Беспроводное электричество тесла – Беспроводная передача электричества — это… Что такое Беспроводная передача электричества?

Содержание

Почему мы не используем технологию Теслы беспроводной передачи электроэнергии?

Во-первых, мы должны взглянуть на патентную модель Теслы. Сам Тесла утверждал, что эта технология не имеет никакого отношения к радио. Готовясь к посещению ведомства, Тесла установил в своей лаборатории пару маленьких трансформаторов, а затем соединил высоковольтные выводы вместе, используя … флуоресцентную трубку! Длинная стеклянная трубка была откачана почти до вакуума, и образовывала плазму при включении одного трансформатора. Второй трансформатор понижал напряжение, чтобы на нем могли работать обычные вещи, типа освещения и двигателей.

Другими словами, он использовал неоновую вывеску в качестве линии электропередачи. Нет проводов. Просто стеклянная трубка, полная плазмы.

image1.png

Это было его великое изобретение. Это была модель, которую руководитель Патентного Бюро Америки пришел осмотреть в лаборатории Теслы в Нью-Йорке. Устройство, которое убедило его позволить Тесле продвинуть патент на беспроводную передачу электроэнергии.

Итак, как сказал Тесла, это никак не связано с радио. Закон обратных квадратов не ограничивает его, и даже не применяется к технологии вообще. Но его проблемы были намного сложнее! Тесла предлагал использовать ультра-высокое напряжение для создания вертикального плазменного столба, который соединяется с… САМИМ НЕБОМ, МУА-ХА-ХА!

Нет, серьезно.

Плазма является проводником, и Тесла планировал ионизировать небо (если оно еще не было ионизировано, и оказалось, что оно уже само по себе ионизировано). Тесла, очевидно, планировал создать вертикальный проводящий плазменный поток, столб, который будет действовать как огромный кабель, чтобы соединить гигантскую катушку Тесла с проводящей ионосферой высоко в небе. Затем он будет питать ионосферу мегавольтами переменного тока 5-10 кГц. И тогда в любой точке Земли люди могли поднять металлическую пластину на деревянном столбе, подключить ее к заземленному резонансному трансформатору и привести в действие электрические часы и, возможно, несколько лампочек. (Я имею в виду люминесцентные лампы. Не те расточительные, неэффективные лампы накаливания из угольной электростанции Эдисона.)

Так почему же никто не сделал этого после того, как Тесла перестал получать финансирование? Кто-то пытался, еще в 1920 году. Вот их предложение, найденное в журнале Electrical Experimenter. Оказалось, не работает. Ультрафиолетовые прожекторы не могут образовывать достаточно длинные ионизированные потоки:

image2.png

Сравните вышесказанное с рекламным искусством Теслы с начала 1900-х годов ниже. Обратите особое внимание на дирижабль с лучами плазменного проводника, направленными вверх и вниз. Также обратите внимание на город на заднем плане, с похожими гигантскими «плазменными антеннами», выступающими вверх. Но все в то время просто предполагали, что это были прожекторы! Да, это типичный Тесла, готовящийся к будущим патентным битвам, выставляя свою технологию на всеобщее обозрение, но все секреты в безопасности, потому что никто не знает, на что они смотрят. Даже у самолетов Теслы есть плазменные лучи. Это имеет смысл, если вы используете металлический фюзеляж и крылья в качестве емкостной приемной пластины, поскольку резонансная катушка внутри любого летательного аппарата также нуждается в проводящем соединении с землей.

image3.png

Итак, почему никто не финансировал это? Даже не создал небольшую версию? Все просто. Никто не знает, как создать ста(100!!)-мегавольтный, 30-ти километровый вертикальный плазменный поток. Гигантский потрескивающий луч непрерывной молнии. Все, что меньше, не будет работать. «Настольная модель» не будет работать, если у вас также не будет настольной модели атмосферы Земли, включая изолирующий воздух и проводящую ионосферу выше. Тесла никогда не раскрывал, как он собирается это сделать. Ученые сегодня предполагают, что это невозможно.

Интересно, что репортер расспросил Теслу по этому поводу, спросив, будут ли в его системе использованы ультрафиолетовые лучи. Тесла ушел от ответа. Позже, в 1915 году, Тесла описал историю изобретения, сказав, что в течение многих лет он пытался заставить его работать с помощью ультрафиолетовых прожекторов, но он потерпел тотальную неудачу, пока не отказался от дуговых ламп и не обнаружил совершенно другой метод. Он отправился в Колорадо из-за высоты и низкого давления воздуха, но затем нашел способ заставить его работать на уровне моря. Он утверждал, что его новый метод позволил ему освещать небо ночью, как если бы это была гигантская люминесцентная лампа. Действительно ли он сделал это? Нам понадобятся свидетельства очевидцев из того места, где оно предположительно произошло: 1899, Колорадо-Спрингс. Возможно, он также работал в Wardenclyffe, так как упомянул, что если бы местные жители не ложились спать так рано, они бы действительно что-то увидели. Плазменные лучи высотой 30 км? Или гигантское сияние по небу, как изображено другом Теслы Хьюго Гернсбеком в «Электрическом экспериментаторе» от мая 1913?

image4.jpeg

Тем временем Музей Теслы в Белграде недавно опубликовал концепцию этого художника о беспроводной системе Тесла в действии – запитывание судов в море. Сравните с двумя приведенными выше иллюстрациями.

