Бестопливного двигателя: 403 — Доступ запрещён – Безтопливный двигатель. Как сделать бестопливный генератор своими руками

Содержание

Магнитный мотор Говарда Джонсона и бестопливный мотор Алексеенко

В статье, посвященном магнитному мотору Говарда Джонсона, было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

 

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора… 

 

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

 

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники — не беда, бабы новых нарожают…

 

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…

ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ

http://www.ntpo.com/techno/techno1_7/30.shtml

Имя заявителя: Алексеенко Василий Ефимович

Имя изобретателя: Алексеенко Василий Ефимович 

Имя патентообладателя: Алексеенко Василий Ефимович

Адрес для переписки:

400007, Волгоград, ул.Таращанцев, д.14, кв.6, Алексеенко В.Е.

Дата начала действия патента: 1997.10.07

Использование: в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем з

обзор, принцип работы. Двигатель на магнитах

Технологии 7 октября 2017

Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

Бестопливный двигатель на магнитах

Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.

Принцип работы магнитного электрогенератора

Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.

Разновидности магнитных двигателей

На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.

Самая простая модель — двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.

Более сложной конструкцией является магнитный двигатель Серла.

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Двигатель Лазарева

Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.

Двигатель Шкондина

Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.

Двигатель Перендева

Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.

Создание магнитного двигателя в домашних условиях

Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.

Преимущества магнитных двигателей

К основным достоинствам подобных конструкций относят следующее:

  1. Экономия топлива.
  2. Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
  3. Можно использовать в любом месте.
  4. Высокая выходная мощность.
  5. Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.

Недостатки двигателей

Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:

  1. При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
  2. Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
  3. Готовый двигатель подключить в некоторых случаях довольно сложно.
  4. Высокая стоимость бестопливных китайских двигателей.

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на энергии магнитных полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50–100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

Создатели бестопливных генераторов

Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.

Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90оС сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

Источник: fb.ru

Бестопливный двигатель: автомобиль и самолет могут работать… на воздухе — Энергетика и промышленность России — № 10 (50) октябрь 2004 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 10 (50) октябрь 2004 года

Неравномерный нагрев газов, сжатых под действием гравитации, вызывает изменения давления в атмосфере, что нарушает ее равновесное состояние. При восстановлении его потенциальная и тепловая энергия воздуха преобразуются в кинетическую энергию воздушных потоков, доступную для использования. На этом принципе основано действие ветродвигателей, которые выполняют механическую работу без потребления кислорода и выработки продуктов сгорания. Однако у таких двигателей есть недостатки — низкая плотность энергии на единицу рабочей площади и неуправляемость процесса.

Но нарушать равновесное состояние атмосферы для преобразования потенциальной энергии воздушных масс в кинетическую можно и за счет управляемых воздействий. Например — в эжекторных устройствах. При воздействии пульсирующей активной струей в эжекторном насадке периодически создается разрежение, при котором за счет неуравновешенной силы атмосферного давления вслед за каждым импульсом активной струи ускоряется воздух.

О. И. Кудриным, одним из авторов открытия «Явление аномально высокого прироста тяги в газовом эжекционном процессе с пульсирующей активной струей», зарегистрированного в 1951 г., проведены экспериментальные исследования, показавшие эффективность этого процесса. К сожалению, открытие не получило широкого применения. Вероятно, — потому, что изначально исследования были направлены на получение реактивной тяги (дополнительной к тяге винтовых движителей поршневых авиационных двигателей).

Следует отметить, что если процесс присоединения дополнительных масс применяется для увеличения тяги реактивного движителя, то большая часть дополнительно полученной энергии не может быть использована для выполнения полезной работы — она неизбежно рассеивается в атмосфере.

Это стало препятствием для его внедрения в других отраслях, где кинетическую энергию воздушной массы, получаемую в результате управляемого преобразования энергии атмосферы, можно использовать более эффективно.

Рассмотрим четыре основных способа преобразования низкопотенциальной энергии внешней среды с использованием процесса последовательного присоединения.

Первый способ. Низкопотенциальная энергия атмосферы преобразуется в струйном двигателе с эжекторным сопловым аппаратом и рабочим телом, получаемым при сгорании топлива в камере периодического сгорания. В данном случае процесс присоединения состоит из повторяющихся с заданной периодичностью двух последовательных термодинамических циклов. В каждом цикле имеется свой источник энергии и рабочее тело. В первом цикле (при сгорании топлива в постоянном объеме камеры) энергия продуктов сгорания, истекающих из реактивного сопла, преобразуется в кинетическую энергию первой части реактивной массы, которая движется в эжекторном насадке как газовый поршень и создает вслед за собой разрежение, а при истечении воздействует на лопатки турбины, создавая момент на валу.

За счет полученного в насадке разрежения источником энергии во втором цикле становится потенциальная и тепловая энергия сжатого силой гравитации атмосферного воздуха. Он под действием разности давлений втекает в насадок, расширяясь, охлаждаясь и ускоряясь как и в природном атмосферном процессе, но — в заданном направлении. При истечении из эжекторного насадка он образует вторую часть реактивной массы с расчетными термодинамическими параметрами, также воздействующую на лопатки.

В результате преобразования энергии низкопотенциального источника в предыдущем периоде создаются условия для повышения эффективности преобразования энергии высокопотенциального источника в следующем периоде.

Таким образом, периодическое нарушение равновесного состояния атмосферы в эжекторном насадке воздействием пульсирующей активной струи создает в нем с заданной частотой разность потенциалов давлений, обеспечивающую, при восстановлении равновесного состояния, ускорение присоединяемых воздушных масс и увеличение скорости активной струи. А в результате объединенная масса воздействует на лопатки турбины с возросшей (по сравнению с кинетической энергией активной струи) кинетической энергией, увеличивая момент на ее валу без дополнительных затрат топлива.

Эксперименты показали, что кинетическая энергия объединенной реактивной массы значительно больше, чем кинетическая энергия активной струи. При эжектировании атмосферного воздуха пульсирующей струей продуктов сгорания О. И. Кудриным был получен прирост реактивной силы до 140%, т.е. тяга увеличилась в 2,4 раза. Кинетическая энергия объединенной реактивной массы при этом может быть увеличена более чем в 10 раз по сравнению с кинетической энергией активной струи, так как в зависимости от параметров процесса присоединения может увеличиваться не только реактивная масса, но и ее скорость. Причем полученная кинетическая энергия не рассеивается в атмосфере, как при создании реактивной тяги движителя, а практически полностью используется для воздействия на лопатки турбины. Следовательно, большая часть мощности получается за счет преобразования потенциальной энергии и низкопотенциальной теплоты сжатых под действием гравитации газов в кинетическую энергию воздушной массы, создающей момент на силовом валу.

Сегодня возможности повышения эффективности традиционных ГТД (со сгоранием топлива при постоянном давлении) практически исчерпаны. А комбинированные двигатели могут быть на порядок экономичнее традиционных (с соответствующим уменьшением выброса в атмосферу продуктов сгорания).

Второй способ. Проведенные эксперименты показали, что оптимальное значение скорости активной струи продуктов сгорания, необходимое для увеличения кинетической энергии объединенной массы в процессе присоединения, находится в диапазоне скоростей, которые можно получать, не используя для сжатого рабочего тела дополнительный подогрев (сжигание топлива) перед его расширеним в реактивном сопле.

Следовательно, продукты сгорания можно заменить сжатым воздухом, а камеру сгорания -пневмоаккумулятором. Кинетическая энергия объединенной массы и в этом случае будет больше кинетической энергии активной струи не менее чем 2,4 раза и, — соответственно закону сохранения энергии, — больше потенциальной энергии, необходимой для получения рабочего тела — сжатого воздуха, образующего эту пульсирующую активную струю при расширении.

Совершенно очевидно, что такой баланс энергии позволяет сжимать атмосферный воздух в компрессоре за счет мощности, полученной в результате процессов преобразований энергии атмосферы в предыдущих периодах, т. е. использовать обратный цикл Карно (цикл воздушного теплового насоса — холодильной машины), осуществляя привод компрессора за счет преобразованной энергии атмосферы.

При этом суммарные технологичекие энергозатраты и потери при процессе преобразований в турбине и сжатия воздуха в компрессоре, а также прочие потери энергии не превышают 25% от получаемой кинетической энергии объединенной реактивной массы. В основном величина этих потерь зависит от КПД турбины и может составлять 15-20%, а удельный вес потерь в компрессоре незначителен.

Для компенсации технологических энергозатрат и потерь достаточно увеличить кинетическую энергию в результате процесса присоединения дополнительных масс на 44%. Т.е. для самоподдержания этого процесса кинетическая энергия объединенной массы должна быть больше кинетической энергии активной струи лишь в 1,44 раза. Полученная сверх этого энергия может быть использована внешними потребителями.

Согласно второму началу термодинамики, не вся энергия одного неисчерпаемого источника преобразуется в работу – часть превращается в теплоту. А при механическом сжатии рабочего тела — в высокопотенциальную теплоту, температуру которой можно регулировать в зависимости от степени сжатия и охлаждения рабочего тела перед расширением и использовать, например, в системах отопления. Температура высокопотенциального рабочего тела, а также низкопотенциального воздуха при расширении и выполнении работы понижается. Управляя количеством атмосферного и холодного отработавшего воздуха, возвращаемого в эжекторные насадки в качестве присоединяемых масс следующих периодов, можно получать отработавшую воздушную массу необходимой температуры — например, для использования в системах кондиционирования. Если отработавший в одном устройстве присоединения или эжекторном сопловом аппарате воздух направлять в качестве присоединяемых масс в другое устройство или следующий сопловой аппарат, то его можно охлаждать до сверхнизких температур, используемых в криогенной технике.

Данный бестопливный способ преобразования энергии атмосферы отличается от способа ее преобразования в традиционных ветродвигателях управляемостью процесса создания воздушной струи, воздействующей на лопасти (лопатки), и высокой плотностью энергии на единицу рабочей площади. Устройства для осуществления этого способа — атмосферные бестопливные струйные двигатели. Их эффективность по сравнению с известными ветровыми, солнечными и геотермальными преобразователями энергии не зависит от географических, временных и погодных условий, а удельная мощность значительно выше и сопоставима с удельной мощностью тепловых двигателей традиционных схем. Отсутствие жаростойких материалов и систем, связанных с использованием топлива, упрощает конструкцию и технологию производства, снижает себестоимость получения энергии.

Третий способ. Процесс последовательного присоединения можно использовать для получения мощности, высокопотенциальной теплоты и «холода» вне атмосферных условий, преобразуя низкопотенциальную тепловую энергию внешней среды в замкнутом термодинамическом цикле.

Представим, что атмосферный бестопливный струйный двигатель помещен в изолированный от внешней среды объем, заполненный газом — воздухом или гелием. При работе двигателя за счет охлаждения отработавшей массы в нем понизятся температура и давление. Параметры процесса присоединения изменятся настолько, что в какой-то момент кинетической энергии объединенной массы станет недостаточно для создания расчетной мощности компрессора, сжимающего рабочее тело для образования активной струи. В каждом цикле будет уменьшаться степень сжатия и, соответственно, скорость активной струи. Процесс присоединения постепенно «затухнет» и двигатель, «заморозившись», остановится.

Этого не произойдет, если изолированный объем используется в качестве низкотемпературного теплоприемника для истечения отработавшей газовой массы и соединен с теплообменным устройством, а выход этого устройства соединен с входами устройства присоединения и компрессора, образуя замкнутый контур. Под действием неуравновешенной силы давления газов, возникающей при создании разрежения за газовой массой импульсов активной струи, часть отработавшей газовой массы из этого объема направляется в теплообменное устройство. В нем, получая тепло и понижая температуру внешней среды, она нагревается до температуры, необходимой для выполнения функции присоединяемых масс следующих периодов. Другая часть газовой массы через теплообменное устройство (или минуя его) направляется в компрессор для сжатия и дальнейшего использования в качестве высокопотенциального рабочего тела.

В результате нагрева отработавшей газовой массы в теплообменном устройстве процесс последовательного присоединения в струйных двигателях с замкнутым циклом продолжается сколь угодно долго и независимо от давления внешней среды, которая при этом выполняет функции нагревателя — источника теплоты, преобразуемой в работу.

Отличие бестопливных двигателей с замкнутым от двигателей с разомкнутым циклом заключается в организации теплообмена с внешней средой и возможности варьировать давление и температуру в теплоприемнике. Причем эффективность этих двигателей в значительной степени зависит от разности температур между источником теплоты внешней среды и теплоприемником перед нагревом отработавшей газовой массы, используемой в следующих периодах. Варьируя параметры процесса присоединения, а также давление и температуру в теплоприемнике и перед повторным использованием отработавшей массы, можно управлять мощностью двигателя и расширять диапазон температуры используемых источников теплоты внешней среды до отрицательных температур.

На основе струйных двигателей с замкнутым циклом можно создавать воздухонезависимые бестопливные энергетические системы, способные работать за счет низкопотенциальной теплоты в различных экстремальных условиях.

Четвертый способ. В двух предыдущих бестопливных способах преобразования низкопотенциальной энергии внешней среды рабочее тело для получения активной струи сжимали в механическом компрессоре.

Рассмотрим варианты использования рабочего тела без механического сжатия — при его ускорении в результате нагрева за счет теплоты различных источников энергии. Например, низкопотенциальным теплом внешней среды в замкнутом объеме пневмоаккумулятора. В этом случае необходимое давление в пневмоаккумуляторе может быть получено за счет его заполнения отработавшей в предыдущих периодах низкотемпературной массой, а расчетная разность температур перед ее нагревом теплотой внешней среды достигается за счет многократного использования отработавшей массы в процессе присоединения (в двигателях с замкнутым циклом — без промежуточного подогрева в теплообменнике).

Нагревать отработавшую массу нужно по меньшей мере в двух пневмоаккумуляторах, которые должны поочередно соединяться со струйным устройством после нагрева и отсоединяться для удаления остатков нагретого рабочего тела очередного заполнения низкотемпературной отработавшей массой.

В двигателях с открытым циклом при расширении удаляемых остатков можно выполнять полезную работу.

Для данного варианта нагрева необходимы большой объем пневмоаккумуляторов и большая площадь рабочей поверхности теплообменного устройства. Поэтому он может применяться в энергетических установках, где объем и масса не играют существенной роли, и не может — в двигателях большинства транспортных средств.

В другом варианте — при использовании электрореактивного устройства для образования активной струи — низкотемпературную массу в пневмоаккумуляторе нужно нагревать лишь до минимального уровня давления или использовать иной способ, обеспечивающий поступление рабочего тела в это устройство с целью последующего ускорения за счет электроэнергии, генерируемой в предыдущих периодах. Для ускорения рабочего тела в импульсном электрореактивном устройстве можно применять различные методы (термоэлектрический, электромагнитный и т. д.). При использовании такого устройства в процессе последовательного присоединения увеличивается скорость активной струи и удельная мощность бестопливного бескомпрессорного струйного двигателя.

Если за счет мощности, полученной в результате преобразований низкопотенциальной энергии внешней среды, генерировать электроэнергию для ускорения активной струи и одновременно для внешнего использования, то получается универсальный источник электроэнергии с неограниченной сферой применения. Основное преимущество такого способа — простота конструкции, надежность и высокая удельная мощность двигателей для его реализации – качества, необходимые большинству двигателей транспортных средств, а особенно авиационным двигателям.

В заключение необходимо отметить, что не вся теплота внешних источников преобразуется в работу, часть ее (согласно второму началу термодинамики) в разной степени, но во всех перечисленных способах рассеивается во внешней среде при процессе преобразования энергии. Важно подчеркнуть: реактивная тяга и кинетическая энергия объединенной массы, получаемые в результате процесса последовательного присоединения, больше тяги и кинетической энергии активной струи. Это утверждение подтверждено и экспериментально, и методами численного моделирования. На нем основаны рассмотренные бестопливные способы преобразования низкопотенциальной энергии внешней среды. Принцип увеличения кинетической энергии одинаков во всех способах. Величина прироста кинетической энергии зависит от соотношений основных параметров процесса последовательного присоединения, а также соотношения конструктивных параметров и пропорций эжекторного устройства.

Таким образом, использование процесса последовательного присоединения дополнительных масс в энергетических системах позволяет без ущерба для экологии преобразовывать неисчерпаемую, даровую природную энергию в любом месте и независимо от условий внешней среды в необходимый вид энергии, доступный для потребления непосредственно в местах выработки.

Бестопливные струйные двигатели могут иметь широкий диапазон мощностей и сферы применения. В зависимости от используемых циклов и назначения они способны работать в любых условиях внешней среды: в атмосфере, космосе, под водой. Их производство проще аналогичных традиционных, кроме того, оно возможно на большинстве машиностроительных предприятий.

Тарифы на электроэнергию, Мощность, Топливо, Турбины, Электроэнергия , Энергия , Кабельная арматура, Энергетические системы

Изобретен бестопливный двигатель

Телеканал CCTV-2 опубликовал ролик, где ученые из Китая рассказывают о создании рабочего образца бестопливного двигателя EmDrive, существование которого одни называют «противоречащим законам физики»…

… другие «либо не работающим устройством, либо агрегатом, не нарушающим законом физики».

Как пояснили создатели рабочего образца EmDrive, представленный агрегат является прототипом другого устройства, успешно испытанного в космической лаборатории «Тяньгун-2» в конце 2016 года. Теперь то же самое ждет и новый образец двигателя.

