Беспроводное электричество тесла: новозеландский стартап испытает передачу электричества без проводов на большие расстояния

Содержание

новозеландский стартап испытает передачу электричества без проводов на большие расстояния

Более ста лет назад гениальный изобретатель Никола Тесла доказал, что электричество можно передавать на большие расстояния без проводов. В ходе опытов в Колорадо-Спрингс он зажёг лампочку с помощью электромагнитного поля на удалении свыше трёх километров. Но тогда дальше экспериментов дело не пошло. Зато сегодня эти идеи могут воплотиться в жизнь благодаря новозеландскому стартапу и инвестициям второго по величине в стране поставщика электроэнергии.

Как сообщают источники, новозеландская энергетическая компания Powerco решила инвестировать в проект местного стартапа Emrod. Проект Emrod предусматривает беспроводную передачу энергии между приёмником и передатчиком на расстоянии прямой видимости, а это, на самом деле, могут быть десятки километров.

В то же время дальность передачи для этого проекта — не главное. Беспроводная передача энергии может помочь в случае ремонта сетей или аварий, что позволит потребителю оставаться подключённым даже во время обесточивания линий, а также в местах, где проведение линий электропередачи осложнено, запрещено или невозможно.

Мобильный комплекс для передачи и приёма энергии без проводов (Emrod)

Компания Emrod разработала уникальный прототип приёмника и передающей станции. К октябрю будет готов ещё один прототип. На начальном этапе будут проведены лабораторные испытания, а затем начнутся и полевые. Сначала без проводов планируется передавать ток мощностью до 2 кВт. Затем объёмы передаваемой без проводов энергии будут многократно увеличены. Заявлено, что за счёт новых радиопоглощающих материалов КПД приёмной (выпрямляющей) антенны доведён до 100  %, а КПД передающей системы приближается к 70 %.

Пример размещения установок по беспроводной передаче энергии (Emrod)

Проводные линии передачи электричества также подвержены потерям ― примерно до 15  %. Но в случае ЛЭП добавляются расходы на инфраструктуру ― обслуживание, безопасность, ремонт и другое. Тем самым беспроводная передача энергии с помощью микроволнового излучения в ряде случаев может заменить проводную. За безопасность работы системы будут отвечать лазеры с датчиками пересечения, которые будут автоматически отключать передачу энергии при попадании в зону канала передачи птиц, дронов, вертолётов или чего-то ещё. Но в целом разработчики предполагают создавать достаточно широкие в пространстве каналы передачи, чтобы плотность передаваемой энергии была не выше плотности энергии солнечного излучения в жаркий полдень на экваторе.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Электричество без проводов — Энергетика и промышленность России — № 3 (31) март 2003 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 3 (31) март 2003 года

Биография американского изобретателя, серба по происхождению, Николы Теслы достаточно известна, и мы на ней останавливаться не будем. Но сразу уточним: прежде чем продемонстрировать свой уникальный эксперимент, Тесла, сначала в 1892 году в Лондоне, а через год в Филадельфии, в присутствии специалистов продемонстрировал возможность передачи электрической энергии по одному проводу, не используя при этом заземления второго полюса источника энергии. И тогда же у него возникла идея использовать в качестве этого единственного провода… Землю!

И в этом же году на съезде ассоциации электрического освещения в Сант-Льюисе он продемонстрировал электрические лампы, горящие без подводящих проводов, и работающий без подключения к электрической сети электромотор. Эту необычную экспозицию он прокомментировал следующим образом:

«Несколько слов об идее, постоянно занимающей мои мысли и касающейся всех нас. Я имею в виду передачу сигналов, а также и энергии на любое расстояние без проводов. Мы уже знаем, что электрические колебания могут передаваться по единственному проводнику. Почему же не воспользоваться для этой цели Землей? Если мы сможем установить период колебаний электрического заряда Земли при его возмущении, связанном с действием противоположно заряженной цепи, это будет фактом чрезвычайной важности, который послужит на благо всего человечества».

Увидя столь эффектную демонстрацию, такие известные олигархи, как Дж. Вестингауз и Дж. П. Морган, вложили в это перспективное дело свыше миллиона долларов, купив у Теслы его патенты (громадные, кстати, по тем временам деньги!). На эти средства в конце 90-х годов XIX века Тесла сооружает в Колорадо-Спрингс свою уникальную лабораторию.

Подробные сведения об экспериментах в лаборатории Теслы изложены в книге его биографа Джона О’Нейла «Электрический Прометей» (в нашей стране ее перевод был опубликован в журнале «Изобретатель и рационализатор» №4-11 за 1979 год). Приведем здесь лишь краткую выдержку из нее, чтобы не ссылаться на более поздние перепечатки:

«В Колорадо-Спрингс Тесла провел первые испытания беспроводной передачи электроэнергии. Он смог питать током, извлекаемым из Земли во время работы гигантского вибратора, 200 электрических лампочек накаливания, расположенных на расстоянии 42 километров от его лаборатории. Мощность каждой составляла 50 ватт, так что суммарный расход энергии составлял 10 кВт, или 13 л.с. Тесла был убежден, что с помощью более мощного вибратора он смог бы зажечь дюжину электрических гирлянд по 200 лампочек в каждой, разбросанных по всему земному шару».

Самого же Теслу настолько вдохновили успехи этих экспериментов, что он заявил в широкой печати, что намерен осветить Всемирную промышленную выставку в Париже, которую предполагалось провести в 1903 году, энергией электростанции, расположенной на Ниагарском водопаде и переданной в Париж без проводов.

Известно по многочисленным фотографиям и описаниям очевидцев и помощников изобретателя, что представлял собой генератор энергии, передаваемой на 42 километра без проводов (правда, это чисто журналистский термин: один провод, в качестве которого выступала Земля, в этой цепи присутствует, и об этом прямо говорят и сам Тесла, и его биограф).

То, что Тесла называл вибратором, было гигантским трансформатором его системы, имевшим первичную обмотку из нескольких витков толстого провода, намотанных на ограде диаметром 25 метров, и размещенную внутри нее многовитковую однослойную вторичную обмотку на цилиндре из диэлектрика. Первичная обмотка вместе с конденсатором, индукционной катушкой и искровым промежутком образовывала колебательный контур-преобразователь частоты.

Над трансформатором, располагавшимся в центре лаборатории, возвышалась деревянная башня высотой 60 метров, увенчанная большим медным шаром. Один конец вторичной обмотки трансформатора соединялся с этим шаром, другой — заземлялся. Все устройство питалось от отдельной динамо-машины мощностью 300 л.с. В нем возбуждались электромагнитные колебания частотой 150 килогерц (длина волны 2000 метров). Рабочее напряжение в высоковольтной цепи составляло 30 000 В, а резонирующий потенциал шара достигал 100 000 000 В, порождая искусственные молнии длиной в десятки метров!

Вот как объясняет работу вибратора Теслы его биограф:

«В сущности, Тесла «накачивал» в Землю и извлекал оттуда поток электронов. Частота накачки составляла 150 кГц. Распространяясь концентрическими кругами все дальше от Колорадо-Спрингс, электрические волны сходились затем в диаметрально противоположной точке Земли. Там вздымались и опадали волны большой амплитуды в унисон с поднятыми в Колорадо. Опадая, такая волна посылала электрическое эхо обратно в Колорадо, где электрический вибратор усиливал волну, и она мчалась обратно.

Если привести всю Землю в состояние электрической вибрации, то в каждой точке ее поверхности мы будем обеспечены энергией. Ее можно будет улавливать из мечущихся между электрическими полюсами волн простыми устройствами наподобие колебательных контуров в радиоприемниках, только заземленными и снабженными небольшими антеннами высотой с сельский коттедж. Эта энергия будет обогревать дома и освещать их с помощью трубчатых ламп Теслы, не требующих проводов. Для электромоторов переменного тока понадобились бы только преобразователи частоты». Сведения об экспериментах Теслы по передаче электроэнергии без проводов вдохновили и других исследователей на работы в этой области. Сообщения об аналогичных экспериментах часто появлялись в печати в начале прошлого века. Стоит привести в связи с этим выдержку из статьи A.M. Горького «Беседы о ремесле», опубликованной в 1930 году:

«В текущем году Маркони передал по воздуху электроток из Генуи в Австралию и зажег там электрические лампы на выставке в Сиднее. Это же было сделано 27 лет тому назад у нас, в России, литератором и ученым М.М. Филипповым, который несколько лет работал над передачей электротока по воздуху и в конце концов зажег из Петербурга люстру в Царском Селе (то есть на расстоянии 27 километров. -В.П.). Тогда на этот факт не было обращено должного внимания, но Филиппова через несколько дней нашли мертвым в своей квартире, а аппараты и бумаги его конфисковала полиция».

Эксперименты Теслы произвели большое впечатление и на другого литератора — Алексея Толстого, бывшего инженером по образованию. А когда Тесла, а затем и Маркони сообщили в печати, что их аппараты принимают странные сигналы внеземного, по-видимому, марсианского происхождения, это вдохновило писателя на написание фантастического романа «Аэлита». В романе марсиане пользуются изобретением Теслы и без проводов передают энергию от расположенных на полюсах Марса электростанций в любую точку планеты. Эта энергия приводит в действие двигатели летающих судов и другие механизмы.

Однако построить свою «мировую систему» для обеспечения электроэнергией населения земного шара без использования проводов Тесле не удалось. Как только в 1900 году он начал возводить на острове Лонг-Айленд под Нью-Йорком научно-исследовательскую лабораторию-городок на 2000 сотрудников и громадную металлическую башню с гигантской медной тарелкой на верхушке, сспохватились и «проводные» электрические олигархи: ведь повсеместное внедрение системы Теслы грозило им разорением. На миллиардера Дж.П. Моргана, финансировавшего строительство, последовал жестокий нажим, в том числе и от подкупленных конкурентами правительственных чиновников.

Начались перебои с поставками оборудования, строительство застопорилось, а когда Морган под этим нажимом прекратил финансирование, и вовсе прекратилось. В начале Первой мировой войны, по наущению тех же конкурентов, правительство США распорядилось взорвать уже готовую башню под надуманным предлогом, что ее могут использовать в целях шпионажа. Ну а затем электротехника пошла привычным путем.

Долгое время никто не мог повторить эксперименты Теслы хотя бы потому, что потребовалось бы создать аналогичную по размерам и мощности установку. Но в том, что Тесле удалось найти способ передачи электрической энергии на расстояние без проводов, более ста лет назад никто не сомневался. Авторитет Теслы, имевшего рейтинг второго после Эдисона изобретателя, во всем мире был достаточно высок, а его вклад в развитие электротехники переменного тока (в пику Эдисону, ратовавшему за постоянный ток) несомненен. При его экспериментах присутствовало много специалистов, не считая прессы, и никто никогда не пытался уличить его в каких-либо фокусах или подтасовке фактов. О высоком авторитете Теслы свидетельствует и название его именем единицы напряженности магнитного поля.

Вот только вывод Теслы о том, что во время эксперимента в Колорадо-Спрингс энергия была передана на расстояние 42 километра с к.п.д., равным около 90%, слишком оптимистичен. Напомним, что общая мощность зажженных на расстоянии ламп составляла 10 кВт, или 13 л.с., в то время как мощность динамо-машины, питавшей вибратор, достигала 300 л.с. То есть можно говорить о к.п.д. всего лишь порядка 4-5%, хотя и эта цифра поразительна.

Физическое обоснование экспериментов Теслы по беспроводной передаче электроэнергии до сих пор волнует многих специалистов. Одним из них было высказано интересное предположение, что своеобразным аккумулятором энергии, возвращавшим в Землю извлеченный из нее заряд, было громадное, сильно ионизированное облако, возникающее вокруг шара на верхушке мачты установки Теслы, с которого во время ее работы били громадные искусственные молнии. Иначе говоря, был создан своеобразный пульсирующий насос, периодически менявший заряд всей Земли (кстати, не такой уж большой). Желающим подсчитать емкость Земли как конденсатора напомним, что емкость шара численно равна его радиусу в сантиметрах, а «сантиметр» емкости условно равен одной пикофараде.

И лишь спустя сто лет после знаменитой демонстрации Теслы появились сведения о первых попытках воспроизвести их на современном оборудовании. Причем пришлось начать сначала — с эксперимента Теслы по передаче электроэнергии по одному проводу. Эксперименты проводились в июле 1990 года в лаборатории Московского энергетического института. В присутствии комиссии из специалистов их проводил инженер С. Авраменко. Источником энергии был модифицированный трансформатор Теслы, к одной из клемм которого подключалась линия длиной около трех метров (опыт был лабораторный). В усложненном варианте опыта линия представляла собой тончайшую вольфрамовую проволоку диаметром 15 микрон и с громадным сопротивлением. Но по ней удалось передать мощность в 1,3 кВт для гирлянды электрических лампочек, а провод при этом оставался холодным, словно он приобрел свойства сверхпроводника.

В более раннем эксперименте 1989 года на опыты Авраменко приехали посмотреть заместитель министра энергетики и начальники главков. Удивлялись и разводили руками точно так же, как и присутствовавшие сто лет назад на демонстрации Теслы в Лондоне тамошние специалисты. Ну а к 1991 году Авраменко увеличил длину линии передачи электроэнергии по одному проводу до 160 метров.

Кстати, характерна в этом отношении история электромобилей, появившихся более ста лет назад и еще тогда по своим параметрам успешно конкурировавших с автомобилями. С современными аккумуляторами они могут успешно соревноваться с ними и сейчас, но автомобильные олигархи делают все, чтобы не выпустить этого, по всем статьям опережающего автомобиль конкурента на мировой рынок.

Н.Тесла и беспроводное электричество. — TechnoAttic

1 Н.Тесла и его вклад в мировую науку

Никола Тесла – выдающийся мировой изобретатель. Перечислить все его заслуги и достижения вкратце очень сложно. Его патенты затрагивают почти все ветви науки, даже такие современные темы как компьютерная логика или аэродинамика.

