Бетон диэлектрик или проводник – что из перечисленного проводники а что изоляторы; алюминий, каучук, медь, эбонит, фарфор, пластмасса, шелк, сталь, стекло

Использование бетона в качестве электропроводного материала |

Использование бетона в качестве электропроводного материала

В настоящее время бетонные и железобетонные конструкции находят все более широкое применение в различных областях техники. Новые области применения бетона потребовали и новых зйаний о его свойствах. Наряду с изучением физико-механических свойств сейчас стали уделять большое внимание электротехническим свойствам бетона и, как следствие этого, были начаты работы по созданию бетонов с заранее заданными электрическими характеристиками.

Во многих странах ведутся работы по созданию специальных бетонов с заданными электрическими свойствами, а также по исследованию и использованию электрических свойств обычных строительных бетонов. Интерес к этой работе обусловлен большими перспективами, которые откроются перед строительством, электроэнергетикой и другими отраслями техники в том случае, если будут найдены надежные пути превращения бетона в электропроводящий материал.

Изучение электрических свойств бетонов и создание новых типов электропроводящих бетонов идет в двух направлениях.

1.Создание электропроводящих бетонов с малым удельным электрическим сопротивлением и стабильностью электрических параметров во времени при изменяющихся условиях эксплуатации.

2.Изучение электрических свойств существующих бетонов и создание бетонов с улучшенными электроизоляционными свойствами: высоким удельным электрическим сопротивлением, малым значением диэлектрических потерь и диэлектрической проницаемости, высокой электрической прочностью.

Разделение материалов на конструктивные и электротехнические существует во всех отраслях техники. Это объясняется тем, что известные электротехнические материалы по технико-экономическим показателям, а иногда из-за специфических физико-механических свойств, не могут быть использованы как конструктивные. Попытки использовать электроизоляционные или электропроводящие свойства обычного бетона делались и раньше, однако все они, как правило, неудачны, так как бетон не обладал стабильными электрическими свойствами, а регулировать их в заданных границах не представлялось возможным. Поэтому создание на основе обычного бетона материала, обладающего высокими конструктивными и необходимыми заранее заданными электрическими свойствами, является задачей большого народнохозяйственного значения.

Обычный бетон в определенных температурно-влажностных условиях обладает способностью проводить электрический ток, однако это его свойство является не стабильным. Кроме того, в большинстве случаев электропроводность обычного бетона рассматривается как вредная, так как с ней связана электрокоррозия арматуры в железобетонных конструкциях под воздействием блуждающих токов.

В ряде случаев эту способность пытаются использовать для целей заземления некоторых строительных конструкций, работающих под воздействием электрического тока. Последнее возможно лишь в том случае, если бетон будет стабильным проводником тока. Однако при сезонных колебаниях температуры и влажности электрическое сопротивление обычного бетона меняется на 6—8 порядков. Объясняется это тем, что он обладает ионным характером проводимости. При насыщении бетона водой происходит переход легкорастворимых компонентов цементного камня в жидкую фазу и он становится полупроводником с низким удельным электрическим сопротивлением. Высушивание же бетона приводит к росту его сопротивления.

Предлагались различные способы улучшения электрических свойств бетона. Большинство из них основывалось на том, чтобы воспрепятствовать проникновению влаги внутрь бетона или уменьшить ее влияние. Разработанный во Франции так называемый «изоляционный бетон Ламберта» приготавливался на водных битумных эмульсиях. Заполняя поры, образующиеся в теле бетона, битум затруднял его увлажнение, стабилизируя тем самым электрическое сопротивление. Бетон, предварительно высушенный, а затем покрытый или пропитанный с поверхности различными изоляционными составами, применяется во многих странах для изготовления токоограничивающих бетонных реакторов. В целях увеличения электрического сопротивления бетона, предназначенного для изготовления железобетонных шпал, в его состав вводились ионно-обменные смолы, которые связывали образующиеся при увлажнении бетона свободные ионы. Уменьшение концентрации ионов в жидкой фазе приводило к снижению электропроводности как самой жидкой фазы, так и бетона в целом. Наконец, высказывались предложения о получении изоляционных бетонов на основе полной замены цементной связки на полимерную. В зарубежной практике наибольшее распространение получил способ использования полимерных связок для получения электро-изоляцонных пластобетонов, в частности эпоксидного бетона.

Попытки использовать проводящие свойства бетона во влажном состоянии имели ограниченный успех. Объясняется это тем, что влажный бетон, с одной стороны, не выдерживал импульсов тока, с другой — при низких температурах, когда вода, находящаяся в бетоне, замерзала, он становился плохим проводником.

Характерная особенность большинства упомянутых выше работ заключалась в том, что бетон рассматривался с электрической точки зрения как нечто единое без достаточного учета его химического и фазового состава, микро- и макроструктуры, особенностей физико-химических процессов, приводящих к образованию его как материала.

В основу ведущихся исследований положен иной принцип получения как токопроводящих, так и изоляционных бетонов. Для изоляционных бетонов это, во-первых, комплексное изучение свойств отдельных компонентов цементного вяжущего и различных их сочетаний, что позволило выделить те из них, которые бы в наибольшей степени приближались к диэлектрикам и, во-вторых, установление роли пористости бетона и определение границы, опасной в электрическом отношении. Для электропроводящих бетонов это, во-первых, отыскание токопроводящёй добавки, изменяющей свойства бетона в сторону повышения его электропроводности и, во-вторых, получение на ее основе композиционного материала — специального бетона со всеми характерными качествами проводника электрического тока.

В результате этих работ был создан электропроводящий бетон, названный бетэлом, обладающий, наряду с конструктивными свойствами, способностью проводить электрический ток.

На основании теоретических и экспериментальных исследований было установлено, что изменение в нужном направлении фазового состава и структуры цементного камня и бетона, а также использование токопроводящих добавок является одним из основных путей получения бетонов с заданными электрическими свойствами. Этого следует добиваться не только за счет выбора исходного вяжущего, заполнителя и добавок, но и создания оптимального с точки зрения электрических свойств режима твердения. В ранее выполненных работах в нашей стране и за рубежом первое учитывалось недостаточно, а второе не принималось во внимание вообще.

Связка, используемая в бетоне, может быть самой различной и в зависимости от ее вида различают следующие типы бетона: пластобетона, полимерцементный бетон и бетон на цементном вяжущем. Если проанализировать их с точки зрения электрической, конструктивной и экономической эффективности, то можно сказать, что наиболее подходящим для электрических целей является бетон на цементном вяжущем, так как он имеет, помимо высоких конструктивных и технико-экономических показателей, достаточно хорошую короностойкость и дугостойкость. Поэтому работа по применению бетона для электротехнических целей и должна развиваться в направлении использования обычного цементного бетона с учетом различных методов, улучшающих его электрические свойства.

Предварительные исследования прочностных и электрических свойств бетэла показали, что он может быть получен с большим диапазоном электрических и механических свойств:

Удельное электрическое сопротивление, ом-см10—104

Прочность на сжатие, кг/см285—250

Прочность на растяжение, кг/см215—30

Объемный вес, г/см21,8—2,2

Допустимая плотность тока, а/см210—0,1

Рабочий диапазон температуры,

°С—60°—I-150°

Рабочая температура перегрева, °С120

Допустимая скорость перегрева, °С/сек200

Удельная разрушающая энергия при однократном включении токовой нагрузки, вт-сек/см3230—300

Удельный объем, необходимый для рассеивания энергии 1 Мвт-сек при перегреве на 1°С, 0,57

Удельная теплоемкость, ккал/г-град0,22

Электропроводящие бетоны относятся к числу дешевых и доступных материалов. Их стоимость лишь в некоторых случаях будет незначительно превышать стоимость обычных строительных бетонов. Это объясняется тем, что при изготовлении электропроводящих бетонов и конструкций на их основе используются распространенные составляющие — вяжущие, добавки, заполнители, а также в основном освоенные промышленностью технологические процессы.

Бетэл может найти широкое применение в области гражданского и сельскохозяйственного строительства. Панели стен и перекрытий, полы, кровли с внутренним водостоком, фундаменты опор линий ЛЭП, — вот далеко не полный перечень конструкций из него.

Бетэл как всякий проводник при прохождении электрического тока нагревается. Это позволяет широко использовать его для создания электроотопительных элементов зданий. В качестве нагревательных элементов могут быть использованы без больших изменении конструкций и технологической оснастки применяемые в настоящее время стеновые панели и плиты междуэтажных перекрытий. Конструкции из электропроводящего бетона позволят отказаться от сложных существующих систем отопления, обеспечат возможность создания индивидуального микроклимата в жилых помещениях, позволят предложить ряд принципиально новых решений отдельных узлов, обеспечат сокращение сроков монтажа зданий, приведут к снижению целого ряда эксплуатационных расходов, особенно в условиях сурового климата.

Бетон электропроводящий | ЗАО «Завод Спецжелезобетон»

doopk2poБольшое внимание уделяется в настоящее время не только исследованию физико-механических свойств бетона, но и его электротехническим характеристикам, разработке состава с заранее заданными электрическими характеристиками.

Если будет найден путь превращения бетона в электропроводящий материал, это приведет к революционным изменениям в строительстве и электроэнергетике.

Деление материалов на конструктивные и электротехнические всегда существовало во всех отраслях техники. Объяснить это можно тем, что известные электротехнические материалы из-за специфических физико-механических свойств, как правило, невозможно было использовать как конструктивные.

Обычный бетон при определенной температуре и влажности обладает способностью проводить электрический ток, но это его качество не является стабильным. Помимо этого, в большинстве случаев электропроводность обычного бетона приносила только вред, так как под воздействием блуждающих токов сильно повышалась коррозия арматуры в железобетонных изделиях.

Эту способность пытались использовать для заземления строительных конструкций, эксплуатирующихся под воздействием электрического тока. Но такое использование бетона возможно только в том случае, если он будет стабильным электропроводником, тогда как сезонные колебания температуры и влажности изменяло электрическое сопротивление бетона в 5-10 раз. Объясняется это тем, что насыщение бетона водой приводит к переходу легкорастворимых компонентов цементного камня в жидкую фазу и бетон становится полупроводником. Соответственно высушивание бетона приводит к резкому падению проводимости.

Улучшить электрические свойства бетона предлагалось разными способами, большинство из которых должно было воспрепятствовать проникновению влаги внутрь бетона или уменьшить ее воздействие. Во Франции был придуман, так называемый, «изоляционный бетон Ламберта», который приготавливался на водных битумных эмульсиях. Битум, заполняя поры в теле бетона, затруднял его увлажнение, стабилизируя электрическое сопротивление. Для повышения электросопротивления бетона, используемого для изготовления железобетонных шпал, в состав его вводили ионно-обменные смолы, которые связывали появляющиеся при увлажнении бетона свободные ионы, что приводило к снижению электропроводности жидкой фазы бетона, и всего материала в целом. Также, высказывались предложения полностью заменить цементную связку на полимерную, чтобы получить изоляционный бетон. Но до сих пор, попытки использовать проводящие свойства бетона во влажном состоянии не имели большого успеха.

В основу нынешних научных исследований положен совершенно другой принцип получения как токопроводящих, так и изоляционных бетонов:

  • для изоляционных бетонов ведется комплексное изучение свойств компонентов цементного вяжущего и различных их сочетаний, чтобы выделить те из них, которые в наибольшей степени близки к диэлектрикам, изучение роли пористости бетона.
  • для электропроводящих бетонов ведутся изыскания токопроводящих добавок в бетонную смесь, которые изменят свойства бетона в сторону повышения электропроводности. На этой основе ведутся попытки создать композиционный материал — специальный бетон с характерными качествами проводника электрического тока.

В результате исследовательских работ был создан электропроводящий бетон, который назвали бетэлом. Бетэл наряду со стандартными конструктивными свойствами обладает способностью проводить электрический ток. Предварительные исследования прочностных и электрических свойств бетэла показали, что он может быть получен с большим диапазоном электрических и механических свойств. Бетэл может найти широкое применение для изготовления панелей стен и перекрытий, полов, кровель с внутренним водостоком, фундаментов опор линий ЛЭП и так далее.

Как любой проводник при прохождении тока, бетэл нагревается, что позволит применять его для создания электроотопительных элементов строительных сооружений. В качестве нагревательных элементов можно будет использовать обычные стеновые панели и плиты межэтажных перекрытий. Конструкции из электропроводящего бетона позволят отказаться от сложных существующих систем отопления, позволят предложить множество принципиально новых решений, приведут к снижению эксплуатационных расходов, особенно в условиях холодного климата.


Планово-предупредительный ремонт — ППР – это комплекс мероприятий по надзору, обслуживанию и ремонту, которые регулярно проводятся по заранее составленному плану. Система ППР позволяет предупредить преждевременный износ технологического оборудования, вовремя его отремонтировать, предупредив аварии, постоянно поддерживать его в эксплуатационной готовности.

Ответы@Mail.Ru: Клей — диэлектрик? Например, момент обувной? Какие виды клея проводят ток, а какие нет?

Большинство клеев после полимеризации (высыхания) становятся диэлектриками. Есть специальные токопроводящие клеи. Они появились гораздо позже обычных и были разработаны специально для того, чтобы проводить ток.

Есть специальный электропроводящий клей, остальные диэлектрики. Поищи в гугл.

стоит прочитать в описании каждого клея… нужно быть химиком и физиком чтоб все понять… тем более диэлектрик и то что собираетесь клеить понятия весьма растяжимые… так как не ясна цель.. токи, сопротивления…. емкости, окружающая среда.. проводимость склеиваемых материалов и многое прочее… (поглощение влаги.. морозоустойчивость, активная среда… и много чего…) попробуете поискать в Гугле..

Водно дисперсные клеи являются проводниками, клеи на оснве растворителей дизлектрики.

определение диэлектрик относительно т. к. любой диэлектрик при определённых условиях становится проводником. эпоксидный клей используют для заливки обмоток вибрационных насосов но они иногда пробивают на корпус.

стекло это проводник или диэлектрик? приведите примеры проводников пожал)))

диэлектрик проводник — железо

мокрое да. а проводник -железо

При нормальных условиях стекло — хороший диэлектрик. Проводниками являются все металлы.

диэлектрик!!! ! Метал почва графит серебро медь алюминий

Стекло -диэлектрик. Проводники-Металл, вода….

стекло — диэлектрик. проводники: железо, медь, алюминий. вода, мокрое дерево, ртуть.

Стекло ток не проводит, значит диэлектрик. Примеры проводников это металлы и жидкости.

проводники? в чем отличие проводников от диэлектриков?

ПРОВОДНИК˜И, вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. К хорошим проводникам обычно относят вещества с удельным сопротивлением 10-6 ом. см. Проводниками электрического тока (проводниковыми материалами) могут быть твердые тела, жидкости, а при соответствующих условиях и газы. ДИЭЛ˜ЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное электросопротивление ~108-1012 ОмЧсм) . Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых диэлектриках поляризация существует в отсутствие поля (спонтанная поляризация) , что связано с особенностями их строения

Проводники — это вещества хоршо проводящие эл. ток. Диэлектрики — это вещества плохо проводящие или вовсе не проводящие электриченский ток.

вода диэлектрик, металл проводник…. примера достаточно ?

Проводники — это вещества хоршо проводящие эл. ток. Диэлектрики — это вещества плохо проводящие или вовсе не проводящие электриченский ток.

Разница между проводниками и диэлектриками в том, что проводники — проводят электрический ток, а диэлектрики — нет. Проводники выталкивают заряженные частицы. Диэлектрики накапливают заряженные частицы.

Ответы@Mail.Ru: Электропроводность полиэтилена! помогите срочно

Низкая, полиэтилен — диэлектрик. Вот, например, данные с сайта производителя изделий из высокомолекулярного полиэтилена (Inkulen PE 500/1000) ООО «ТД Пластмасс Групп». Удельное электрическое сопротивление 1014 Ом*см и выше. <a rel=»nofollow» href=»http://plastmass-group.ru/catalog/materials/inkulen/inkulen_pe_1000_and_pe_500″ target=»_blank» >Источник</a>: plastmass-group.ru/catalog/materials/inkulen/inkulen_pe_1000_and_pe_500 При 20 градусах Цельсия для сравнения удельное сопротивление: У обычного полиэтилена 100*10^9 (Ом*метр), а проводник медь — 1,72*10^-8 (Ом*метр)

Он диэлектрик, не проводит ток. Он типа изолятор, а не проводник

<a rel=»nofollow» href=»http://www.ximicat.com/info.php?id=109″ target=»_blank»>http://www.ximicat.com/info.php?id=109</a> здесь опыты с полиэтиленом Практически наиболее важными свойствами полиэтилена (—СН2—СН2—)n являются его термопластичность, высокая химическая стойкость, нерастворимость и отсутствие электропроводности. А вот что Википедия сообщила: В традиционных полимерах, таких как полиэтилен, валентные электроны связаны ковалентной связью типа sp3-гибридизации. Такие «сигма-связанные электроны» имеют низкую мобильность и не вносят вклад в электропроводность материала.

Необходимо сравнить свойства проводников, диэлектриков и полупроводников

Полупроводники — вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких эВ (электрон-вольта) , то есть соизмерима с kT. Например, алмаз можно отнести к широкозонным полупроводникам, а InAs — к узкозонным. В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается. Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства изоляторов Проводник — вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод в виде угля и графита) . Пример проводящих жидкостей — электролиты. Пример проводящих газов — ионизированный газ (плазма) . Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п. Проводниками также называют части электрических цепей — соединительные провода и шины. Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде. Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов) . К проводникам второго рода относят проводники с ионной проводимостью (электролиты) Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см-3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твердого тела диэлектрик — вещество с шириной запрещенной зоны больше 3 эВ. Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию. К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком. Диэлектрики используются не только как изоляционные материалы. Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли) . В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Проводники К проводникам относятся все металлы и их сплавы, а также электротехнический уголь (каменный уголь, графит, сажа, смола и т. д.) К жидким проводникам относятся: вода, раствор солей, кислот и щелочей. К газообразным относятся ионизированные газы. Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС. ЭДС-электронно-движущая сила. Свойства проводников: 1.Электрические -Удельное сопротивление веществ от которого зависит электропроводимость. -Сверхпроводимость-это свойство некоторых материалов при температуре равной 101(-273) проводить эл. ток без препятствий, т. е. удельное сопротивление этих материалов равно нулю 2.Физические -плотность -температура плавления 3.Механические -Прочность на изгиб, растяжение и т. д., а также способность обрабатываться на станках. 4.Химические -Свойства взаимодействовать с окружающей или противостоять коррозии. -Свойства соединятся при помощи пайки, сварки. Диэлектрики Не пропускают электрический ток. Диэлектрики обладают высоким удельным сопротивлением. Используются для защиты проводника от влаги, механических повреждений, пыли. Диэлектрики бывают -твердые-все неметаллы; -жидкие-масла, синтетические жидкости СОВОЛ, СОВТОЛ; -газообразные-все газы: воздух, кислород, азот и т. д. Свойства диэлектриков: 1.Электрические свойства -Электрический пробой-устанавление большого тока, под действием высокого электрического напряжения к электроиоляционному материалу определенной толщины. -Электрическая прочность-это величина, равная напряжению, при котором может быть пробит электроизоляционному материал толщиной в единицу длины. 2.Физико-химические свойства -Нагревостойкость-это способность диэлектрика длительно выдерживать заданную рабочую температуру без заметного изменения своих электроизоляционных качеств. -Холодостойкость-способность материала переносить резкие перепады температуры, от +120, до — 120 -Смачиваемость-способность материала отторгать влагу, испытания проводятся в климатических камерах, типа ELKA, где изделие подвергается увлажнению, создается ТУМАН и мгновенный перепад температуры-СУШКА, и так несколько циклов! 3.Химические -Должны противостоять активной (агрессивной) среде -Способность склеиваться -Растворение в лаках и растворителях, склеиваться 4.Механические -Защита металлических проводников от коррозии -Радиационная стойкость -Вязкость (для жидких диэлектриков) Вязкость-время истечения жидкости из сосуда, имеющего определенную форму и отверстие -Предел прочности, твердости -Обработка инструментом

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *