтому в схему подачи устанавливаются защитные цепи.

Для примера можно привести ситуацию, связанную с работой системы пожаротушения. В штатном режиме, когда работает только контролирующая аппаратура, требования к мощности тока минимальные. Здесь происходит бесперебойная подача электричества. Как только случается внештатная ситуация, то есть, включается вся система пожаротушения, без большой мощности не обойтись. А это как раз резервный вариант. Поэтому в данном случае в качестве источника питания (основного и вспомогательного) выступают резервные системы. То есть, нет необходимости устанавливать и БПП, и БРП.

Схема блока питания на 24вСхема блока питания на 24в

Классификация по схемотехническим решениям

Здесь всего три класса, каждый из которых отличается от остальных способом построения стабилизатора. В данных блоках он должен быть мощным и низковольтным.

Стабилизатор бестрансформаторный

Говорить об этом блоке питания можно так – много недостатков, преимущества сомнительные. К достоинствам можно отнести небольшие размеры и вес. Самый большой недостаток – низкий коэффициент полезного действия. Поэтому эти блоки имеют низкую популярность. Обычно их устанавливают в телевизоры и компьютеры. Пожалуй, и все. К недостатком можно отнести невозможность постоянной работы. То есть, такие блоки питания должны в течение дня обязательно отключаться. Поэтому их в различные системы (охранные, пожарные) не устанавливают. Хотя специалисты уверяют, что будущее именно за этими модификациями. Здесь важно правильно их укомплектовать.

Бестрансформаторный стабилизаторБестрансформаторный стабилизатор

ШИМ-стабилизаторы

Если говорить о достоинствах, то это высокий КПД, плюс приемлемая цена (одна из самых низких), если приобретается стабилизатор, работающий на токе выше 3 А. К сожалению, недостатки тоже присутствуют, где самый важный – низкая надежность. Необходимо отметить, что ШИМ-стабилизаторы все чаще стали применяться в системах, где есть необходимость перевести одно напряжение в другое. Поэтому их устанавливают на блоках питания, где есть два выхода: одно для переменного тока, второе для постоянного.

Линейные стабилизаторы

Специалисты сходятся во мнении, что это самые надежные стабилизаторы из всех присутствующих на рынке. Недостатки тоже есть – это большие габариты и вес изделий, плюс высокая цена. К сожалению, и КПД не очень высокого значения.

Линейный стабилизатор

Но вот что показывает опыт. Выбор блока питания на 24В постоянного тока зависит от того, в какой системе он будет использован. Если дело касается систем сигнализации, охраны и пожаротушения, то на первое место выходят такие характеристики, как запас прочности (долгосрочная эксплуатация) и надежность прибора. Поэтому потребители все чаще выбирают именно линейные модели.

  • Во-первых, они легко переносят атмосферное воздействие.
  • Во-вторых, не создают помех рядом стоящей аппаратуре.
  • В-третьих, если выбирается блок питания до 2 А, то это самые дешевые изделия из всей предлагаемой линейки.
  • В-четвертых, не стоит сбрасывать со счетов все восходящую тенденцию снижения потребления электроэнергии различными видами аппаратуры. Так что линейные блоки питания на 24 вольта еще долго будут являться классикой.

Выходное напряжение

Не все потребители знают, что напряжение на выходе из некоторых блоков питания поддерживается точно 24 вольта, у некоторых моделей такой точности нет. В некоторых приборах можно выходное напряжение регулировать. То есть, и здесь разнообразие присутствует. Получается так, что блоки питания, работающие в резервном режиме, постепенно снижают напряжение по мере истощения аккумуляторной батареи. Поэтому стабильность работы зависит от емкости АКБ. Но есть на рынке и приборы, у которых напряжение не падает. Обычно это ШИМ-преобразователи, в конструкции которых присутствуют сложные схемы.

Поэтому выбирая блок питания постоянного тока на 24 вольта, необходимо убедиться, какой срок может прибор выдать стабильное напряжение (то есть, определяется диапазон этой величины). Отсюда, в принципе, и длительная работоспособность всей аппаратуры. Кстати, обязательно обращайте внимание на этот показатель, которые производители обязательно указывают в паспорте изделия. Некоторые компании указывают диапазон напряжений и при работе от сети, и при работе от аккумуляторных батарей.

Входное напряжение

Здесь ситуация совершенно другая. Все дело в том, что в российских линиях электропередач (кстати, по ГОСТу), напряжение может изменяться от номинального (220В) в пределах ±10%. О чем это говорит? Здесь две позиции:

  1. Если напряжение в подающей сети минимальное, а ток максимальный, то диапазон напряжений блок питания может гарантировать и при этом сохранить стабильность самого напряжения.
  2. Если напряжение максимальное и то же самое можно отнести и к току, то ни о какой стабилизации говорить нельзя. Просто блок перегреется. Вот вам и большая проблема.

Выходное напряжение блока питания

Особенно усугубляется ситуация, если температура окружающей среды повышена (это касается летнего периода). Что делают в этой ситуации некоторые производители? Они просто занижают показатели диапазона напряжений. Но от этого потребителю не становится лучше. Ведь в некоторых регионах России напряжение в сети около 190 вольт является нормой. Отсюда и последствия:

  • Аккумуляторы заряжаются не полностью.
  • Время работы блоков питания снижается.
  • Срыв стабилизации, особенно при резком скачке токопотребления.

Выходной ток

Честно говоря, все, о чем было сказано выше, является, слабо говоря, второстепенным критерием выбора. Потому что основной параметр блоков питания постоянного тока – это выходная сила тока, то есть, номинальный ток нагрузки.

Внимание! Запомните раз и навсегда, номинальный ток нагрузки должен передаваться от сети в нагрузку всегда и постоянно в независимости от обстоятельств работы прибора. Он должен действовать все время потребления без искажений, снижений и повышений. В независимости от того, какое напряжение в сети или от АКБ, какая температура внешней среды, есть ее перепады или нет.

Все остальные параметры являются дополнительными или вспомогательными. Некоторые производители указывают огромное количество величин и характеристик. Не введитесь на них, вам просто затуманивают голову.

Блок питания

  • И если номинальный ток нагрузки ни в паспорте, ни на корпусе блока не указано, значит, перед вами бесполезный кусок металла.
  • Если вы нашли вот такую надпись: «номинальный ток нагрузки без АКБ», то знайте, что через сеть он может быть номинальным, а через аккумулятор заниженным.

Полезные советы

  • Хорошо изучите паспорт блока питания, после чего делайте покупку.
  • Устанавливайте на одном объекте приборы только от одного производителя.
  • Старайтесь приобретать отечественные источники питания, они изготавливаются под российские условия эксплуатации.
  • Защита – основа долгосрочной службы, поэтому обращайте внимание на то, есть ли в схеме блока защита аккумулятора от глубокого разряда.

Не стоит приобретать дешевые приборы из Китая.

Отправить ответ

avatar
  Подписаться  
Уведомление о