В современном мире электричество привычно почти так же, как воздух и вода. Крупнейшие из сооруженных человеком механизмов и самые повседневные бытовые приборы работают на электрическом токе. Не будет преувеличением сказать, что современная цивилизация существует благодаря электричеству.
Сейчас мало кто вспоминает о том, что первые серьезные исследования этого явления начались всего два-три столетия назад. Многие великие ученые трудились над тем, чтобы постичь феномен заряженных частиц и обратить их на службу человеку, достаточно назвать имена Ампера, Фарадея, Максвелла, Герца. Среди этих великих имен особое место занимает сербский ученый Никола Тесла. Без его работ мир не был бы таким, каким он является сегодня.
Теслу, во многом опередившего свое время, называют «изобретателем ХХ века». Впрочем, существует мнение, что он «изобрел» и ХХI век. Его имя окутано ореолом тайны, и отделить истину от домыслов бывает трудно[1].

Тесла был гением во многих областях физики. Пожалуй, его можно назвать самым разносторонним изобретателем всех времен и народов. Его сфера деятельности – работа с рентгеновскими лучами, вакуумными трубами, радиационным и космическим излучением.

Разработки инженера, посвященные дистанционному управлению, робототехнике, радарным технологиям и лазерам, стали огромным вкладом в научно-технический прогресс. Последний известный патент Теслы, зарегистрированный в начале 1928 года, — самолет с вертикальным взлетом, еще одно свидетельство широты его инженерного мышления.

Опубликованные в 1931 году работы ученого предлагают систему извлечения энергии, добывая электричество при посредстве температурных колебаний в водах мирового океана.
Тесла широко известен благодаря своему вкладу в создание устройств, работающих на переменном токе, многофазных систем и электродвигателя, позволивших совершить так называемый второй этап промышленной революции.
Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, имевшие целью показать наличие эфира как особой формы материи, поддающейся использованию в технике.
После демонстрации радио и победы в «Войне токов» (против постоянных токов Эдисона) Тесла получил повсеместное признание как выдающийся инженер-электротехник и изобретатель. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение. В США по известности Тесла мог конкурировать с любым изобретателем или учёным в истории или популярной культуре [2].

2 Вымыслы и реальность

Существуют две основные точки зрения на творческую деятельность Николы Теслы «мистическая» и скептическая.

Сторонники первого направления полагают, что признаваемые официальной наукой заслуги Теслы в области электротехники лишь верхушка айсберга. Основных своих достижений исследователь будто бы добился во второй половине своей жизни, когда занялся глобальными исследованиями по извлечению электрической энергии из тела Земли и практическому использованию её в военной области для создания «непробиваемого щита», то есть электромагнитного поля большой мощности, способного закрывать границы государств от иностранного вторжения, а так же «лучей смерти», призванных наносить удары огромной силы по вражеским объектам.

Н.Тесла писал в 1927 г. «Более чем 25 лет назад мои усилия передать большое количество энергии через атмосферу привели к разработке многообещающего изобретения, которое с той поры получило название «Лучи смерти». Основополагающая идея заключалась в создании проводимости в воздухе приемлемым ионизирующим излучением и передачи токов с высоким потенциалом вдоль пути лучей… Эксперименты, проводимые в больших масштабах, показали, что с напряжением много миллионов вольт фактически неограниченное количество энергии может быть передано…»

Журнал «Time» писал 23 июля 1934г.: «На прошлой неделе доктор Тесла объявил комбинацию из четырех изобретений, которые сделают войну бессмысленной. Существом идеи являются смертоносные лучи – концентрированный пучек субмикронных частиц, перемещаемых со скоростью, близкой к скорости света. Пучек, по словам Тесла, будет поражать армию на маршруте полета, сбивая эскадрильи самолетов на дистанции 250 миль (400км). Тесла будет разряжать луч путем использования: прибора для сведения к нулю эффекта задержки частиц в атмосфере; метода создания высокого потенциала; процесс усиления этого потенциала до 50 миллионов вольт; создания гигантской электрической силы воздействия» [3], [8].

Тесла будто бы даже провел успешный эксперимент такого рода: так называемый Тунгусский метеорит, 30 июня 1908 года принесший в район реки Подкаменная Тунгуска огромные разрушения, якобы был делом его рук.

В последствии ученый, осознавая свою ответственность в случае, если столь смертоносное оружие окажется в руках беспринципных политиков, предпочел приостановить, а затем и вовсе уничтожить плоды своих работ. Тот факт, что его архив сразу после смерти оказался в руках ФБР и до сих пор недоступен для ученых, косвенно это подтверждает.

Существует еще множество историй, связанных с изобретениями Теслы. Одной из них стал электромобиль без внешнего источника электроэнергии. Другая – запуск управляемой ракеты на электрической тяге. Есть иные, неподтвержденные данные о причастности Тесла к работам в лаборатории Лос-Аламос (США) и конструировании НЛО, о использовании его проектов в «Филадельфийском эксперименте» и т.п. В интернете можно обнаружить множество сайтов, которые публикуют подобную информацию.

С точки зрения оппонентов, это ровным счетом ничего не доказывает. Имеющиеся в руках исследователей материалы свидетельствуют лишь о более или менее удачных футуристических предсказаниях Николы Теслы, но не более того. Никаких конструктивных текстов, которые бы доказывали, что он конкретно разработал, к примеру, принцип работы Интернета, не имеется. Есть лишь общие рассуждения такого рода. Однако, кроме Теслы, известны и другие люди, умевшие предвидеть будущие технические открытия, например, французский писатель Жюль Верн.

По всей видимости, в этом споре разумнее всего занять промежуточное положение. Из того, что современная наука не в состоянии воспроизвести опыты Теслы, еще не следует, что это не сумеет сделать наука будущего, что они в принципе не воспроизводимы. При этом слепо настаивать на том, что Тесла, не склонный различать мыслительный и реальный, физический, виды экспериментов, всегда и во всем прав, тоже неосмотрительно. Грань между истиной и самообманом в таких случаях очень тонка и опасна [5].

Таким образом, вопрос о наследии Николы Теслы остается открытым. Многие его замыслы еще ждут проверки и, возможно, реализации. Современные инженеры продолжают искать более эффективные способы получения энергии из солнечного света, ветра, морской воды и даже из открытого космоса: необходимость беречь ресурсы нашей планеты становится всё актуальнее.

Тесла подчеркивал необходимость быть экономным более ста лет назад, когда проблема истощения земной коры еще не стояла так остро. Возможно, бережное отношение связано с религиозными убеждениями ученого: он признавался в том, что в глубине души является очень верующим человеком. Известно, что помимо христианского богословия, Тесла много читал восточные учения, в частности Буддизм. Возможно, оттуда он вынес ощущение взаимосвязанности всех происходящих на земле процессов и хрупкости пронизывающей мир гармонии.

Знакомство с основными концепциями Николы Теслы входит в обязательную программу всех, кто изучает электротехнику на Западе. Многие ведущие университеты США например, Калифорнийский университет в Беркли и Массачусетский технологический институт – уделяют особое внимание наследию инженера. Его труды активно изучаются на родине – в Сербии и Хорватии [1].

В последнее время в России так же стали уделять внимание разработкам Теслы. Это стоит особо отметить. В последние десять лет в России опубликованы в переводе с английского все известные труды Николы Теслы. Его творчеству посвящены или его творчеством инспирированы десятки книг российских авторов. Учёному посвящены многочисленные научно-популярные программы на российском телевидении, его имя ставится в один ряд с именем В.И.Вернадского. Было бы вполне естественно, если бы российские учёные получили доступ к огромному массиву ещё не опубликованных и не изученных документов и материалов научного наследия Николы Теслы, объём которого в музее-архиве в шесть раз превышает всё то, что на сегодняшний день опубликовано во всём мире.

Предложение по созданию Российско-сербского общества (института) по изучению научного наследия Николы Теслы было высказано Велимиром Абрамовичем, доктором философии науки (физики и математики) из Белграда. «Я имел возможность познакомиться с некоторыми частями неопубликованного архива и был поражён, когда в одном из документов прочитал описание Теслой того, как остановить распад радиоактивных элементов радия и изотопов урана. Многие современные российские учёные-физики воспринимают идеи Теслы гораздо серьёзнее, чем где-либо в мире. Поэтому считаю, что настало время совместно с российскими коллегами осуществить систематическое изучение драгоценной научной документации Николы Теслы, что могло бы послужить исходной базой не только для новых чистых технологий, но и для ещё более важной цели – познания смысла самой науки»[4].

«…В связи со съёмками своих документальных фильмов о Николе Тесле мне довелось общаться в Белграде не только с учёными разных стран, изучающих наследие Теслы, и руководством Музея Н.Теслы, но и поработать в архиве этого музея. По единодушному мнению исследователей Сербии и других стран, а также хранителей архива, этот архив может подарить мировому сообществу большое число неизвестных идей и разработок Николы Теслы, в которых так нуждается современное человечество. При этом сербские друзья не раз подчёркивали, что в этом благородном и важном для всего человечества деле одна из главных надежд Сербии – на Россию, на её учёных и просто людей, неравнодушных к имени великого Николы Теслы, научное наследие которого целенаправленно замалчивалось в течение многих десятков лет.» — В.Правдивцев, сценарист, режиссёр, писатель, кандидат технических наук.

3 Беспроводная передача электроэнергии

В этом разделе приведены факты и последовательный ход мысли ученого, результатами которых действительно стал реальный коммерческий проект по передаче электроэнергии и радиоволн в любую точку планеты – «Мировая система». Для Теслы уже в то время было несомненно, что должен быть открыт способ передачи электроэнергии и вовсе без проводов. Эта проблема стала предметом внимания ученого в конце 1889 года.

Как одна из частных задач Теслу заинтересовала возможность использовать открытие Максвеллом и Герцем электромагнитной природы света. У него возникла мысль: если свет представляет собой электромагнитные колебания с определенной длиной волны, нельзя ли искусственно получить его не путем нагрева нити электрической лампы накаливания (что дает возможность использовать лишь 5 процентов энергии, превращающейся в световой поток), а путем создания таких колебаний, которые вызвали бы появление световых волн?

В 1889 году Тесла принялся за конструирование генератора переменного тока большой частоты и вскоре создал машину, статор которой состоял из 348 магнитных полюсов. Этот генератор давал возможность получать переменный ток с частотой в 10 тысяч периодов в секунду (10 кГц). Вскоре ему удалось создать и еще более высокочастотный генератор и начать изучение различных явлений при частоте 20 тысяч периодов в секунду [5].

Рисунок 3 – Генератор переменного тока 10кГц

Для получения значительно большего числа периодов и значительно более высоких напряжений, чем это могло быть достигнуто созданными им генераторами токов высокой частоты, необходимо было найти и опереться на иные принципы. Тесла создает свой резонансный трансформатор.

Открытые им в 1890 году принципы электрической настройки резонансного трансформатора и возможность изменять емкость для изменения длины волны электромагнитных колебаний, создаваемых трансформатором, стали одним из наиболее важных оснований радиотехники.

В 1896 году невдалеке от Нью-Йорка Тесла построил небольшую радиостанцию и передавал сигналы на расстояние до 32 километров. К этому времени он увеличил частоту тока на своей отправительной станции (уменьшил длину волны), доведя его до 2 МГц — величины, ранее недостижимой. Сигналы его отправительной установки в Нью-Йорке принимали на судах, движущихся по Гудзону на расстоянии свыше 25 километров. Тесла занялся разработкой схемы передачи радиоволн для управления различными механизмами. В начале 1898 года Тесла создал первую конструкцию судна, управляемого радиосигналами на значительном расстоянии, и испытал его модель в лаборатории на Хьюстон-стрит. 1 июля 1898 года он подал заявку на патент. Примерно в этот же период Тесла получает патент на однопроводную передачу электричества, хотя первые демонстрации свечения ламп, подключенных к передающему проводу только одним контактом проходили еще в 1891г.

В сентябре 1898 года в Медисон-сквер-гардене (один из крупнейших залов Нью-Йорка) проходила ежегодная электрическая выставка. В центре зала был устроен большой бассейн. На одной из стенок его сделали причал, к которому пришвартовывался небольшой ковчег с длинным тонким металлическим стержнем посредине и металлическими трубками, заканчивающимися электрическими лампочками на корме и на носу. Тонкий стержень был приемной антенной, а сам ковчег — первым в мире управляемым по радио судном, одним из наиболее важных изобретений Николы Теслы.

Рисунок 4 – Радиоуправляемое судно

8 ноября 1898 года на это изобретение Николе Тесле был выдан патент в США, а затем и в других странах, в том числе и в России (30 июля 1905 года по заявке от 26 октября 1898 года). Описания опытов в Медисон-сквер-гардене и патента Теслы заполнили страницы газет и журналов. О них писали не только в США, но и в России, Франции, Англии. Снова Тесла стал в центре внимания всех электротехников мира. Таким образом, появилось новое изобретение и новая наука, для которой предложено и новое название — «телеавтоматика», что означает техника управления движениями и действиями автоматов, удаленных на расстояние». Тесла всесторонне разработал основные положения этой новой техники. Чтобы иметь возможность управлять различными автоматами или частями одного автомата, не вызывая действия других, необходима настройка их приемных устройств на разные частоты, посылаемые с одной центральной станции. Это показывает, что Тесла с замечательной прозорливостью понял значение радиоизбирательности, чего другие изобретатели в области радио тогда еще не оценили в должной мере.

Построенные Теслой суда, управляемые по радио, уплывали в открытое море на расстояние в 25 морских миль от управляющей станции, совершали все маневры, требуемые оператором, а затем благополучно возвращались в Нью-Йоркскую гавань [5].

Эти работы имели большое значение для развития той области науки и техники, которая только впоследствии приобрела огромное значение и стала широко известной под названием «инженерная кибернетика», возникшая под влиянием идей «телеавтоматики». Современные управляемые по радио сложные автоматы, ракеты, торпеды, подводные лодки, беспилотная авиация и множество других устройств подобного рода являются результатом продолжения работ Николы Теслы, привлекших внимание последующих изобретателей. И хотя имя Теслы, как одного из основоположников всей современной телеавтоматики и кибернетических машин, не всегда упоминается в литературе, историческая правда заключается в том, что именно ему более чем кому-либо мир обязан зарождением и прогрессом многих важнейших направлений современной техники.