Его работа основана на комбинации из магнетрона, генерирующего микроволны, и накапливающего энергию их колебаний резонатора. Такая конструкция, заявляют разработчики, дает возможность преобразовывать излучение в тягу. А это как раз и является нарушением законов физики.

По словам американского физика Брайса Кассенти из Университета Коннектикута, работа EmDrive нарушает третий закон Ньютона, суть которого в том, что сила не может возникать сама по себе без взаимодействия физических тел, пишет РИА Новости.

— И если этот закон будет нарушаться, то тогда вся современная физика, построенная на его базе, будет неправильной. Вероятно, утверждения о работе EmDrive являются продуктом ошибочных замеров, — считает ученый.

Москва, 12 сентября. Китай объявил о создании рабочего образца двигателя EmDrive, якобы нарушающего законы физики. Как пишет британский таблоид ​Daily Mail, китайские исследователи считают возможным путешествие до края Солнечной системы за несколько месяцев благодаря такому двигателю.

Технические характеристики микроволнового ракетного двигателя EmDrive не раскрываются. Однако известно, что речь идет об особой конической камере-резонаторе с подключенным мощным магнетроном. По данным Daily Mail, при движении двигателя не расходуется топливо и не вырабатывается направленный пучок излучения. А это не соответствует закону сохранения импульса.

Ученые усомнились в нарушении китайским двигателем законов физики

Пентагону нужны бестопливные двигатели | Журнал Популярная Механика

Управление перспективных военных разработок (DARPA) Министерства обороны США выделило британским учёным из Плимутского университета солидный грант на разработку аналога волнового двигателя EmDrive, который способен работать… без топлива.

Британский инженер Роджер Шоуэр задумался над двигателем EmDrive еще в начале 2000-х годов и учредил для его разработки собственную компанию. Спустя шесть лет он презентовал первый прототип инновационного устройства: он представлял собой конусообразный резонатор, на узком конце которого установлен мощный магнетрон. Когда он генерирует микроволны, они отражаются от резонатора и усиливаются от одного конца устройства к другому.

Конструктор утверждает, что благодаря этому возникает, пусть и едва заметный, дисбаланс давлений, который создаёт тягу. Соответственно, двигатель EmDrive не требует топлива и не производит отходов. По словам Шоуэра, благодаря непосредственному преобразованию электричества в тягу не происходит потери импульса, которая неизбежно произошла бы при наличии промежуточных звеньев, а двигатель якобы не нарушает законов Ньютона. Безусловно, это вызвало у научного сообщества массу вопросов и замечаний.

В конструкции двигателя EmDrive слишком много непонятных моментов: исследователи пока не смогли доказать ни его несостоятельности, ни его работоспособности. Но британский Департамент торговли и промышленности выделил создателю волнового двигателя грант, а NASA провело его испытания. Теперь британский инженер Майк Маккаллох из Плимутского университета, который выдвинул теорию квантовой инерции, получил от Пентагона 1,3 миллиона долларов на разработку двигателя, который работает без топлива.

Маккаллох давно изучает «противоречивый» двигатель EmDrive и уверен, что квантовая инерция станет настоящим переворотом в освоении космоса. Он считает, что при развитии этой технологии спутникам не нужно будет топливо: всё, что понадобится, это лишь источник электроэнергии — например, солнечный свет. Так или иначе, теперь британцу предстоит освоить грант и построить для Минобороны США волновой двигатель собственной конструкции.

NASA протестировала безтопливный двигатель, которого «не может быть»

Безтопливные микроволновые двигатели Американское космическое агентство занимается испытанием новых космических технологий на протяжении всего времени своего существования. Но результаты их последнего эксперимента могут быть самыми захватывающими за всю историю NASA. Ранее на этой неделе ученые лаборатории Eagleworks заявили об успешном испытании технологии, позволяющей двигателю генерировать тягу на основе энергии микроволн, без использования традиционных видов топлива. Если результаты эксперимента удастся подтвердить и расширить, это может привести к появлению ультра-легких сверхбыстрых космических кораблей, которые смогут доставить человека на Марс за считанные недели.

Испытательный стенд NASA основан на модели нового космического двигателя под названием Cannae Drive. Его идея заключается в том, что микроволны, «прыгающие» внутри специального контейнера могут создавать разницу давления излучения, в результате чего на одном из концов контейнера образуется тяга. Кстати, подобная технология EmDrive уже была протестирована китайскими и аргентинскими учеными. А британский ученый Роджер Шауер в 2006 году представил модель двигателя, разработанного по этой технологии.

Безтопливный двигатель EmDriveДвигатель EmDrive, разработанный Роджером Шауером в 2006 год

Объем тяги, сгенерированный в испытаниях NASA, составил всего лишь 30-50 микроньютонов, что даже меньше, чем в опытах китайских ученых. Однако факт создания тяги без использования источника топлива был зафиксирован, хотя это, казалось бы, противоречит всем законам физики.

Командой NASA было построено два двигателя Cannae Drive. Причем один из них, не предназначенный для запуска, тоже заработал. Как пишут ученые в своем докладе, «тяга наблюдалась на обоих тестовых объектах, даже на том, который был разработан с расчетом, что он не будет генерировать тягу». Это позволяет предположить, что технология «производит силу, которая не может быть отнесена ни к одному из известных электромагнитных явлений».

Есть много причин, чтобы заставить скептиков сомневаться в новой технологии. Хотя бы тот факт, что изобретатель Cannae Drive Гвидо Фетта не имеет достаточной ученой степени. Тем не менее, результаты, полученные учеными NASA, подтверждают перспективность разработки и гарантируют дальнейшее её исследование.Безтопливный двигатель EmDrive

Незаметные сложности ракетной техники. Часть 2: Твердотопливные двигатели / Habr


В комментариях к первой статье мне справедливо указали, что я совсем не рассказал о твердотопливных двигателях, которые применяются в космонавтике. Действительно, в одну статью даже простой ликбез не влез. Поэтому приглашаю желающих почитать продолжение.
Предания старины глубокой

Черный (дымный) порох изобрели китайцы в девятом веке. И уже в одиннадцатом веке появляются документальные свидетельства о создании боевых ракет на черном порохе («Уцзин цзунъяо» 1044 год ):

Обратите внимание на дизайн ракеты по центру. Эта компоновка боевых ракет оставалась неизменной восемьсот с лишним лет, до начала двадцатого века, а фейерверки с ней производятся до сих пор!
Человеческая мысль не стояла на месте. Уже в 1409 году в Корее додумались до системы залпового огня (Хвачха):

Также есть легенда о китайском чиновнике Ван Ху, который приблизительно в шестнадцатом веке собрал аппарат из кресла, двух змеев (не во всех вариантах легенды) и сорока семи ракет (очевидно, от снарядов типа Хвачхи):

Увы, тогдашние изобретатели были бесстрашны от незнания, про методику лётно-конструкторских испытаний не думали, и страдали излишним оптимизмом. Поэтому первое испытание оказалось последним. Когда стих рёв двигателей, и рассеялся дым, ни Ван Ху, ни его аппарата не нашли.
Ракеты вместе с завоевателями с Востока (монголы, османы) пришли в Европу. Само слово «ракета» — от итальянского «маленькое веретено». С различной интенсивностью ракеты применялись по всей Европе и Азии.
Следующим заметным этапом была четвертая англо-майсурская война (1798—1799). Ракеты Майсура впервые в мире имели стальную оболочку, различное назначение (зажигательные, противопехотные с режущими кромками) и массированно использовались. Корпус ракетчиков Типу Султана насчитывал пять тысяч человек.

Впечатленные англичане, к тому же захватившие в Серингапатаме в качестве трофеев сотни ракет, решили воспроизвести технологию. Так родились ракеты Конгрива, которые широко использовались в наполеоновских войнах и последующих конфликтах, и даже просочились в гимн США.

Начиная с середины девятнадцатого века нарезная артиллерия начала выигрывать у ракет и по дальности и по точности, а залповое применение по типу Хвачхи было забыто. Поэтому боевые ракеты постепенно сходили со сцены, однако, даже в Первой мировой войне они ещё использовались. На фотографии французский «Ньюпор-16» с ракетами «Le Prieur» для борьбы с дирижаблями и воздушными шарами. Несмотря на электрозапал и установку на самолёте, это старые добрые пороховые ракеты такой же компоновки, что и у китайцев одиннадцатого века.
Выезжала на берег «Катюша»

Ракеты на черном порохе не стали сложней и мощней из-за ограничений самого пороха. Нельзя было сделать пороховую шашку с устойчивыми параметрами в партии, большого калибра, и горящую хотя бы пару секунд. Для развития твердотопливных ракет требовался новый материал. В конце девятнадцатого века был изобретен бездымный порох. Однако на артиллерийском бездымном порохе ракету сделать не получалось. Начались поиски бездымных ракетных порохов.
Наибольшего успеха в этом деле добилась Газодинамическая лаборатория Тихомирова и Артемьева в СССР. Они создали т.н. баллиститный порох, из которого уже можно было сделать достаточно большие шашки и поставить их в реактивные снаряды. К тому же вовремя вспомнили про идею залпового огня. Так родились «Катюши» — снаряды РС-82 и РС-132 для авиации, М-8 и М-13 для наземных установок. Более подробно про пороха, их виды и производство можно почитать здесь.

Успехи технологии привели к тому, что во время Второй мировой войны СССР активнее других стран использовал боевые ракеты на твердом топливе. Оружие оказалось очень эффективным, применялось с воздушных, наземных, корабельных носителей, были разработаны новые модификации большей дальности или калибра.
Стойкий смесевой сержант

Баллиститный порох имел свои физические ограничения. Максимальный диаметр шашки измерялся в сантиметрах, а время горения — в секундах. Даже если бы фон Браун хотел, он не смог бы сделать Фау-2 на баллиститном порохе. Нужен был новый вид твердого топлива. Им стало т.н. смесевое топливо («rubber fuel»). В 1942 году Джон Парсонс создал первые экземпляры двигателей на смесевом топливе, используя асфальт. А эксперименты с компонентами обнаружили, что наиболее эффективным топливом является смесь перхлората аммония (окислитель), алюминия и полиуретана (горючее) и полибутадиена для улучшения параметров горения, формования и хранения двигательной шашки. Первой ракетой с двигателем на смесевом топливе стала MGM-29 «Сержант» (первый полёт — 1956 г), двигатель которой имел диаметр 0,7 метра и работал 34 секунды. Это был качественный прорыв — ракета массой 4,5 т. и длиной 10 м. могла забросить боеголовку весом 0,8 т на 135 км, и не требовала колонны автомашин с компонентами топлива и десятки минут на заправку.

После ракет средней дальности была разработана МБР «Минитмен» на смесевом топливе. Её преимущества можно увидеть, сравнивая с похожими советскими проектами. Дело в том, что в СССР Королёв попытался создать баллистическую ракету на баллиститном порохе (РТ-1) и на смесевом топливе советской рецептуры с худшими характеристиками (РТ-2). Сравнение характеристик очень наглядно:

Обратите внимание на то, что в ракете РТ-1 пришлось делать фактически сборку из четырех отдельных двигателей из-за ограничений на диаметр шашки баллиститного пороха. У РТ-2 и «Минитмена» шашка одна, большая, но на первой ступени 4 сопла.
Особенности твердотопливных двигателей

Возможность создать двигатель очень большой тяги

Самым мощным ракетным двигателем в истории был твердотопливный ускоритель «Спейс Шаттла». Его начальная тяга составляет 1250 тонн, а пиковое значение достигает 1400 тонн, что приблизительно в 1,8 раз больше тяги самых мощных ЖРД (F-1 и РД-170). Самый мощный из эксплуатируемых двигателей тоже твердотопливный — это боковые ускорители «Ариан-5», их тяга составляет 630 тонн.
Профиль тяги задается при конструировании

ЖРД можно дросселировать — менять величину тяги, иногда в весьма большом диапазоне. Твердотопливный двигатель горит неуправляемо, и величину тяги можно регулировать только с помощью внутреннего канала специального профиля. Разные профили канала позволяют иметь разные профили тяги во времени:
Невозможность аварийного выключения

После того, как РДТТ включился, выключить его нельзя. На боковые ускорители «Спейс Шаттла» ставили заряды взрывчатки, чтобы в случае катастрофического отказа они не летели в произвольном направлении. Все полёты шаттлов проходили с людьми, и знание того, что в бункере сидит специальный человек (RSO), который взорвёт ускорители в случае аварии, добавляло нервозности. Боковые ускорители «Челленджера» в катастрофе 1986 года не были повреждены взрывом центрального бака и были подорваны несколько секунд спустя.
Невозможность повторного запуска

Вытекает из предыдущего пункта. На каждое включение надо иметь отдельную ступень с двигателем. Это важно для разгонных блоков, которые должны включаться уже в космосе несколько раз.
Отсечка тяги

При необходимости выключить досрочно нормально работающий РДТТ (например, при разгоне до нужной скорости при стрельбе на неполную дальность), единственное, что можно сделать — это т.н. отсечка тяги. Специальные заряды вскрывают верхнюю часть камеры сгорания, обнуляя тягу. Двигатель ещё работает некоторое время, но пламя вырывается с обеих сторон, что, фактически, не добавляет скорости.
Меньший удельный импульс

Удельный импульс (мера эффективности топлива) РДТТ ниже, чем у ЖРД. Это приводит к тому, что в боевых МБР обычно на одну ступень больше. Жидкостные УР-100 и Р-36 имеют две ступени, что оптимально по баллистике, а на твердотопливные «Тополя» приходится ставить три ступени. Поэтому массовое совершенство РДТТ хуже.
Простота изготовления и эксплуатации

После заливки топлива в камеру сгорания оно становится похожим на резину по консистенции и не требует дополнительных операций. В отличие от разгонных блоков на ЖРД, которые надо заправлять и проверять на космодроме, разгонные блоки с РДТТ приходят готовые от производителя. Боевые ракеты с РДТТ также приходят от производителя готовыми и стоят на дежурстве десятилетиями, не требуя дополнительных операций с топливом со стороны персонала. Справедливости ради необходимо отметить, что боевые МБР с ЖРД также приходят от производителя «ампулизованные», не требуя заправки в шахте.
Сложность механизмов управления

В ЖРД можно отбирать компоненты после ТНА и использовать их в гидравлических рулевых машинах для отклонения сопла. В РДТТ такой возможности нет, поэтому приходится ставить мощные аккумуляторы или генераторы для рулевых машин. Например, на твердотопливном ускорителе «Спейс Шаттла» стояли специальные газогенераторы, сжигавшие гидразин из отдельных баков и питавшие гидравлические рулевые машины, которые отклоняли сопло для управления полётом. На ТТУ РН «Титан-4» стояли баки с тетраксидом азота, который несимметрично впрыскивался в сопло через управляемые форсунки, создавая асимметрию тяги.
На разгонных блоках приходится ставить отдельные двигатели ориентации на жидком топливе, а на время работы двигателя обеспечивать стабилизацию раскруткой.
Невозможность регенеративного охлаждения

Стенки камеры сгорания изолированы ещё не сгоревшим топливом, это безусловный плюс РДТТ, но с соплом ситуация обратная. Дело осложняется тем, что температура горения твердого топлива выше, а продукты сгорания обладают гораздо большим, нежели в ЖРД, эрозионным эффектом. Сопло разъедается продуктами сгорания, что ещё ухудшает параметры двигателя из-за нарушения геометрических параметров сопла. Без потока компонентов, которыми можно охлаждать сопло, приходится придумывать другие методы. Их два — охлаждение излучением и испарением (абляцией). Критическое сечение (самая узкая часть сопла, там наибольшие нагрузки) выполняется из очень твердых и жаропрочных материалов (специально обработанный графит), менее нагруженные части — из теплостойких материалов. Более подробно можно почитать здесь.
Но эти решения имеют свою цену — сопло РДТТ тяжелее, чем у ЖРД. Очень хорошо это видно на фотографиях из этого хабрапоста:

Слева ЖРД, справа РДТТ
Заключение

В современной ракетной технике РДТТ нашли четыре основные ниши:
  1. Военные ракеты. РДТТ обеспечивают высокую боеготовность, простоту и надежность двигателей межконтинентальных и прочих ракет.
  2. Стартовые ускорители. Возможность создать очень мощный и дешевый двигатель используется, когда необходимо оторвать от земли более эффективный, но менее мощный ЖРД.
  3. Разгонные блоки. Распространенность, простота, надежность, освоенность промышленностью, легкость хранения привели к широкому использованию РДТТ в качестве разгонных блоков в США. Удельный импульс РДТТ всего на ~10% меньше, чем у пары гептил/амил (масса РБ IUS даже меньше «Бриза-М» из-за меньшей широты космодрома), а в полтора раза более эффективные водород/кислородные блоки не использовались в «Спейс Шаттлах», которые не так давно выводили большое количество спутников.
  4. Фейерверки и ракетомоделизм. Простота изготовления маленького РДТТ привела к тому, что ракеты используются в фейерверках (там почти наверняка черный порох) и в ракетомоделизме. Простые составы домашнего производства или покупные (есть стандартные в магазинах) позволяют делать небольшие ракеты для развлечения и обучения.

P.S. Ещё будет третья часть. Про виды жидкого топлива, размеры ступеней, стартовые сооружения и деньги. Не очень скоро — через одну статью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *