Блок питания для автомагнитолы из компьютерного БП.
Как «запитать» автомагнитолу от компьютерного блока питания?
Главная тема уже озвучена в заголовке, поэтому перейдём сразу к делу. Итак, что нам понадобится? Во-первых, рабочая автомагнитола или автомобильный CD/MP3-ресивер. У меня на руках оказался автомобильный CD/MP3-ресивер Panasonic CQ-DFX883N.
Во-вторых, компьютерный блок питания формата AT или ATX. Сейчас полно компьютерного железа от старых ПК, в том числе и блоков питания.
Где его можно найти бесплатно или за минимальные деньги?
Вытащить из своего старого ПК, который пылится в чулане;
Купить за копейки на «барахолке» — такие 100% есть на любом радиорынке;
Починить и довести до ума неисправный компьютерный БП.
Для своей затеи я купил «бэушный» блок питания как раз на «барахолке».
Прежде чем подключать компьютерный БП к автомагнитоле – нужно его проверить и, если надо, довести до рабочего состояния.
Подключение автомагнитолы к компьютерному БП.
У компьютерного блока питания (БП) есть здоровый жгут с выходными разъёмами. Провода чёрного цвета – это минус или общий провод. По жёлтым подаётся напряжение +12V. Остальные провода нам будут не нужны – их использовать не будем. Так вот нам нужно от блока питания взять всего-навсего 12V. Для этого берём любой из разъёмов MOLEX или Floppy-разъём. Далее откусываем от него жёлтый провод (+12V) и чёрный провод – минусовой. Затем подключаем эти провода к питающим проводам автомагнитолы.
Стоит отметить, что выходной канал на +12V достаточно мощный и может «отдать» в нагрузку ток в 8-10 ампер (при мощности БП 200 — 300 Вт.), что, собственно, нам и нужно. Обычно, максимальный ток, потребляемый автомобильным CD/MP3-ресивером составляет 10-15 ампер. Но это максимум!
Кроме этого нужно провести лёгкую доработку, если у вас блок питания формата ATX. Об этом расскажу чуть позднее.
У автомагнитолы имеется 3 провода, к которым подключается питание (напряжение +12V) от штатной электросети автомобиля. Чёрный провод – это минус (по другому — общий провод, «земля», Ground). Жёлтый провод – это +12V (маркируется как Battery). Это основные провода для подключения питания к автомагнитоле.
Но даже если подключить эти провода к аккумулятору или БП, автомагнитолу мы не включим – она будет в дежурном («спящем») режиме.
Поэтому ищем красный провод (маркируется ACC) у автомагнитолы и скручиваем его вместе с жёлтым проводом +12V. Штатно красный провод подключается к замку зажигания авто.
Как только водитель замыкает ключом зажигания электрическую цепь, автомагнитола автоматически переходит из спящего режима в рабочий – включается подсветка дисплея автомагнитолы. При этом красный провод через замок зажигания закорачивается на плюс +12V. Мы же это делаем, принудительно соединяя жёлтый (+12V) и красный провод.
При этом автомагнитола будет включатся сразу же при подаче напряжения.
Отличие компьютерных блоков питания формата AT от ATX.
Компьютерные блоки формата AT не имеют дежурного блока питания +5 (Standby) и выходных напряжений 3,3V. Поэтому при включении такого блока на его выходах +12V, +5V, -12V, -5V напряжение появляется сразу.
У блоков питания формата ATX есть дежурный источник питания на +5VSB (Standby). Он работает всегда, пока блок питания подключен к сети 220V. Чтобы на выходных каналах появились напряжения +12V, -12V, +5V, -5V, +3,3V нужно на главном выходном разъёме замкнуть зелёный и чёрный провод.
Если вы хотите, чтобы выходные напряжения появлялись сразу после включения БП, то можно установить перемычку между зелёным (Power ON) и чёрным проводом. При этом блок питания будет выходить из «спящего» режима сразу после подачи на него напряжения сети 220V.
Восстановление компьютерного блока питания.
Для начала пробуем включить блок питания. В большинстве случае бывшие в употреблении (б/у или «бэушные») блоки питания от ПК, как правило, рабочие, но имеют некоторые дефекты (отсутствие некоторых выходных напряжений, пониженное напряжение на одном из каналов +12, -12, +5, -5 вольт и т.п.). Даже если блок питания запустился – при этом начнёт крутить вентилятор – стоит вскрыть корпус блока питания, выгрести из него всю пыль, открутить печатную плату и осмотреть контакты на предмет непропая. Если нужно — исправить дефекты.
Перед проведением любых работ необходимо отключать блок питания от сети 220V. Также после этого не помешает принудительно разрядить высоковольтные электролитические конденсаторы входного выпрямителя (220-470 мкФ. * 250V). Сделать это можно подключив на несколько секунд резистор на 100-200 кОм параллельно контактам конденсатора. Естественно, держать пальцами резистор не стоит — иначе можно получить лёгкий удар током.
Эта операция необходима потому, что остаточный электрический заряд конденсаторов опасен (в рабочем режиме на них 200V!).
Особое внимание стоит обратить на состояние электролитических конденсаторов выходных выпрямителей. Если они вздуты, имеют разрыв засечки, то их нужно заменить новыми.
Более подробно об устройстве компьютерных блоков питания формата AT рассказано здесь.
Чтобы блок питания выглядел более солидно можно покрасить его аэрозольной краской-спреем (продаётся в любом магазине автозапчастей).
Главная » Секреты ремонта автомагнитол » Текущая страница
Также Вам будет интересно узнать:
Сколько ампер выдает блок питания компьютера
Бывает такое что надо в гараже например подкачать колеса на авто, или колеса при замене (летозима) или даже на велосипеде качнуть)
Для адекватной работы компрессора надо заводить авто.
можно и не заводить но мощность не та, и акб нагружать не хочется…
Решил замутить блок питания для компрессора.
Всякие блоки на 12 вольт с силой тока до 2А включительно не походят 100% проверено! компрессор высасывает весь ток мгновенно! и работает 0,2 сек потом 0,5 сек тишина потом 0,2 сек работает, 0,5 тишина…
Посмотрев сколько ампер выдает блок питания от компа на 12 вольт — 40А и больше
Решил из него и собрать такой блок
Вот что получилось:
Есть видео как все это работает:
блоком пользуюсь раз в месяц точно !
Блок питания на 350W
взял с бу компа который по сути просто списали)
Затрат с моей стороны разве что время и усилия)
просто и подробно о персональном компьютере,его устройстве, настройке и сборке.
Популярные сообщения
Pеклама
Реклама
четверг, 2 августа 2012 г.
Блок питания для компьютера
Основные характеристики современных блоков питания:
Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше – они длиннее стандартных примерно на 40-50 мм.
На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
Мощность (W – Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V – Вольт), а I – сила тока (A – Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.
Указано, что максимальная суммарная мощность по линиям +3. 3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.
Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 – 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 – 700W.
Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.
Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) – это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.
Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
Плюсы блока питания с высоким КПД:
Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.
Активный и пассивный PFC
PFC (Power Factor Correction) – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
PFC – бывает пассивным и активным.
Преимущества активного PFC:
Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
Недостатки активного PFC:
Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.
Система охлаждения блоков питания.
Кабели и разъемы.
Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.
Современный блок питания имеет следующие разъемы:
1 – 24-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.
23 – Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.
4 – Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.
6 – Разъем SATA для подключения жестких дисков и оптических приводов.
5 – 4-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.
7 – 4-х контактный разъем для подключения дисководов FDD.
Модульные кабели и разъемы.
Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.
Производители.
Производители блоков питания делятся на три группы:
1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.
2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.
3. Перепродают под собственной маркой – например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.
Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.
4 коммент.:
Господа, приветствую! Обнадёжте своими соображениями.
Есть светодиод из авторитетного магазина с Али (по заверениям опытных юзеров, диоды китаец продаёт качественные), мощность 3W, напряжение питания в диапазоне 3-3,4V, потребляемый ток 0,4-0,5A.
Хочу заставить его гореть. И так как у АТХ есть линия +3,3В, что вписывается в указанный диапазон у диода, думаю подключить диод к ней. На шильдике БП указано, что линия 3
+3,3В 28Ампер. Я конечно не профильный электротехник, но всегда думал, что 28 ампер (в данном случае 28) – это нагрузка, которую источник может потянуть.
Так вот вопрос в том, что если я подам +3,3В с БП на диод, у которого максимально допустимый ток 0,5А, он, этот диод, не сгорит?
[email protected]
10 марта 2019 г., 01:48 Сергей Ветров комментирует.
просто и подробно о персональном компьютере,его устройстве, настройке и сборке.
Популярные сообщения
Pеклама
Реклама
четверг, 2 августа 2012 г.
Блок питания для компьютера
Основные характеристики современных блоков питания:
Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше – они длиннее стандартных примерно на 40-50 мм.
На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
Мощность (W – Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V – Вольт), а I – сила тока (A – Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.
Указано, что максимальная суммарная мощность по линиям +3.3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.
Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 – 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 – 700W.
Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.
Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) – это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.
Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
Плюсы блока питания с высоким КПД:
Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.
Активный и пассивный PFC
PFC (Power Factor Correction) – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
PFC – бывает пассивным и активным.
Преимущества активного PFC:
Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
Недостатки активного PFC:
Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.
Система охлаждения блоков питания.
Кабели и разъемы.
Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.
Современный блок питания имеет следующие разъемы:
1 – 24-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.
23 – Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.
4 – Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.
6 – Разъем SATA для подключения жестких дисков и оптических приводов.
5 – 4-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.
7 – 4-х контактный разъем для подключения дисководов FDD.
Модульные кабели и разъемы.
Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.
Производители.
Производители блоков питания делятся на три группы:
1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.
2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.
3. Перепродают под собственной маркой – например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.
Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.
4 коммент.:
Господа, приветствую! Обнадёжте своими соображениями.
Есть светодиод из авторитетного магазина с Али (по заверениям опытных юзеров, диоды китаец продаёт качественные), мощность 3W, напряжение питания в диапазоне 3-3,4V, потребляемый ток 0,4-0,5A.
Хочу заставить его гореть. И так как у АТХ есть линия +3,3В, что вписывается в указанный диапазон у диода, думаю подключить диод к ней. На шильдике БП указано, что линия 3
+3,3В 28Ампер. Я конечно не профильный электротехник, но всегда думал, что 28 ампер (в данном случае 28) – это нагрузка, которую источник может потянуть.
Так вот вопрос в том, что если я подам +3,3В с БП на диод, у которого максимально допустимый ток 0,5А, он, этот диод, не сгорит?
[email protected]
10 марта 2019 г. , 01:48 Сергей Ветров комментирует.
Простой блок питания на 12 вольт для вентилятора от компьютера своими руками.
К примеру, у меня возникла необходимость в использовании одного из таких компьютерных вентиляторов. Нужно было, чтобы он не шумел. Для этого обычно применяют малооборотистые вентиляторы, которые по размеру больше, чем большинство обычных кулеров. Питается от 12 вольт. Потребляемая величина постоянного тока равна 0,1 ампер.
Итак, когда начинаешь собирать какой-нибудь блок питания под конкретные нужды, то сначала нужно четко определится с его общей мощностью, которую он свободно может обеспечить (без режима перегрузки). Для этого нужно знать мощность, которую потребляет сама нагрузка, что будет питать источник электричества. Напомню, что мощность вычисляется следующим образом — напряжение нужно умножить на силу тока. В моем случае это 12 вольт (напряжение питания вентилятора) умножаю на 0,1 ампера (сила тока, которую потребляет мой компьютерный вентилятор). Получаю мощность равную 1,2 Вт. Не забываю о небольшом запасе по мощности. В результате мне нужен блок питания с мощностью не менее 1,5-2 ватта.
На выходе нашего понижающего трансформатора мы будем иметь пониженное, но все же переменное напряжение, а нам нужно постоянное (для питания компьютерного вентилятора). Чтобы переменный ток сделать постоянным используют выпрямительный диодный мост. Он состоит из 4 одинаковых диодов, параметры которых зависят, опять же, от той нагрузки, которую нужно питать. Для диодного моста основными параметрами являются обратное напряжение и сила прямого тока. Поскольку наш простой блок питания под вентилятор от компьютера питается от 12 вольт, то и диоды должны быть рассчитаны на напряжение не меньше этого (обычно выпрямительные диоды рассчитаны на большее напряжение, около 1000 В). Ну, и прямой ток диоды моста должны выдерживать 0,1 ампер (поскольку это маленький ток, то подойдут практически любые выпрямительные диоды).
Теперь мы на выходе диодного моста (выпрямителя) имеет постоянное напряжение, но, к сожалению, оно скачкообразной формы. Для того, чтобы это исправить и сделать постоянный ток, действительно, постоянным нужен еще фильтрующий конденсатор электролит. Его задача заключается в сглаживании этих скачков напряжения. В нашем случае нужен конденсатор, рассчитанный на напряжение более 12 вольт (берем конденсаторы с напряжением 16 — 25 вольт) и емкостью от 470 до 1000 микрофарад.
Вентиляторы особо не нуждаются в сильно стабилизированном напряжении и токе. Вполне хватает фильтрующего конденсатора, что сглаживает скачки после моста. Данный блок питания для компьютерного вентилятора будет вращать его на полных оборотах (максимальные, что имеет данный кулер). Если поставить хотя бы обычный переменный резистор в цепь питания (последовательно вентилятору), то уже можно будет регулировать частоту вращения лопастей вентилятора. Хотя лучше вместо резистора поставить специальную плату частоты вращения постоянного электродвигателя, схема которой может быть самой простой.
P.S. Хотелось бы заметить, что при сборке любого блока питания, будь то на компьютерный вентилятор, либо же на иное электротехническое устройство, всегда учитывайте некий запас по мощности. Если подбирать, делать источники питания впритык по мощности, это чревато тем, что они попросту будут греться, а в худшем случае вовсе сгорят.
Компьютерный блок питания на 12 вольт
Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.
Давайте рассмотрим, как устроен компьютерный блок питания ATX.
Расположение элементов на плате
Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.
Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.
А вот схема электрическая принципиальная, разбитая на блоки.
На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.
Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.
Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.
После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).
Типовая схема с ШИМ-контроллером выглядит примерно так:
Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.
Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.
На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.
Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.
Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.
Дополнительные функции
Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.
В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.
Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.
Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.
Проверка работоспособности
К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.
Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.
Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3. 5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.
Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.
При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.
В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.
Использование блока питания без компьютера
Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.
На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.
Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.
Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.
Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.
Один из вариантов исполнения подобной схемы:
Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3. 3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.
Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.
Заключение
Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.
Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.
Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.
Переделка компьютерного блока питания ATX в регулируемый блок питания |
Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку. Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование. Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В. Часть 1. Так себе. Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения. +3,3 В — оранжевый По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D. Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится. Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания. Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т. е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт. Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения. Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В. Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра. Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В. Замеряем все напряжения по шинам Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне. Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток. Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0. Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель. Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ. Часть 2. Более-менее. Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются. Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор. Измерение параметров дало следующие результаты: В современном мире существует множество различных устройств, требующих подключения к электросети. Для некоторых из них требуется определенный блок питания. Напряжение и сила тока играют важную роль в функционировании любого электроприбора. В сегодняшней статье я хочу рассказать о том, как взять напряжение с блока питания компьютера и каким образом можно получить 12 Вольт. Какое напряжение с блока питания компьютера можно получить Вы, наверное, сами прекрасно понимаете, что системный блок ПК – это комплекс устройств позволяющих системе работать. Каждое из них требует подключения к электрической сети. Но вот для определенного оборудования оно может быть разным. Допустим, большинство вентиляторов работают от 5 Вольт при силе тока в 0.1 Ампер. Для других устройств требуются другие значения. Именно для обеспечения работы всех комплектующих имеется блок питания компьютера. Он преобразует напряжение и обеспечивает каждое изделие необходимым током. Если мы рассмотрим БП компьютера, то увидим, что в нем имеется огромное количество проводов и портов для подключения. Они имеют свои цвета, и это не просто так. На боковой или задней стенке корпуса блока питания имеется табличка, на которой указана вся необходимая информация. Разбираемся с маркировкойВзгляните на картинку. Там указано, что оранжевый провод (orange) имеет исходящее напряжение в +3.3V, желтый (yellow) — +12V, красный (red) — +5V и так далее. Кроме этого, есть пометка о силе тока. Черный провод в большинстве случаев является общим (минусом или «земля»). Исходя из полученной информации, можно понять, что получить нужное напряжение с блока питания, даже работающего, совсем не сложно.
Для чего может понадобиться напряжение с блока питания компьютераВы спросите, а зачем вообще это нужно? Расскажу на своем опыте. Мне в руки попался монитор, работающий от 12 Вольт, однако кабеля подключения к электросети у меня не было. Имеющиеся блочки от других устройств не подходили по силе тока или по напряжению. Монитор нужно было проверить в течение дня, а отправиться на поиски нужного зарядного, не было ни времени, ни желания. Взяв 12 Вольт с желтого провода на молексе БК питания компьютера, мне удалось включить монитор. Оказалось, что это вполне удобно. Не нужно искать лишнюю розетку, а сам экран запускается вместе с системным блоком. Спустя год у меня все так и работает.
Как взять 12 вольт с блока питания компьютераКак вы уже поняли, взять напряжение с блока питания компьютера достаточно просто. Вам необходимо лишь подключить устройство к желтому проводу (плюс) и черному (минус). Только будьте внимательны и не перепутайте полярность, иначе ваше устройство, скорее всего, выйдет из строя. Опять же повторюсь, не забывайте о том, что блок питание подаст напряжение на провода только тогда, когда он будет запущен. Если вы работаете с демонтированным БП ПК, который изъят из корпуса, то необходимо запустить устройство путем замыкания проводов GND (минус) и PWR SW.
Немного информации в помощьДля того, чтобы вам было легче понять, какое напряжение с блока питания вы получите, я составил небольшую таблицу. Пользоваться ей нужно по такому принципу: положительное напряжение + ноль =итог. |
Положительное | Ноль | Итог |
+12V | 0V | +12V |
+5V | -5V | +10V |
+12V | +3,3V | +8,7V |
+3,3V | -5V | +8,3V |
+12V | +5V | +7V |
+5V | 0V | +5V |
+3,3V | 0V | +3,3V |
+5V | +3,3V | +1,7V |
0V | 0V | 0V |
А вы знаете, что не пропустите ни один наш материал, если оформите подписку? Оформить подписку легко: достаточно лишь ввести свой email в форму под этой статьей и нажать на кнопку «Подписаться на рассылку». И вы всегда будете в курсе наших публикаций!
Надеюсь, сегодняшняя статья была понятна и полезна. Теперь вы знаете, как получить нужное напряжение с блока питания компьютера и каким образом взять 12 Вольт. Однако помните, что обращение с электроприборами требует соблюдения правил техники безопасности. В случае, если вы не уверены в своих знаниях, лучше попросить помощи у профессионала.
Анатомия. Из чего состоит блок питания? — i2HARD
Он есть в каждом компьютере, ноутбуке и приставке. Он не влияет на вашу частоту кадров и майнинг биткоинов. У него нет миллиардов транзисторов, и в его производстве не используются новейшие полупроводниковые техпроцессы. Звучит скучно? Ничуть! Без этой штуки наши компьютеры абсолютно ничего бы не сделали.
БП, они же блоки питания (англ. PSU, Power Supply Units), не взрывают заголовки журналов как новейшие процессоры, но это интереснейшие технологии, заслуживающие нашего внимания. Так что надевайте белые халаты, маски, перчатки и приступим к вскрытию нашего скромного парнишки – блока питания, разберём его на части и рассмотрим, чем занимается каждый его орган.
И да, совсем недавно мы разбирались как правильно выбрать Блок питания. Рекомендуем к прочтению.
Что это и с чем это едят?
Многие компьютерные компоненты имеют названия, требующие чуточку технических знаний, чтобы понять, что это и зачем (например, твердотельный накопитель), но в случае блока питания всё довольно очевидно. Это блок, обеспечивающий питание.
Но мы же не можем на этом поставить точку, с гордостью заявив «статья готова». Наш цикл статей посвящен внутреннему строению, и на операционном столе у нас лежит подопытный – Cooler Master G650M. Это довольно типичный представитель, с характеристиками, подобными десяткам других моделей, но у него есть одна особенность, встречающаяся не во всех блоках питания.
Официальное фото блока питания Cooler Master.
Это блок питания стандартного размера, соответствующий форм-фактору ATX 12V v2.31, поэтому он подходит для многих компьютерных корпусов.
Есть и другие форм-факторы – например, для малых корпусов, либо вовсе уникальные по спецзаказу. Не каждый блок соответствует точным размерам, установленным стандартными форм-факторами – они могут быть одинаковой ширины и высоты, но отличаться по длине.
Этот блок питания от Cisco специально спроектирован для серверных стоек
В маркировке PSU обычно указывается их основной параметр – максимально обеспечиваемая мощность. В случае с нашим Cooler Master, это 650 Вт. Позже мы поговорим, что это на самом деле значит, а пока лишь заметим, что есть и менее мощные БП, поскольку не всем компьютерам требуется именно столько, а некоторым достаточно даже на порядок меньше. Но всё-ж большинство настольных компьютеров обеспечены питанием в диапазоне от 400 до 600 Вт.
Блоки питания вроде нашего собираются в прямоугольных, зачастую неокрашенных, металлических корпусах, отчего бывают достаточно увесистые. У ноутбуков блок питания практически всегда внешний, в пластиковом корпусе, но его внутренности очень схожи с тем, что мы увидим у рассматриваемого нами БП.
Источник фотографии nix.ru
Большинство типичных блоков питания оснащены сетевым выключателем и кулером для активной терморегуляции, хотя в ней не все БП нуждаются. И не у всех из них есть вентиляционная решётка – у серверных версий, в частности, это редкость.
Ну что-ж, как вы можете видеть на фото выше, мы уже вооружены отверткой и готовы приступить к вскрытию нашего экземпляра.
Немного теории
Но прежде чем мы начнем копаться во внутренностях, давайте зададимся вопросом, действительно ли блок питания настолько необходим? Почему нельзя подключить компьютер напрямую к розетке? Ответ заключается в том, что компьютерные комплектующие рассчитаны на совсем другое напряжение, нежели сетевое.
На графике ниже показано, каким должно быть электричество сети (в США = синяя и зеленая кривые; Великобритания = красная кривая). Ось X представляет время в миллисекундах, а ось Y – напряжение (voltage) в вольтах. Проще всего понять, что такое напряжение, глядя на разность энергий между двумя точками.
Если напряжение приложено к проводнику (например, к металлической проволоке), разница в энергии заставит электроны в материале проводника течь от более высокого энергетического уровня к более низкому. Электроны – составляющие атомов, из которых состоит проводник, и металлы имеют много электронов, которые могут свободно перемещаться. Этот поток электронов называется током (current) и измеряется в амперах.
Хорошую аналогию можно провести с садовым шлангом: напряжение сродни давлению, которое вы используете, а расход воды – это ток. Любые ограничения и препятствия в шланге – по сути как электрическое сопротивление.
Мы видим, что электричество в сети варьируется с течением времени, из-за чего оно называется напряжением переменного тока (AC, alternating current). В США сетевое напряжение меняется 60 раз в секунду, достигая пиковых значений 340 В или 170 В, в зависимости от местоположения и способа подключения. В Великобритании пиковые напряжения пониже, и частота этих колебаний также немного отличается. Большинство стран придерживаются схожих стандартов сетевого напряжения, и лишь в немногих странах пиковые напряжения более низкие или более высокие.
Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и кроме того – гораздо более низкое. На том же графике оно будет выглядеть примерно вот таким:
Но современному компьютеру требуется не одно постоянное напряжение, а четыре: +12 вольт, -12 вольт, +5 вольт и +3,3 вольта. И поскольку эти значения не меняются, такой ток называется постоянным (DC, direct current). Преобразование тока из переменного в постоянный (т.н. выпрямление) – одна из основных функций блока питания. Пришло время вскрыть его и посмотреть, как он это делает!
Преобразование тока из переменного в постоянный – одна из основных функций PSU. Пришло время посмотреть, как он это делает!
Здесь мы должны предупредить вас, что в блоке питания есть элементы, накапливающие электричество, в том числе смертельное. Поэтому разбирать PSU потенциально опасно.
Официальное фото блока питания Cooler Master.
Принцип работы этого блока питания аналогичен многим другим, и хоть маркировки на различных деталях внутри будут отличаться, принципиальных различий это не делает.
Разъём сетевого шнура находится в верхнем левом углу фотографии, и ток по сути идет по часовой стрелке, пока не достигнет выхода из блока питания (пучок цветных проводов, нижний левый угол).
Источник фото techspot.com
Если мы перевернем плату, мы увидим, что по сравнению с материнской платой, проводники и соединения на ней более широкие и массивные – это потому, что они рассчитаны на более высокие токи. Также, бросается в глаза широкая полоса в середине, будто текущая по равнине река.
Это снова говорит о том, что все блоки питания имеют два четко разделённых узла: первичный и вторичный. Первый – это настройка входного напряжения, чтобы его можно было эффективно понижать; второй – это все настройки уже выпрямленного и пониженного напряжения.
Фильтрация
Первое, что блок питания делает с сетевым электричеством, это не выпрямление и не понижение, а выравнивание входного напряжения. Поскольку в наших домах, офисах и на предприятиях имеется множество электрических устройств и приборов, постоянно включающихся-выключающихся, а также излучающих электромагнитные помехи, переменный ток в сети часто бывает «скомканный» и со случайными скачками и перепадами (частота также не постоянна). Это не только затрудняет блоку питания выполнять преобразования, но может вывести из строя некоторые элементы внутри него.
Наш БП имеет две ступени так называемых входных фильтров (transient filter), первая из которых построена сразу на входе с помощью трёх конденсаторов. Она выполняет роль, похожую на роль «лежачего полицейского» на дороге – только вместо скорости, этот фильтр гасит внезапные скачки входного напряжения.
Источник фото techspot.com
Вторая ступень фильтра более сложная, но в сущности делает то же самое.
Желтые кирпичики – это снова конденсаторы, а вот зеленые кольца, обмотанные медным проводом, это индуктивные катушки (хотя при таком использовании их обычно называют дросселями). Катушки накапливают электрическую энергию в магнитном поле, но энергия при этом не теряется, а за счет самоиндукции плавно возвращается обратно. Таким образом, внезапно появившийся высокий импульс (скачок) поглощается магнитным полем дросселя, чтобы на выходе дать ровное напряжение без всяких скачков.
Два маленьких синих диска – ещё одни представители многообразия конденсаторов, а чуть ниже них (зелёный, с длинными ножками, обтянутыми черными изоляторами) – металлооксидный варистор (MOV). Они также используются для защиты от скачков входного напряжения. Подробнее о различных типах входных фильтров можно прочитать здесь.
Источник фото techspot.com
По этому узлу блока питания часто можно определить, насколько производитель сэкономил, или к какому бюджетному классу принадлежит девайс. Более дешевые будут иметь упрощённую фильтрацию входа, а самые дешёвые и вовсе не иметь таковой (избегайте таких!).
Теперь, когда напряжение выровнено и причёсано, ему дозволяется идти дальше – собственно, к преобразованию.
Преобразование
Как мы уже сказали, блоку питания нужно изменить напряжение переменного тока, которое в американских розетках обычно в районе 120 вольт (технически, это среднеквадратичные 120 вольт, но мы не будем так язык выламывать), получив на выходе постоянное напряжение 12, 5 и 3,3 вольт.
Первым делом осуществляется преобразование переменного тока в постоянный, и наш блок использует для этого выпрямительный мост. На фото ниже это плоский черный элемент, приклеенный к радиатору.
Источник фото techspot.com
Это еще одно место, где производитель блоков питания может сократить расходы, поскольку более дешевые выпрямители хуже справляются со своей задачей (например, сильнее греются). Теперь, если пиковое входное напряжение составляет 170 В (что имеет место для сети 120 В), то пройдя через выпрямительной мост, оно станет 170 В, но уже постоянного тока.
В таком виде оно поступает на следующую стадию, и в нашем блоке это активный модуль коррекции коэффициента мощности (APFC или Active PFC, Active Power Factor Correction converter). Этот узел также стабилизирует напряжение, сглаживая «провалы» за счет накапливающих конденсаторов; кроме того, он защищает от скачков выходной мощности.
Пассивные корректоры (PPFC или Passive PFC) выполняют по сути ту же работу. Они менее эффективны, но хороши для маломощных блоков питания.
Источник фото techspot.com
APFC на фото выше представлен в виде пары больших цилиндров слева – это конденсаторы, которые накапливают выровненный ток, прежде чем отправить его дальше по цепочке процессов в нашем блоке питания.
За APFC находится ШИМ, широтно-импульсный модулятор (PWM, Pulse Width Modulator). Его предназначение заключается в том, чтобы с помощью нескольких быстро переключающихся полевых транзисторов преобразовать постоянный ток обратно в переменный. Это нужно сделать потому, что на следующем шаге нас ждёт понижающий трансформатор. Эти устройства, основанные на электромагнитной индукции, состоят из двух обмоток с разным количеством витков на металлическом сердечнике, необходимых для понижения напряжения, и работают трансформаторы только с переменным током.
Частота переменного тока (скорость, с которой он изменяется; в герцах, Гц) значительно влияет на эффективность трансформатора – чем выше, тем лучше, поэтому частота исходного питания 50/60 Гц увеличивается примерно в тысячу раз. А чем эффективнее трансформатор, тем меньше его размер. Такой тип устройств, который использует эти сверхбыстрые частоты постоянного тока, называется импульсным источником питания (Switched Mode Power Supply, SMPS).
На фото ниже вы можете видеть 3 трансформатора – самый большой имеет на единственном выходе 12 вольт, а тот, что поменьше – 5 вольт (чуть поговорим ещё о нём позже). В других БП вы можете встретить один большой трансформатор сразу на все напряжения, то есть с несколькими выходами. А самый маленький трансформатор предназначен для защиты транзисторов ШИМ и подавления его помех.
|
Источник фото techspot.com
Можно по-разному реализовать получение необходимых напряжений, защиту ШИМ, и так далее. Всё зависит от бюджетного сегмента и мощности устройства. Однако, всем одинаково необходимо снять напряжения с трансформаторов и снова выпрямить.
На фото ниже мы видим алюминиевый радиатор низковольтных диодов, выполняющих это выпрямление. А также, конкретно в этом PSU, мы видим небольшую дополнительную плату в центре фото – это узел модулей регулирования напряжения (VRM, Voltage Regulation Modules), обеспечивающий выходы 5 и 3,3 вольт.
Источник фото techspot.com
И тут нам стоит поговорить о том, что такое пульсация.
В идеальном мире, с идеальными блоками питания, переменный ток будет преобразован в абсолютно ровный, без малейших колебаний, постоянный ток. В действительности же, такой 100%-ой точности не достигается, и напряжение постоянного тока имеет хоть и незначительные, но колебания.
Этот эффект называется пульсирующим напряжением, и в наших блоках питания мы бы хотели, чтобы оно было как можно меньше. Cooler Master не предоставляет информации о величине пульсирующего напряжения в спецификации к нашему подопытному PSU, поэтому мы прибегли к сторонним результатам тестирования. Один из таких анализов был выполнен JonnyGuru.com, и они установили, что максимальное пульсирующее напряжение выхода +12 В – 0,042 В (42 милливольт).
График ниже демонстрирует отклонение фактически получаемого напряжения (синяя кривая; при этом её форма, конечно, не такая идеальная синусоида – ведь сама пульсация не постоянна) от требуемого ровного напряжения +12 В постоянного тока (красная прямая).
Это отклонение, по большей части, лежит на совести конденсаторов во всём PSU. Некачественные, дешёвые конденсаторы приводят к увеличению этой не нужной нам пульсации. Если она слишком большая, то некоторые электронные узлы компьютера, наиболее чувствительные к качеству питания, могут начать работать нестабильно. К счастью, в нашем примере 40 с лишним милливольт это нормально. Не супер, но и не плохо.
Но на получении приемлемых выходных напряжений дело ещё не заканчивается. Необходимо обеспечить управление выходами, чтобы питание на каждом из них было всегда полноценным и стабильным, независимо от мощности нагрузок на других выходах.
Источник фото techspot.com
Микросхема, которую вы видите на этом фото, называется супервизор (supervisor) и она следит за тем, чтобы на выводах не оказалось слишком высокого или низкого напряжения и тока. Работает бесхитростно – просто отключает блок питания при возникновении таких проблем.
Более дорогие PSU могут оснащаться ЦПОС, цифровым процессором обработки сигналов (DSP, Digital Signal Processor), который не только мониторит напряжения, но и может отрегулировать их при необходимости, а также отправлять подробные данные о состоянии БП на компьютер, его использующий. Для рядового пользователя эта функция достаточно спорная, но для серверов и рабочих станций – весьма желательная.
Выходы
Все блоки питания поставляются с длинными пучками проводов, торчащими сзади. Количество проводов и доступных разъёмов для запитывания устройств будут отличаться от модели к модели, но некоторые стандартные подключения должны обеспечивать все БП без исключения.
Так как напряжение – это величина разности потенциалов, то каждый выход подразумевает два провода: один для указанного напряжения (например, +12 В) и провод, относительно которого измеряется разность потенциалов. Этот провод называется заземлением, «землёй», «reference wire» или «общим» проводом, и два этих провода образуют петлю: от блока питания до устройства-потребителя, а затем обратно в БП.
Поскольку в некоторых таких замкнутых контурах токи небольшие, они могут использовать общие провода заземления.
Официальное фото блока питания Cooler Master.
Главным из обязательных разъёмов является 24-pin ATX12V v. 2.4, обеспечивающий основное питание с помощью нескольких выводов различных напряжений, а также имеющий ряд специальных выводов.
Из этих специальных отметим лишь вывод «+5 standby» – дежурное питание компьютера. Это напряжение подаётся на материнскую плату всегда, даже когда компьютер выключен, при условии, что он остаётся включен в розетку и его БП исправен. Дежурное питание нужно материнской плате для того, чтобы оставаться активной.
Большинство PSU также имеют дополнительный 8-pin разъём для материнской платы с двумя линиями +12 В, и по крайней мере один 6 или 8-pin разъём питания для PCI Express.
Со слота PCI Express видеокарты могут взять максимум 75 Вт, поэтому этот разъем обеспечивает дополнительную мощность для современных GPU.
Конкретно наш рассматриваемый блок питания по соображениям экономии фактически использует два разъема питания PCI Express на одной и той же линии. Поэтому, если у вас действительно мощная видеокарта, старайтесь выделить ей независимую линию питания, не делите её с другими устройствами.
Разница между 6 и 8-pin разъемами PCI Express – два дополнительных провода заземления. Это позволяет повысить силу тока, удовлетворяя потребности наиболее прожорливых видеокарт.
Последние несколько лет мы всё чаще стали замечать блоки питания с гордой припиской «модульный» (modular PSU). Это просто означает, что у них отстегивающиеся кабели, что позволяет использовать только необходимое количество кабелей и разъёмов, не подключая всё ненужное, освободив тем самым пространство внутри блока.
Источник фотографии nix.ru
Наш Cooler Master, как и большинство, использует довольно простую систему подключения модульных кабелей.
Каждый разъем имеет по одному проводу +12В, +5В и +3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце будет использовать либо соответствующую, либо упрощённую распайку.
Представленный на фото выше разъем Serial ATA (SATA) используется для подключения питания жестких дисков, твердотельных накопителей и таких периферийных устройств, как DVD-приводы.
Этот всем знакомый разъём называется замысловато: «разъём питания AMP MATE-N-LOK 1-480424-0». Но все называют его просто Molex, невзирая на то, что это всего лишь название компании-разработчика этого разъёма. Он предоставляет по одному выводу +12В и +5В, и два провода заземления.
На выходных проводах производители тоже могут сэкономить или накрутить цену за счет более ярких или более мягких проводов. Сечение провода также играет важную роль, поскольку более толстые провода обладают меньшим сопротивлением, чем тонкие, поэтому меньше греются при прохождении тока по ним.
На что обращать внимание при выборе
В начале нашей статьи мы говорили, что большинство блоков питания имеют в названии значение своей максимальной мощности. Простым языком, электрическая мощность – это напряжение, умноженное на силу тока (например, 12 вольт x 20 ампер = 240 ватт). И хотя такое утверждение не совсем технически точное, для наших целей оно удовлетворительное.
Как и на большинстве моделей, на нашем блоке питания есть шильдик, содержащий основную информацию о том, сколько мощности может обеспечить каждая линия напряжения.
Источник фотографии nix.ru
Здесь мы видим, что суммарная максимальная мощность всех +12 В линий составляет 624 Вт. Приплюсовав все остальные мощности, мы в итоге получим 760 Вт, а не 650. Что тут не так? А дело просто в том, что линии +5 В (кроме дежурной) и +3,3 В создаются через VRM, используя одну из линий +12 В.
Ну и конечно, все выходные напряжения поступают из одного источника: сетевой розетки. Таким образом, мощность в 650 Вт – это максимум, который блок питания может обеспечить в целом по всем линиям. То есть, если у вас на линиях +12 В висит нагрузка в 600 Вт, то на все остальные линии у вас остается всего 50 Вт. К счастью, большинство оборудования в любом случае бо́льшую часть мощности берёт от линий 12 В, поэтому проблема неправильно подобранного БП встречается редко.
Правее от таблицы со спецификациями мощности на шильдике присутствует значок «80 Plus Bronze». Это рейтинг эффективности, используемый в отрасли в соответствии с требованиями к производителям блоков питания. Эффективность также отражает величину общей нагрузки, которую блок питания способен обслуживать.
20%, 50% и 100% – процент нагрузки по отношению к максимальной мощности для стандартных систем
Если наш Cooler Master нагрузить ровно на половину его максимальной мощности, то есть на 325 Вт, то его ожидаемый КПД будет в пределах 80-85% в зависимости от напряжения в сети (115/230 В).
Это означает фактическую нагрузку блока питания на сеть от 382 до 406 Вт. Более высокий рейтинг 80 PLUS не означает, что блок питания даст вам больше энергии, он просто более экономичный – меньше энергии теряет на всех этапах фильтрации, выпрямления и преобразования.
Также обратите внимание, что максимальная эффективность достигается в диапазоне между 50 и 100% нагрузки. Некоторые производители предоставляют графики, показывающие, какой КПД можно ожидать от их устройства при различных нагрузках и напряжениях в сети.
Официальное изображение Cooler Master.
График эффективности для блока питания Cooler Master V1300 Platinum. Вертикальная шкала – эффективность (КПД), горизонтальная – % нагрузки по отношению к максимальной мощности.
Иногда полезно обращать внимание на эту информацию, особенно если собираетесь раскошелиться на киловаттный блок питания. Если ваш компьютер будет потреблять близко к этому пределу мощности, то КПД блока питания будет несколько снижен.
Вы можете наткнуться на некие «одноканальные» и «многоканальные» (либо комбинированные – снабжённые переключателем) блоки питания. Термин «канал» в данном случае – просто другое слово для определенного напряжения, выдаваемого PSU. Наш Cooler Master имеет один канал 12 В и всевозможные разъёмы питания, обеспечивающие +12 В линии от этого канала. Многоканальный блок питания имеет две или более систем, обеспечивающих линии 12 вольт, однако существует большая разница в том, как это реализовано.
Многоканальные блоки питания широко применяются для серверов или дата-центров в целях отказоустойчивости – при выходе из строя одного из каналов, работоспособность системы не нарушится. Для обычных компьютеров тоже могут предлагаться многоканальные PSU, но скорее всего, вы столкнетесь с псевдо-многоканальностью, когда производитель просто разделит единственный канал на два или три якобы независимых канала. Например, наш подопытный выдает до 52 ампер по линии +12В, что эквивалентно 624 Вт электроэнергии. Дешевая «многоканальная» версия такого БП будет иметь в спецификации якобы два канала +12 В, но на самом деле это лишь два полуканала, каждый из которых будет обеспечивать только 26 А (или 312 Вт).
Хороший блок питания для настольного компьютера, использующий качественные компоненты, вовсе не требует многоканальности на +12 В, так что не беспокойтесь об этом!
Стоит ли переплачивать?
Блоки питания поставляются во всех ценовых диапазонах. Каталог на Amazon начинается с моделей от 15$ для стандартного блока 400 Вт, и доходит до полномодульных киловаттных PSU за 180-240$ от EVGA или Seasonic, и не заканчивается даже на этом. Что же вы получите за свои деньги? Что действительно стоит больше 200 долларов?
Очевидно, что чем мощнее, тем лучше, но вопрос ещё в том, как эта мощность реализована. Самые дешёвые 300 Вт модели выдают до 25 А на линиях +12В, в то время как киловаттная модель обеспечит втрое больше энергии. Современные процессоры и видеокарты практически все свои потребности удовлетворяют линиями +12 В. Уверены, что вам хватит 25 А?
Официальное фото блока питания Seasonic.
Учитывая, что актуальные аппетиты растут вместе с актуальным железом, то ваш новенький компьютер с 32-ядерным процессором в паре с 300-ваттной топовой видеокартой дешёвый блок питания явно не «затащит». С другой стороны, самые дорогие PSU легко справятся и будут иметь ещё приличный запас мощности. Ну а поскольку совокупная цена такого процессора и видеокарты может легко превысить 3500$, то стоит ли экономить ещё парой-другой сотен баксов сверху на обеспечение нормального питания для такого монстра.
Но на самом деле вы платите за качество компонентов в блоке питания. Взгляните на внутренности нашего Cooler Master в начале статьи. Вы не увидите там безумного количества всяких «шабашек», а поскольку каждый из тех немногочисленных элементов – критически важный компонент в работе устройства, нетрудно понять, почему не стоит гоняться за дешевизной.
На этом наше препарирование PSU закончено. Это очень интересное семейство устройств с на удивление сложным уровнем инженерии на всех этапах разработки и производства. Если у вас есть какие-либо вопросы о блоках питания в целом, или конкретно о вашем, смело спрашивайте в комментариях ниже. До новых встреч в нашем анатомическом кружке.
Как запустить блок питания без компьютера: включаем БП перемычкой и другими способами — iChip
Компьютер не включается — это очень распространенная проблема, которая может быть вызвана чем угодно. В такой ситуации чаще всего виновником «торжества» выступает какая-либо комплектующая. Чаще всего это блок питания или процессор. Проверить ЦПУ в домашних условиях на работоспособность довольно трудно. Для этого потребуется найти аналог, который подойдет в сокет материнской платы. И тогда методом исключения можно прийти к выводу, что процессор не работает. Но у кого из вас дома валяется несколько камней, подходящих в один сокет? То-то же.
А вот проверить БП на домашнем операционном столе вполне реально. Для этого существует несколько способов. И при этом не потребуется сам ПК. То есть, если у вас имеется не подключенный блок, то его не обязательно вставлять в корпус и соединять с остальными комплектующими. Сегодня мы расскажем, как проверить блок питания без компьютера.
Как завести блок питания без компьютера: принципы работы компьютера
Перед любой диагностикой полезно знать, как вообще устроен компьютер. Блок питания — это комплектующая, которая отвечает за снабжение остальных элементов компьютера электроэнергией. Все компоненты компьютера имеют множество параметров, которые являются стандартизированными. Поэтому на любом блоке питания вы найдете коннекторы определенных типов. Например, для подключения материнской платы, жестких дисков, видеокарты и так далее.
В первую очередь необходимо проверять работоспособность БП, ведь бесполезно диагностировать остальные комплектующие без питания. И только после этого следует переходить к проверке проводов, которые идут от корпуса к материнской плате и отвечают за старт компьютера. А затем можно уже тестировать и остальные комплектующие.
Как стартануть блок питания без компьютера: подготовка к «операции»
Как мы уже говорили, проверить блок питания можно несколькими способами. В зависимости от конкретно вашей ситуации, вы можете подобрать метод, который будет удобен и доступен именно вам. Но независимо от выбранного способа, вы должны перед началом диагностики выполнить следующие действия:
1. Выключите компьютер. Отключите блок питания от всех комплектующих. Сам блок можно не вынимать из корпуса и провести диагностику прям внутри «тушки». В дальнейшем нам понадобятся некоторые коннекторы. Так что если кабели внутри корпуса протянуты очень туго, освободите их для дальнейших манипуляций чтобы вам было удобно.
2. Подключите к блоку питания любой рабочий жесткий диск. Но соединять его с материнской платой не нужно. Если этого не сделать, то после проделанной процедуры в работе БП могут возникнуть неисправности. Если жесткий диск вышел из строя, то на его роль может подойти проигрыватель CD/DVD дисков.
Как включить блок питания без компьютера: перемычка
Суть способа заключается в том чтобы заставить блок питания завестись без подключения к материнской плате. По идее сколько второстепенных устройств не подключай к БП — он не стартанет. Обязательно потребуется подсоединенный основной 20 или 24-pin кабель. Но можно обойти это правило. Для этого нам потребуется сделать специальную перемычку из любого материала, который проводит электричество. Лучше всего на эту роль подойдет скрепка, медная проволока. Но можно использовать то, что найдется под рукой.
Далее нужно взять 20 или 24-pin коннектор и вставить в него перемычку следующим образом: один конец вставьте в четвертый контакт (к нему подключен зеленый проводок от блока питания), а другой конец вставьте в пятый контакт (к нему подключен черный провод от блока питания). Зелёный контакт в схеме обычно изображается как «PS-ON» («Power Supply ON» — включение БП), а чёрный как «COM» («Common» — общий) или GND («Ground» — заземление).
Не забудьте подключить второстепенное устройство, на роль которого сгодится жесткий диск и твердотельный накопитель. После этого можно запускать блок питания. Кулер на БП должен начать крутиться, а жесткий диск будет нагреваться и слегка гудеть. Но это при условии, что вы правильно подключили перемычку. Если вы уверены, что все сделано правильно, а блок питания не запускается, то можно говорить о том, что комплектующая неисправна. Если он начал работать, то это не означает, что все в порядке. Если у вас дома есть вольтметр, то рекомендуется воспользоваться им для дальнейшей диагностики чтобы можно было с уверенностью сказать, что БП функционирует правильно.
Как запустить компьютерный блок питания без компьютера: вольтметр
Для того чтобы поставить точный диагноз, нужно воспользоваться вольтметром, который показывает выходное напряжение на коннекторах. У каждого типа должно быть определенное значение. Если это значение не сильно отклоняется от нормы, то с БП все в порядке. Если отклонения больше, чем на 5% от рекомендуемых цифр, это значит, что есть неполадки в работе блока питания. И такую комплектующую лучше либо заменить, либо отнести в сервисный центр. Но, как показывает практика, намного проще и быстрее купить новый БП и не ждать пока старый отремонтируют, ведь компьютер многим из нас нужен каждый день.
Напоминаем, что блок питания — это компонент, который снабжает электроэнергией остальные комплектующие. В случае его неполадки, он может с легкостью забрать с собой «на тот свет», например, видеокарту или материнскую плату. Поэтому не стоит пренебрегать такой простой диагностикой. Она может сэкономить ваши деньги и время, если вовремя выявить неисправность. Мы понимаем, что вольтметр есть дома не у каждого. Но рекомендуем его все же приобрести. С его помощью можно диагностировать не только блок питания, но и другие комплектующие. Тем более, что по цене он доступен абсолютно каждому. Вот неплохой вариант:
Итак, включите блок питания описанным выше способом. С помощью прибора замерьте показатели ряда черного и розового проводков. Рекомендуемое значение должно колебаться около 3,3 вольта. Тоже самое сделайте для черного и желтого провода. Здесь уже цифры должны находиться около 12 вольт. А для черного и красного — 5 вольт. Если все в пределах нормы, то диагностику можно завершить. После этого можно с уверенностью сказать, что с вашим блоком все в порядке.
Если же вольтметра у вас нет, то вы всегда можете провести визуальный осмотр. Для этого снимите крышку с блока питания и в первую очередь проверьте состояние конденсаторов. Если они вздутые или треснутые — все плохо. Блок нужно менять. Разумеется, осуществлять такую процедуру нужно при выключенном питании. Также заодно прочистите БП внутри. Пыль может стать причиной короткого замыкания и других малоприятных инцидентов.
Заключение
Диагностика блока питания в домашних условиях состоит из трех этапов.
- Запуск блока с помощью перемычки.
- Замер выходного напряжения с помощью вольтметра.
- Визуальный осмотр на предмет вздутых конденсаторов и скоплений пыли.
Как видите, в этом нет ничего сложного и даже начинающий пользователь осилит такую простую процедуру. Помимо блока питания следите и за остальными комплектующими в вашем компьютере и регулярно проверяйте показания различных датчиков, если не хотите столкнуть с поломкой какого-либо компонента.
Читайте также:
Теги блок питания
Почему в компьютерных блоках питания напряжения 3,5, 5 вольт и 12 вольт
Если вам доводилось держать в руках компьютерный блок питания, то вы наверняка обращали внимание не только на количество различных штекеров для подключения будь то к материнской плате, к жесткому диску, к приводу, но и на цветовую гамму проводов идущих от БП к этим штекерам.
На самом деле эти цвета выбраны не ради красоты или наобум, а имеют и свои четкие стандарты по питанию для каждого цвета.
Черный — общий провод, «земля», GND.
Белый — минус 5V.
Синий — минус 12V.
Желтый — плюс 12V.
Красный — плюс 5V.
Оранжевый — плюс 3.3V.
Зеленый — включение (PS-ON)
Серый — POWER-OK (POWERGOOD)
Однако мне хотелось бы рассказать даже не о принятой цветовой маркировке и напряжении для конкретного цвета, а о том, почему же нужен именно такой набор напряжений, то есть что питается таким напряжением в нашем системном блоке.
Что относительно 12 вольт, то это, прежде всего, напряжение на движущиеся элементы, то есть приводы и вентиляторы. Что относительно минусовых значений питания на минус 5 и минус 12, то это отчасти уже рудимент, который применялся опять же для весьма раритетной техники. Как мне видится это будет постепенно сходить на нет. Наиболее интересными по питанию получаются напряжения на 3,3 и 5 вольт. По факту именно эти напряжения рассчитаны на работу с микросхемами и микроконтроллерами, то есть с логическими элементами в системном блоке. Однако почему нельзя и все свести к одному питанию, ведь так куда проще и легче?
На самом деле ответ на этот вопрос весьма прост. Все дело в разной технологии логических элементов установленных в одной сборке.
Итак, на сегодняшний день мы имеем две основных технологии:
1. Транзисторно-транзисторная логика (аббревиатура ТТЛ или TTL по-английски) — технология построения электронных схем на основе биполярных транзисторов и резисторов. Название транзисторно-транзисторный появилось по причине того, что транзисторы использовались одновременно как для выполнения логических функций (И, НЕ, ИЛИ) и тут же для усиления выходного сигнала. То есть такое смешение логических и аналоговых элементов.
2. Элементы логики на комплементарной структуре металл-оксид-полупроводник (кратко КМОП или по-английски CMOS — complementary metal-oxide-semiconductor). Указанная структура КМОП представляет собой наборы полевых транзисторов.
Именно эти две технологии существуют и сегодня. Каждая из них обладает своими плюсами и минусами. Однако благодаря постоянному прогрессу многие недостатки в полупроводниковых элементах были искоренены или положение дел близко к тому, чтобы избавиться от них. Так появились микросхемы с быстродействующей КМОП. Однако еще по-прежнему в зависимости от задач, которые решаются с помощью микросхем, наилучшим образом подходит либо ТТЛ, либо КМОП микросхемы.
Здесь же пришло самое время сказать о всех плюсах и минусах. И эта информация будет сведена в таблицу.
Характеристика | ТТЛ | КМОП | Быстродействующий КМОП |
Название | Транзисторно-транзисторная логика | Комплементарный металл-оксид полупроводник | Быстродействующий комплементарный металл-оксид полупроводник |
Серия зарубежных микросхем | • 74xx — старое оригинальное поколение • 74Sxx — более высокоскоростная серия с диодами Шоттки (Schottky) • 74LSxx — серия с диодами Шоттки (Schottky), потребляющая малую мощность • 74ALSxx — продвинутая серия с диодами Шоттки (Schottky) с низким потреблением мощности • 74Fxx — более быстрая серия, чем серия 74ALSхх. |
• 40xx — старое оригинальное поколение • 40xxB — серия 4000B была улучшена, но также чувствительна к статическому электричеству. |
• 74HCxx — высокоскоростные КМОП- микросхемы с номерами, соответствующими семейству ТТЛ. Назначение выходов также совпадает с аналогичными выходами микросхем ТТЛ, однако входные и выходные напряжения не совпадают с та- кими же напряжениями ТТЛ- микросхем • 74HCTxx — аналогична предыдущей серии 74HCхх, но адаптирована для совместного использования с микросхемами семейства ТТЛ по напряжению 74ACxx — продвинутая версия серии 74HCхх, она быстрее и обладает большей выходной мощностью • 74ACTxx — аналогична предыдущей серии 74ACхх, но адаптирована для совместного использования с микросхемами семейства ТТЛ. • 74AHCxx — продвинутая высокоскоростная серия КМОП • 74AHCTxx — аналогична предыдущей серии 74AНCхх, но адаптирована для совместного использования с микросхемами семейства ТТЛ |
Серия отечественных микросхем | К155 К131 |
К561 К176 |
КР1554 КР1564 |
Быстродействие | Высокое | Низкое | Высокое |
Напряжение питания, В | 5±0,5 | 3…15 | 2…6 |
Потребляемый ток (без нагрузки), мА | 20 | 0,002 — 0,1 | 0,002 — 0,1 |
Уровень напряжения для логического 0, В | 0,5 | 0,05 | 0,5 — 1,8 |
Уровень напряжения для логической 1, В | 2,4 | Приблизительно равно напряжению питания | Приблизительно равно напряжению питания |
Чувствительность к статическому электричеству | Низкая | Высокая | Средняя |
Еще раз о том же самом, но в другой форме.
Микросхемы на основе ТТЛ
Преимущества:
1. Высокое быстродействие (десятки мегагерц).
2. Относительно низкая чувствительность к воздействию статических зарядов.
Недостатки:
1. Высокое энергопотребление и большое падение напряжения на выходах микросхемы (при логической 1 на выходах напряжение существенно ниже напряжения питания).
2. Высокие требования к напряжению питания (отклонение не более 0,5 В от номинального).
3. Низкая помехоустойчивость из-за низкого порога срабатывания логического элемента.
Сфера применения:
Благодаря своему очень высокому быстродействию микросхемы на основе ТТЛ получили широкое распространение в компьютерах и различных вычислительных системах, в основном стационарных, где нет острого вопроса по энергопотреблению. Кроме этого, применяются они в электронных музыкальных инструментах, а также в контрольно-измерительной аппаратуре и автоматике. Однако при их использовании всегда необходимо уделять особое внимание стабилизации питания, иначе микросхема либо не будет работать, либо сгорит от даже незначительного превышения напряжения питания. По этой же причине всегда следует принимать усилия по согласованию уровней напряжения, если планируется использование ТТЛ-микросхем совместно с другим типом микросхем. При работе с ТТЛ-микросхемами не забывайте подтягивать неиспользуемые входы к «земле» или «питанию» (в зависимости от того, что надо получить от микросхемы). Данная мера необходима в связи с низкой помехоустойчивостью.
Микросхемы на основе КМОП
Преимущества:
1. Низкие требования к питанию. Микросхемы стабильно работают при широком диапазоне питающих напряжений. В последних поколениях диапазон сузился, но все равно остается широким по сравнению с ТТЛ-микросхемами.
2. Низкое энергопотребление, которое делает их идеальными для мобильных устройств (в статическом состоянии почти не потребляет энергии).
3. На выходах логическая 1 близка к напряжению питания, а логический ноль близок к «земле».
4. Порог переключения логических элементов низок и составляет половину напряжения питания, что вместе с п. 3 упрощает работу с цифровой логической обработкой сигналов и почти не требует их усиления.
5. Высокая помехоустойчивость благодаря широким допускам напряжения как при логическом 0, так и при логической 1.
Недостатки:
1. Относительно высокая чувствительность к воздействию статических зарядов. Микросхемы первых поколений очень сильно боялись статического напряжения и легко выходили из строя от неаккуратного обращения. Микросхемы последнего поколения стали более устойчивыми, но все равно требуют антистатических мер предосторожности.
2. Менее высокое быстродействие, чем у ТТЛ-микросхем — особенно у микросхем первых поколений. Несмотря на то, что современные КМОП-микросхемы по быстродействию значительно улучшили свои позиции, они все равно уступают по этому параметру микросхемам семейства ТТЛ.
3. Быстродействие сильно зависит от напряжения питания. На низких напряжениях 2-3 вольта быстродействие уменьшается в несколько раз по сравнению с напряжением питания 6 В.
4. Высокоомность входов микросхем. Во избежание наводок или воздействия статического электричества необходимо неиспользуемые входы подключать к «земле» или питанию в зависимости от сигнала, требуемого по умолчанию.
Современные тенденции применения микросхем на разных логиках
Изначально КМОП-микросхемы выполняли функцию энергосберегающей, но медленной альтернативы ТТЛ-микросхемам. Поэтому они КМОП нашли применение прежде всего там, где требовалась продолжительная автономная работа, но была не сильно важна производительность: в электронных часах, калькуляторах и других устройствах с питанием от батареек.
Однако по мере развития вычислительных систем и наращивания их производительности, в том числе с помощью увеличения плотности электронных компонентов в микросхеме, встала проблема рассеивания энергии на элементах. Поэтому технология КМОП стала оказываться в выигрышном положении по сравнению с ТТЛ. В итоге продолжительной работы по совершенствованию технологии КМОП были достигнуты результаты по скорости переключения и плотности монтажа, превосходящие решения на биполярных транзисторах. Поэтому в настоящее время КМОП-микросхемы обладают высокой популярностью для решения самых разных задач. Это значит лишь одно, что вполне скоро в наших БП для компьютера мы можем лишиться напряжения питания в 5 вольт, хотя это видимо будет не скоро.
А сейчас не смотря на проблему с питанием существует еще и проблема согласования одной логики с другой, ведь по сути обращение транзисторной логики к КМОП логики, скажем к памяти не возможно осуществить без такого согласования. Что тоже не очень удобно…
|
Отчет: спецификация блока питания только на 12 В, выпускаемая в этом году
(Изображение предоставлено Shutterstock)Текущая спецификация блока питания ATX была довольно согласованной примерно с 1995 года, но с тех пор были внесены некоторые изменения.Однако, по словам CustomPC, это может скоро измениться. Сайт сообщил, что в этом году Intel представит спецификацию дизайна «ATX12VO», где «O» означает «Только».
Первоначально переход коснется только системных интеграторов, поэтому в сфере DIY, вероятно, еще некоторое время будет использоваться существующая конструкция 12V ATX.
Идея, лежащая в основе ATX12VO, заключается в том, что он избавляется от шин 3,3 В и 5 В, оставляя единственную задачу источника питания — обеспечивать 12 В компонентам системы.Это упрощает конструкцию силовой схемы и, таким образом, снижает стоимость производства компонентов.
Это изменение неудивительно, поскольку многие устройства могут обходиться только 12 В, а многие конструкции блоков питания работают с одной большой шиной 12 В, которая использует простой понижающий преобразователь постоянного тока в постоянный, чтобы обеспечить 5 В и 3,3 В компоненты, которые все еще нуждаются в этом. К этим компонентам относятся жесткие диски, твердотельные накопители с интерфейсом SATA и большинство USB-устройств.
Многие контакты на текущем 24-контактном разъеме ATX являются избыточными по сегодняшним стандартам, и многим современным системам больше не нужны жесткие диски SATA или твердотельные накопители теперь, когда NVMe M.2 набирают популярность. Более того, различные USB-устройства также постепенно начинают использовать 12 В в качестве входного напряжения для ускорения зарядки, и есть вероятность, что настанет день, когда все новые USB-устройства будут построены на 12 В, а не на 5 В.
Ожидаемый 10-контактный разъем питания материнской платы ATX12VO. (Изображение предоставлено CustomPC)Говорят, что для разъемов материнской платы, которые все же остались, заменой будет 10-контактный разъем, при этом разъем питания EPS становится дополнительным дополнительным оборудованием для использования в мощных системах.
Однако мы бы не стали слишком беспокоиться о том, что это создаст проблемы с поддержкой устаревших USB-устройств или жестких дисков. В отчете указано, что 3,5-дюймовые и 2,5-дюймовые устройства SATA смогут получать питание от материнских плат вместо блоков питания.
Кроме того, есть вероятность, что производители материнских плат продолжат включать понижающее преобразование до 5 В на свои материнские платы для устаревших USB-устройств, пока на это есть спрос, поэтому полный переход может занять до десяти лет.
Номинальная мощность блока питанияATX 12 В Номинальная мощность блока питания
ATX 12 ВТипичный ATX 12 В. Номинальные параметры блока питания (амперы)
Источники питания различаются по характеристикам в зависимости от производителя и даты изготовления — следовательно, имеющийся у вас блок питания может не точно соответствуют номинальным выходным параметрам, указанным ниже. Блок питания на 200 Вт будет аналогичным, но, вероятно, будет немного другим. цифры силы тока. Я заметил, что поставки более позднего производства имеют тенденцию указывать более высокие текущие уровни, чем раньше, но также перечислить максимальный комбинированный вывод.Имейте в виду, что приведенная ниже таблица является приблизительной и может рассматриваться только как ориентировочная.Модель (номинальная мощность) | 145 Вт | 200 Вт | 235 Вт | 250 Вт | 275 Вт | 300 Вт | 350 Вт | 400 Вт | 425 Вт | 475 Вт |
---|---|---|---|---|---|---|---|---|---|---|
+3,3 В | и nbsp | 14 | 13 | 13 | 14 | 14 | 28 | 40 | 40 | 45 |
+5 В | 18 | 22 | 22 | 25 | 30 | 30 | 32 | 40 | 40 | 40 |
+12 В | 4.2 | 10 | 8 | 10 | 10 | 12 | 15 | 15 | 15 | 18 |
-5 В | 0,5 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 |
-12 В | 0.5 | 1.0 | 0,5 | 0,5 | 1.0 | 1.0 | 0,8 | 1.0 | 1.0 | 2,0 |
+5 VSB * | 0,2 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 3,5 |
+3.Максимальная комбинированная мощность 3 В и + 5 В ** | и nbsp | 135 Вт | 125 Вт | 150 Вт | 150 Вт | 150 Вт | 215 Вт | 300 Вт | 300 Вт | 300 Вт |
* Напряжение в режиме ожидания — большинство системных плат на недавно произведенных компьютерах будут постоянно получать питание в режиме ожидания. чтобы разрешить пробуждение при запуске LAN.
** Немного прикладной алгебры покажет, что общая производимая мощность (ватты = вольт x ампер) будет значительно выше номинальная мощность блока питания.Тем не менее, источники питания последнего поколения будут иметь максимальную номинальную мощность для линий 3,3 и 5 В. комбинированный. Даже если вы можете получить номинальную мощность от одного напряжения, вы не сможете получить максимальную номинальную мощность. с обеих линий одновременно.
НАЗАД
Intel ATX12VOи характеристики 12 В: объяснение и мнение производителей | ГеймерыNexus
Мы должны начать с этого примечания: 12VO, в определенном смысле, на самом деле не новость.Такие компании, как Dell, HP и Lenovo, особенно HP, уже давно используют в своих системах блоки питания с напряжением всего 12 В. В этих системах материнские платы снабжены всеми необходимыми для приводов преобразователями постоянного тока в постоянный ток и повышениями. Хотя они существовали, они не были стандартизованы и часто использовались проприетарные разъемы или блоки питания. Сегодняшняя разница заключается в том, что Intel движется к стандартизации этих типов источников питания, и основная причина заключается в том, чтобы упростить соблюдение требований к эффективности, установленных государственными органами.Эти правила применяются к готовым системам, а не к системам для домашних мастеров, но недавно возник вопрос, будет ли это постепенно переходить от готовых к самостоятельной работе. Во многих сборках, особенно от традиционных OEM-производителей, используются материнские платы, которые нельзя купить в розницу. В предустановленных играх более высокого класса используются материнские платы, продающиеся в розницу, и именно здесь начинают возникать вопросы.
Обратите внимание, что это уже было опубликовано как видео на нашем канале:
Давайте начнем с некоторой предыстории.Intel опубликовала исходную спецификацию ATX (без -12VO) для материнских плат и блоков питания еще в 1995 году и спецификацию ATX12V (без -O) в 2000 году, из которых мы можем сделать два важных вывода: во-первых, ATX12VO — это ревизия собственной технологии Intel. чем Intel пытается схватить бразды правления из ниоткуда, и, во-вторых, спецификация ATX12V устарела. Технически ATX относится к форм-фактору и общему дизайну (в настоящее время в версии 2.2), а ATX12V относится к конкретным функциям блока питания (в настоящее время в версии 2.52). Обратите внимание, что спецификация Intel ATX12V также отвечает за такие вещи, как требование пульсации 120 мВ, подчеркивая, сколько ему лет.
Блоки питанияобеспечивают питание материнских плат 12 В, 5 В и 3,3 В, разделенных на три отдельных «направляющих». Из кабелей, поставляемых с большинством современных блоков питания, контакты 5 В или 3,3 В имеются только в 24-контактных разъемах питания ATX, 4-контактных MOLEX и SATA. 6/8-контактные разъемы PCIe, разъемы ATX12V и EPS12V используют только 12 В и заземление. Рельсы 3,3 В и 5 В в основном используются для таких вещей, как некоторые полосы RGB на 5 В, некоторые периферийные устройства и устройства хранения. Большинство 4-контактных разъемов MOLEX используют только 12 В и землю, полностью пропуская линию 5 В.
Питание3.3 В и 5 В в ПК сейчас используется гораздо меньше, чем это было, когда десятилетия назад писалась спецификация ATX, и используется меньше все время, поэтому Intel опубликовала спецификацию блока питания, которую они называют «только 12 вольт» ( 12VO). ATX12VO использует один 10-контактный разъем для замены существующего 24-контактного разъема ATX, и, как следует из названия, блок питания не будет обеспечивать ничего, кроме единой шины 12 В для всех кабелей. Спецификация включает в себя полный набор электрических и физических рекомендаций по созданию блока питания, который будет совместим с системами 12 В, включая версии CFX, LFX, SFX, TFX и Flex ATX (CFX12VO, LFX12VO и т. Д.), а также рекомендации по разъемам и кабелям. Мы сосредоточились на ATX12VO, но идея у них одна.
Когда мы спросили Intel, каковы их цели в отношении 12VO, они ответили: «ATX12VO — это одна из усилий Intel по повышению эффективности OEM / SI-систем и продуктов отраслевых партнеров. Одна из ближайших задач ATX12VO — обеспечить соответствие множеству государственных нормативов в области энергетики. Согласно последним правительственным постановлениям в области энергетики, OEM-производители должны использовать крайне низкие уровни мощности системы в режиме ожидания, чтобы снизить энергопотребление настольных компьютеров […] Все сегменты настольных ПК обладают множеством преимуществ, включая меньший размер разъема, более гибкую конструкцию плат и улучшенное преобразование энергии. ATX12VO предназначен не только для небольших настольных компьютеров ».
Основным преимуществом исключения других напряжений является эффективность с точки зрения кабелей, цены и энергопотребления. Во-первых, удаление более половины контактов из основного разъема питания делает его менее громоздким, как мы уже видели на Intel Compute Element (или Ghost Canyon NUC), в котором используется 10-контактный штекер 12 Вольт.24-контактный кабель ATX — это неизменно самый большой и сложный для закрепления кабель на настольном компьютере, и он определяет размер вырезов для кабеля в каждом корпусе ПК.
В новой спецификации Intel говорится о разъемах материнской платы и сквозной передаче питания:
ATX12VO делает основной разъем питания меньше, но это не исключает работы по понижению мощности 12 В для таких вещей, как устройства SATA и USB — он просто переключает его на материнскую плату, занимая там ценную недвижимость и перекладывая расходы с от одного продукта к другому.Материнская плата также должна иметь собственные разъемы питания SATA, так что еще неизвестно, насколько аккуратнее будет полноразмерная компоновка ATX12VO. Это создает значительную нагрузку на недвижимость для материнских плат, особенно материнских плат для энтузиастов, которые уже оснащены интегральными схемами и интерфейсами.
От Intel: «Разъемы материнской платы для этого типа устройств необходимы и описаны в разделе 4.3 спецификации ATX12VO. Разработчикам материнских плат придется решить, сколько устройств и мощность обеспечить для этих типов устройств с питанием 5 В и 12 В.Если устройство работает только на 12 В — как некоторые светодиоды, вентиляторы или системы жидкостного охлаждения — периферийный разъем 1×4 все еще существует в качестве дополнительного разъема, но источник питания может обеспечить только 12 В и контакты заземления ». Разъем 1×4 относится к MOLEX, который может обеспечивать питание как 5В, так и 12В, но иногда используется только для 12В. Производители блоков питания могли бы предоставить разъемы MOLEX только с подключенными контактами 12 В и заземлением. 4- и 8-контактные разъемы процессора остались без изменений.
Сделать блок питания, который подает исключительно питание 12 В, очевидно, проще, чем сделать тот, который обеспечивает питание 12 В, 5 В и 3.3 В, и это потенциально дешевле. Меньше кабелей, меньше внутреннего оборудования и меньше инженерных работ, необходимых для изготовления блока питания ATX12VO. Опять же, работа, устраняемая со стороны блока питания, просто перекладывается на сторону материнской платы, поэтому стоимость системы в целом может не снизиться. Логично предположить, что, поскольку разъем питания ATX12VO представляет собой урезанную версию существующего 24-контактного разъема, существующие блоки питания ATX будут совместимы с материнскими платами ATX12VO с помощью переходного кабеля, но это намного сложнее.На вопрос, можно ли использовать пассивный переходной кабель, Intel ответила следующее:
«Основная проблема при использовании существующего блока питания Multi-Rail ATX для питания новой материнской платы ATX12VO — это шина ожидания 12 В. Существующие блоки питания Multi Rail ATX используют шину 5VSB. Для работы с материнскими платами ATX12VO его необходимо преобразовать в шину 12VSB. Новая резервная шина 12 В была определена в результате совместной работы с поставщиками блоков питания и производителями материнских плат для определения наилучшей общей эффективности.Между 12VSB и 5VSB были незначительные различия в эффективности. Сохранение новых блоков питания только на 12 В / 12 В SB было лучшим вариантом для повышения общей энергоэффективности ».
Похоже, совместимость не исключена полностью, но это будет не так просто, как просто подключить правильные контакты. Ожидается, что блоки питания будут иметь более длительный срок полезного использования, чем в среднем материнские платы, поэтому это может быть важным моментом, если ATX12VO когда-либо собирается победить сообщество DIY. Мы связались с инженером по источникам питания в крупной компании и подтвердили, что переходник с 5VSB на 12VSB возможен и уже существует, потому что ATX12VO похож на блоки питания, которые Lenovo, HP и Dell уже имеют для OEM-систем.Можно, например, взять переходник HP-ATX12V и повторно подключить его для работы с 12VO.
Любой, кто лично проверял спецификацию, мог заметить, что она озаглавлена «Форм-факторы настольной платформы с одинарной шиной питания ATX12VO (только 12 В)». Мы подтвердили с Intel, что «одинарная шина» означает отсутствие шин 5 В или 3,3 В; спецификация позволяет использовать несколько шин 12 В. «Множественные» шины 12 В в настольном блоке питания обычно означают разделение одной шины 12 В для повышения безопасности, а не буквальные дискретные шины, но это тема другого дня.Intel заявила, что «OEM-производители могут рассмотреть возможность использования нескольких шин 12 В для удовлетворения требований безопасности 240 ВА, которые ограничат каждую шину 12 В до 20 ампер каждая».
Во многом теперь ответственность за готовые системы ложится на производителей материнских плат. Производители блоков питания просто должны разобрать свои существующие блоки питания, чтобы соответствовать новой спецификации, в то время как производители материнских плат должны интегрировать новую технологию в и без того переполненные печатные платы, а затем найти способ их охладить. Еще раз запомните один важный момент: это не обязательно означает переход на платформы для энтузиастов DIY — по крайней мере, не сразу — потому что это объединяет существующие проприетарные блоки питания от OEM-производителей и системных интеграторов.Цель состоит в том, чтобы соответствовать государственным нормам для готовых систем. Эти правила не распространяются на энтузиастов DIY, и даже более того, в нормативных актах есть лазейка с «высокой расширяемостью», которая, по сути, гласит, что любая система с дискретным графическим процессором в настоящее время невосприимчива к этим требованиям. Это означает, что высокопроизводительные системы Origin, Maingear, Cyberpower или другие системы для энтузиастов смогут продолжать использовать стандартные материнские платы без особых затрат на платы.
Как упоминалось ранее, основной мотивацией для любого принять стандарт ATX12VO является новый, более строгий стандарт для собранных систем, продаваемых в штате Калифорния в июле 2021 года.Производители оригинального оборудования теперь должны будут соответствовать строгим требованиям к эффективности при нагрузке 20% и 50%, а не только при 100%. Кроме того, Intel пытается заставить компании ускорить работу с требованием к эффективности нагрузки 2%, первоначально предложенным производителям блоков питания примерно в 2018 году. Соответствующий раздел Раздела 20 для блоков питания и ATX12VO — 1605.3, хотя есть еще много других, окружающих этот раздел, который регулирует другие аспекты компьютеров и мониторов. Эти правила будут применяться ТОЛЬКО к новым комплексным системам, продаваемым OEM-производителями и системными интеграторами, но не к ПК для самостоятельного изготовления и не к ПК, проданным до вступления в силу Уровня 2.Уровень 1 уже действует, и по оценкам Intel, большинству моделей настольных ПК потребуется снизить энергопотребление в режиме ожидания еще на 5 Вт, чтобы перейти на следующий уровень.
Предыдущие диаграммы были примерами требований Energy Star и CEC, которые производители блоков питания могут захотеть или должны удовлетворить, в то время как эти диаграммы представляют собой собственные требования Intel, встроенные в спецификацию. Самая большая разница в том, что Intel указывает эффективность при нагрузке 10 Вт или 2%, в зависимости от размера блока питания. Эффективность энергопотребления в режиме ожидания должна быть одним из основных преимуществ ATX12VO, и Intel упреждает дальнейшие нормативы энергопотребления, устанавливая это требование к КПД в 2%.
Intel заявляет, что использование единой шины сократит потери при преобразовании переменного тока в постоянный; инженеры блока питания, с которыми мы говорили, подтвердили, что использование только 12 В позволит блокам питания быть более эффективными. Как сообщил Гордон Ма Унг из PCWorld, постоянная подача низкого тока по шинам 3,3 В, 5 В и 12 В делает блоки питания эффективными только на 50–60% в режиме ожидания. Переход на одну шину 12 В повышает эффективность простоя и должен помочь OEM-производителям соответствовать этим требованиям, но, конечно же, они могут выбирать другие варианты.
В беседе с инженером производителя блоков питания, которого мы не можем назвать, мы спросили, каково общее мнение об ATX12VO в настоящее время. Ответ начинался так:
«Я думаю, что это хорошая перемена по неправильным причинам. Они делают это, потому что некоторые поставщики блоков питания утверждали, что это было слишком сложно / слишком дорого для удовлетворения требований к эффективности нагрузки 2% с блоком питания с несколькими выходами, так что это, вероятно, будет то, что вы увидите только с SI, поскольку они должны соответствовать что 2% требования для прохождения ЦИК.И это требование применимо только в том случае, если у вас есть ПК, который не отвечает требованиям «высокой расширяемости», так что это, по сути, любой ПК с дискретной видеокартой. Фактически, даже современный режим ожидания (в настоящее время) не работает с установленной дискретной видеокартой ».
Мы спросили, повлияет ли это на рынок энтузиастов или рынок DIY через доверенных лиц, и наш тот же контакт сказал:
«Не пойдет. На мой взгляд, они должны держать БП как + 12В, так и + 5В. Избавьтесь от + 3,3 В и -12 В. Уменьшите размер основного разъема.Но это все. Это было бы намного легче принять / переварить ».
Во время разговора с источником на заводе по производству электроснабжения мы задали некоторые из тех же вопросов. Контакт подтвердил, что эффективность блока питания легче повысить, используя только шину 12 В, и отметил, что это снижает стоимость для отрасли блоков питания, но увеличивает ее для материнских плат. Что касается покупателя того и другого — в основном это OEM-производители и системные интеграторы, — стоимость в значительной степени уравняется. Стоимость кабеля снижается, стоимость компонентов DC-to-DC снижается и переходит на материнскую плату, а эффективность повышается.Наш контакт сказал нам, что, по их личному мнению, способы обновления становятся более ограниченными для потребителей, а смешанные стандарты для розничной торговли также усложняют ситуацию, заявив, что они не думали, что это «имеет смысл» в целом.
Затем мы спросили Джона Джероу из Corsair, ранее работавшего в JonnyGuru, о переносе ли это некоторых требований с источника питания на материнскую плату. Он ответил:
«Да. Вам по-прежнему нужны + 3,3 В и + 5 В, поэтому вы просто переключаете постоянный ток на постоянный ток с блока питания на материнскую плату.А поскольку в новом стандарте был установлен источник питания +12 В, вам также понадобится постоянный ток в постоянный ток, чтобы порты USB работали и работали в режиме ожидания ».
Мы также спросили Gerow, будет ли экономия на масштабе и массовое производство сдвигать стандарты блоков питания ATX12VO и ATX12V друг к другу, в конечном итоге попадая в сферу DIY. Он ответил: «Не совсем. Dell, HP и Lenovo уже используют решения типа 12 В, но их разъемы проприетарные. Intel просто берет эту идею и пытается стандартизировать ее.
ATX12VO — это попытка усовершенствовать древний стандарт.Таким образом, он удаляет некоторые функции, не добавляя ничего действительно интересного для сборщиков ПК своими руками, но он также не является стандартом, предназначенным для сборщиков ПК своими руками (на данный момент). В конечном итоге OEM-производители должны решить, преуспеет ли этот стандарт и получит ли он более широкое распространение, но фабрика, с которой мы говорили, не торопится начинать продажу блоков питания ATX12VO. Intel подтвердила, что продолжит публиковать обычные спецификации ATX. Никто не обязан использовать ATX12VO, даже производители оригинального оборудования. Их единственная обязанность — соответствовать стандартам CEC, а ATX12VO — один из инструментов, который Intel предлагает в помощь.Это не чистый альтруизм — у Intel должны быть свои мотивы для продвижения ATX12VO — но небо не падает, 12VO не такая уж и плохая вещь, и принятие на рынке DIY будет постепенным, если оно вообще произойдет. .
От редакции: Патрик Латан
Дополнительный репортаж, ведущий: Стив Берк
Видео: Киган Галлик, Эндрю Коулман, Джош Свобода
Так что это за ерунда о нескольких 12-вольтовых шинах?
Так что это за ерунда про несколько 12-вольтных шин?
Если вы уделяли много внимания современным источникам питания (2006 г.), то вы наверное заметил, что у большинства из них больше одной шины на 12 вольт.А Обычный двухконтурный блок питания ATX12V имеет две шины 12 В: 12V1 и 12В2. Согласно ATX стандартно, 12 В2 — это шина 12 В, которая питает ЦП и предоставляется на 4 пин 12 вольт кабель. 12V1 — это шина 12 В, используемая во всех других кабели питания и мощности все, кроме процессора. Некоторые материнские платы не соответствуют стандарту ATX на что питается от 12В1 и 12В2. Источники питания EPS могут иметь до четырех Шины на 12 вольт и имеют множество комбинаций шин, питающих какие устройства.
Если блоку питания требуется более 5 Вольт, они просто строят шину большей емкости. Который может подавать больше тока. Так почему вы видите блоки питания с двумя, три, а то и четыре планки по 12 вольт? Почему бы просто не поставить одну большую шину на 12 вольт? что может обеспечить больше энергии? Ну, это потребует некоторых объяснений.
Раньше я разрабатывал встроенную электронику — небольшие компьютеры, управляющие различные виды машин. Я все еще время от времени создаю хобби-проекты, так что У меня есть множество блоков питания.Конечно, большинство из них «настоящие» блоки питания — не блоки питания для ПК. Хорошо, технически мощность ПК поставки на самом деле реальны, но поскольку они идут с такими неполными спецификации трудно понять, что они действительно могут сделать. Реальные источники питания точно расскажу, на что способен БП: диапазон входного напряжения, минимум и максимальный ток, регулировка нагрузки, пульсации на выходе, снижение номинальных значений температуры кривые, ограничения по напряжению и току. Вы называете это, они это определяют. И когда они говорят, что 12 вольт при 40 ампер при 50 ° C, они не шутят.По крайней мере, как пока вы избегаете дрянных. Если у блока питания несколько выходов, то они объясните все зависимости между ними. Итак, если вам нужно увеличить рейка до 10 ампер, чтобы получить 20 ампер из другой рейки, они всегда говорят вам в спецификации. Они сообщают вам, есть ли среди комбинаций ограничение общей мощности рельсов. Если это действительно хороший БП, то там есть нет зависимости. Они просто работают как независимые рельсы. Характеристики очень тщательно, потому что вам нужно знать эти вещи, чтобы выбрать правильный блок питания.
А еще есть блоки питания для ПК. Большинство блоков питания для ПК, даже много хороших, было бы более правдиво, если бы они перестали ссылаться на «спецификации» и использовали термин «маркетинговый обман». Я не собираюсь здесь углубляться в эту тему потому что это будет включать страницы и страницы ругательств. И если ты смотришь для блока питания ПК, который не имеет зависимости между рельсами, сохраните сновидение. У них есть зависимости. Они просто редко говорят вам, что они из себя представляют. Если вы получите хороший блок питания, он может действительно встретить неопределенные и неполные спецификации на этикетке.Если у вас плохой блок питания, тогда номинальная мощность этикетку лучше всего можно описать как произведение художественной литературы. Блоки питания ПК на самом деле есть реальные спецификации. Они их просто не публикуют. Так когда вы покупаете блок питания для ПК, трудно понять, что у вас на самом деле. Как результат, части остальной части этой страницы должны быть основаны на предположениях. Было бы будьте любезны дать вам окончательные ответы, но это трудно сделать, когда вы точно не знаю, с каким блоком питания вы имеете дело.
Чтобы понять беспорядок в 12-вольтовой шине, вам сначала нужно знать о три разных типа блоков питания.Не читайте просто о типе Блок питания, который, по вашему мнению, у вас есть. Есть неплохой шанс, что то, что вы думаете у вас есть и то, что у вас есть на самом деле — две разные вещи.
Одиночный блок питания на шину 12 В
Один блок питания на шину 12 В имеет только одну выходную цепь, которая генерирует 12 вольт. К нему подключены все различные разъемы, на которые подается 12 вольт. один выход. Такой блок питания отлично подойдет для современного компьютера, так как до тех пор, пока он может доставить мощность. Это правда, даже если материнская плата требует дополнительных 4-контактный или 8-контактный 12-вольтовый процессор разъем или если ваша видеокарта требует 6-контактный разъем PCI-Express разъем.Если в вашем одиночном блоке питания на 12 В на шину есть все эти дополнительные разъемы и достаточная мощность, тогда все будет работать правильно.
Несколько независимых шин на 12 В PSU
Блок питания с несколькими независимыми шинами на 12 вольт имеет более одной шины на 12 вольт. Каждый шины на 12 вольт имеет свою отдельную схему. Каждый из 12 вольт Разъемы питания на кабелях БП подключены к одной из 12-вольтовых шин. Поскольку это просто блок питания для ПК, а не «настоящий», производители часто не чувствуют себя обязанными сообщать вам, какой разъем к какому подключен рельс.
Одна из причин использования нескольких отдельных шин на 12 вольт — это улучшить нагрузку. регулирование и шум на рельсах. Когда вы подключаете активную нагрузку к шина напряжения вы, как правило, получаете шумную шину, которая много прыгает. Это не очень хорошее плоское напряжение. Различается. Чем больше активных нагрузок вы подключаете к ругай еще грязнее. Итак, сборка блока питания с независимыми шинами на 12 вольт улучшает «чистоту» питания на каждой рейке. Обычно это только сделано, если у вас есть схемы, которые крайне требовательны к качеству его шины напряжения, потому что отдельные шины стоят больше денег, чем одна шина.
Кстати, на случай, если у вас возникнет соблазн подключить независимые шины на 12 вольт вместе (в Интернете я видел людей, которые думали, что это хорошая идея), не делай этого. Ваши 12-вольтовые шины могут иметь разные представления о том, какое напряжение они должны встать на рельсы. Один может немного отличаться от Другой. В конце концов, это отдельные рельсы, и у них своя схема. который контролирует напряжение. Они обязательно будут немного отличаться. И если они просто немного отличается, тогда вы можете потреблять много тока, когда вы их подключаете вместе, потому что каждая из выходных цепей пытается вызвать напряжение на одни и те же провода на другое значение.Это вызывает либо хорошее упорядоченное завершение работы от защиты от перегрузки по току или от дыма и искр. Есть некоторая сила расходные материалы, у которых есть переключатели, позволяющие собирать рельсы вместе. Один раз вы правильно установили переключатель, их можно подключить.
Многоканальные шины с ограничением по току 12 В, полученные от блока питания с одной направляющей
Этот тип блока питания имеет только один набор схем внутри блока питания, который генерирует 12 вольт. Но он разделен на отдельные 12-вольтовые выходы, каждый из которых имеет собственная схема ограничения тока.Если любой из 12-вольтных выходов превышает его текущий предел, тогда блок питания отключается. Например, у вас может быть двойной рельсовый источник питания, который имеет одну внутреннюю шину 12 В, которая может подавать 30 усилители. Затем внутри блока питания он разделен на две отдельные направляющие, каждая из которых имеет ограничение в 20 ампер. Если вы попытаетесь получить более 20 ампер от одного из Рэйл 12 вольт потом БП с выключением. Если вы попытаетесь нарисовать более 30 ампер полного тока от обоих рельсов, тогда он также отключится (при условии, что внутренняя шина 12 В также имеет ограничитель тока).
Такой вид БП существует из-за стандартов безопасности. В IED 60950 стандарт ограничивает проводку до 240 ВА (вольт-амперы). При 12 вольт это означает, что провод может выдерживать максимум 20 ампер. Стандарт существует для постарайтесь ограничить количество тока, протекающего при коротком замыкании, до БП отключается. Это может снизить вероятность того, что короткое замыкание вызовет поджечь или уничтожить что-нибудь. Так что, если вашему блоку питания требуется более 20 ампер на 12 вольт и соблюдайте стандарты безопасности, тогда потребуется более одного Шина 12 вольт.
Так что же это за БП на самом деле?
Казалось бы, ответ на этот вопрос прост. Имена три типа блоков питания немного длинноваты, поэтому сократим их до одиночных 12, независимые 12 и ограниченные по току 12. Если только характеристики вашего БП заявите, что у вас одна шина на 12 вольт, тогда вы знаете, какая из трех у тебя есть. Но если в спецификации указано, что у вас есть две или более шины на 12 вольт тогда все становится сложнее.
Если посмотреть официальный БП ATX12V руководство по дизайну, тогда вы найдете формулировка, в которой говорится, что никакая шина не может обеспечить мощность более 240 ВА.Это значит что шина 12 вольт ограничена до 20 ампер. Никогда не говорится, что блок питания должен имеют независимые шины на 12 вольт. Независимые рельсы на 12 вольт были бы законны как пока они ограничены до 20 ампер, но они не требуются. Это важно, потому что независимые 12 — это самые дорогие блоки питания для строить. Более дешевый способ соответствовать спецификации ATX12V — производить ограниченный ток 12с. Это экономит деньги за счет того, что отдельные рельсовые выходы базируются на одном внутреннем Шина 12 вольт. А когда дело доходит до компонентов ПК, они очень стараются сохранить затраты до минимума.В результате маловероятно, что ваш multi 12 вольт рейка БП фактически независимый 12с. Независимый дизайн 12s тот, у которого самые чистые 12-вольтовые шины, но ПК, кажется, нормально работают без их. Большинство нагрузок на шинах 12 В — это либо двигатели, либо постоянный / постоянный ток. конвертеры, и никто из них не особо разборчив в качестве своих входные напряжения.
Некоторые люди, проводящие тестирование источников питания, сообщают о стабильных успехах в соединение отдельных шин на 12 В.Как я упоминал ранее, это весьма вероятно, что выполнение этого с независимым 12-секундным блоком питания вызовет короткое замыкание. и выключите источник питания. Но соединяя рельсы с током ограниченный 12-секундный блок питания будет работать нормально, так как на самом деле там только один 12 вольт регулятор. Тот факт, что подключение 12 вольт-рейки настоятельно предполагают, что они на самом деле ограничены по току 12 с а не независимые 12. Более того, обзоры БП на XbitLabs действительно открывается вверх по блокам питания, чтобы взглянуть на внутреннюю конструкцию.Практически все на ПК Блоки питания, которые я когда-либо видел в обзоре, были с одним главным трансформатором. конструкции, что означает, что у них нет независимых шин на 12 В. В на самом деле, я видел в общей сложности один блок питания у которых фактически были независимые шины на 12 вольт. Этот блок питания кажется на самом деле это серверный блок питания, адаптированный для использования в ПК. Могут быть и другие независимые блоки питания 12s, но если они есть, они крайне редки. И учитывая экономичную природу ПК рынок, вы, вероятно, никогда не столкнетесь с одним.
Итак, теперь вы можете предположить, что ваш 12-вольтовый блок питания с питанием от сети ограничено 12сек. Если бы все было так просто. Intel сохраняет сеть страницу со списком источников питания, соответствующих минимальным требованиям. В этот список включено большое количество источников питания, описанных как «** Блок питания не соответствовал требованиям 240 ВА во время теста OCP». OCP стенды для защиты от перегрузки по току. Intel считает, что эти блоки питания соответствуют требованиям минимальные требования, но они не соответствуют предельному току 20 А на каждые 12 вольт рейка.Intel, похоже, довольно небрежно относится к ограничению в 240 ВА. Если вы проверите спецификации производителя на некоторые из этих блоков питания, вы обнаружите, что заявленные максимальные токи на их 12-вольтовых шинах значительно ниже 20 ампер. несмотря на то, что их доставили как минимум 20. Так что доверять Максимальный номинальный ток на их шинах 12 В. Некоторые могут доставить больше, чем в их характеристиках заявлено без срабатывания защиты от перегрузки по току.
Текущие ограниченные 12 выпускаются дороже, чем одиночные 12, которые обеспечить такую же общую мощность 12 вольт.Вдобавок ко всему, многие силы Производители считают, что ограничение тока на шине до 240 ВА не привел к какому-либо значительному улучшению безопасности блока питания в реальном мире. Затем вы также должны принять во внимание сложности с балансировкой нагрузки вызвано наличием ограниченных по току рельсов. Все это вызывает подозрение, что многие блоки питания, претендующие на иметь несколько 12-вольтных шин, на самом деле это одиночные 12 БП, несмотря на то, как они продается. Согласно результатам тестирования Intel, многие блоки питания могут подавать намного больше тока на одну шину 12 В, чем их заявленные технические характеристики и даже больше, чем предел в 20 ампер.Это понятно что производители блоков питания будут продолжать продавать их как блоки питания с несколькими шинами на 12 В. так как многие думают, что многопозиционные блоки питания на 12 В на шину лучше одиночных Блоки питания на шину на 12 вольт.
Люди, которые проводят тщательные испытания источников питания, довольно много писали о эта тема. Можете почитать их мнение о том, что это за рейки на 12 вольт внутри вашего источника питания здесь, здесь, здесь, здесь, и внизу эта страница. Типа 12-вольтных шин, которые есть в вашем блоке питания, может быть достаточно влияет на его работу в мощных компьютерах, поэтому, к сожалению, эта тема так неясна.Информация есть, но ее непросто найти. Должно быть легко узнать, какие у вас 12-вольтовые шины, но это не произойдет, пока производители блоков питания не начнут выпускать настоящие спецификации.
Итак, какой блок питания лучший?
При создании мощной машины с большим количеством оборудования люди часто сказали, что им нужно получить мульти-рейку БП на 12 вольт. Стандартное рассуждение таково: что многоканальные блоки питания на 12 рельсов обеспечивают большую мощность при 12 вольт, чем одиночные 12 вольт железнодорожные БП.Но это не очень хороший совет. Они пытаются вам сказать что более новые компьютеры создают большую нагрузку на шину 12 вольт и что вы должны Обязательно приобретите блок питания, обеспечивающий достаточный ток на 12 вольт. Как вы можете см. на этой странице самая большая нагрузка на блоке питания со временем сместился с 5 вольт на 12 вольт, так что вам нужно Будьте осторожны, чтобы выбрать правильный блок питания. Но вам не обязательно брать мульти 12 рейка БП, чтобы получить большую мощность на 12 вольт. Как вы видели выше, многие блоки питания, которые претендуют на звание нескольких блоков питания на 12-вольтовую шину, на самом деле являются одиночными 12 железнодорожные БП.Они просто продаются как мульти-12, потому что люди думают, что мульти-12 лучше. Настоящая проблема заключается в том, достаточно ли блок питания общий ток на 12 вольтах (как и на других рельсах) а не то ли имеет несколько шин на 12 В.
Помните, что независимые блоки питания 12s практически невозможно найти. Таким образом, у вас есть только два варианта: источник питания с одним внутренним напряжением 12 вольт. шина с ограничителями тока для каждой внешней шины (ограничение тока 12 с), или блок питания с одной внутренней шиной 12 В без ограничителей тока (a одиночный 12).Вы В итоге получится источник питания только с одной внутренней шиной на 12 В. Ваш Единственный реальный выбор — получить ли шины с ограничением по току на 12 вольт. Плохие новости это то маркетинговые спецификации предположительно мульти-блоков питания на 12 вольт на шину не скажу вам, настоящие ли ограничители тока или нет.
Дело в том, что если вы собираете компьютер высокого класса, блоки питания с с ограничителями тока справиться проще, чем с источниками питания с током ограничители.Предположим, вы собираете компьютер, который при полной загрузке имеет процессор, потребляющий 9 ампер при напряжении 12 вольт, и две видеокарты, потребляющие 10 усилителей на штуку при 12. Это одни из самых мощных компонентов, используемых в качестве 2006 года, но люди однозначно строят такие машины. Плюс у вас также есть жесткие диски и прочее, что в сумме дает еще 4 ампера при 12 вольт. Если у вас есть один 12-контактный блок питания, тогда вы должны убедиться, что он выдержит 12 вольт, всего 33 ампера. Но если у вас есть двойной 12-контактный блок питания с Ограничение на 20 ампер на каждой шине 12 вольт, тогда вы также должны убедиться, что вы не превышайте 20 ампер на каждой шине.Если вы превысите 20 ампер на шине, то Блок питания отключится, даже если он поддерживает более 33 ампер. Ты можно увидеть сложности решения проблемы «балансировки рельсов» на эта страница. Если вы строите не мощный компьютер, то маловероятно, что вы приблизитесь к всего 20 ампер при 12 вольт. В этом случае вам не о чем беспокоиться об ограничениях на отдельные рельсы. Только мощные компьютеры потреблять много 12-вольтного тока, который попадет в беду.
Предполагая, что два блока питания имеют одинаковую общую мощность 12 В, вам лучше от получения одного блока питания на 12-вольтную рейку, чем от многополюсного блока питания на 12 линий. Электрический ток ограничители в 12-рельсных блоках питания, по-видимому, на самом деле не повышают безопасность, но они могут сделать вашу жизнь невыносимой при создании мощного компьютера. В одиночные блоки питания на 12 В на шину вызывают меньше проблем. К сожалению, большинство БП с партии на 12 В продаются как блоки питания на 12 шин, даже если они на самом деле представляют собой одинарные 12-рельсовые блоки питания.Intel Страница может помочь идентифицировать блоки питания, у которых нет предела 240 ВА. Будем надеяться, что в будущем вся эта игра с ограничениями по току в 20 ампер будет просто исчезнет, и жизнь на 12 вольт снова станет простой. А пока твоя лучший вариант — попытаться найти блок питания без ограничителей тока, если вы собираетесь построить мощный компьютер. Если вы не можете избежать ограничителей тока, то будьте подготовлен к балансировке рельсов.
Как Intel меняет будущее блоков питания с помощью спецификации ATX12VO
Мы не часто говорим о блоках питания, но новая спецификация Intel ATX12VO — это «О» для «Оскара», а не ноль — скоро начнет появляться в готовых ПК от OEM-производителей и системных интеграторов, и она представляет собой существенное изменение в конструкции блока питания.
Спецификация ATX12VO убирает шины напряжения с блока питания, чтобы повысить стандарты эффективности ПК и соответствовать строгим правительственным постановлениям. Но хотя спецификация по существу исключает + 3,3 В, + 5 В, -12 В и + 5 В в режиме ожидания от блока питания, они никуда не денутся — они просто переходят на материнскую плату. Это еще одно большое изменение, поэтому продолжайте читать, чтобы узнать больше.
Не забирайте мой блок питания ATX12V!
Не паникуйте, домашние мастера: агенты по контролю за блоком питания не придут, чтобы забрать ваш блок питания ATX мощностью 1500 Вт (в любом случае, нет такой вещи, как полиция блока питания).ATX12VO в настоящее время нацелен в основном на OEM-производителей ПК и поставщиков систем, некоторые из которых уже пошли по этому пути самостоятельно.
ATX12VO не заменит ATX12V для индивидуальных сборщиков ПК. «Intel планирует продолжить публикацию спецификации ATX Multi Rail для обеспечения совместимости с существующими материнскими платами и блоками питания, чтобы предоставить нашим OEM-производителям и клиентам больше возможностей», — сообщили PCWorld представители Intel.
IDGСравнивая БП 2006 года (слева) с версией 2016 года (справа), мы видим, что напряжение изменилось с 3.Используйте 3 и 5,5 вольт против 12 вольт.
Почему к бордюру пинают 3,3 вольта и 5 вольт?
Тем не менее, отказ от выработки мощности 3,3 и 5 В, или «шин», в самом блоке питания является серьезным изменением. Первоначально компьютеры работали в основном на 5 вольт, но со временем они перешли в основном на 12 вольт. Один производитель блоков питания, например, указал на созданный им примерно в 2006 году блок питания мощностью 600 Вт, из которого 25 процентов его мощности было выделено на 3,3-вольтовые и 5-вольтовые шины. Если перемотать время на десять лет вперед, то аналогичный блок питания мощностью 600 Вт, произведенный той же компанией, теперь имеет бюджет всего 15 процентов на 3.Питание 3 и 5 вольт.
Эффективность (насколько эффективно блок питания преобразует переменный ток от стены в постоянный ток, необходимый ПК) также выросла. Блок питания 2006 года работал с КПД 78%, а блок питания 2016 года имел рейтинг КПД 98%. Это означает, что блок питания 2006 года должен будет потреблять около 127 Вт переменного тока от стены для выработки около 99 Вт, в то время как блок питания 2016 года будет потреблять около 100 Вт для выработки мощности 98 Вт.
Поскольку ATX12VO удаляет так много направляющих, толстый 24-контактный разъем основного питания резко упадет до крошечного 10-контактного разъема, аналогично тому, что мы видели с вычислительным элементом Intel ранее в этом году.
Gordon Mah Ung В новой спецификации Intel ATX12VOбудет использоваться 10-контактный разъем, аналогичный разъему Compute Element.
Речь идет об эффективности
Это повышение эффективности является основной причиной перехода к ATX12VO. «Поскольку настольные компьютеры продолжают становиться более энергоэффективными, потери при преобразовании переменного тока в постоянный могут стать самым большим потребителем энергии для компьютера в режиме ожидания», — заявили PCWorld представители Intel. «Существующие многорельсовые блоки питания ATX (5 В, 3.3V, 12V, -12V, 5VSB) не очень эффективны при низкой нагрузке на современные настольные компьютеры в простое », — заявляет Intel. Поскольку многорельсовый источник питания передает очень низкий ток на все шины напряжения, эффективность составляет всего от 50 до 60 процентов.
Новая спецификация ATX12VO значительно повышает эту эффективность. «Преобразование в источник питания с одной шиной питания, — поясняет Intel, — позволяет минимизировать потери при преобразовании, достигая КПД до 75 процентов при тех же уровнях нагрузки постоянного тока».
В то время как повышенная эффективность означает меньшее потребление энергии и меньшие затраты на энергоснабжение, поставщики ПК не делают этого по собственной воле.Они делают это, чтобы соответствовать все более жестким государственным нормам, регулирующим энергопотребление персональных компьютеров, в частности, требованию Tier 2 Title 20 Комиссии по энергетике Калифорнии, которое вступает в силу в июле 2021 года. OEM-производители должны использовать чрезвычайно низкие уровни мощности системы в режиме ожидания, чтобы снизить энергопотребление настольных компьютеров в режиме ожидания », — пояснила Intel.
Хотя вы можете ожидать, что CEC Калифорнии сосредоточится в основном на том, сколько энергии потребляет настольный компьютер или рабочая станция под нагрузкой, регуляторы на самом деле сосредоточены на повышении эффективности простоя и ожидания, что, по их мнению, дает наибольшую выгоду для экономии энергии.Предполагается, что рабочие столы больше простаивают, чем находятся под нагрузкой.
Gordon Mah Ung Производителиговорят, что трудно достичь все более жестких требований к питанию в режиме ожидания с помощью блоков питания, вырабатывающих напряжение 3,3 и 5 В, поэтому новая спецификация ATX12VO перенесет эту поддержку на материнские платы.
Как ATX12VO может удешевить блоки питания
ATX12VO означает изменение, и изменение может быть пугающим, но не все так плохо. Один производитель блоков питания сказал PCWorld, что переход на ATX12VO должен «значительно» удешевить сборку блоков питания.Джон Героу, директор по исследованиям и разработкам другого производителя блоков питания, Corsair, согласился с тем, что затраты должны снизиться, а эффективность повысится.
Но силовая нагрузка никуда не делась, потому что людям все еще нужны эти рельсы. «5V по-прежнему широко используются», — пояснил Героу. «Это то, что питает ваши твердотельные накопители, порты USB и всю вашу RGB-подсветку». По словам Джероу, хотя 3,3 В не так широко используются, он добавил, что Corsair использует его для питания светодиодов в кулерах AIO компании.
Вместо этого движется силовая нагрузка.Вместо того, чтобы быть маленькой печатной платой в блоке питания, в материнскую плату будет встроено питание на 3,3 и 5 вольт.
У этого изменения есть плюсы и минусы. По словам Героу из Corsair, этот шаг открывает больше возможностей для настройки. «Вы можете масштабировать + 3,3 В и + 5 В в соответствии с потребностями сборки и не более того», — сказал Джероу. С другой стороны, вы добавляете функции на материнскую плату, что означает большую стоимость и больший спрос на ограниченное пространство на плате. И, конечно же, эти контуры необходимо поддерживать в прохладном состоянии, что делает вентиляцию более серьезной проблемой.
PCWorld спросил Героу, какая из них лучше по энергоэффективности материнская плата или блок питания. Героу сказал, что ответ зависит от обстоятельств. «Материнские платы должны делать это в таком меньшем масштабе, чтобы легче регулировать эти меньшие нагрузки с помощью более мелких компонентов», — пояснил он. Но, как всем известно, материнские платы могут быть деликатными созданиями. «Эти более мелкие компоненты также более восприимчивы к повреждению из-за« плохого питания », — сказал Героу, — поэтому блок питания и материнская плата действительно должны работать вместе, как одна команда.»
Что думают производители материнских плат
Поставщики материнских плат, к которым PCWorld обратился за комментариями, в целом оптимистично оценили ATX12VO. Один из участников сказал PCWorld, что этот шаг позволит материнской плате лучше управлять последовательностью питания во время загрузки, которая может зависнуть при использовании нестандартного блока питания. Благодаря тому, что материнская плата контролирует все три направляющих, она может лучше контролировать и рассчитывать энергопотребление, а также снижает риск аномальных скачков мощности блока питания.
Опрошенные производители материнских плат также считают, что местное управление 5 и 3 вольтами.3-вольтовые шины могут быть более динамичными, что потенциально может принести пользу чувствительным к мощности устройствам, таким как USB и аудиоконтроллеры. Вендорд также сказал, что наличие напряжения на плате может улучшить защиту от перегрузки по току и перенапряжения.
Тем не менее, наши источники на материнских платах заявили, что перемещение направляющих и разъемов питания на материнскую плату означает большую нагрузку на компоненты, более крупную печатную плату и большее количество слоев печатных плат, что означает большую сложность и большую стоимость. Кроме того, когда вы переходите к потреблению более высокой мощности, скажем, 1500 Вт, рассеивание тепла становится проблемой.
Другой поставщик плат сказал, что ATX12VO «интересен» и действительно может помочь с внутренней эстетикой системы. Сегодняшние главные разъемы питания ATX12V представляют собой толстые неудобные кабели. ATXV12VO сделает разъем меньше, а кабели тоньше, так что их будет легче строить, и их будет легче завязать или спрятать.
Один поставщик заметил, что управление шумом на печатной плате может быть проблемой, не говоря уже о производительности. Первая материнская плата, совместимая с ATX12VO, в результате, вероятно, будет дорогой, но стоимость может снизиться по мере увеличения объема.
Intel В новом ATX12VO от Intelиспользуется крошечный 10-контактный разъем по сравнению с типичным 24-контактным разъемом основного питания, который сегодня используется на большинстве настольных компьютеров для дома.
Еще не для домашних мастеров
Intel впервые выпустила спецификацию ATXV12VO в июле 2019 года, но пока нет установленного графика выхода на улицу. Intel заявила, что OEM-производители действительно должны представить оборудование на его основе, когда они будут готовы.
Большая часть этого не относится к группе DIY, по крайней мере, пока. Мало того, что потребители склонны волноваться, если им внезапно требуется новая материнская плата, но и спрос и предложение застревают в том, что один поставщик назвал «игрой в курицу».«Производители блоков питания не хотят выпускать продукты ATX12VO для домашних сборщиков, пока не появятся материнские платы, поддерживающие ATX12VO. Производители материнских плат не хотят создавать продукты, пока производители блоков питания не поддержат их.
Gordon Mah UngОдной из фракций, которые могут выиграть от ATX12VO, являются платы Mini-ITX, которые могут сэкономить место только в самом разъеме. Вопрос только в том, сколько места потребуется для добавления на плату 3,3-вольтовых и 5-вольтовых шин, а также разъемов питания SATA.
Как может выглядеть будущая сборка с ATX12VO?
Мы до сих пор не знаем, как будет выглядеть материнская плата ATX12VO и сколько она будет стоить. Сама плата, вероятно, будет немного мощнее, так как преобразование мощности 3,3 В и 5 В будет обрабатываться модулями на ней. Однако, прочитав спецификацию и поговорив с поставщиками, будущая сборка DIY с ATX12VO, вероятно, будет аналогична сегодняшним сборкам.
Главный разъем питания ATX12VO будет намного меньше, а кабель более гибким.Если на плате достаточно питания от единственного разъема, производитель платы может даже не потребовать от вас подключения вспомогательного 8-контактного разъема питания. Спецификация допускает вспомогательное 12-вольтовое питание через разъем EPS12V.
Одна сложная часть может быть связана с подключением любых дисков с питанием от SATA, таких как жесткие диски или 2,5-дюймовые твердотельные накопители. Сегодня вы подключите их непосредственно к блоку питания. В сборке ATX12VO вам нужно сначала подключить кабель питания к материнской плате, а затем к накопителю. Спецификация позволяет использовать до шести разъемов питания, но поставщик материнской платы определяет, сколько разъемов питания имеется.Эти же разъемы питания SATA будут использоваться для питания ваших дисков, а также вашего кулера AIO / CLC или светодиодов RGB.
Если вы хотите подключить старый коннектор Molex, новая спецификация позволяет поставщикам блоков питания предлагать его напрямую от блока питания, но, конечно, только с напряжением 12 вольт. Если вы подключаете действительно старое 5-вольтовое устройство Molex, вам нужно будет получить его от питания материнской платы через разъем SATA-to-Molex.
Для домашнего мастера все будет по-другому. Реальный вопрос в том, как это будет работать с материнскими платами и блоками питания.
Gordon Mah Ung Башня Mac Pro от Appleпередает питание графическим процессорам через материнскую плату. Аналогичная система будет и в ATX12VO, но только для разъемов питания SATA.
Примечание. Когда вы покупаете что-то после перехода по ссылкам в наших статьях, мы можем получить небольшую комиссию.Прочтите нашу политику в отношении партнерских ссылок для получения более подробной информации.Компьютерные блоки питания — iFixit
Блокам питанияне хватает гламура, поэтому почти все воспринимают их как должное. Это большая ошибка, потому что блок питания выполняет две важные функции: он обеспечивает регулируемое питание для каждого компонента системы и охлаждает компьютер. Многие люди, жалующиеся на частые сбои Windows, по понятным причинам винят Microsoft. Но, не извиняясь перед Microsoft, правда в том, что многие такие сбои вызваны некачественными или перегруженными источниками питания.
Если вам нужна надежная и безаварийная система, используйте высококачественный источник питания. Фактически, мы обнаружили, что использование высококачественного источника питания позволяет даже незначительным материнским платам, процессорам и памяти работать с разумной стабильностью, тогда как использование дешевого источника питания делает нестабильными даже первоклассные компоненты.
Печальная правда в том, что купить компьютер с первоклассным блоком питания практически невозможно. Производители компьютеров буквально считают гроши. Хорошие блоки питания не приносят маркетинговых очков, поэтому немногие производители готовы тратить от 30 до 75 долларов дополнительно на лучший блок питания.Для своих линий премиум-класса производители первого уровня обычно используют так называемые блоки питания среднего уровня. Для массового рынка, потребительского класса, даже известные производители могут пойти на компромисс с блоком питания, чтобы соответствовать цене, используя то, что мы считаем предельными блоками питания как с точки зрения производительности, так и с точки зрения качества конструкции.
В следующих разделах подробно описано, что вам нужно, чтобы понять, как выбрать хороший запасной блок питания.
Наиболее важной характеристикой блока питания является его форм-фактор , который определяет его физические размеры, расположение монтажных отверстий, типы физических разъемов и их расположение выводов и т. Д.Все современные форм-факторы блоков питания заимствованы из оригинального форм-фактора ATX , опубликованного Intel в 1995 году.
При замене блока питания важно использовать блок правильного форм-фактора, чтобы не только убедиться, что блок питания физически соответствует корпусу, но и обеспечивает правильные типы разъемов питания для материнской платы и периферийных устройств. В современных и новейших системах обычно используются три форм-фактора блоков питания:
ATX12V блоки питания являются самыми большими физически, доступными в самых высоких номинальных мощностях и, безусловно, самыми распространенными.В полноразмерных настольных системах используются блоки питания ATX12V, как и в большинстве систем mini-, mid- и full-tower. Рисунок 16-1 показывает блок питания Antec TruePower 2.0, который является типичным устройством ATX12V.
Рисунок 16-1: Блок питания Antec TruePower 2.0 ATX12V (изображение любезно предоставлено Antec)
SFX12V (s-for-small) блоки питания выглядят как уменьшенные блоки питания ATX12V и используются в основном в системах microATX и FlexATX малого форм-фактора. Источники питания SFX12V имеют меньшую мощность, чем блоки питания ATX12V, обычно от 130 Вт до 270 Вт для SFX12V по сравнению с 600 Вт или более для ATX12V и обычно используются в системах начального уровня.Системы, которые были построены с блоками питания SFX12V, могут принять замену ATX12V, если блок ATX12V физически подходит для корпуса.
TFX12V (t-for-thin) блоки питания физически удлинены (по сравнению с кубической формой блоков ATX12V и SFX12V), но имеют мощность, аналогичную блокам SFX12V. Источники питания TFX12V используются в некоторых системах малого форм-фактора (SFF) с общим объемом системы от 9 до 15 литров. Из-за их необычной физической формы вы можете заменить блок питания TFX12V только другим блоком TFX12V.
Хотя это менее вероятно, вы можете встретить источник питания EPS12V (используется почти исключительно в серверах), источник питания CFX12V (используется в системах microBTX) или источник питания LFX12V (используется в системах picoBTX). . Подробные спецификации для всех этих форм-факторов можно загрузить с http://www.formfactors.org.
МОДИФИКАТОР 12V
В 2000 году, чтобы удовлетворить требованиям своих новых процессоров Pentium 4 + 12В, Intel добавила новый разъем питания + 12В в спецификацию ATX и переименовала спецификацию в ATX12V.С тех пор каждый раз, когда Intel обновляла спецификацию блока питания или создавала новую, ей требовался этот разъем +12 В и использовался модификатор 12 В в названии спецификации. В старых системах используются блоки питания не-12V ATX или SFX. Вы можете заменить блок питания ATX блоком ATX12V или блок питания SFX блоком SFX12V (или, возможно, ATX12V).
Изменения от более старых версий спецификации ATX к более новым версиям и от ATX к более мелким вариантам, таким как SFX и TFX, были эволюционными, с учетом обратной совместимости.Все аспекты различных форм-факторов, включая физические размеры, расположение монтажных отверстий и кабельные разъемы, строго стандартизированы, что означает, что вы можете выбирать среди множества стандартных блоков питания для ремонта или модернизации большинства систем, даже более старых моделей.
ВСЕ ПОДХОДЯЩИЕ СОКЫ
При замене блока питания важно получить замену, подходящую для вашего случая. Если ваш старый блок питания имеет маркировку ATX 1.X или 2.X или ATX12V 1.X или 2.X, вы можете установить любой текущий блок питания ATX12V. Если он имеет маркировку SFX или SFX12V, вы можете установить любой текущий блок питания SFX12V или, если в корпусе достаточно свободного пространства, блок ATX12V. Если старый блок питания имеет маркировку TFX12V, подойдет только другой блок TFX12V. Если на вашем старом блоке питания нет маркировки с указанием спецификации и соответствия версии, поищите на веб-сайте производителя номер модели вашего текущего блока питания. Если все остальное не помогает, измерьте свой текущий блок питания и сравните его размеры с размерами блоков, которые вы собираетесь купить.
Вот еще несколько важных характеристик блоков питания:
Номинальная мощность, которую может выдать блок питания. Номинальная мощность — это составная цифра, определяемая путем умножения значений силы тока, доступной для каждого из нескольких напряжений, подаваемых блоком питания ПК. Номинальная мощность в основном полезна для общего сравнения источников питания. Что действительно имеет значение, так это индивидуальная сила тока, доступная при разных напряжениях, которые значительно различаются между номинально аналогичными источниками питания.
ТЕМПЕРАТУРА
Номинальные значения мощности не имеют смысла, если в них не указана температура, при которой проводился расчет. С повышением температуры выходная мощность источника питания уменьшается. Например, мощность ПК и охлаждение составляет 40 ° C, что является реальной температурой для рабочего источника питания. Большинство блоков питания рассчитаны только на 25 C. Эта разница может показаться незначительной, но блок питания мощностью 450 Вт при 25 C может выдавать только 300 Вт при 40 C.Стабилизация напряжения также может пострадать при повышении температуры, что означает, что источник питания, который номинально соответствует спецификациям регулирования напряжения при 25 ° C, может выходить за рамки технических требований при нормальной работе при 40 ° C или около того.
Отношение выходной мощности к входной, выраженное в процентах. Например, блок питания, который выдает 350 Вт на выходе, но требует 500 Вт на входе, имеет КПД 70%. Как правило, хороший источник питания имеет КПД от 70% до 80%, хотя КПД зависит от того, насколько сильно он загружен.Расчет эффективности затруднен, поскольку блоки питания ПК представляют собой импульсные блоки питания , а не линейные блоки питания . Самый простой способ подумать об этом — представить себе импульсный источник питания, потребляющий большой ток в течение части времени, в течение которого он работает, и не ток в остальное время. Процент времени, в течение которого он потребляет ток, называется коэффициентом мощности , который обычно составляет 70% для стандартного блока питания ПК. Другими словами, блок питания ПК мощностью 350 Вт фактически требует входной мощности 500 Вт в 70% случаев и 0 Вт в 30% случаев.
Сочетание коэффициента мощности с эффективностью дает некоторые интересные цифры. Блок питания выдает 350 Вт, но коэффициент мощности 70% означает, что ему требуется 500 Вт в 70% случаев. Однако эффективность 70% означает, что вместо фактического потребления 500 Вт он должен потреблять больше в соотношении 500 Вт / 0,7 или около 714 Вт. Если вы посмотрите на табличку с техническими характеристиками блока питания на 350 Вт, вы можете обнаружить, что для обеспечения номинальной мощности 350 Вт, что составляет 350 Вт / 110 В или около 3,18 А, он должен фактически потреблять до 714 Вт / 110 В или около 6.5 ампер. Другие факторы могут увеличить эту фактическую максимальную силу тока, поэтому часто встречаются блоки питания мощностью 300 или 350 Вт, которые на самом деле потребляют максимум 8 или 10 ампер. Это отклонение имеет значение для планирования как для электрических цепей, так и для ИБП, размеры которых должны соответствовать фактическому потреблению тока, а не номинальной выходной мощности.
Высокая эффективность желательна по двум причинам. Во-первых, это снижает ваши счета за электроэнергию. Например, если ваша система фактически потребляет 200 Вт, блок питания с КПД 67% потребляет 300 Вт (200/0.67), чтобы обеспечить эти 200 Вт, тратя впустую 33% электроэнергии, за которую вы платите. Блок питания с эффективностью 80% потребляет всего 250 Вт (200 / 0,80), чтобы обеспечить те же 200 Вт для вашей системы. Во-вторых, потраченная впустую энергия преобразуется в тепло внутри вашей системы. Благодаря источнику питания с КПД 67% ваша система должна избавиться от 100 Вт избыточного тепла по сравнению с половиной от этого показателя при использовании источника питания с КПД 80%.
Коэффициент мощности
Коэффициент мощности определяется делением истинной мощности (Вт) на полную мощность (Вольт x Ампер или ВА).Стандартные блоки питания имеют коэффициент мощности в диапазоне от 0,70 до 0,80, а лучшие блоки приближаются к 0,99. В некоторых новых источниках питания используется пассивная или активная коррекция коэффициента мощности (PFC) , которая может увеличить коэффициент мощности до диапазона от 0,95 до 0,99, уменьшая пиковый ток и ток гармоник. В отличие от стандартных источников питания, которые попеременно потребляют большой ток и его отсутствие, источники питания с коррекцией коэффициента мощности постоянно потребляют умеренный ток. Поскольку электрическая проводка, автоматические выключатели, трансформаторы и ИБП должны быть рассчитаны на максимальное потребление тока, а не на среднее потребление тока, использование источника питания PFC снижает нагрузку на электрическую систему, к которой подключается источник питания PFC.
Одно из главных различий между источниками питания премиум-класса и менее дорогими моделями заключается в том, насколько хорошо они регулируются. В идеале источник питания принимает питание переменного тока, которое, возможно, является шумным или выходит за рамки технических характеристик, и преобразует эту мощность переменного тока в плавное, стабильное питание постоянного тока без артефактов. На самом деле, ни один блок питания не соответствует идеалу, но хорошие блоки питания намного ближе, чем дешевые. Процессоры, память и другие компоненты системы рассчитаны на работу с чистым стабильным напряжением постоянного тока.Любое отклонение от этого может снизить стабильность системы и сократить срок службы компонентов. Вот ключевые вопросы регулирования:
Идеальный источник питания принимает входной синусоидальный сигнал переменного тока и обеспечивает совершенно ровный выход постоянного тока. Реальные источники питания фактически обеспечивают выход постоянного тока с наложенной на него небольшой составляющей переменного тока. Эта составляющая переменного тока называется пульсацией и может быть выражена как размах напряжения (p-p) в милливольтах (мВ) или как процент от номинального выходного напряжения.У высококачественного источника питания пульсации могут составлять 1%, что может быть выражено как 1%, или как фактическое изменение напряжения p-p для каждого выходного напряжения. Например, при +12 В пульсации 1% соответствуют + 0,12 В, обычно выражаемым как 120 мВ. Источник питания среднего уровня может ограничивать пульсации до 1% на некоторых выходных напряжениях, но подниматься до 2% или 3% на других. У дешевых блоков питания пульсация может составлять 10% и более, что делает запуск ПК бесполезным.
Нагрузка на блок питания ПК может значительно меняться во время рутинных операций; например, когда включается лазер записывающего устройства DVD или оптический привод раскручивается и замедляется. Регулировка нагрузки выражает способность источника питания обеспечивать номинальную выходную мощность при каждом напряжении при изменении нагрузки от максимального до минимального, выраженное как изменение напряжения во время изменения нагрузки, либо в процентах, либо в разностях размахов напряжения. Источник питания с жесткой регулировкой нагрузки обеспечивает почти номинальное напряжение на всех выходах независимо от нагрузки (конечно, в пределах своего диапазона). Первоклассный источник питания регулирует напряжения на шинах критического напряжения +3.3 В, + 5 В и + 12 В с точностью до 1%, с регулировкой 5% на менее важных шинах 5 В и 12 В. Отличный источник питания может регулировать напряжение на всех критических шинах с точностью до 3%. Источник питания среднего уровня может регулировать напряжение на всех критических шинах с точностью до 5%. Дешевые блоки питания могут отличаться на 10% и более на любой рейке, что недопустимо.
Идеальный источник питания должен обеспечивать номинальное выходное напряжение при любом входном переменном напряжении в пределах своего диапазона. В реальных источниках питания выходное напряжение постоянного тока может незначительно изменяться при изменении входного переменного напряжения.Так же, как регулирование нагрузки описывает эффект внутренней нагрузки, линейное регулирование можно рассматривать как описывающее эффекты внешней нагрузки; например, внезапный провал подаваемого сетевого напряжения переменного тока при включении двигателя лифта. Регулировка линии измеряется путем удержания всех других переменных постоянными и измерения выходных напряжений постоянного тока, когда входное напряжение переменного тока изменяется в пределах входного диапазона. Источник питания с жесткой регулировкой линии обеспечивает выходное напряжение в пределах спецификации, поскольку входное напряжение изменяется от максимального до минимально допустимого.Линейное регулирование выражается так же, как регулирование нагрузки, и допустимые проценты такие же.
Вентилятор блока питания — один из основных источников шума в большинстве ПК. Если ваша цель — снизить уровень шума вашей системы, важно выбрать подходящий источник питания. Блоки питания с пониженным уровнем шума Модели , такие как Antec TruePower 2.0 и SmartPower 2.0, Enermax NoiseTaker, Nexus NX, PC Power & Cooling Silencer, Seasonic SS и Zalman ZM, предназначены для минимизации шума вентилятора и могут быть основой системы, которая почти не слышна в тихой комнате. Бесшумные блоки питания , такие как Antec Phantom 350 и Silverstone ST30NF, вообще не имеют вентиляторов и почти полностью бесшумны (электрические компоненты могут немного гудеть). На практике безвентиляторный источник питания редко дает много преимуществ. Они довольно дороги по сравнению с источниками питания с пониженным уровнем шума, а блоки с пониженным уровнем шума достаточно тихие, поэтому любой шум, который они производят, компенсируется шумом от вентиляторов корпуса, кулера ЦП, шума вращения жесткого диска и т. Д.
Полет с рельсов
Регулирование нагрузки на шину +12 В стало гораздо более важным, когда Intel поставила Pentium 4. В прошлом +12 В использовалось в основном для работы приводных двигателей. С Pentium 4 Intel начала использовать 12V VRM для обеспечения более высоких токов, которые требуются процессорам Pentium 4. Последние процессоры AMD также используют 12 В VRM для питания процессора. Блоки питания, совместимые с ATX12V, разработаны с учетом этого требования. Старые и / или недорогие блоки питания ATX, хотя они могут быть рассчитаны на достаточную силу тока на шине +12 В для поддержки современного процессора, могут не иметь надлежащих нормативов для правильной работы.
За последние несколько лет в источниках питания произошли некоторые существенные изменения, все из которых прямо или косвенно явились результатом повышенного энергопотребления и изменений напряжений, используемых современными процессорами и другими компонентами системы. При замене блока питания в старой системе важно понимать различия между старым блоком питания и существующими блоками, поэтому давайте кратко рассмотрим эволюцию блоков питания семейства ATX на протяжении многих лет.
На протяжении 25 лет каждый блок питания ПК снабжен стандартными разъемами питания Molex (жесткий диск) и Berg (дисковод для гибких дисков), которые используются для питания приводов и аналогичных периферийных устройств. Источники питания различаются типами разъемов, которые они используют для питания самой материнской платы. Исходная спецификация ATX определяла 20-контактный основной разъем питания ATX , показанный на Рисунок 16-2 . Этот разъем использовался всеми блоками питания ATX и ранними блоками питания ATX12V.
Рисунок 16-2: 20-контактный разъем питания ATX / ATX12V
20-контактный основной разъем питания ATX был разработан в то время, когда процессоры и память использовали + 3,3 В и + 5 В, поэтому для этого разъема определены многочисленные линии + 3,3 В и + 5 В. Контакты в корпусе разъема рассчитаны на ток не более 6 ампер. Это означает, что три линии + 3,3 В могут нести 59,4 Вт (3,3 В x 6 А x 3 линии), четыре линии + 5 В могут передавать 120 Вт, а одна линия + 12 В может нести 72 Вт, что в сумме составляет около 250 Вт.
Этой установки было достаточно для ранних систем ATX, но поскольку процессоры и память стали более требовательными к энергии, разработчики систем вскоре поняли, что 20-контактный разъем обеспечивает недостаточный ток для более новых систем. Их первая модификация заключалась в добавлении вспомогательного разъема питания ATX , показанного на рис. 16-3 . Этот разъем, определенный в спецификациях ATX 2.02 и 2.03 и в ATX12V 1.X, но исключенный из более поздних версий спецификации ATX12V, использует контакты, рассчитанные на 5 ампер.Таким образом, две его линии + 3,3 В добавляют 33 Вт к пропускной способности + 3,3 В, а одна линия + 5 В добавляет 25 Вт к пропускной способности + 5 В, что в целом добавляет 58 Вт.
Рисунок 16-3: 6-контактный разъем вспомогательного питания ATX / ATX12V
Intel отказалась от разъема вспомогательного питания из более поздних версий спецификации ATX12V, поскольку он был излишним для процессоров Pentium 4. Pentium 4 использовал питание +12 В, а не + 3,3 В и + 5 В, которые использовались более ранними процессорами и другими компонентами, поэтому больше не было необходимости в дополнительных +3.3В и + 5В. Большинство производителей блоков питания прекратили предоставление разъема вспомогательного питания вскоре после поставки Pentium 4 в начале 2000 года. Если вашей материнской плате требуется разъем вспомогательного питания, это является достаточным доказательством того, что эта система слишком старая, чтобы ее можно было экономически модернизировать.
Хотя подключенное вспомогательное питание обеспечивало дополнительный ток + 3,3 В и + 5 В, оно никак не увеличивало ток +12 В, доступный для материнской платы, и это оказалось критически важным. Материнские платы используют VRM (модули регулятора напряжения) для преобразования относительно высоких напряжений, подаваемых блоком питания, в низкие напряжения, необходимые процессору.На более ранних материнских платах использовались VRM + 3,3 В или + 5 В, но повышенное энергопотребление Pentium 4 привело к необходимости перехода на VRM + 12 В. Это создало серьезную проблему. Основной 20-контактный разъем питания может обеспечить мощность не более 72 Вт при напряжении +12 В, что намного меньше, чем требуется для питания процессора Pentium 4. Дополнительный разъем питания не добавил +12 В, поэтому потребовался еще один дополнительный разъем.
Intel обновила спецификацию ATX, включив новый 4-контактный разъем 12 В, названный + 12V Power Connector (или, случайно, разъем P4 , хотя последние процессоры AMD также используют этот разъем).В то же время они переименовали спецификацию ATX в спецификацию ATX12V, чтобы отразить добавление разъема +12 В. Разъем + 12В, показанный на Рис. 16-4 , имеет два контакта + 12В, каждый рассчитан на ток 8 ампер, что в сумме дает 192 Вт мощности + 12В, и два контакта заземления. Блок питания ATX12V с мощностью 72 Вт от +12 В, обеспечиваемой 20-контактным основным разъемом питания, может обеспечить до 264 Вт от +12 В, что более чем достаточно даже для самых быстрых процессоров.
Рисунок 16-4: 4-контактный разъем питания +12 В
Разъем питания +12 В предназначен для подачи питания на процессор и подключается к разъему на материнской плате рядом с разъемом процессора, чтобы минимизировать потери мощности между разъемом питания и процессором.Поскольку теперь процессор питался от разъема +12 В, Intel удалила вспомогательный разъем питания, когда выпустила спецификацию ATX12V 2.0 в 2000 году. С того времени все новые блоки питания поставлялись с разъемом +12 В, а некоторые по сей день продолжают для подключения вспомогательного силового разъема.
Эти изменения с течением времени означают, что блок питания в более старой системе может иметь одну из следующих четырех конфигураций (от самой старой до новейшей):
- Только 20-контактный разъем основного питания
- 20-контактный разъем основного питания и 6-контактный вспомогательный разъем питания
- 20-контактный разъем основного питания, 6-контактный вспомогательный разъем питания и 4-контактный разъем + 12 В
- 20 -контактный основной разъем питания и 4-контактный разъем +12 В
Если материнская плата не требует 6-контактного вспомогательного разъема, вы можете использовать любой текущий блок питания ATX12V для замены любой из этих конфигураций.
Это подводит нас к нынешней спецификации ATX12V 2.X, которая внесла больше изменений в стандартные разъемы питания. Введение видеостандарта PCI Express в 2004 году снова подняло старую проблему: ток +12 В, доступный на 20-контактном основном разъеме питания, ограничен до 6 ампер (или 72 Вт в сумме). Разъем +12 В может обеспечить достаточный ток +12 В, но он предназначен для процессора. Быстрая видеокарта PCI Express может легко потреблять более 72 Вт тока +12 В, поэтому нужно что-то делать.
Intel могла бы представить еще один дополнительный разъем питания, но вместо этого она решила на этот раз укусить пулю и заменить устаревший 20-контактный основной разъем питания новым основным разъемом питания, который может подавать больше тока +12 В на материнскую плату. Результатом стал новый 24-контактный разъем основного питания ATX12V 2.0 , показанный на рис. 16-5 , .
Рисунок 16-5: 24-контактный основной разъем питания ATX12V 2.0
К 24-контактному основному разъему питания добавляются четыре провода к 20-контактному основному разъему питания, один провод заземления (COM) и один дополнительный провод для +3.3В, + 5В и + 12В. Как и в случае 20-контактного разъема, контакты внутри корпуса 24-контактного разъема рассчитаны на ток не более 6 ампер. Это означает, что четыре линии + 3,3 В могут нести 79,2 Вт (3,3 В x 6 А x 4 линии), пять линий + 5 В могут нести 150 Вт, а две линии + 12 В могут нести 144 Вт, что в сумме составляет около 373 Вт. С мощностью 192 Вт от +12 В, обеспечиваемой разъемом питания + 12 В, современный блок питания ATX12V 2.0 может обеспечить в общей сложности около 565 Вт.
Казалось бы, 565 Вт хватит для любой системы.Увы, неправда. Проблема, как обычно, в том, какие напряжения и где доступны. 24-контактный основной разъем питания ATX12V 2.0 выделяет одну из своих линий +12 В для видеосигнала PCI Express, что на момент выпуска спецификации считалось достаточным. Но самые быстрые современные видеокарты PCI Express могут потреблять намного больше, чем может обеспечить выделенная линия +12 В 72 Вт. Например, у нас есть видеоадаптер NVIDIA 6800 Ultra с пиковым потреблением +12 В, равным 110 Вт.
Очевидно, были необходимы какие-то средства обеспечения дополнительной энергии.Некоторые сильноточные видеокарты AGP решают эту проблему, включая разъем жесткого диска Molex, к которому можно подключить стандартный кабель питания для периферийных устройств. Видеокарты PCI Express используют более элегантное решение. 6-контактный разъем питания PCI Express для графической подсистемы , показанный на рис. 16-6 , был определен PCISIG (http://www.pcisig.org), организацией, ответственной за поддержку стандарта PCI Express, специально для обеспечения дополнительных Ток +12 В, необходимый для быстрых видеокарт PC Express.Хотя он еще не является официальной частью спецификации ATX12V, этот разъем хорошо стандартизирован и присутствует в большинстве современных источников питания. Мы ожидаем, что он будет включен в следующее обновление спецификации ATX12V.
Рисунок 16-6: 6-контактный разъем питания графического адаптера PCI Express
В разъеме питания графического адаптера PCI Express используется штекер, аналогичный разъему питания +12 В, с контактами, также рассчитанными на ток 8 А. С тремя линиями +12 В при 8 А каждая, разъем питания графического адаптера PCI Express может обеспечить до 288 Вт (12 x 8 x 3) тока +12 В, которого должно хватить даже для самых быстрых графических карт будущего.Поскольку некоторые материнские платы PCI Express могут поддерживать двойные видеокарты PCI Express, некоторые блоки питания теперь включают два графических разъема PCI Express, что увеличивает общую мощность +12 В, доступную для видеокарт, до 576 Вт. В дополнение к 565 Вт, доступным на 24-контактном основном разъеме питания и разъеме +12 В, это означает, что можно построить источник питания ATX12V 2.0 с общей мощностью 1141 Вт. (Самый большой из известных нам — это блок мощностью 1000 Вт, доступный от PC Power & Cooling.)
Со всеми изменениями, произошедшими с годами, разъемы питания устройств остались без внимания.Источники питания, выпущенные в 2000 году, включали те же разъемы питания Molex (жесткий диск) и Berg (дисковод для гибких дисков), что и блоки питания 1981 года. Ситуация изменилась с появлением Serial ATA, в котором используется другой разъем питания. 15-контактный разъем питания SATA , показанный на Рисунок 16-7 , включает шесть контактов заземления и по три контакта для + 3,3 В, + 5 В и + 12 В. В этом случае большое количество выводов, находящихся под напряжением, не предназначено для поддержки более высокого тока, жесткий диск SATA потребляет небольшой ток, и каждый диск имеет свой собственный разъем питания, но для поддержки включения до отключения и отключения до включения. соединения, необходимые для горячего подключения или подключения / отключения привода без отключения питания.
Рисунок 16-7: Разъем питания Serial ATA ATX12V 2.0
Несмотря на все эти изменения на протяжении многих лет, спецификация ATX пошла на многое, чтобы гарантировать обратную совместимость новых блоков питания со старыми материнскими платами. Это означает, что, за очень немногими исключениями, вы можете подключить новый блок питания к старой материнской плате или наоборот.
ОСТЕРЕГАЙТЕСЬ СТАРЫХ СИСТЕМ DELL
В конце 1990-х годов в течение нескольких лет Dell использовала стандартные разъемы на своих материнских платах и блоках питания, но с нестандартными контактами.Подключение стандартного блока питания ATX к одной из этих нестандартных материнских плат Dell (или наоборот) может привести к повреждению материнской платы и / или блока питания. К счастью, эти системы настолько устарели, что их уже нельзя модернизировать с экономической точки зрения. Тем не менее, если вы обнаружите, что заменяете блок питания или материнскую плату в более старой системе Dell, будьте абсолютно уверены, что это не одно из нестандартных устройств Dell. Для этого проверьте номер модели системы на веб-сайте PC Power & Cooling (http: // www.pcpowerandcooling.com). PC Power & Cooling продает запасные блоки питания для этих нестандартных систем Dell, но, учитывая, что самая молодая такая система сейчас довольно старая, можно только догадываться, как долго PC Power & Cooling будет продолжать продавать эти нестандартные блоки питания.
Даже изменение основного разъема питания с 20 на 24 контакта не представляет проблемы, потому что новый разъем сохраняет те же соединения контактов и шпонку для контактов с 1 по 20, а просто добавляет контакты с 21 по 24 на конец более старого 20-контактного разъема. расположение контактов.Как показано на рис. 16-8 , старый 20-контактный разъем питания идеально подходит для 24-контактного разъема основного питания. Фактически, разъем главного разъема питания на всех 24-контактных материнских платах, которые мы видели, разработан специально для подключения 20-контактного кабеля. Обратите внимание на выступ во всю длину на гнезде материнской платы на рис. 16-8 , который предназначен для фиксации 20-контактного кабеля на месте.
Рисунок 16-8: 20-контактный основной разъем питания ATX, подключенный к 24-контактной материнской плате
Разумеется, 20-контактный кабель лишних +3 не включает.Провода 3 В, + 5 В и + 12 В, имеющиеся на 24-контактном кабеле, могут вызвать потенциальную проблему. Если материнской плате для работы требуется дополнительный ток, доступный на 24-контактном кабеле, она не сможет работать с 20-проводным кабелем. В качестве обходного пути большинство 24-контактных материнских плат имеют стандартный разъем Molex (жесткий диск) где-то на материнской плате. Если вы используете эту материнскую плату с 20-жильным кабелем питания, вы также должны подключить кабель Molex от источника питания к материнской плате. Этот кабель Molex обеспечивает дополнительные + 5 В и + 12 В (но не +3.3 В), необходимое материнской плате для работы. (Большинство материнских плат не имеют требований к напряжению + 3,3 В выше, чем может удовлетворить 20-проводной кабель; те, которые имеют, могут использовать дополнительный VRM для преобразования некоторых дополнительных + 12 В, подаваемых через разъем Molex, в + 3,3 В.)
Поскольку основной 24-контактный разъем питания ATX является расширенным набором 20-контактной версии, также можно использовать 24-контактный блок питания с 20-контактной материнской платой. Для этого вставьте 24-контактный кабель в 20-контактный разъем так, чтобы четыре неиспользуемых контакта свисали с края.Кабель и гнездо материнской платы имеют ключ для предотвращения неправильной установки кабеля. Одна из возможных проблем проиллюстрирована на рис. 16-9 . На некоторых материнских платах конденсаторы, разъемы или другие компоненты помещаются так близко к разъему основного питания ATX, что недостаточно свободного места для дополнительных четырех контактов 24-контактного кабеля питания. На рис. 16-9 , например, эти дополнительные контакты вторгаются во вторичный разъем ATA.
Рисунок 16-9: 24-контактный основной разъем питания ATX, подключенный к 20-контактной материнской плате
К счастью, есть простой способ решения этой проблемы.Различные компании производят переходные кабели с 24 на 20 контактов, подобные показанному на Рисунок 16-10 . 24-контактный кабель от источника питания подключается к одному концу кабеля (левый конец на этом рисунке), а другой конец представляет собой стандартный 20-контактный разъем, который подключается непосредственно к 20-контактному разъему на материнской плате. Многие качественные блоки питания включают в себя такой адаптер в комплекте.