В 1899 года, Тесла переехал в местечко Colorado Springs «Компания колорадских источников», где основал небольшую лабораторию для исследования грозовых разрядов.

Рисунок 5 – Лаборатория в Колорадо Спрингс

Наблюдения над грозами и сопровождавшими их изменениями потенциала Земли Тесла вел с помощью специально сконструированной им установки. Это был трансформатор, один конец первичной обмотки которого был заземлен, а второй, заканчивавшийся шаром, поднят на большую высоту. Так как емкость шара зависела от высоты его подъема над землей, вывод, на котором он был укреплен, сделали составным, позволяющим изменять высоту подъема. Во вторичную обмотку этого трансформатора было включено высокочувствительное самонастраивающееся устройство, соединенное с записывающим прибором.

Всякое изменение потенциала Земли вызывало в витках первичной обмотки импульсы тока, создававшие во вторичной обмотке вторичные токи, отмечаемые регистрирующим прибором. Наблюдение за этими приборами показало, что потенциал Земли непрерывно колеблется. Особенно значительны были эти колебания в период гроз и разрядов молнии. Приборы отмечали более сильные колебания потенциала Земли при отдаленных разрядах, чем при разрядах, происходивших вблизи от них. Наконец во время одной из гроз разгадка была найдена. Тесла так описал это открытие:

«Третьего июля — я никогда не забуду этой даты — я получил первое неопровержимое экспериментальное доказательство истины, имеющей огромное значение для прогресса человечества. Плотная масса сильно заряженных облаков скопилась на западе, и к вечеру разразилась страшная гроза. Растратив большую часть своей ярости в горах, она понеслась с невероятной скоростью над равнинами. Через почти регулярные интервалы времени возникали длительные грозовые разряды. Мои наблюдения теперь облегчились и стали более точными за счет приобретенного опыта. Я научился уже быстро оперировать своими приборами и приготовился к наблюдению. Регистрирующие приборы были соответствующим образом отрегулированы, и их показания становились все слабее по мере возрастания расстояния до грозы, пока совсем не исчезли. Как я и думал, немного погодя показания прибора появились вновь, становясь все сильнее и, пройдя через максимум, постепенно спадали и снова прекращались. То же самое повторялось много раз через регулярные интервалы времени, до тех пор пока гроза, которая, как следовало из простых подсчетов, двигалась с почти неизменной скоростью, не удалилась на расстояние примерно трех сотен километров. Однако и тогда эти странные явления не прекратились, а продолжались с неубывающей интенсивностью. Впоследствии аналогичные наблюдения были выполнены моим ассистентом Фрицем Ловенштейном, и вскоре собранные сведения позволили неопровержимо установить истинную природу этого чудесного явления. Не оставалось никаких сомнений — я наблюдал стоячие волны»[6].

Одна из важнейших задач, разрешить которую Тесла стремился в Колорадской лаборатории, заключалась в получении ясного ответа на вопрос: является ли Земля электрически заряженным телом или нет? Однако наблюдение явления стоячих волн в Земле ясно указывало и на наличие электрического заряда Земли и на возможность вызывать в ней стоячие волны искусственно.

Выяснение этого факта позволило Тесле осуществить эксперимент, имевший весьма важное значение для возможного осуществления его дальнейших планов. Можно ли создавать искусственно путем мощного разряда стоячие волны в Земле, вызывать в ней резонансные колебания и затем использовать их для различных целей?

В высоком деревянном здании лаборатории с раскрывающейся, как у астрономических обсерваторий, крышей был смонтирован усиливающий трансформатор. Он состоял из двух катушек: на огромное заборообразное основание были намотаны витки необычайной по своим размерам первичной катушки. Вторичная катушка этого «усиливающего передатчика» соединялась с мачтой, возвышавшейся на 50 метров над землей и заканчивавшейся медным шаром диаметром в 1 метр. Мачта состояла из отдельных секций и могла быть удлинена или укорочена. Благодаря тому, что крыша над зданием была раздвижной, вокруг вторичной катушки и мачты на значительном расстоянии не было никаких предметов.

Все обмотки этих катушек были рассчитаны так, что при пропускании через первичную катушку тока напряжением в несколько тысяч вольт и при стандартной частоте переменного тока (60 периодов в секунду) во вторичной катушке можно было получить ток весьма высокого напряжения и высокой частоты. При разрядке этой катушки на землю напряжение достигало несколько миллионов вольт при частоте до 150 тысяч периодов в секунду. Первое включение устройства Теслы вывело из строя генератор городской электростанции питавшей его лабораторию и не рассчитанный на такие большие токи. В итоге работ Тесла подтвердил возможность вызвать в Земле явление электрического резонанса и получить стоячие волны. Он предполагал, что распространение возникших в ней волн происходило от «Колорадских источников» по всем направлениям, все расширяющимися окружностями, по поверхности Земли. Они с возрастающей интенсивностью сходились затем в точке, диаметрально противоположной Колорадо, где-то около французских островов Новый Амстердам и Св. Павла, между южной оконечностью Африки и юго-западным углом Австралии. Возвращаясь обратно в «Колорадские источники», эхо волны вновь усиливалось осциллятором (усиливающим трансформатором) и отправлялось обратно к антиподам, к противоположной точке земного шара[5].

Деревянная изгородь вокруг катушек и сидящего в центре Н.Теслы – это первичная обмотка огромного резонансного трансформатора.
Рисунок 6 – Лаборатория в Колорадо Спрингс (внутренний интерьер)

В ходе проведений экспериментов в местных газетах был описан факт зажигания Н.Теслой под аплодисменты собравшейся публики, двух сотен лампочек и запуска электромоторов на расстоянии 42 км от лаборатории.

Продолжение экспериментов последовало уже в гораздо больших масштабах. В 1900г. на острове Лонг-Айленд Тесла основывает комплекс Уорденклиф. 20 акров пустыря были расчищены под здание лаборатории, на остальном участке предполагалось создать городок с населением не менее 2 тысяч человек, приглашенных на строительство сложных сооружений. Затем по мере завершения работ городок должны были заселить тысячи сотрудников лаборатории и самой мощной в мире радиостанции [5] . Подробное описание на английском языке [8]. Завод по производству электроэнергии должен был передавать электричество и радиосигналы беспроводным способом.

«Уорденклиф будет радиотехнической столицей мира», — думал Тесла, руководя развернувшимися работами по созданию мощной радиостанции, предназначенной не только для передачи на самых различных волнах любых сообщений, но и для многих, известных лишь в наше время применений радиотехники: телеуправления, локации и других. Вторую станцию для передачи во все точки земного шара электроэнергии для силовых нужд и освещения он намеревался построить у Ниагарского водопада. Едва ли кто-либо другой, кроме самого изобретателя, твердо верил в осуществимость этого грандиозного проекта. Фантастичность его мечтаний поражала всех, кто был с ними знаком.

Радиостанция Теслы должна была представлять деревянную каркасную башню высотой в 57-60 метров, на вершине которой помещался огромный медный шар. Техника того времени не знала случаев строительства подобных зданий из дерева. Когда же в 1902 году башня была закончена, Тесла переселился туда же в небольшой коттедж, где и жил в последующие несколько лет.

Рисунок 7 – Башня Н.Тесла в Уорденклиф (США) – «Мировая система»

Описывая свои открытия и изобретения, на которых основано действие «Мировой системы», Тесла называл свой резонансный трансформатор, осциллятор для получения токов высокой частоты, усиливающий трансформатор для возбуждения стоячих волн в земле и другие приборы и аппараты. Тесла считал одним из важнейших своих открытий, имеющих огромную практическую ценность, обнаружение стоячих волн во время опытов в Колорадо Спрингс. Изобретение избирательной передачи, то есть возможности одновременной передачи бесконечного множества различных сигналов без взаимных помех и воздействия их на различные приемные устройства или их части, должно было обеспечить развитие «телеавтоматики», значение которой не раз показывал Тесла в своих предыдущих статьях.

Все эти и многие другие его изобретения, описанные в брошюре о «Мировой системе», обеспечивали, по мнению Теслы, беспроводную передачу бесплатной электроэнергии в любых количествах в любую точку земного шара. Подробная конструкция, кажущегося фантастическим, проекта описана в патенте США №1119732 от 1 декабря 1914г. «Устройство для передачи электроэнергии»[7]. Отдельные составляющие части системы еще в 4-5 (или более) патентах.

Рисунок 8 – Пробный запуск башни в Уорденклиф

Пробный пуск невиданного сооружения состоялся в 1903 году и произвел потрясающий эффект. «Тесла зажег небо над океаном на тысячи миль», — писали газеты. С помощью катушки размером в 61 метр, полюс которой возглавляла большая медная сфера, возвышающаяся над его лабораторией, Тесла генерировал потенциалы, которые разряжались стрелами молний длинной до 40 метров. Гром от высвобождаемой энергии мог быть услышан за многие мили. Люди, идущие по улицам были поражены, наблюдая искры, скачущие между их ногами и землей, и электрические огни, выпрыгивающие из крана, когда его открывали. Вокруг экспериментальной башни пылал шар диаметром в 30 метров. Лошади в сбруе получили шоковые электроудары через их металлические подковы и металлические предметы привязи на стойлах. Даже насекомые были повреждены: бабочки стали наэлектризованными и беспомощно кружились кругами на своих крыльях, бьющих струями синих ореолов «Огней Святого Эльма» (The July 14th-17th 1903 reports from «The New York Sun»).

Рисунок 5 – Внутренний интерьер лаборатории Уорденклиф 1903г.

Однако строительство не было закончено. «Увы, — писал Тесла, — по сей день моя установка «беспроволочной передачи энергии» не построена; ее сооружение за последние два года продвигается слишком медленно. Та установка, которую я сейчас строю, представляет собой всего игрушку. Генератор с максимальной мощностью всего в 10 миллионов лошадиных сил может произвести лишь легкое сотрясение планеты знаком и словом — телеграфом и телефоном. Когда же я увижу завершенной эту первую установку, этот большой генератор, который я сейчас разрабатываю, установку, от которой ринется сквозь землю ток напряжением в сто миллионов вольт? Установка, которая даст энергию порядка одной тысячи миллионов лошадиных сил, равная мощности ста Ниагарских водопадов…»

От Моргана Тесла получил письмо с уведомлением о прекращении финансирования. Одна из версий следующая: против ученого ополчилась вся мировая энергетика, основанная на проводном способе передачи энергии. Если бы система Теслы победила, произошел бы всемирный крах уже сложившейся энергетики. Особенно были обеспокоены «энергетические короли» в самих США. На финансировавшего строительство «Мировой системы» Дж. П. Моргана было оказано политическое и финансовое давление, и работы были остановлены [4]. В начале Первой мировой войны уже построенную башню взорвали по причине, что ею могут воспользоваться немецкие шпионы для наведения на Нью-Йорк начиненных взрывчаткой радиоуправляемых самолетов.

Тесла всю жизнь оставался убежденным в том, что его предложение об использовании Земли в качестве среды для передачи электромагнитных волн дало бы такой же, а может быть, еще более важный для практических целей результат, как и осуществляемая в наши дни передача их через воздух.

В последние годы своей жизни Тесла часто говорил, что он, по-видимому, действительно слишком рано требовал от людей понимания его проектов и, представляя себе значение их для развития науки и техники, не представлял условий, при которых они могли бы получить полное развитие. Критически оценивая результаты своей работы в области передачи электроэнергии без проводов, он говорил: — «Пожалуй, я действительно зашел слишком далеко вперед. Без нее еще можно обходиться до тех пор, пока моя многофазная система удовлетворяет потребности мира. Но на тот случай, когда возникнет необходимость, система передачи электроэнергии без проводов уже готова».

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] Никола Тесла / А.В. Жаркова// 100 человек, которые изменили ход истории. – 2009 №93.

[2] Википедия [Электронный ресурс].

[3] Стребков, Д.С. Резонансные методы передачи и применения электрической энергии. Изд. 3-е, перераб. и доп. / Стребков Д.С., Некрасов А.И. – М.: ГНУ ВИЭСХ, 2008. – 352с.

[4] Дельфис [Электронный ресурс]. – www.delphis.ru/journal/article/nasledie-ntesly-prishlo-vremya-izuchat#anc0

[5] Ржонсницкий, Б. Н. Никола Тесла. / Ржонсницкий Б. Н. – М.: «Молодая гвардия», 1959. — 224 с

[6] Тесла, Н. Колорадо-Спрингс. Дневники. 1899-1900 / Тесла. Н – Самара: Издательский дом «Агни», 2008. – 460 с: ил.

[7] Тесла, Н. Патенты / Тесла. Н – Самара: Издательский дом «Агни», 2009. – 496с.

[8] The Wardenclyffe Laboratory & the World Wireless System – http://teslaresearch.jimdo.com/wardenclyffe-lab-1901-1906/

[9] Цифровые цветные фото – Rex Hebert http://www.magnetricity.com/Tesla/Tesla.php#Gallery


Беспроводное электричество: от идеи до реализации

Из всех идей, над которыми работал инженер и физик Никола Тесла, а в этом списке были переменный ток, радио, пульт дистанционного управления (и это в конце XIX века), самой фантастической и трудно осуществимой была передача электрической энергии без проводов. И дело не в том, что сербский изобретатель не знал, как осуществить свой проект. Идея беспроводного электричества, как и электродвигатель, созданный в эпоху бурного развития нефтяной промышленности, не была оценена по достоинству и не получила поддержку от инвесторов и научного сообщества. Спустя десятилетия, когда электроприборы стали неотъемлемой частью нашего быта, система беспроводной передачи электричества (БПЭ) снова будоражит умы инженеров по всему миру. Каких результатов уже удалось достичь, и какие способы используется сегодня?

«Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое оборудование, которое даст вам тепло для приготовления пищи, а свет для чтения. Это оборудование поместиться в небольшой сумке, как обычный чемодан. В ближайшие годы беспроводные светильники будут столь же распространены на фермах, как и обычные электрические светильники в наших городах».

Никола Тесла, «The American Magazine», апрель 1921 года

Беспроводная передача электричества: что это

«Беспроводной» — одно из самых трендовых слов последнего времени: интернет, мобильные телефоны, наушники, зарядные устройства, радио. Эти технологии тоже можно считать видом беспроводной передачи энергии, но в них главенствующая роль отводиться информации (качеству ее передачи, скорости), а в случае с электричеством показателем эффективности является сохранность передаваемой энергии без использования электрической цепи из токопроводящих элементов.

Кто изобрел беспроводное электричество?

Во время выставки в Чикаго в 1893 году Никола Тесла продемонстрировал беспроводное освещение при помощи люминесцентных ламп. Сегодня подобный эксперимент может повторить кто угодно, достаточно встать с лампой дневного света под линией высокого напряжения. А в то время — было похоже на магический сеанс, поэтому пресса и очевидцы вознесли изобретателя на вершину популярности.

Но в научном мире нет единства, что именно Тесла создал беспроводное электричество: считается, что он доработал идею, которую уже развивали другие ученые.

В 1820 году Андре Мари Ампер записал закон, названный впоследствии в его честь, указывающий на то, что во время использования электрического тока образуется магнитное поле.

Спустя 11 лет Майклом Фарадеем был открыт закон индукции: в ходе опыта установил, что магнитное поле, генерируемое в одном проводнике, способно индуцировать ток в другом проводнике.

В 1864 году Джеймс Максвелл объединил имеющиеся теории, и вывел уравнение, описывающее электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

В 1891 году Никола Тесла улучшил передатчик волн, изобретенный Генрихом Герцом тремя годами ранее, и запатентовал его как устройство для радиочастотного энергоснабжения: патент No 454,622; «Система электрического освещения». Параллельно с сербским ученым, исследования электромагнитных волн ведут Александр Попов (Россия), Гульельмо Маркони (Италия), Джагдиш Боше (Индия).

Как работает беспроводное электричество: индукция

Несмотря на то, что последние десятилетия технологии активно развивались, один из самых популярных способов передачи электроэнергии без проводов, мало чем отличается от того, которым пользовался Фарадей. Одна резонансная медная катушка подключается к источнику питания, вторая — играет роль приемника.

Видео работы беспроводного электричества с использованием двух катушек наглядно демонстрирует и простоту технологии, и ее главную проблему – небольшой радиус действия. Также с его помощью невозможно передавать большие объемы энергии (катушки расплавятся) при том, что КПД около 40% (Тесла об этом писал еще в 1899 году).

Однако, нельзя сказать, что магнитная индукция не нашла своего применения. Сегодня технология активно используется для производства беспроводных зарядных устройств. Компания Apple 2017 году презентовала свои беспроводные зарядные устройства, как нечто революционное, хотя фактически этой новинке больше 100 лет.

Беспроводное электричество: популярные технологии

Помимо индукции, на которую делают главные ставки производители электрокаров и гаджетов, известны еще 3 способа: лазеры, микроволны, ультразвук. Ученые убеждены, что каждое из этих направлений может получить развитие в будущем.

  • Лазеры. Энергия передается путем преобразования ее в луч, которые направляется на фотоэлемент приемника. Таким способом можно передавать большие объемы энергии, но эти планы разбиваются об атмосферу Земли, из-за которой большая часть (около 60%) энергии рассеивается. Но в безвоздушных пространствах технология вполне жизнеспособна. Именно поэтому компании, осваивающие космические просторы, продолжают изучение лазерных технологий: в 2009 году NASA даже был организован конкурс с призовым фондом в $900 тыс. по лазерной БПЭ. Первое место заняла Laser Motive: на 1км и 0,5 кВт переданной непрерывной мощности. При том, что конечно цели достигли только 10% энергии, эксперимент назвали успешным.
  • Микроволны. Теоретически радиоволновую передачу энергии можно сделать направленной, используя полупроводники или лампы (циклотронный преобразователь энергии). Полупроводники сейчас активно используются во всем мире, но что касается передачи больших объемов энергии, то необходимо использовать и большее количество полупроводников. Это не только увеличивает стоимость проекта, но и появляется переизлучение, т.е. находиться близко у таких панелей – не безопасно. Но полупроводниковые системы показали высокую эффективность: более 80%. Это доказал еще Вильям Бараун в 1975 году, передав 30 квт на расстояние более 1 км. Создателями циклотронного преобразователя энергии являются советские ученые Владимир Савин и Владимир Ванке, хотя его КПД не превышает 70-80%, надежность достаточно высокая.
  • Ультразвук. Технология была представлена в 2011 году на выставке «The All Things Digital» (D9). Студенты Пенсильванского университета использовали ультразвуковой передатчик и приемник (преобразовывал улавливающее электричество). Радиус действия – около 10 метров. Недостатки: должна быть прямая видимость между «узлами», низкий КПД. Но, передаваемые ультразвуковые частоты, не оказывают воздействия на людей или животных.

Беспроводные зарядные устройства: использование в быту и инфраструктуре

Самым востребованным и популярным девайсом с использованием беспроводной передачи электроэнергии являются зарядные устройства. Это может быть не только смартфон или планшет поддерживающий технологию, но и робот-пылесос, электросамокат, электровелосипед и электрическая зубная щетка.

Универсальность беспроводных зарядок – несомненный плюс технологии. Их создают по стандарту Qi (читается как «Ци»), разработанному Консорциумом беспроводной электромагнитной энергии (Wireless Power Consortium): заряд на расстоянии до 4 см. Samsung и Xiaomi также выпускают универсальные беспроводные зарядки. Кстати, если Samsung EP-PG950 не может заряжать гаджеты через чехол, то для Xiaomi Mi Wireless Charging Pad – это не проблема.

Индукционные зарядки для электрических электросамокатов (кикскутеров) устанавливают в Германии. Easy Charge, созданная компаниями Metz и Intis, универсальная и может взаимодействовать с устройствами разных производителей, а благодаря тому, что зарядное выпускается в нескольких модификация (на одно или 5 мест), его можно использовать и в общественных местах.

Джошуа Смит (сотрудник компании Intel) совместно с Марин Солджачич – доцент кафедры физики MIT (Massachusetts Institute of Technology) основали проект WiTricity. Они сосредоточили свои силы на разработке системы БПЭ среднего диапазона, за основу взята магнитно-резонансная связь. В результате в 2017 году появились универсальные беспроводные зарядные устройства для электрокаров DRIVE 11. Приемник устанавливается на днище авто, а передатчики – где угодно (в общественных местах, на станциях заправки или в гаражах владельцев электрокаров). 

Автомобильный концерн BMW также запустил продажи беспроводной индуктивной зарядки. Комплект состоит из индукционной зарядной станции – GroundPad, которая подходит для помещений и установки на открытом воздухе, второй элемент — CarPad (система зарядки автомобиля). После того, как авто оказывается над зарядкой, GroundPad генерирует магнитное поле, а CarPad индуцирует электрический ток, который затем передается в аккумулятор. За 3,5 часа батарея будет полностью заряжена. Аналогичную систему концерн разрабатывает и для мотоциклов.

В Швеции в 2018 году появилась целая электрифицированная дорога eRoadArlanda. Это 2-км участок дороги вблизи Стокгольма, с установленными отбойниками-троллеями. Пока электрокар находится над этой линией, подвижные токосъемники заряжают батареи.

Использовать ее могут электрогрузовики, разработанные в рамках проекта eRoadArlanda, в будущем технологию будут совершенствовать, чтобы сделать универсальной.

А вот в норвежском Осло разрабатывают систему бесконтактной подзарядки именно для легковых электромобилей в такси. В рамках государственной программы «ElectriCity» будет реализована зарядная система, которая позволит заряжать аккумуляторы, не теряя рабочего времени: например, пока водитель ожидает новый заказ или ждет клиентов.

Инженеры стартапа Emrod пошли дальше: беспроводная система передачи электроэнергии на большие расстояния уже тестируется в Новой Зеландии. Хотя инженеры Emrod не раскрывают точных деталей своей разработки известно, что технология подразумевает использование микроволнового излучения. Устройству, работающему в широком спектре частот, не обязательно находиться вблизи непосредственных потребителей. Это позволяет электрифицировать удаленные населенные пункты, при этом не производить вырубку деревьев для прокладки линии электропередач. Кроме того, технология должна снизить цену на электроэнергию.

Что касается безопасности, то по заверению создателей, излучение неионизирующее (не наносит вред человеку, животным, растительности). Также для дополнительной защиты установки укомплектованы сигнальным, лазерным лучом малой мощности, который сканирует линию передачи на наличие помех, и в случае их выявления, автоматически останавливает работу устройства. Примерно через полгода можно будет сделать выводы о его эффективности и создании полноценной системы. Примечательно, что поддержку стартапу Emrod оказывает один из главных дистрибьюторов электроэнергии в Новой Зеландии – Powerco. Это говорит о том, что крупные игроки энерго-рынка понимают важность поиска альтернатив в «зеленом» сегменте.

В XIX веке, в котором зарождались и беспроводная энергия и беспроводная связь, приоритет был отдан второму открытию. Возможно, теперь, когда связь уже налажена, ученые уделят внимание беспроводным технологиям передачи энергии, сделав их доступнее и дешевле. Это, в свою очередь, ускорило бы переход от двигателей внутреннего сгорания к электрокарам, решив часть проблем экологии.

Прощайте, провода! |

Будущее без проводов становится реальностью. В июне 2007 г. группа ученых под руководством профессора Марина Солячича из Массачусетского института (MIT) провела эксперимент по беспроводной передачи электрической энергии с эффективностью 45%. Ученые обещают: очень скоро для зарядки мобильных телефонов, плееров, ноутбуков и прочих переносных устройств, нуждающихся в постоянной подпитке электроэнергией, не нужно будет никаких проводов.

О том, что хорошо бы было подпитывать всевозможные приборы электроэнергией без путающихся под ногами проводов, ученые задумываются уже очень давно. Как минимум 100 лет. Именно столько времени прошло с того момента, когда данной проблемой заинтересовался гениальный американский ученый и изобретатель Никола Тесла.

ДОРОГА В БУДУЩЕЕ

          Сведений о работах Теслы в сфере беспроводной передачи энергии сохранилось очень мало. По отрывочным сведениям, дошедшим до нас, ему действительно удалось добиться в этой области выдающихся результатов.В 1899 г. в Колорадо-Спрингс он публично продемонстрировал лампы и двигатели, работающие на высокочастотном токе без проводов. Для фантастического эксперимента была построена башня высотой несколько десятков метров, которую венчала “луковка” разрядника – большая медная полусфера. При включении установки возникли искровые разряды длиной до 40 м, сопровождавшиеся громовыми раскатами, которые были слышны за 15 миль. Вокруг башни пылал огромный световой шар. За 25 миль от нее под аплодисменты наблюдателей разом загорелись 200 электрических лампочек. Электрический заряд был передан без всяких проводов!

Опыт в Колорадо-Спрингс весьма сильно впечатлил Джона Пирпонта Моргана, одного из самых богатых людей Америки. По его приглашению Тесла переехал в Нью-Йорк для работы над грандиозным проектом Wardenclyffe – созданием Всемирного центра беспроводной передачи энергии. На Лонг-Айленде строится башня высотой 57 м со стальной шахтой, углубленной в землю на 36 м. Верх башни венчает 55-тонный металлический купол диаметром 20 м. Пробный пуск невиданного сооружения состоялся в 1905 году и произвел потрясающий эффект. Как писали газеты, «Тесла зажег небо над океаном на тысячи миль».

Дальше – больше. Согласно одной из “экзотических” версий, тунгусские события 1908 года были вызваны испытанием энергетического оружия, совершенно случайно созданного Николой Теслой. И действительно, в 1907-1908 гг. Тесла уже писал о разрушительном воздействии своего передатчика энергии. В 1915 г. он прямо заявлял: «Безусловна практическая передача электрической энергии без проводов и производство разрушительного воздействия на расстоянии. Я уже конструировал беспроволочный передатчик, который делает это возможным. Опыты продвинулись так далеко, что воздействия большой разрушительной силы могут быть произведены в любую точку на земном шаре, определенную заранее, с большой точностью».

Очевидно, сам Тесла считал проблему беспроводной передачи энергии решенной. В мае 1917 г., выступая на заседании Американского института инженеров-электриков по случаю получения награды имени Томаса Эдисона, он сказал: «Что касается передачи энергии через пространство, это проект, который я давно считаю абсолютно успешным. Годы назад я мог передавать энергию без проводов на любое расстояние без ограничений, которые накладывались физическими размерами Земли. Эффективность передачи может составлять 96 или 97%, и практически нет потерь, кроме тех, которые неизбежны для работы машины».

Однако как он это делал, остается загадкой. Никаких записей об уникальных экспериментах не сохранялось. После смерти Николы Теслы повторить их не удалось. О передаче энергии без проводов просто забыли на долгие-долгие годы.

 

НОВЫЕ СТАРЫЕ ТЕХНОЛОГИИ.

 

Для профессора Марина Солячича все началось с мобильного телефона, а точнее, с его неисправной батареи, постоянно нуждавшейся в подзарядке. Именно эта надоевшая проблема заставила ученого подумать о способе передачи электроэнергии без проводов. «Раньше просто не было необходимой мотивации, – охотно делится ученый. – Это только в последние годы появилась масса всевозможных портативных устройств, получающих питание от батарей и часто нуждающихся в подзарядке». Тут-то профессору Солячину и пришло в голову, что выходом может стать беспроводная передача электроэнергии.

В принципе идея эта не нова. Однако до сих пор все попытки передать электроэнергию на расстояние, без какого бы то ни было носителя, проваливались из-за низкого КПД. Большая часть передаваемой электроэнергии просто рассеивалась в окружающей среде, до конечного потребителя доходили жалкие крохи. Правда, предпринимались попытки передачи электроэнергии при помощи направленного лазерного луча. Однако в этом случае между источником энергии и приемником не должно было быть никаких физических препятствий, что, понятно, не всегда осуществимо. Профессору Солячичу удалось справиться с проблемой рассеивания электроэнергии. В основе разработанной им технологии WiTricity лежит явление электромагнитного резонанса. По мысли Солячича, для эффективной передачи энергии на расстояние необходимо заставить передатчик и приемник резонировать с одинаковой частотой.

Теоретические выкладки профессора, которые были опубликованы ещё в прошлом году, блестяще реализовали инженеры из Массачусетского технологического института (MIT). В ходе эксперимента, проведенного в июне 2007 г., им удалось заставить светиться 60-ваттную лампу накаливания, находящуюся на расстоянии более 2 м от источника энергии.

Экспериментальное устройство состояло из двух медных катушек диаметром 60 см, передатчика, подключенного к источнику энергии, и приемник с подсоединенной к нему лампой накаливания. Контуры приемника и передатчика были настроены на частоту 10 МГц. В результате воздействия электромагнитного излучения передатчика на приемник в контуре последнего возникал электрический ток, и лампа начинала светиться. Она продолжала гореть, даже когда между катушками находились деревянные или металлические предметы, а также электронные устройства. И хотя потери энергии все еще велики, приемник получает только 40-45% электроэнергии, результаты впечатляют.

Сам Марин Солячич утверждает, что технология не представляет опасности ни для людей, ни для животных. Воздействие такого «зарядника» не влияет на работоспособность кредитных карт, мобильных телефонов и других электронных устройств, чувствительных к электромагнитному полю. Профессор Солячич надеется, что в самом ближайшем будущем технология WiTricity получит самое широкое распространение, а, значит, всевозможные портативные устройства можно будет подзаряжать автоматически, без подключения к сети.

Впрочем, прежде профессору Солячичу и его коллегам из MIT предстоит существенно доработать свое изобретение. Повысить коэффициент эффективности передачи, чтобы большая часть энергии доходила до приемника. Уменьшить размеры прототипа и увеличить расстояние, на которое передается электроэнергия. В ближайшем будущем группа из MIT планирует перевести эксперимент в практическую плоскость – «запитать» от своей системы ноутбук или робот-пылесос.

Впрочем, надо сказать, что профессор Солячич не одинок. Над беспроводной технологией передачи электроэнергии работают и другие изобретатели. Так, Кит Крессин, вице-президент по маркетингу американской компании Powercast, заявил, что устройства, использующие беспроводную передачу энергии, могут появиться уже в следующем году. Разработанная в компании технология передачи энергии по радиоволнам уже прошла сертификацию. В отличие от конкурентных разработок она значительно эффективнее – способна передавать до 70% вырабатываемой энергии (традиционные системы радиопередачи энергии транслируют лишь 10%). К тому же технология позволит многим устройствам обходиться вообще без аккумуляторов, «запитываясь» непосредственно от передатчика.

 

Другая Энергия

        Максимум через 25 лет на Земле закончатся нефть и газ, и человечество столкнется с глобальным энергетическим кризисом. Пути выхода из него до конца неясны. Впрочем, директор Всероссийского научно-исследовательского института электрификации сельского хозяйства, академик РАСХН, доктор технических наук Дмитрий Стребков смотрит в будущее с оптимизмом. По его мнению, спасение придет откуда не ждали. Надо только хорошенько покопаться в архивах, вспомнить, чем же занимались ученые сто лет тому назад, и сделать ставку на… электричество.

(Интервью брала корреспондент журнала “Мир новостей” Наталия Калинина)

            – Дмитрий Семенович, чтобы обеспечить устойчивое развитие в будущем, человечеству необходимы новые энергетические технологии. Какими, по вашему мнению, они будут?

           – Эпоха дешевой энергии закончилась. Новые энергетические технологии не будут использовать ископаемое топливо, будущее – за солнечной энергией. Глобальная энергетическая система, состоящая из трех солнечных электростанций в Австралии, Африке и Северной Америке, сможет в течение миллионов лет круглосуточно обеспечивать электроэнергией, водородным топливом и теплом все районы Земли. Электростанции же, работающие на ископаемом топливе, можно будет смело переводить в разряд резервных. Уже сейчас максимальный КПД солнечных элементов, разрабатываемых в лабораториях, равен 40%, а практический срок их службы составляет 50 лет. Есть, правда, “маленькая” сложность. Для функционирования глобальной солнечной энергосистемы необходимо организовать трансконтинентальные тераваттные потоки электрической энергии к потребителю. Только в этом случае человечество сможет объединить и сконцентрировать свои энергетические ресурсы и технологии для создания достойных условий жизни для каждого конкретного человека, а также для реализации крупных научно-технических проектов на Земле и в космосе.

 

– В июне 2007 г. Ваши коллеги из Массачусетского технологического института (США) апробировали технологию WiTricity, сделавшую передачу энергии без проводов реальностью. Возможно, именно она будет положена в основу глобальной энергетической системы?

 

– Не думаю. Во-первых, у данной системы очень низкий КПД (40-45%). Во-вторых, она просто небезопасна для здоровья человека. Американцы передают электроэнергию на частоте 10 МГц, что “соответствует СВЧ-полям. Вам хочется, чтобы ваша комната превратилась в СВЧ-печь? Пионер беспроводной передачи энергии Никола Тесла, к слову сказать, умел передавать электроэнергию на частоте 1-200 кГц и с гораздо лучшими результатами (потери составляли всего 3-4%). Он вообще был гениальным ученым, предвидевшим направления, в которых будут развиваться электротехника и энергетика на сотни лет вперед. Достаточно сказать, что Никола Тесла удалось получить напряжение в 50 млн вольт простыми аппаратными средствами. Еще в начале XX в. он передавал электрическую энергию на десятки километров, используя в качестве проводящей среды Землю. Именно он изобрел асинхронный электродвигатель, многофазный ток и многое другое. Однако гениальность Теслы сыграла с его современниками дурную шутку. Большинство просто не понимало, что же написано в его трудах. К счастью, наука не стоит на месте. В настоящее время мы практически в полном объеме можем воспроизвести эксперименты Теслы по передаче энергии на большие расстояния с использованием однопроводниковых линий и проводящих сред, развить и усовершенствовать предложенную им резонансную технологию.

 

– И все-таки, согласитесь, есть здесь нечто странное. Патент на аппарат для передачи электроэнергии беспроводным методом был получен Николой Теслой ещё в 1914 г. Даже не понимая принципа его действия, можно было попытаться внедрить его в реальную жизнь?

– Проект Wardenclyffe, в котором Никола Тесла работал до конца своих дней, изначально задумывался как коммерческий. Предполагалось, что в Нью-Йорке будет создан всемирный центр беспроводной передачи энергии. Однако все работы в этом направлении были очень быстро свернуты, когда стало понятно, какую опасность представляют генераторы Теслы. Я даже не говорю об энергетическом оружии, которое он якобы создал, это неподтвержденные слухи. Но во время его экспериментов у людей светились волосы, у лошадей выскакивали искры из-под копыт, в ближайшей электростанции сгорели генераторы. Все потому, что Никола Тесла использовал в качестве однопроводниковой линии Землю. Подобный способ передачи электроэнергии оказался совершенно неприемлем из экологических соображении.

– Реально ли в таком случае создать безопасную технологию беспроводной передачи энергии на большие расстояния с такими же минимальными потерями, как у Николы Теслы?

– Более чем реально, но с использованием других технологий. Так, в нашем институте разработана совершенно безопасная резонансная технология передачи электрической энергии – по подземным электроизолированным однопроводниковым кабельным линиям. По ним можно передавать гигаваттные и тераваттные потоки электрической энергии с потерями на уровне 3-4%. Однопроводниковые резонансные системы открывают возможности для создания сверхдальних кабельных линий электропередачи и в перспективе замены существующих воздушных линий кабельными однопроводниковыми. Тем самым будет решена одна из важнейших проблем электроэнергетики – повышение надежности электроснабжения. Ещё раз хочу подчеркнуть, что все это стало возможным за счет использования старой электротехники, которая неизвестна современному поколению ученых, и забытых изобретений Николы Теслы. Проще говоря, используется другое электричество, которого нет в наших электрических розетках. Это стационарные волны, резонансные режимы, сдвиг фаз между волнами тока и напряжения 90°, законы электростатической индукции (а не электромагнитной индукции), однопроводниковые линии, повышенная частота 1-20 кГц (а не 50 Гц) и т.д.

– Из ваших слов явствует, что Никола Тесла определил развитие электроэнергетики на сотни лет вперед. Каким видится ее будущее современным ученым?

           – Развитие электроэнергетики, на мой взгляд, связано с развитием резонансных волноводных методов передачи электрической энергии. Уже в XXI в. воздушные линии электропередачи будут заменены подземными волноводными системами. Бесконтактный высокочастотный электрический транспорт будет получать электрическую энергию от однопроводниковой резонансной линии, установленной в дорожном покрытии. На сельскохозяйственных плантациях будут работать электрические машины-роботы с активными рабочими органами. Будет создана глобальная солнечная энергетическая система, производящая электроэнергию, водородное топливо и тепло для каждого человека на Земле. Жидкое топливо и газ будут вырабатываться из биомассы энергетических плантаций. Космические корабли будут стартовать с Земли на электрических ракетных двигателях, имея соотношение массы полезного груза к стартовой массе на уровне 80-90% вместо сегодняшних 5%. Резонансные методы будут использоваться для лечения человека и животных, уничтожения сорняков (вместо пестицидов), обеззараживания питьевой воды и отходов, создания новых особо чистых материалов, в первую очередь солнечного кремния. Надеюсь, будут возможными электроснабжение летательных аппаратов в космическом пространстве и передача электрической энергии на мобильные объекты на Земле безопасными беспроводными методами.

Как далеки мы от беспроводного электричества? / Блог компании SkillFactory / Хабр

Привет, Хабр! Я хочу рассказать тебе историю о давних временах. Был 1891 год. Малоизвестный тогда сербско-американский ученый по имени Никола Тесла разработал устройство, генерирующее и передающее электричество без проводов. Катушка Тесла была прототипом технологии его же авторства, эта катушка считалась Священным Граалем передачи энергии.

Сегодня революция в науке возродила необыкновенную идею Теслы, которая когда-то считалась несбыточной мечтой и перспективы невероятно привлекательны.




Катушка Тесла


Катушка Теслы

— это электрический резонансный трансформатор. Радиочастотный генератор для получения высокого напряжения, при низких токах приводящий в действие трансформатор. Катушка работает по принципу электромагнитной индукции: проводник помещается в изменяющееся магнитное поле и генерирует напряжение на проводнике. Тесла устраивает демонстрации, показывающие, как можно использовать катушку для беспроводного питания ламп накаливания, расположенных на расстоянии нескольких метров друг от друга. 

Даже по современным стандартам Тесла намного опередил свое время. Но его амбиции выходили за пределы прототипа катушки Тесла. Он представлял мир, в котором все человечество могло бы иметь дешевое или даже бесплатное электричество. Он раздвинул границы, когда воплотил в жизнь нечто более функциональное.

Башня Уорденклиффа


Башня Wardenclyffe Tower была экспериментальной беспроводной передающей станцией, построенной для телекоммуникации по всему миру.

Однако главной одержимостью Теслы была беспроводная передача энергии. Он получил финансирование на строительство башни, скрыв ее как телекоммуникационную. Он уже доказал, что высокочастотные сигналы могут передаваться без проводов, с помощью катушечных трансформаторов Тесла.

Дальнейшие секретные эксперименты в его лаборатории убедили его в том, что он может передавать электроэнергию, задействуя верхние слои атмосферы Земли. Башня Wardenclyffe была прототипом того, что Тесла представлял как сеть башен, охватывающую весь земной шар и получающую удаленный беспроводной доступ к энергии от центральной станции.

План Теслы состоял в том, чтобы вырабатывать электроэнергию с близлежащего угольного месторождения и отправлять ее по всему миру с помощью башни, подобно тому, как радиоволны без проводов передаются на большие расстояния. В интервью американскому журналу «The American Magazine» Тесла запечатлел свое видение этими яркими словами:

«Питание может быть, и в ближайшем будущем будет передаваться без проводов, для всех коммерческих целей, таких как освещение домов и управление самолетами». Я открыл основные принципы, и остается только развивать их коммерчески. Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое устройство, которое даст вам тепло, чтобы готовить, и свет, чтобы читать».

К сожалению, необузданные амбиции Теслы не увидели свет. Путь был перекрыт после того, как Джей-Пи Морган прекратил финансирование проекта, и Тесла обанкротился. Незавершенная башня была снесена в 1917 году для выполнения некоторых финансовых обязательств Теслы. До сих пор концепция беспроводного электроснабжения была погребена под обломками бюрократических, политических и финансовых ограничений.

Беспроводное электричество в наше время


С крушения надежд прошло более 100 лет. Сейчас на рынок выходит несколько компаний с технологиями, которые могут по воздуху безопасно передавать энергию. Emrod, поддерживаемый правительством Новой Зеландии стартап, лидирует в гонке с ожиданиями потребителей, первым в мире развертывая беспроводную передачу энергии высокой мощности на большое расстояние на замену существующих технологии медных проводов.

Для беспроводной передачи энергии на большие расстояния эта технология использует электромагнитные волны. Энергия преобразуется передающей антенной в электромагнитное излучение, улавливается приемной антенной (ректенной), а затем распределяется локально традиционными способами. Система Emrod состоит из четырех компонентов: источника питания, передающей антенны, передающего реле и приемная ректенны.

Схематическая модель теле-энергетической системы Emrod

Во-первых, передающая антенна преобразует электричество в микроволновую энергию и фокусирует электричество в цилиндрический луч. Микроволновый луч посылается через ряд трансляторов до тех пор, пока не попадает в ректенну, которая преобразует луч обратно в электрическую энергию. Просто, правда?

То же самое происходит в любой радиосистеме, но в радио количество энергии, которое достигает приемника, может быть крошечным; уловить нескольких пиковатт — это все, что нужно, чтобы доставить понятный сигнал.

Напротив, именно количество чистой, отправляемой без проводов энергии, наиболее важно. Полученная доля переданной энергии становится ключевым проектным параметром, поэтому необходимо разработать эффективные способы минимизации потерь.

Emrod нашел способ решить эту проблему. Мы переняли идеи радаров и оптики. В сравнении с предыдущими попытками беспроводного питания на основе микроволн, Emrod используют метаматериалы (в реле) для более плотной фокусировки передаваемого излучения.

Потери мощности при такой передаче сведены к минимуму. Генеральный директор Emrod рассказывает, что их система работает с 70% эффективности, что меньше эффективности медных проводов, но в некоторых случаях система все же экономически выгодна. В будущем компания планирует повысить энергоэффективность.

Примечательно, что технология надежна, так как на нее не влияют погодные или атмосферные условия, поэтому непредвиденные перебои с подачей электроэнергии останутся в прошлом.

Один из вопросов, вызывающих озабоченность, — это вопрос безопасности. Электромагнитный луч Emrod работает на частотах, классифицируемых как ISM — промышленные, научные и медицинские лучи, безвредные для здоровья человека.

Пока стартап стремится доставлять энергию в сообщества вне электрической сети, или передавать энергию из источников в открытом море.

Перспективы беспроводного электричества


Можно утверждать, что беспроводное электричество — одно из тех изобретений, которые не обязательны для нас. В конце концов, мы уже передаем электричество, и оно прекрасно работает. Но это далеко не так. Скрытые издержки традиционного способа передачи электроэнергии чрезвычайно высоки.

Прокладка линий электропередач и их техническое обслуживание обходится дорого, не говоря уже о географических ограничениях распространения электрических сетей в отдаленные районы. Корабли в море, электромобили или самолеты могут дозаправляться во время движения. Подход Emrod решил бы проблему дальности, особенно для предлагаемых коммерческих тарифов на электроэнергию.

Но, пожалуй, самой большой революцией будет всемирный переход на экологически чистый, дешевый возобновляемый источник энергии. Осознать масштаб можно с помощью двух фактов.

1. Удаленная передача солнечной энергии


Согласно глобальной статистике по энергии, общее потребление энергии в мире в 2019 году в эквиваленте составило 13 миллиардов тонн нефти (MTOE). Иными словами, это 17,3 тераватта мощности.

Сегодня, если мы покроем солнечными батареями участок земли в 350 км на 350 км, это может дать более 17,4 ТВт мощности. Упомянутая площадь составляет около 43000 квадратных миль. Великая Сахара — это около 3,6 миллионов квадратных миль и более чем 12 часов светового дня, а значит энергии.

Это означает, что 1,2% пустыни достаточно для покрытия мировых энергетических потребностей. И ни ядерный синтез, ни какой-либо другой разрабатываемый в настоящее время источник энергии чище не могут конкурировать с этим.

Что, если беспроводное электричество станет реальностью, мы используем небольшую часть Сахары, чтобы собрать солнечную энергию и передать ее по всему миру без необходимости в дорогостоящих медных проводных линиях? Не станет ли это серьезным прорывом в решении проблем энергетического кризиса, загрязнения окружающей среды и изменения климата?

2. Космическая солнечная энергия


Гигантские солнечные батареи, собирающие солнечную энергию в космосе и передающие ее обратно на Землю — это выглядит как сумасшедшая сцена из научно-фантастического фильма.

Концептуально разработанная российским ученым Константином Циолковским в 1920-х годах, идея космической солнечной энергетики осталась по большей части призрачной. Но все меняется. Несколько месяцев назад Европейское космическое агентство объявило о своем плане финансирования космической солнечной энергетики как средства решения проблемы изменения климата путем продвижения производства зеленой энергии.

Солнечная энергетическая система космического базирования обеспечит чистой энергией всех и повсюду.

Космическая солнечная энергетика будет использовать концепцию беспроводного электричества. План заключается в преобразовании электричества от солнечных батарей в энергетические волны и использовании электромагнитного поля для передачи ниже, к антенне на поверхности Земли. Затем антенна преобразует волны обратно в электричество.

Благодаря нескольким преимуществам КСЭ — привлекательное решение надвигающегося энергетического кризиса, которое позволит генерировать больше энергии:

  • В космосе всегда солнечный полдень. Земные солнечные батареи ограничены дневным светом и погодными условиями.
  • Солнечные батареи могут получать более интенсивный солнечный свет из-за отсутствия препятствий со стороны атмосферных газов, облаков, пыли и других погодных явлений. Атмосфера Земли обычно поглощает и отражает обратно часть солнечного света.
  • Спутник на солнечных батареях может освещаться круглосуточно и без выходных. В настоящее время солнечную энергию собирают на протяжение в среднем 29% дня.
  • Питание может быстро перенаправляться в те области, которые нуждаются в нем больше всего.

Нет необходимости говорить о том, что КСЭ все еще сталкивается с многочисленными препятствиями, самым большим из которых являются затраты на запуск и развертывание огромных солнечных батарей. В настоящее время изучаются новые методы производства, такие как 3D-печать ультралегких солнечных батарей.

Беспроводное электричество: мечта Теслы и наша грядущая реальность


Используя огромный потенциал беспроводного электричества, наше поколение может обрести многое и ничего не потерять. В предстоящие годы мы можем лишь надеяться на то, что нынешние усилия, направленные на реализацию этого грандиозного подвига, дадут положительные результаты. К сожалению, Никола Теслы, великого изобретателя, нет с нами рядом, чтобы он мог увидеть воплощение своей мечты. Я рад поделиться одной из знаменитых цитат Теслы, прекрасным источником вдохновения для начинающих ученых во всем мире:

«Если вы хотите раскрыть секреты Вселенной, думайте о ней с точки зрения энергии, частоты и вибрации».



Другие профессии и курсыПРОФЕССИИ


КУРСЫ

Беспроводная передача электричества: теория, видео — Asutpp

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.

Электрический трансформатор

Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология

Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м [10] . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.
Сеть

5G могла воплотить его мечту о беспроводном электричестве спустя столетие после неудачных экспериментов

На пике своей карьеры первопроходец-электрик Никола Тесла был одержим идеей. Он предположил, что электричество может передаваться по беспроводной сети по воздуху на большие расстояния — либо через серию стратегически расположенных башен, либо через систему подвешенных воздушных шаров.

Дела пошли не по плану, и амбиции Tesla по созданию беспроводного глобального электроснабжения так и не были реализованы.Но сама теория не была опровергнута: для этого просто потребовалось бы невероятное количество энергии, большая часть которой была бы потрачена впустую.

Теперь в исследовательской работе высказывается предположение, что архитекторы сети 5G, возможно, невольно построили то, что Tesla не смогла построить на рубеже двадцатого века: «беспроводную электросеть», которую можно было бы адаптировать для зарядки или питания небольших устройств, встроенных в автомобили, дома, рабочие места и фабрики.

Поскольку 5G полагается на плотную сеть мачт и мощную серию антенн, вполне возможно, что та же самая инфраструктура, с некоторыми изменениями, могла бы передавать мощность на небольшие устройства.Но передача по-прежнему будет страдать от ключевого недостатка башен Тесла: больших потерь энергии, которые может быть трудно оправдать с учетом безотлагательности климатического кризиса.

Сети 5G

Одна из башен Теслы, снятая в 1904 году. Викимедиа

Десятилетия назад было обнаружено, что сильно сфокусированный радиолуч может передавать энергию на относительно большие расстояния без использования провода для переноса заряда. Та же технология теперь используется в сети 5G: технология последнего поколения для передачи интернет-соединения на ваш телефон с помощью радиоволн, передаваемых от местной антенны.

Эта технология 5G направлена ​​на увеличение пропускной способности в 1000 раз по сравнению с последним поколением 4G, что позволяет подключать до одного миллиона пользователей на квадратный километр, что делает моменты поиска сигнала на музыкальных фестивалях или спортивных мероприятиях в прошлом. .

Для поддержки этих обновлений в 5G используется некоторая инженерная магия, и эта магия состоит из трех частей: очень плотных сетей с большим количеством мачт, специальной антенной технологии и включения передачи миллиметровых волн (mmWave) наряду с более традиционными диапазонами.


Читать далее: 5G: что он предлагает и почему это важно?


Последний из них, mmWave, открывает гораздо большую полосу пропускания за счет более коротких расстояний передачи. Для контекста, большинство маршрутизаторов WiFi работают в диапазоне 2 ГГц. Если у вашего маршрутизатора есть опция 5 ГГц, вы заметите, что поток фильмов идет более плавно, но вам нужно быть ближе к маршрутизатору, чтобы он работал.

Увеличьте частоту дальше (например, mmWave, которая работает на частоте 30 ГГц или более), и вы увидите еще большее улучшение полосы пропускания — но вам нужно быть ближе к базовой станции, чтобы получить к ней доступ.Вот почему мачты 5G расположены более плотно, чем мачты 4G.

Мачты 5G расположены более плотно, чем их предшественники. Lisic / Shutterstock

Последнее чудо — добавить намного больше антенн — от 128 до 1024 по сравнению с гораздо меньшим числом (в некоторых случаях всего двумя) для 4G. Множественные антенны позволяют мачтам образовывать сотни карандашных лучей, нацеленных на определенные устройства, обеспечивая эффективный и надежный доступ в Интернет для вашего телефона в дороге.

Это те же самые сырые ингредиенты, которые необходимы для создания беспроводной электросети.Повышенная плотность сети особенно важна, поскольку открывает возможность использования диапазонов миллиметровых волн для передачи различных радиоволн, которые могут передавать как подключение к Интернету, так и электроэнергию.

Эксперименты с мощностью 5G

В экспериментах использовались новые типы антенн для облегчения беспроводной зарядки. В лаборатории исследователи смогли передать мощность 5G на относительно короткое расстояние, чуть более 2 метров, но они ожидают, что будущая версия их устройства сможет передавать 6 мкВт (6 миллионных долей ватта) на расстояние 180 метров.

Чтобы представить это в контексте, обычные устройства Интернета вещей (IoT) потребляют около 5 мкВт — но только в самом глубоком спящем режиме. Конечно, устройства IoT будут требовать все меньше и меньше энергии для работы по мере разработки умных алгоритмов и более эффективной электроники, но 6 мкВт по-прежнему очень мало энергии.

Это означает, что, по крайней мере, на данный момент, беспроводное питание 5G вряд ли будет практичным для зарядки вашего мобильного телефона в повседневной жизни. Но он может заряжать или питать устройства IoT, такие как датчики и сигнализация, которые, как ожидается, получат широкое распространение в будущем.


Читать далее: Объяснитель: Интернет вещей


На заводах, например, сотни датчиков Интернета вещей могут использоваться для мониторинга условий на складах, для прогнозирования отказов в оборудовании или для отслеживания движения деталей по производственной линии. Возможность передавать питание напрямую на эти устройства IoT будет стимулировать переход к гораздо более эффективным методам производства.

Проблемы с прорезыванием зубов

Но до этого нужно будет преодолеть трудности.Для обеспечения беспроводной связи мачты 5G будут потреблять около 31 кВт энергии, что эквивалентно 10 чайникам с постоянно кипящей водой.

Хотя опасения по поводу того, что технология 5G может вызывать рак, были широко опровергнуты учеными, такое количество энергии, исходящее от мачт, может быть небезопасным. Приблизительный расчет предполагает, что пользователей необходимо будет держать на расстоянии не менее 16 метров от мачт, чтобы соответствовать правилам безопасности, установленным Федеральной комиссией по связи США.


Читать далее: Четыре эксперта исследуют, как зародилась теория заговора о коронавирусе 5G


Тем не менее, эта технология находится в зачаточном состоянии.Безусловно, возможно, что будущие подходы, такие как новая антенна с более узкими и направленными лучами, могут значительно снизить энергию, требуемую — и теряемую — каждой мачтой.

В настоящее время предлагаемая система скорее напоминает вымышленную «Wonkavision» в «Чарли и шоколадной фабрике» Роальда Даля, которая достигла подвига превращения кондитерских изделий в телевизоры, но при этом потребовала использования огромного блока шоколада для производства гораздо меньшего. на другом конце.

Поскольку он потребляет большое количество энергии по сравнению с мощностью, которую он поставляет устройствам, беспроводное питание 5G на данный момент является спекулятивным.Но если инженеры смогут найти более эффективные способы передачи электричества по воздуху, вполне может быть, что мечта Николы Теслы о беспроводной энергии может быть реализована — спустя более 100 лет после того, как его попытки потерпели неудачу.

Tesla’s Wireless Power — Научный центр Tesla в Wardenclyffe

Спустя более века после его смерти открытие Теслы в области беспроводной связи редко ему приписывают. Томас Эдисон чаще ассоциируется с изобретением электричества; однако его эксперименты не увенчались успехом.Фактически, переменные токи переменного тока Теслы оказались более надежным методом проведения электричества.

Вопреки теории, контакт металла с металлом необходим для проведения электричества, Тесла удалось передать токи через пластик на короткие расстояния с помощью магнитной индукции. Лаборатория Тесла в Ворденклиффе была его последним местом экспериментов с 185-футовой башней с металлическими прутьями, простирающимися под землей. Сегодня на ум приходит изображение с электрическими болтами, идущими от вершины башни, где катушки обмениваются электрическими токами.

Эксперименты Tesla с беспроводной связью

В конце 19 века в работе Теслы над башней исследовалась электрическая передача с использованием радиочастотного резонанса для создания электрической энергии через две катушки для генерации высокого напряжения и высокочастотных токов. В его экспериментах использовались индуктивная и емкостная связи в ближнем поле. Индуктивное поле ближнего поля — это беспроводной физический уровень малого радиуса действия, который передает маломощное, нераспространяющееся магнитное поле между устройствами. Емкостные муфты передают мощность между двумя сетями путем смещения токов, создаваемых электрическими полями.

Tesla продемонстрировала перед толпой демонстрацию того, как лампы накаливания можно зажигать без проводов, когда они находятся рядом с катушкой. По мере продвижения своих исследований он тестировал передачу на большие расстояния с использованием LC-цепей.

Тесла продолжил свои исследования по разработке метода передачи на большие расстояния на большой высоте в Колорадо-Спрингс. Его теория заключалась в том, что воздух низкого давления, присутствующий на высоте 30 000 футов, позволит электрической передаче перемещаться на гораздо большие расстояния. Он предположил, что может использовать всю планету для проведения электричества, посылая импульсы переменного тока в землю.Наши учебники по истории на сегодняшний день не отражают, что он добился каких-либо успехов в доказательстве этой теории.

Тем не менее, он точно предсказал успех Интернета и сотовых телефонов, работающих с использованием беспроводной связи на большие расстояния. Он считал, что беспроводная передача данных может решить множество глобальных проблем, предоставляя средства мгновенной связи, «будет сделан большой шаг к объединению и гармоничному существованию различных рас, населяющих земной шар».

Современные приложения беспроводной технологии Tesla

Катушка

Тесла все еще используется в некоторых наших теле- и радиотехнических конструкциях, но не имеет большого практического применения.Однако его метод резонансной индуктивной связи применяется в наших беспроводных системах малого радиуса действия.

На пороге предоставления бесплатной энергии всем исследование Tesla было подавлено влиятельными людьми, которые не хотели, чтобы энергия стала бесплатным товаром. Банкиры отказали Тесле в финансировании, и его теория о всемирной передаче данных была опровергнута; однако его исследование имело такое значение, что после его смерти оно было конфисковано ФБР.

Исследования Tesla в области беспроводного электропитания по-прежнему имеют потенциал для будущих инноваций, поскольку наша технология развивается с учетом новых технологий искусственного интеллекта.

Новая Зеландия собирается испытать беспроводную передачу энергии на большие расстояния

Известное изображение изобретателя Николы Теслы показывает, как он небрежно сидит на стуле, скрестив ноги и делая записи, не обращая внимания на обилие искусственных молний, ​​раздирающих воздух на несколько метров. К тому времени Тесла и чистое электричество были похожи на старую супружескую пару.

Эксперименты, проведенные в Колорадо, привели к одному из самых смелых предложений Теслы: обеспечить мир без проводов.Он попал в заголовки газет с планами создания «всемирной беспроводной системы» и получил финансирование от JP Morgan на строительство первой из нескольких огромных опор передачи.

Но мечта Теслы о беспроводной энергии вскоре умерла. JP Morgan отменил дополнительное финансирование. Башню снесли. Позже ученые скептически относились к планам Теслы (которые были немного расплывчатыми) сработали бы.

Между тем, коллега Теслы Гульельмо Маркони преследовал параллельную мечту с гораздо большим успехом: беспроводная передача информации на радиоволнах.Сегодняшний мир, конечно, наводнен беспроводной информацией.

Теперь, если новозеландский стартап Emrod добьется своего, мечты Теслы и Маркони могут слиться воедино. Компания создает систему для беспроводной передачи энергии на большие расстояния. Ранее в этом месяце Emrod получил финансирование от Powerco, второй по величине энергокомпании Новой Зеландии, для проведения испытаний своей системы на коммерческой электростанции, подключенной к сети.

Компания надеется доставлять энергию в общины, удаленные от сети, или передавать энергию из удаленных возобновляемых источников, таких как морские ветряные электростанции.

Как это работает

Система состоит из четырех компонентов: источника питания, передающей антенны, нескольких (или более) передающих реле и ректенны.

Во-первых, передающая антенна преобразует электричество в микроволновую энергию — электромагнитную волну, похожую на радиоволны Маркони, только немного более энергичные, — и фокусирует ее в цилиндрический луч. СВЧ-луч проходит через серию реле, пока не попадает в ректенну, которая снова преобразует его в электричество.

Помня о безопасности, Emrod использует энергию в промышленном, научном и медицинском (ISM) диапазоне, сохраняя при этом низкую плотность мощности. «Дело не только в том, сколько энергии вы передаете, а в том, сколько энергии вы передаете на квадратный метр», — сказал основатель Emrod Грег Кушнир New Atlas . «Уровни плотности, которые мы используем, относительно низкие. На данный момент это примерно эквивалентно стоять на улице в полдень на солнце, примерно 1 кВт на квадратный метр ».

Но если он работает, как задумано, луч никогда не будет контактировать ни с чем, кроме пустого воздуха.Система использует сеть лазеров, окружающих луч, для обнаружения препятствий, таких как птица или человек, и автоматически отключает передачу до тех пор, пока препятствие не переместится.

Технология передачи энергии с помощью микроволновой энергии существует уже несколько десятилетий. Но чтобы сделать его коммерчески жизнеспособным, необходимо минимизировать потери энергии. Кушнир сказал, что метаматериалы, разработанные в последние годы, создают разницу.

Компания использует метаматериалы для более эффективного преобразования микроволнового луча обратно в электричество.Реле, которые похожи на «линзы», расширяющие луч за пределы прямой видимости путем его перефокусировки, практически без потерь. По словам Кушнира, большая часть потерь происходит на другом конце, где электричество преобразуется в микроволновую энергию. В целом, он сказал, что эффективность системы составляет около 70%, что недостаточно для медных проводов, но в некоторых областях экономически целесообразно. И это те области, к которым стремится компания.

«… мы не предвидим в ближайшем будущем ситуации, когда можно было бы сказать, что все медные провода можно заменить беспроводными», — сказал Кушнир.«По сути, у него будет более низкий уровень эффективности. Речь идет не о замене всей инфраструктуры, а о ее расширении там, где это имеет смысл ».

Реальный тест

Прототип компании в настоящее время может передавать несколько ватт энергии на расстояние около 130 футов. Для проекта Powerco они работают над большей версией, способной излучать несколько киловатт. Планируется доставить новую систему в Powerco в октябре, протестировать ее в лаборатории в течение нескольких месяцев, а затем, если все пойдет по плану, опробовать ее в полевых условиях.Испытания будут направлены на проверку того, сколько энергии система может передать на какое расстояние.

Хотя текущая модель скромна, Кушнир говорит, что ее следует масштабировать.

«Мы можем использовать ту же самую технологию для передачи в 100 раз больше энергии на гораздо большие расстояния», — сказал он в пресс-релизе. «Беспроводные системы, использующие технологию Emrod, могут передавать любое количество энергии, передаваемой проводными решениями».

Рэй Симпкин, главный научный сотрудник Emrod, сообщил IEEE Spectrum , что компания также изучает возможность передачи энергии через 30 километров воды от материковой части Новой Зеландии до острова Стюарт.Он сказал, что система может стоить всего 60 процентов подводного кабеля.

В конечном счете, технология может помочь в обеспечении электроэнергией сельских районов или передачи энергии от прибрежных ветряных электростанций, причем в обоих случаях строительство физической инфраструктуры для подключения к сети или ее питания обходится дорого. В других случаях, например, в национальных парках, режим беспроводной передачи может иметь меньшее воздействие на окружающую среду и требовать меньшего обслуживания. Или его можно использовать для обеспечения электроэнергией после стихийных бедствий, в результате которых была повреждена физическая инфраструктура.

Это не «всемирная беспроводная система» Теслы, но она может превратить беспроводную связь на большие расстояния в коммерческую реальность в недалеком будущем.

Источник изображения: Killian Eon / Pexels

Работает ли беспроводная передача энергии?

Представьте себе улицу возле вашего дома. Теперь сотрите линии электропередач. Представьте себе межгосударственные автомагистрали без неприглядных кабельных вышек, которые усеивают обширный ландшафт Соединенных Штатов. Это может быть беспроводное будущее энергетики, если партнерство между правительством Новой Зеландии и стартапом Emrod будет успешным — и все это восходит к самым смелым мечтам Николы Теслы.

Беспроводное электричество звучит как научная фантастика, но технология уже реализована и подготовлена ​​для практического применения в масштабах коммунального предприятия. И в этой первой в своем роде пилотной программе Powerco — второй по величине дистрибьютор электроэнергии Новой Зеландии — протестирует технологию Emrod, начиная с 2021 года.

«Это звучит футуристично и фантастично, но со времен Tesla это повторяющийся процесс».

Компании планируют развернуть прототип беспроводной энергетической инфраструктуры на 130-футовом пространстве.Чтобы сделать это возможным, Эмрод использует выпрямляющие антенны, также известные как «ректенны», которые передают микроволны электричества от одной точки пути к другой: решение, хорошо подходящее для гористой местности Новой Зеландии. На промежуточных полюсах установлены специальные квадратные элементы, которые действуют как точки прохождения, которые поддерживают гудение электричества, а более широкая поверхность, так сказать, «улавливает» всю волну.

«Мы разработали технологию беспроводной передачи энергии на большие расстояния, — говорит основатель Emrod Грег Кушнир.«Сама технология существует довольно давно. Это звучит футуристично и фантастично, но со времен Tesla это был повторяющийся процесс ».

Связь с Николя Тесла, как признает Кушнир, — это скорее творческий, приятный рассказ, чем настоящая генеалогия. Тесла рассматривал беспроводную энергию в 1890-х годах, когда он работал над своей революционной схемой трансформатора «катушка Тесла», которая вырабатывала электричество переменного тока, но он не смог доказать, что может управлять лучом электричества на больших расстояниях.«Сам факт, что он мог вообразить это, примечателен, но технология, которую он хотел применить, не сработала бы», — говорит Кушнир.

Emrod, напротив, может удерживать луч электричества плотно и сфокусированным с помощью двух технологий. Первый связан с передачей: небольшие радиоэлементы и одиночные волновые диаграммы создают коллимированный луч, что означает, что лучи выровнены параллельно и не будут сильно распространяться по мере распространения. Во-вторых, Эмрод использует искусственно созданные метаматериалы с крошечными узорами, которые эффективно взаимодействуют с этими радиоволнами.

Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Беспроводные антенны

Emrod представляют собой носитель, похожий на кабель, а это означает, что их задача — просто подключить источник электропитания к потребителю. Кушнир предполагает разместить технологию Emrod на труднопроходимой местности, которая соединяется с самыми солнечными, ветреными или наиболее благоприятными для воды точками на Земле, поскольку эти сельские места имеют самый большой пробел в электрификации.

Устраняя необходимость в длинных участках традиционной медной проводки, Emrod заявляет, что может обеспечить электричеством эти регионы, которые не могут позволить себе такую ​​инфраструктуру, которая поддерживает энергосистему. Это также может иметь положительные экологические последствия, поскольку многие объекты, у которых нет доступа к электричеству, в конечном итоге полагаются на дизельные генераторы для получения энергии.

Есть даже возможности для поддержки оффшорных ветряных и солнечных электростанций, говорит Кушнир, потому что текущая точка трения для этих форм возобновляемой энергии сводится к стоимости передачи.Например, в проливе Кука, который соединяет Северный и Южный острова Новой Зеландии, морские ветряные электростанции требуют дорогих подводных кабелей.

На данный момент у Кушнира достаточно корпоративной поддержки, чтобы предпринять следующие нормативные шаги и начать распространение технологии Эмрода. По его словам, настоящая проблема будет заключаться в том, чтобы успокоить и просвещать общественность.

«Мы ожидаем большого сопротивления, аналогичного тому, что мы наблюдали с 5G», — говорит он. «Люди подавляют дополнительную радиацию вокруг себя, и это совершенно понятно.«Но, к счастью, — говорит он, — управляемый луч Эмрода не пропускает излучения
». Это не «брызги», как антенна сотового телефона.

Итак, если все пойдет хорошо во время пилотной программы Новой Зеландии в начале 2021 года, беспроводная энергия может быть буквально на горизонте и в США. А когда? Остается только догадываться.


Питание без проводов

Изображение любезно предоставлено Emrod

Для беспроводной передачи энергии Emrod генерирует электричество в виде узкого и сфокусированного луча в неионизирующем промышленном, научном и медицинском диапазоне электромагнитного спектра — той части радиодиапазона, которая соответствует частотам Wi-Fi и Bluetooth.

Оттуда передающая антенна передает мощность через различные точки реле на «ректенну», которая может безопасно передавать волны в том же диапазоне частот, что и микроволновая печь в вашем доме. Между тем крошечные лазеры контролируют ректенны, чтобы обнаружить любые препятствия между точками реле. Таким образом, отсутствует внешняя радиация, и
птицы не пострадают при такой передаче энергии.

—Courtney Linder


🎥 Теперь посмотрите это:

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

IE Вопросы: Почему у нас нет беспроводного электричества?

Почему у нас нет беспроводной связи?

Этот вопрос приходит от многих членов нашей аудитории: было бы здорово, если бы мы могли покончить с обширной сетью проводов, больших и малых, которые соединяют электронные устройства, управляющие нашим миром, с электростанциями, вырабатывающими электричество?

На самом деле у нас есть беспроводное электричество.Но это ограничено. На данный момент, по крайней мере, это коммерчески выгодно только на коротких расстояниях (например, миллиметры в метры). Прежде чем мы перейдем к этому, давайте вернемся более чем на сто лет назад, к человеку, мечтающему о беспроводной передаче электричества по всему миру: Николе Тесла.

Существует длинный список технологий, приписываемых Тесле и его исследованиям: радио, рентгеновские лучи, дистанционное управление, электродвигатели и многие другие. Но одна из его самых больших амбиций так и не была реализована: передавать электричество по всему миру без проводов.

Его первые эксперименты были связаны с передачей электричества через радиоволны. Но эти эксперименты могли передавать энергию только на короткое расстояние. Тогда у Теслы появилась идея: будет ли связь сильнее, если он пройдет сквозь землю, а не в воздух?

Вот его основная теория: отправить электричество глубоко в землю и использовать Землю как гигантский проводник. Электричество могло беспрепятственно перемещаться на сотни миль, и любой, у кого есть приемник, мог получить к нему доступ, предположил Тесла.

«Электроэнергия может передаваться и никогда не будет передаваться без проводов для всех коммерческих целей, таких как освещение домов и управление самолетами. Я обнаружил основные принципы, и мне осталось только разработать их в коммерческих целях. Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое оборудование, которое даст вам тепло, с помощью которого можно готовить, и свет. читать.Переносить это снаряжение будет в сумке, не такой большой, как обычный чемодан. В ближайшие годы беспроводное освещение станет таким же обычным явлением на фермах, как обычное электрическое освещение в наших городах ». (Никола Тесла, Американский журнал, апрель 1921 г.)

Тесла перенес свои эксперименты в Колорадо-Спрингс, штат Колорадо, в 1899 году. Согласно лабораторным записям Теслы, ему удалось отправить электричество из своей лаборатории в лампочки, расположенные на земле на расстоянии сотен футов.

Но Tesla хотела большего.Он начал строить Башню Уорденклиф в 1901 году на Лонг-Айленде. Wardenclyffe должен был стать центром множества экспериментов по передаче беспроводных радио- и телеграфных сигналов — и отправке беспроводного электричества. Тесла планировал, что 17-этажная башня будет отправлять электричество от угольного генератора в землю через 300 футов металлических стержней, по которым ток будет распространяться на сотни миль.

По сей день никто не уверен, что план Теслы сработал бы, сказал Марк Зайфер, автор книги «Волшебник: жизнь и времена Николы Теслы».Деловой партнер Tesla, Дж. П. Морган, отказался от проекта Wardenclyffe. В конце концов, Tesla обанкротилась, а Wardenclyffe был снесен в 1917 году. Его идея использования земли для передачи электричества на большие расстояния не была полностью проверена, и инженеры-электрики скептически относятся к ее результатам, добавил Сейфер.

Но исследования Теслы повлияли на то, как сегодня мы отправляем электричество без проводов

Со времен Tesla мы знали, что можно передавать электричество по беспроводной сети с помощью магнитной индукции.Или, если быть точным, использовать магнитное поле для генерации электрического тока. Вы уже используете этот тип зарядки, если у вас есть электрическая зубная щетка.

И мечта Tesla о беспроводной энергии во всем мире все еще жива. Японское космическое агентство разрабатывает солнечный спутник, который будет передавать энергию обратно на Землю с помощью микроволн. Их цель по завершению строительства первой солнечной электростанции на орбите? 2031 год — как раз к 175-летнему юбилею Tesla.

Технология беспроводного передатчика Николы Тесла

Никола Тесла был одним из первых, кто предвидел беспроводное будущее.В 1900 году он утверждал, что будет точная беспроводная передача сигналов, которые будут приниматься устройствами размером не больше часов. Он, конечно, описывает то, что мы теперь называем радиоволнами, основу работы нашей современной подключенной электроники.

Тесла, по сути, настолько поверил в идею беспроводной связи и передачи энергии, что начал строительство передающей станции в Нью-Йорке, чтобы доказать свою точку зрения. Названный Teslas «Мировая система беспроводной связи», он, к сожалению, так и не был завершен из-за того, что у Tesla закончились деньги.

С учетом сказанного, у нас все еще есть планы Tesla в отношении этой беспроводной технологии, поэтому мы можем поближе познакомиться с ее конструкцией и тем, как она бы работала.

Идея Теслы о беспроводной передаче данных

После того, как Тесла уже сделал себе имя в области науки и электротехники, он начал открывать лаборатории в Нью-Йорке. В 1888 году он проводил эксперименты в одной из лабораторий, специально посвященных переменному току.

Благодаря этим экспериментам и испытаниям он смог разработать метод преобразования постоянного тока и даже низкочастотных переменных токов в токи высокой частоты.

СВЯЗАННЫЙ: КАК ВИДЕНИЕ НАШЕГО МИРА НИКОЛА ТЕСЛА СТАНОВЛОСЬ РЕАЛЬНОСТЬЮ

Именно во время разработки этих трансформаторов и генераторов он понял, что цепи переменного тока все еще могут функционировать, если они не полностью завершены. Скорее, ток все еще может течь только по одному проводу от одной заземленной клеммы ко второй заземленной клемме, и схема все равно будет работать. Тесла обнаружил, что когда источник тока имеет достаточно высокую частоту, он может использовать землю как часть цепи.

Если заземленная клемма имеет достаточно высокое заземленное напряжение, а к другой клемме подключен провод, ток может протекать по проводу за счет емкости проводящего тела, подключенного к другому концу.

Емкости, скажем, лампочки было достаточно, чтобы потреблять ток от цепи и зажигать ее, что аналогично тому, как работают радиопередатчики.

Беспроводная станция Tesla Wardenclyffe, расположенная в Шорхэме, штат Нью-Йорк, видна в 1904 году. Испытательная установка должна была быть трансатлантической радиотелеграфной станцией и беспроводным передатчиком энергии, но так и не была завершена из-за истощения финансирования .Источник: Викимедиа

В том же духе Тесла придумал блестящую идею беспроводной передачи данных. Он должен был использовать землю в качестве проводника для передачи токов. Как описано в лекции Теслы в 1893 году, устройство соединит генератор между землей и сферическим проводником, поднятым в воздух.

Электромагнитные частоты, создаваемые генератором в этой установке, должны гарантировать, что переменный ток имеет знак, противоположный земному.Следовательно, Тесла считал, что землю — землю — можно привести в состояние колебаний с небольшим рассеянием энергии.

Благодаря открытию способности земли использоваться в качестве среды передачи, Тесла разработал план по посылке высокочастотных токов через землю, которые распространялись бы в любой точке земного шара и принимались резонансным приемником.

Электропроводность почвы и воды намного меньше, чем у металлов, но сопротивление между клеммой заземления передатчика и заданной удаленной точкой будет очень маленьким из-за большой площади поперечного сечения Земли.

Формула для тока передатчика, который будет распространяться по земле по беспроводной сети, выглядит следующим образом:

I = 2πfCV

I — ток в амперах, f — частота в герцах, C — собственная емкость сфера передатчика и Земля в фарадах, а V — напряжение между сферой и землей.

Тесла использовал это уравнение, чтобы построить свою станцию ​​на Лонг-Айленде, где он впервые начал тестировать свою идею. Генератор использовался для выработки 10 миллионов вольт при 700 амперах при 10 килогерцах.Высокое напряжение было необходимо для выработки достаточно сильного тока для его идеи беспроводной передачи, поэтому он постоянно выходил за пределы того, что он мог генерировать с помощью своих машин.

К этому времени у Теслы был полуработающий прототип, и он начал патентовать свою технологию беспроводной передачи и приема примерно в 1897 году. Его патент был выдан после рассмотрения в 1900 году с одной из схем устройства, показанной ниже.

Источник: Н. Тесла / Викимедиа

Хотя детали приемника и передатчика изобретения Теслы были ясны в его патентной заявке, многие принципы работы и внутреннее устройство устройства не были объяснены подробно.Он предположил, что если он сможет передавать достаточно высокое напряжение и ток, он сможет передавать полезные уровни беспроводной энергии в любую точку мира.

СВЯЗАННЫЙ: YOUTUBER ИГРАЕТ АФРИКУ TOTO НА ВЫСОКОВОЛЬТНЫХ КАТУШКАХ TESLA И ЭТО АБСОЛЮТНОЕ УДОВОЛЬСТВИЕ СЛУШАТЬ

Машина также была способна производить такое большое количество электричества, что теоретически их можно было использовать для создания искусственного сияния borealis, или северное сияние.

Осциллирующие устройства Тесла

Генераторы, передатчики и колебательные устройства Тесла были революционными для своего времени.Помимо простой электронной передачи электричества, его кинетические колебательные устройства также были не менее интересны. Используя колебания в земле и структурах, Тесла считал, что он может передавать энергию в виде кинетических волн через материю, которые затем могут быть преобразованы обратно в электрическую энергию на принимающей стороне.

Чтобы достичь этого, он построил паровое колебательное устройство, которое могло управлять его частотами. Когда частота колебательного устройства совпадет с резонансной частотой приемника, механическое движение будет преобразовано обратно в полезную электрическую энергию.

Tesla действительно смогла заставить эту технологию работать. Он построил свой первый механический генератор в 1897 году, а в 1898 году он смог возбудить свою лабораторию с помощью всего лишь небольшого генератора. Расположенный в Нью-Йорке в непосредственной близости от соседей, колебания и тряски в здании были достаточными, чтобы соседи в конце концов вызвали полицию, опасаясь, что происходит что-то очень плохое.

Только в 1912 году была опубликована первая статья о резонаторном устройстве Теслы.

Тесла, будучи в некотором роде блестящим умом, брал свое маленькое вибрационное устройство и испытывал его на различных сооружениях в городах. Согласно журналу The World Today Magazine от 1912 года,

«Он положил свой маленький вибратор в карман пальто и пошел охотиться на наполовину возведенное стальное здание. Внизу, в районе Уолл-стрит, он нашел один, десять этажей из стали. каркас без кирпича или камня, положенного вокруг него. Он прижал вибратор к одной из балок и возился с регулировкой, пока не получил ее.В конце концов Тесла сказал, что конструкция начала скрипеть и ткаться, и рабочие стали в панике спустились на землю, полагая, что произошло землетрясение. Вызвали полицию. Тесла положил вибратор в карман и ушел. Еще десять минут, и он мог бы выложить здание прямо на улице. И с помощью того же вибратора он мог бы сбросить Бруклинский мост в Ист-Ривер менее чем за час ».

Эта ссылка создает довольно хитрую и интересную картину того, как Тесла проезжает по Нью-Йорку, тестируя свои различные изобретения.Tesla продвинула эту технологию дальше, даже в областях, о которых вы, возможно, не знали.

Он разработал способ использования колебаний, создаваемых его парогенератором, для анализа подземных условий Земли. Создавая сейсмические волны с помощью осциллятора, отраженные волны могут дать Тесле и другим исследователям информацию о нижележащих слоях породы.

СВЯЗАННЫЙ: НИКОЛА ДОПУСКАЕТ ПРОТОТИП АВТОМОБИЛЯ, ПРЕДНАЗНАЧЕННЫЙ В РЕКЛАМНОМ ВИДЕО, ДЕЙСТВИТЕЛЬНО ПРОСТО СТАЛ ВНИЗ И НЕ РАБОТАЕТ образцы.Фактически, принцип использования генератора колебаний, который создает сейсмические волны для изучения подземных условий, все еще используется сейсмологами сегодня.

Сегодня оборудование, конечно, намного более высокотехнологичное, но оно по-прежнему во многом обязано изобретению Теслы, сделанному более века назад.

Стэнфордские ученые превращают беспроводную передачу электроэнергии в реальность

Заряжайте во время вождения

Никола Тесла предполагал, что будет поставлять энергию в мир без необходимости в путанице проводов, натянутых повсюду.Самым близким, что он когда-либо подходил к реализации беспроводной передачи, была катушка Тесла, которую он создал в 1891 году. Однако его мечты были намного шире, охватывая глобальную беспроводную электросеть, к которой любой дом, бизнес или транспортное средство мог подключиться по своему желанию.

Теперь исследователи из Стэнфордского университета считают, что они, возможно, правильно поняли технологию беспроводной зарядки, поскольку они смогли передавать электричество по беспроводной сети на движущийся объект поблизости. Если их технология масштабируема, они, возможно, нашли способ позволить электромобилям перезаряжаться во время движения, устраняя проблемы с доступностью зарядных станций и диапазоном заряда аккумуляторов электромобилей.Если это последнее препятствие будет действительно преодолено, электричество легко может стать стандартным автомобильным топливом во всем мире.

Старший автор исследования и профессор электротехники Шанхуэй Фань сказал в интервью для Stanford News, : «Нам все еще нужно значительно увеличить количество электроэнергии, передаваемой для зарядки электромобилей, но, возможно, нам и не придется увеличивать расстояние. гораздо более.»

Изображение предоставлено: Сид Ассававоррарит / Стэнфордский университет

Как описала команда в своем недавно опубликованном исследовании Nature , достигнутая передача была намного меньше, чем требуется для приводов транспортных средств.Тем не менее, они достигли своего рода беспроводной передачи энергии среднего диапазона, основанной на магнитно-резонансной связи. Электричество, проходящее по проводам, создает колеблющееся магнитное поле, и именно это поле заставляет электроны соседней катушки колебаться. Это, в свою очередь, передает мощность по беспроводной сети. Однако это сложный процесс, и он эффективен только тогда, когда колебательные катушки настроены относительно движущегося объекта.

До сих пор это было одной из основных проблем беспроводной передачи энергии, потому что не было способа заставить катушки автоматически настраиваться на движущиеся объекты.Исследователи решили эту проблему, используя резистор обратной связи и систему усилителя напряжения, чтобы определить, на что нужно настроить, без помощи людей.

Тесла: будущее беспроводной связи

Это исследование является частью общего стремления к созданию более безопасных, экологически чистых магистралей с более управляемым движением, которые в конечном итоге будут поддерживать беспилотные автомобили.

«Теоретически можно было водить машину неограниченное количество времени, не останавливаясь для подзарядки», — пояснил Фан в интервью.«Есть надежда, что вы сможете зарядить свой электромобиль, пока едете по шоссе. Катушка в днище автомобиля может получать электричество от ряда катушек, подключенных к электрическому току, встроенному в дорогу ».

Щелкните, чтобы просмотреть полную инфографику

Со спиралями, встроенными в дороги, мы могли в конечном итоге получить полностью автоматизированную систему шоссе. Самоходные электрические везикулы можно будет заряжать в пути по беспроводной сети, а GPS и другие навигационные системы также будут получать питание по беспроводной сети.Насколько этот результат отличается от видения глобальной энергосистемы Tesla?

Его «Мировая беспроводная система» усеяла бы земной шар беспроводными вышками, которые передавали энергию — вместе с данными — друг другу, а отдельные пользователи могли подключаться к сети с помощью антенн. Хотя его план так и не прошел мимо первой башни, которая была снесена ровно 100 лет назад, его видение будущего было действительно очень точным.

Добавить комментарий

Ваш адрес email не будет опубликован.