Технология Теслы будет работать только с плазменными лучами. Получить которые можно только в теории. В наше время.

image5.png

И еще, последнее замечание. 3-х фазная электросеть, каковы процентные потери? Какие потери должна преодолеть система Теслы? Я нахожу различные цифры. По данным МОЭСК и Россетей, 8-20% электрической энергии от генераторов тратится на нагрев проводов и потери при трансформации. И это в новых сетях. В старых может доходить до 30-40%. Тесла утверждал, что его измерения в Колорадо Спрингс показывают 3% потерь для его «Мировой системы». Может быть, это было преувеличено. Но даже в этом случае, потерь меньше, затрат на строительство сетей меньше, и вообще. Разве не здорово было бы повсюду наблюдать плазменные потоки энергии, как в Звездных Войнах. Работа электролабораторий перешла бы на совершенно другой уровень=)


Беспроводная передача электричества: теория, видео — Asutpp

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

магнетизмТак появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.

Электрический трансформаторЭлектрический трансформатор

Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология

принцип индуктивной связиПринцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связиКонцепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м [10] . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

3 способа беспроводной передачи энергии

как передать энергию без проводовКогда компания Apple представила свое первое беспроводное зарядное устройство для сотовых телефонов и гаджетов, многие посчитали это революцией и огромным скачком вперед в беспроводных способах передачи энергии.

Но были ли они первопроходцами или еще до них, кому-то удавалось проделать нечто похожее, правда без должного маркетинга и пиара? Оказывается были, притом очень давно и изобретателей таких было множество.

Так еще в далеком 1893г прославленный Никола Тесла, продемонстрировал изумленной публике свечение люминесцентных ламп. При том, что все они были без проводов.опыты Тесла по зажиганию ламп без проводов

Сейчас такой фокус может повторить любой школьник, выйдя в чистое поле и встав с лампой дневного света под линию высокого напряжения от 220кв и выше.что такое aeroz провод инновационные высоковольтные ВЛ

Чуть попозже, Тесла уже сумел зажечь таким же беспроводным способом фосфорную лампочку накаливания.как тесла зажег фосфорную лампочку накаливания

В России в 1895г А.Попов показал в работе первый в мире радиоприемник. А ведь по большому счету это тоже является беспроводной передачей энергии.

Самый главный вопрос и одновременно проблема всей технологии беспроводных зарядок и подобных методов заключается в двух моментах:

  • как далеко можно передать электроэнергию таким способом
  • и какое количество

Для начала давайте разберемся, какую мощность имеют приборы и бытовая техника нас окружающие. Например для телефона, смартчасов или планшета требуется максимум 10-12Вт.зарядка беспроводная для часов

У ноутбука запросы уже побольше — 60-80Вт. Это можно сравнить со средней лампочкой накаливания. А вот бытовая техника, особенно кухонная, кушает уже несколько тысяч ватт.расход электроэнергии у кухонной техники

Поэтому очень важно не экономить с количеством розеток на кухне.схема расположения розеток на кухне

Так какие же методы и способы для передачи эл.энергии без применения кабелей или любых других проводников, придумало человечество за все эти годы. И самое главное, почему они до сих пор не внедрены столь активно в нашу жизнь, как того хотелось бы.

Взять ту же самую кухонную технику. Давайте разбираться подробнее.

Передача энергии через катушки

Самый легко реализуемый способ — использование катушек индуктивности.

Здесь принцип очень простой. Берутся 2 катушки и размещаются недалеко друг от друга. На одну из них подается питание. Другая играет роль приемника.способ беспроводной передачи электроэнергии через катушки индуктивности

Когда в источнике питания регулируется или изменяется сила тока, на второй катушке магнитный поток автоматически также изменяется. Как гласят законы физики, при этом будет возникать ЭДС и она будет напрямую зависеть от скорости изменения этого потока.

Казалось бы все просто. Но недостатки портят всю радужную картинку. Минусов три:

  • маленькая мощность

Данным способом вы не передадите большие объемы и не сможете подключить мощные приборы. А попытаетесь это сделать, то просто поплавите все обмотки.беспроводной способ передачи электричества

  • небольшое расстояние

Даже не задумывайтесь здесь о передаче электричества на десятки или сотни метров. Такой способ имеет ограниченное действие.

Чтобы физически понять, насколько все плохо, возьмите два магнита и прикиньте, как далеко их нужно развести, чтобы они перестали притягиваться или отталкиваться друг от друга. Вот примерно такая же эффективность и у катушек.

беспроводной способ передачи электричества

Можно конечно исхитриться и добиться того, чтобы эти два элемента всегда были близко друг от друга. Например электромобиль и специальная подзаряжающая дорога.автоматическая беспроводная подзарядка автомобиля при движении по дороге

Но в какие суммы выльется строительство таких магистралей.

Еще одна проблема это низкий КПД. Он не превышает 40%. Получается, что таким способом передать много эл.энергии на большие расстояния вы не сможете.

Тот же Н.Тесла указал на это еще в 1899г. Позже он перешел на эксперименты с атмосферным электричеством, рассчитывая в нем найти разгадку и решение проблемы.катушка Теслы и автомобиль

Однако какими бы не казались бесполезными все эти штуки, с их помощью до сих пор можно устраивать красивые светомузыкальные представления.

Или подзаряжать технику гораздо большую чем телефоны. Например электрические велосипеды.беспроводная подзарядка велосипедов

Лазерная передача энергии

Но как же передать больше энергии на большее расстояние? Задумайтесь, в каких фильмах подобную технологию мы видим очень часто.

Первое что приходит на ум даже школьнику — это «Звездные войны», лазеры и световые мечи.звездные войны и передача энергии на расстоянии

Безусловно, с их помощью можно передать большое количество эл.энергии на очень приличные расстояния. Но опять все портит маленькая проблемка.

К нашему счастью, но несчастью для лазера, на Земле есть атмосфера. А она как раз таки хорошо глушит и кушает большую часть всей энергии лазерного излучения. Поэтому с данной технологией нужно идти в космос.

На Земле также были попытки и эксперименты по проверке работоспособности метода. Nasa даже устраивали состязания по лазерной беспроводной передаче энергии с призовым фондом чуть менее 1млн.$.

В итоге выиграла компания Laser Motive. Их победный результат — 1км и 0,5квт переданной непрерывной мощности. Правда при этом в процессе передачи, ученые потеряли 90% всей изначальной энергии.

звездные войны и передача энергии на расстоянии

звездные войны и передача энергии на расстоянии

Но все равно, даже с КПД в десять процентов, результат посчитали успешным.

Напомним, что у простой лампочки полезной энергии, которая идет непосредственно на свет, и того меньше. Поэтому из них и выгодно изготавливать инфракрасные обогреватели. как из простой лампочки или галогенки сделать обогреватель и печку для дома

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.какие волны беспрепятственно распространяются в атмосфере

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.магнетрон в микроволновке

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат. Зайдите на кухню и обратите внимание на свою микроволновку.микроволновка и магнетрон

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

электропроводка в домах сша и россии отличия и сравнение правилВ США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

Он даже дал ей свое название — ректенна.ректенна для преобразования микроволн в электричество

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.схема передачи энергии без проводов

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача всего нескольких ватт мощности.

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.панели для приема микроволновых волн

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.нужно ли вытаскивать зарядку от телефона и смартфона из розетки

Вторая головная боль — нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.горят спички

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.лампочка ильича

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки — до 85%.циклотронный преобразователь энергии

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

  • большая мощность
  • стойкость к перегрузкам
  • отсутствие переизлучения
  • невысокая цена изготовления
Однако несмотря на все вышесказанное, во всем мире передовым считаются именно полупроводниковые методы реализации проектов. Здесь тоже присутствует свой элемент моды.

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.ламповый сотовый телефон и компьютер

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях. 111_opressbez

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.подзарядка различных устройст на расстоянии без проводов

Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.

Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:

  • на земле и в космосе
  • с поверхности земли на космический корабль или спутник
  • и наоборот, со спутника в космосе обратно на землю

Реальные проекты в наши дни

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.реальный опыт по передаче мощности в 10квт

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.реальный опыт по передаче мощности в 10квт

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.как передать энергию из космоса на землю

Он предложил на тот момент не совсем нормальную идею — вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.передача солнечной энергии на землю от спутника

Этакая «звезда смерти» в наших земных реалиях.звезда смерти на земле

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше — 5км (размер Садового кольца).проблемы при передаче электроэнергии из космоса на землю по беспроводной технологии

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.башня тесла для передачи энергии без проводов

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос — увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Статьи по теме

Электричество на расстоянии: способ беспроводной передачи электричества

Решить проблему беспроводной передачи электрической энергии на большие расстояния – давнишняя мечта человечества. Можно представить, насколько бы подешевела электроэнергия без затрат на токопроводную продукцию. Научно-техническая революция не стоит на месте. Есть надежда, что эта мечта сбудется в недалёком будущем. Тому свидетельствуют новые разработки в данной сфере.

Мечта человечества – беспроводная передача электроэнергии

Мечта человечества – беспроводная передача электроэнергии

История беспроводной передачи энергии

Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.

Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.

Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.

Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.

Никола Тесла

Никола Тесла

Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.

Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.

Как это работает

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Схема передачи электричества без проводов

Схема передачи электричества без проводов

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Технологии

Наиболее перспективными направлениями в разработке новых методов и способов транспортировки электричества без материального контакта являются:

  • ультразвуковой способ;
  • метод электромагнитной индукции;
  • электростатическая индукция;
  • микроволновое излучение;
  • лазерный метод;
  • электропроводность Земли.

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Лазерный метод

Передачу электроэнергии на большие расстояния без проводов с помощью лазера стали осуществлять сосем недавно. Идея состоит в том, что лазерный луч, несущий в себе энергетический потенциал, попадает на фотоэлемент приёмного устройства, где высокочастотное электромагнитное излучение преобразуется в электрический ток.

Лазерная технология передачи энергии, ранее применяемая в военной области, успешно внедряется в гражданскую сферу деятельности человека. Разработки американских учёных привели к изобретению беспилотного летательного аппарата, получающего энергетическое питание от лазерного луча. В 2006 году был продемонстрирован беспилотник, который мог летать в беспосадочном режиме, питаясь от лазерной установки.

В 2009 году был успешно осуществлён эксперимент в космосе по передаче энергии на один километр мощностью 500Вт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

Бесконтактная зарядка смартфона

Бесконтактная зарядка смартфона

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Перспективы беспроводной передачи электричества

Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.

Питание электромобиля

Питание электромобиля

Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.

В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.

С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.

Видео

Передача электроэнергии без проводов- от начала до наших дней / Habr

Передача электроэнергии без проводов, это способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи.

В конце XIX века открытие того, что при помощи электричества можно заставить светиться лампочку, вызвало взрыв исследований, целью которых было найти наилучший способ передачи электроэнергии.


Активно изучалась беспроводная передача энергии и в начале 20го века, когда ученые уделяли большое внимание поиску различных путей беспроводной передачи энергии. Цель исследований была проста – генерировать электрическое поле в одном месте так, чтобы затем можно было его приборами обнаружить на расстоянии. В то же время были предприняты попытки снабжения энергией на расстоянии не только высокочувствительных датчиков для регистрации напряжения, а и значительных потребителей энергии. Так, в 1904 году на выставке St. Louis World’s Fair был вручен приз за успешный запуск самолетного двигателя мощностью 0,1 лошадиной силы, осуществленный на расстоянии 30 м.

Гуру «электричества» известны многим (William Sturgeon, Michael Faraday, Nicolas Joseph Callan, James Clerk Maxwel, Heinrich Hertz, Mahlon Loomas и др.), но мало кто знает, что японский исследователь Hidetsugu Yagi для передачи энергии использовал собственной разработки антенну. В феврале 1926 г. он опубликовал результаты своих исследований, в которых описал строение и способ настройки антенны Yagi.

Прим: про Никола Тесла (Nikola Tesla) я не упомянул сознательно: написано много и многими.

Очень серьёзные работы и проекты велись в СССР в период 1930-1941 гг и параллельно в Drittes Reich. Естественно, в основном, военного назначения. Естественно, в основном, военного назначения: поражение живой силы противника, уничтожение военной и промышленной инфраструктуры и т.д.
В СССР велись так же серьёзные работы по использованию СВЧ излучения для предотвращения поверхностной коррозии металлических конструкций и изделий.
Но это отдельная история. Опять надо лезть на пыльный чердак.

Один из крупнейших российских физиков прошлого столетия, лауреат Нобелевской премии, академик Пётр Леонидович Капица посвятил часть своей творческой биографии исследованию перспектив использования СВЧ-колебаний и волн для создания новых и высокоэффективных систем передачи энергии. В 1962 году в предисловии к своей монографии он писал

«… я хочу напомнить, что электротехника, прежде чем прийти на службу энергетике, в прошлом веке занималась широко только вопросами электросвязи (телеграф, сигнализация и пр.). Вполне вероятно, что история повторится: теперь электроника используется главным образом для целей радиосвязи, но её будущее лежит в решении крупнейших проблем энергетики».

Из длинного перечня фантастических технических идей, реализованных в ХХ веке, только мечта о беспроводной передаче электрической энергии продолжала оставаться нереализованной. Подробные описания энергетических лучей в фантастических романах дразнили инженеров своей очевидной потребностью, и при этом практической сложностью реализации.
Но ситуация постепенно стала меняться к лучшему.

В 1964 году эксперт в области СВЧ-электроники William C.Brown впервые испытал устройство (модель вертолета) способное принимать и использовать энергию СВЧ пучка в виде постоянного тока, благодаря антенной решётке, состоящей из полуволновых диполей, каждый из которых нагружен на высокоэффективные диоды Шоттки.

В 1964 г. William C. Brown продемонстрировал на канале CBS в программе Walter Cronkite News свою модель вертолета, получавшую достаточную для полета энергию от микроволнового излучателя.


Уже к 1976 году Вильям Браун осуществил передачу СВЧ-пучком мощности в 30 кВт на расстояние в 1,6 км с КПД превышающим 80%.

Испытания проводились в лаборатории и по заказу Raytheon Co.
Подробно (на английском) читать:
Microwave Power Transmission — IOSR Journals
The microwave powered Helicopter. William C. Brown. Raytheon Company.

В 1968 году американский специалист в области космических исследований Питер Е. Глэйзер (Peter E. Glaser) предложил размещать крупные панели солнечных батарей на геостационарной орбите, а вырабатываемую ими энергию (уровня 5-10 ГВт) передавать на поверхность Земли хорошо сфокусированным пучком СВЧ-излучения, преобразовывать её затем в энергию постоянного или переменного тока технической частоты и раздавать потребителям.


Такая схема позволяла использовать интенсивный поток солнечного излучения, существующий на геостационарной орбите (~ 1,4 кВт/кв.м.), и передавать полученную энергию на поверхность Земли непрерывно, вне зависимости от времени суток и погодных условий [2-12]. За счёт естественного наклона экваториальной плоскости к плоскости эклиптики с углом 23,5 град., спутник, расположенный на геостационарной орбите, освещён потоком солнечной радиации практически непрерывно за исключением небольших отрезков времени вблизи дней весеннего и осеннего равноденствия, когда этот спутник попадает в тень Земли. Эти промежутки времени могут точно предсказываться, а в сумме они не превышают 1% от общей продолжительности года.

Частота электромагнитных колебаний СВЧ-пучка должна соответствовать тем диапазонам, которые выделены для использования в промышленности, научных исследованиях и медицине. Если эта частота выбрана равной 2,45 ГГц, то метеорологические условия, включая густую облачность и интенсивные осадки, практически не влияют на КПД передачи энергии. Диапазон 5,8 ГГц заманчив, поскольку дает возможность уменьшить размеры передающей и приемной антенн. Однако влияние метеорологических условий здесь уже требует дополнительного изучения.

Современный уровень развития СВЧ-электроники позволяет говорить о довольно высоком значении КПД передачи энергии СВЧ пучком с геостационарной орбиты на поверхность Земли — порядка 70-75%. При этом диаметр передающей антенны обычно бывает выбран равным 1 км, а наземная ректенна имеет размеры 10 км х 13 км для широты местности 35 град. СКЭС с уровнем выходной мощности 5 ГВт имеет плотность излучаемой мощности в центре передающей антенны 23 кВт/кв.м., в центре приемной – 230 Вт/кв.м.


Были исследованы различные типы твёрдотельных и вакуумных СВЧ-генераторов для передающей антенны СКЭС. Вильям Браун показал, в частности, что хорошо освоенные промышленностью магнетроны, предназначенные для СВЧ-печей, могут быть использованы также и в передающих антенных решётках СКЭС, если каждый из них снабдить собственной цепью отрицательной обратной связи по фазе по отношению к внешнему синхронизирующему сигналу (так называемый, Magnetron Directional Amplifier — MDA).

Ректенна – высокоэффективная приёмно-преобразующая система, однако низковольтность диодов и необходимость их последовательной коммутации, может приводить к лавинообразным пробоям. Циклотронный преобразователь энергии позволяет в значительной мере устранить эту проблему.

Передающая антенна СКЭС может представлять собой обратно-переизлучающую активную антенную решётку на основе щелевых волноводов. Её грубая ориентация осуществляется механическим путём, для точного наведения СВЧ-пучка используется пилот-сигнал, излучаемый из центра приёмной ректенны и анализируемый на поверхности передающей антенны сетью соответствующих датчиков.

С 1965 по 1975 гг. была успешно завершена научная программа, руководимая Bill Brown, продемонстрировавшая возможность передачи энергии мощностью 30 кВт на расстояние более 1 мили с эффективностью 84%.

В 1978–1979 годах в США под руководством Министерства энергетики (Department of Energy – DOE) и НАСА (NASA) была выполнена первая государственная научно-исследовательская программа, направленная на определение перспектив СКЭС.

В 1995–1997 годах НАСА вновь вернулось к обсуждению перспектив СКЭС, опираясь на прогресс технологий, достигнутый к тому времени.


Исследования были продолжены в 1999–2000 годах (Space Solar Power (SSP) Strategic Research & Technology Program).

Наиболее активно и планомерно исследования в области СКЭС проводила Япония. В 1981 году под руководством профессоров М.Нагатомо (Makoto Nagatomo) и С.Сасаки (Susumu Sasaki) в Институте космических исследований Японии были начаты исследования по разработке прототипа СКЭС с уровнем мощности 10 МВт, который мог бы быть создан с использованием существующих ракетоносителей. Создание такого прототипа позволяет накопить технологический опыт и подготовить основу для формирования коммерческих систем.


Проект был назван СКЭС2000 (SPS2000) и получил признание во многих странах мира.

В 2008 доцент кафедры физики Массачусетского Технологического Института (МИТ) Марин Солджачич (Marin Soljačić) был пробуждён от сладкого сна настойчивым пиканьем мобильного телефона. «Телефон не умолкал, требуя, чтобы я поставил его заряжаться», — рассказывает Солджачич. Уставший и не собиравшийся вставать, он стал мечтать о том, чтобы телефон, оказавшись дома, начинал заряжаться сам по себе.

Так появился WiTricity и WiTricity corporation.


В июне 2007 г. Marin Soljačić и еще несколько исследователей Массачусетского технологического института сообщили о разработке системы, в которой 60 Вт лампочка снабжалась от источника, располагавшегося на расстоянии 2 м, причем эффективность составила 40%.
По заявлению авторов изобретения, это не «чистый» резонанс связанных контуров и не трансформатор Теслы, с индуктивной связью. Радиус передачи энергии на сегодня составляет чуть больше двух метров, в перспективе – до 5-7 метров.
В целом, учеными испытывались две принципиально отличающиеся схемы.
1. В индукционной катушке или электрическом трансформаторе, которые имеют металлический или воздушный сердечник, передача энергии осуществляется путем простого электромагнитного соединения, называемого магнитной индукцией. С использованием этого метода передача и получение энергии стали осуществимы на значительном расстоянии, но для получения значительного напряжения подобным путем необходимо было расположить две катушки очень близко.
2. Если же используется магнитное резонансное сцепление, где оба индуктора настроены на взаимную частоту, значительная энергия может быть передана на немалое расстояние.

Сходные технологии лихорадочно разрабатываются и другими фирмами: компания Intel демонстрировала свою технологию WREL с КПД передачи энергии до 75%. В 2009 году фирма Sony продемонстрировала работу телевизора без сетевого подключения. Настораживает только одно обстоятельство: независимо от способа передачи и технических ухищрений, плотность энергии и напряженность поля в помещениях должна быть достаточно высокой, чтоб питать устройства мощностью несколько десятков ватт. По признанию самих разработчиков, информации о биологическом воздействии на человека подобных систем пока нет. Учитывая недавнее появление, и разный подход к реализации устройств передачи энергии, подобные исследования еще только предстоят, а результаты появятся не скоро. А мы сможем судить об их негативном воздействии только косвенно. Что-то опять исчезнет из наших жилищ, как, например, тараканы.

В 2010 году Haier Group, китайский производитель бытовой техники, представила на всеобщее обозрение на выставке CES 2010 свой уникальный продукт — полностью беспроводной LCD телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI).

В 2012-2015 гг. инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).


На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На каверзные вопросы о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным. И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии.

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику и военную технику, чтобы управлять ими беспроводным способом и осуществлять дистанционную зарядку/подзарядку.

Актуальным является передача энергии для БПЛА (вероятнее всего уже по технологии PoWiMax или от радиолокатора самолёта носителя):

→ LOCUST — Swarming Navy Drones
→ Пентагон успешно испытал рой из 103 беспилотников
→ Intel управляла шоу беспилотников во время выступления Леди Гаги в перерыве Суперкубка США

Для БПЛА негатив от закона обратных квадратов (изотропно-излучающая антенна) частично «компенсирует» ширина луча антенны и диаграмма направленности:

Ведь БРЛС ЛА в импульсе может выдавать под 17 кВт энергии ЭМИ.

Это не сотовая связь -где ячейка должна обеспечить связь конечным элементам на 360 градусов.
Допустим такая вариация:
Самолёт носитель ( для Perdix) это F-18 обладает (сейчас) БРЛС AN/APG-65:

максимальная средняя излучаемая мощность по 12000 Вт

или в перспективе будет иметь AN/APG-79 AESA:

в импульсе должен выдавать под 15 кВт энергии ЭМИ

Этого вполне достаточно, что бы продлить активную жизнь Perdix Micro-Drones с нынешних 20 минут до часа, а может и больше.

Скорее всего будет использоваться промежуточный дрон Perdix Middle, которого будет облучать на достаточном расстоянии БРЛС истребителя, а он в свою очередь осуществит «раздачу» энергии для младших братьев Perdix Micro-Drones по PoWiFi/PoWiMax, параллельно обмениваясь с ними информацией (полётно -пилотажной, целевыми задачами, координацией роя).

Возможно вскоре дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, которые находятся в зоне действия Wi-Fi, Wi-Max или 5G?

Послесловие: 10-20 лет, после широкого внедрения в повседневную жизнь многочисленных электромагнитных излучателей СВЧ (Мобильные телефоны, Микроволновые печи, Компьютеры,WiFi,Blu tools и т.д.) внезапно тараканы в больших городах вдруг превратились в раритет! Теперь таракан- насекомое, которое можно встретить разве что в зоопарке. Они неожиданно исчезли из домов, которые раньше так любили.

ТАРАКАНЫ КАРЛ!
Эти монстры лидеры списка «радиорезистентных организмов» бесстыдно капитулировали!
Справка
LD 50 — средняя летальная доза, то есть доза убивает половину организмов в эксперименте; LD 100 — летальная доза убивает всех организмов в эксперименте.

Кто следующий на очереди?

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)
Россия, Венгрия: 10 мкВт/см².
Москва: 2,0 мкВт/см². (норма существовала до конца 2009 года)
США, Скандинавские страны: 100 мкВт/см².
Временно допустимый уровень (ВДУ) от мобильных радиотелефонов (МРТ) для пользователей радиотелефонов в РФ определён 10 мкВт/см² (Раздел IV — Гигиенические требования к подвижным станциям сухопутной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи» ).
В США Сертификат выдается Федеральной комиссией по связи (FCC) на сотовые аппараты, максимальный уровень SAR которых не превышает 1,6 Вт/кг (причем поглощенная мощность излучения приводится к 1 грамму ткани органов человека).
В Европе, согласно международной директиве Комиссии по защите от неионизирующего излучения (ICNIRP), значение SAR мобильного телефона не должно превышать 2 Вт/кг (при этом поглощенная мощность излучения приводится к 10 граммам ткани органов человека).
Сравнительно недавно в Великобритании безопасным уровнем SAR считался уровень равный 10 Вт/кг. Такая же примерно картина наблюдалась и в других странах.
Принятую в стандарте максимальную величину SAR (1,6 Вт/кг) даже нельзя с уверенностью отнести к «жестким» или к «мягким» нормам.
Принятые и в США и в Европе стандарты определения величины SAR (все нормирование микроволнового излучения от сотовых телефонов, о котором идет речь базируется только на термическом эффекте, то есть связанном с нагреванием тканей органов человека).

ПОЛНЫЙ ХАОС.
Медицина до сих пор пока не дала внятного ответа на вопрос: вреден ли мобильный/WiFi и насколько?
А как будет с беспроводной передачей электроэнергии СВЧ технологиями?
Тут мощности не ватты и мили ватты, а уже кВт…

Прим: Типичная WiMAX базовая станция излучает мощность на уровне приблизительно +43 дБм (20 Вт), а станция мобильной связи обычно передает на +23 дБм (200 мВт).


Беспроводная передача электричества по методу Николы Теслы

Беспроводная передача электричества по методу Николы Теслы

Зелинский  В.М. 1

1Муниципальное бюджетное общеобразовательное учреждение «Первоманская средняя школа»

Рогалева  И.Н. 1

1Муниципальное бюджетное общеобразовательное учреждение «Первоманская средняя школа»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Сейчас немногие вспомнят о том, что первые серьезные исследования в области беспроводной электрической системы начались несколько столетий назад. Многие ученые трудились над тем, чтобы постичь феномен заряженных частиц и обратить их на службу человеку, можно назвать имена: Ампер, Фарадей, Максвелл, Герц. Среди этих великих имен особое место занимает сербский ученый Никола Тесла. На сегодняшний день мы можем со стопроцентной уверенностью сказать, что без открытий Тесла современный мир не был бы таким, каким является сейчас.  

Актуальность данной работы продиктована тем, что современная жизнь немыслима без электрoэнергии. Благодаря электричеству, функционирует промышленность, ведут свою работу разные заведения, без электричества невозможно освещение ночных улиц и безопасное дорожное движение.

По замыслу Тесла, энергию можно было получить из атомной энергии или энергии лучей — это обеспечило бы бесконечные ресурсы с минимальными затратами. Этот вопрос актуален сегодня не менее чем несколько десятков лет назад, даже больше, потому как электричество является одной из основ современной цивилизации, без него наша жизнь прекратит свое движение вперед. Но у электричества есть свой недостаток, который заключается в использование для его передачи проводов и различных линий электропередач. Если бы постоянная передача электричества по воздуху была безопасной, то многие проблемы человечества были бы решены. Что так же говорит об актуальности данного вопроса.

Проблема работы заключается в том, а можно ли передать электричество на расстоянии, без проводов в домашних условиях, не имея специального образования.

Объект исследования: процесс беспроводной передачи электричества Николы Тесла.

Предмет исследования: беспроводное электричество.

Цель работы: Изучение физических принципов работы «Катушки Тесла» и разработка, изготовление и демонстрация возможностей «Катушки Тесла».

Для достижения цели, был поставлен ряд задач:

Изучить биографию Н. Тесла.

Ознакомиться с результатами основных открытий ученого.

Самостоятельно собрать устройство для беспроводной передачи электричества и провести эксперимент.

Гипотеза: Электромагнитное поле катушки Тесла способно передавать электрический ток на расстоянии беспроводным способом.

Эта тема широко обсуждается на всех уровнях, в широком доступе имеется различная литература, научные статьи, публикации, интернет сайты, которые повествуют нам об этом загадочном человеке и его открытиях. Некоторые источники были использованы для написания данной работы.

Максимов А.Б.  — Никола ТеслаТри феномена гения. Автор в своей книге рассказывает о том, что многие гениальные проекты Тесла опередили время настолько, что и спустя столетие не смогли быть воспроизведены без чертежей и записей, которые ученый сознательно уничтожил, отказавшись от идеи сверхмощного оружия как сдерживающего фактора в развязывании мировой бойни. 

Никола Тесла — Утраченные изобретения. О нем распространяют самые невероятные слухи, но реальные факты его жизни еще более ошеломляющи и представлены в данной книге.

Никола Тесла. Лекции и статьи. Отобранные для этой публикации документы печатаются как доказательство важной научной работы Теслы, которая составляет фундамент современной электротехники.

Ржонсницкий Б.Н., Никола Тесла, Серия: ЖЗЛ, 1959 г.

В результате проделанной работы была обнаружена неизвестная ранее мне схема изготовления «Катушки Тесла», которая может выдавать напряжение опасное для жизни.

Мы считаем, что данная работа носит просветительский и практический характер, а так же повысит заинтересованность учеников школы в более углубленном изучении таких школьных предметов как физика, побудит их к исследовательской деятельности.

Практическое значение данной работы заключается в том, что мы можем применять катушку Тесла, например для одновременной зарядки нескольких телефонов, в местах, где нет для этого определенных условий, при этом использовать любой источник электроэнергии (аккумулятор).

Никола Тесла – краткая биография

Никола Тесла – гениальный человек, изобретатель, физик. Ему принадлежит более 100 патентов в области электричества и волновой физики. Его самые известные изобретения сделаны в области электро — и радиомеханики.

Никола Тесла родился 10 июля 1856 года в Смилянах на территории современной Хорватии.[4] Его отец – Милутин Тесла, сербский православный священник. Милутин Тесла был священником по призванию. Он происходил из старинного сербского рода, с давних времен переселившегося из Сербии в Хорватию. Еще в XVII веке род этот назывался Драгнич, что означает по-сербски «дорогой», но, переселившись в Хорватию, он получил другое имя – Тесла (Тесло – плотничий инструмент), связанное с основной профессией большинства членов семьи. Его мать – Джуке Мандич, дочь священника. Джука, старшая в большой семье, после смерти матери взяла на себя все заботы о шестерых братьях и сестрах. Всю жизнь она оставалась неграмотной. [3]

У Теслы младшего было три сестры и один (старший) брат, который умер после падения с лошади, когда Николе было 5 лет.

В первом классе начальной школы Тесла учился в Смилянах, а затем продолжал учение и окончил начальное реальное училище в городе Госпиче, куда в 1864 году переехала вся семья. Там Николе пришлось преодолевать возникшую с первых дней неприязнь некоторых учителей и одноклассников, вызванную тем, что развитие его не соответствовало возрасту, а способности поражали всех окружающих. Необычайная память, редкая способность производить сложные математические вычисления в уме, молниеносно называя ответ, когда учитель еще только заканчивал диктовать задачу, – все это настраивало против необычайного ребенка.   Но вскоре учителя поняли, что имеют дело с ребенком, на редкость одаренным.  [4]

Годы учения в Госпиче были началом изобретательской деятельности Николы Теслы. Именно тогда, при необычных обстоятельствах состоялось первое знакомство с машинами. В этом маленьком городке добровольная пожарная команда приобрела однажды новый пожарный насос. Первое испытание его было обставлено весьма торжественно; но можно представить себе разочарование присутствующих, когда оказалось, что насос не в состоянии качать воду. Всеобщее замешательство нарушил Никола Тесла – наблюдательный мальчик быстро нашел неисправность и, устранив ее, пустил насос в действие. [4]

Между тем пришло время продолжать учение в Высшем реальном училище, и Николу Теслу отправили в город Карловец к двоюродной сестре его отца Станке Бранкович. Здесь он продолжил заниматься своими самыми любимыми предметами: математикой и физикой.

После окончания училища он стал задумываться о профессии, самой лучшей профессией в мире он считал профессию электрика. Отец же мечтал видеть сына священником, и был против его дальнейшей учебы. Сам Никола был против этого отцовского желания. Не только потому, что грезил новыми открытиями, но и потому что просто не верил в Бога.   В скором времени Никола тяжело заболел. Сам он считал, что заболел холерой, но воспоминания его близких о ходе болезни не подтверждают этого. В разгаре болезни Никола уверял родителей, что если отец даст согласие на продолжение технического образования, он направит всю свою волю на выздоровление. Если же ему откажут, то он умрет.   Отец долго не мог пойти на уступку сыну. Только когда сыну стало хуже, и одной ногой он был уже на том свете, отец дал обещание не препятствовать намерениям сына.    После выздоровления Николу в 1875 году отправился в Грац, где поступил в Высшую техническую школу. [4]

 С осени 1876 года, продолжая увлекаться изучением электричества, он особенно охотно работал в лаборатории профессора Якова Пешля. На лекциях по электротехнике у Теслы зародилась мысль о несовершенстве машин постоянного тока. Еще не видя в натуре ни одной подобной машины, он в своем воображении совершенно ясно представил себе не только ее схему , но и конструктивные особенности и быстро пришел к убеждению в возможности и необходимости отказаться от электрических машин постоянного тока и перейти к использованию переменного тока. [4]

В 1878 году Тесла окончил Высшую техническую школу в Граце и в следующем году начал работать помощником инженера в городе Мариборе. [4]

В 1879 году Никола устроился преподавателем в гимназию в Госпиче, в которой он сам учился. Работа в Госпиче его не устраивала. В январе 1880 года уехал в Прагу, где поступил на философский факультет Пражского университета. Он проучился всего один семестр, но в связи со сложившимися обстоятельствами в его семье, был вынужден искать работу.[3]

С 1880 по 1882 год Тесла работал инженером-электриком в правительственной телеграфной компании в Будапеште, которая в то время занималась проведением телефонных линий и строительством центральной телефонной станции.

В конце 1882 года Никола устроился в Континентальную компанию Эдисона в Париже. Одной из наиболее крупных работ компании было сооружение электростанции для железнодорожного вокзала в Страсбурге.[1]

В начале 1883 года компания направила Николу в Страсбург для решения ряда рабочих проблем. В свободное время Тесла работал над изготовлением модели асинхронного электродвигателя, а позже демонстрировал его работу  в мэрии Страсбурга.

Проработав всего год в компании Эдисона, Тесла приобрёл известность в деловых кругах. Узнав о его увольнении, группа электротехников предложила Николе организовать свою компанию, связанную с вопросами электрического освещения.

Проекты Теслы по использованию переменного тока их не воодушевили, и тогда они изменили первоначальное предложение, ограничившись лишь предложением разработать проект дуговой лампы для уличного освещения.

Через год проект был готов. Вместо денег предприниматели предложили изобретателю часть акций компании, созданной для эксплуатации новой лампы. Такой вариант не устроил изобретателя, компания же в ответ постаралась избавиться от него, попытавшись оклеветать и опорочить.

Весной 1887 года Никола Тесла при поддержке инженера Брауна и его знакомых создает свою компанию по обустройству уличного освещения новыми лампами. Компания называлась «Тесла арк лайт компани».

В июле 1888 года известный американский промышленник Джордж Вестингауз выкупил у Теслы более 40 патентов, заплатив в среднем по 25 тыс. долларов за каждый.

В 1888—1895 годах Тесла занимался исследованиями магнитных полей высокой частоты в своей лаборатории. Эти годы были наиболее плодотворными: он получил множество патентов на изобретения.

13 марта 1895 года в его лаборатории случился пожар. Здание сгорело до основания, уничтожив самые последние достижения изобретателя.

Благодаря Эдварду Адамсу из компании «Ниагарские водопады» у Теслы появилось 100 000 долларов на обустройство новой лаборатории. Уже осенью исследования возобновились.

В 1899 году Никола Тесла перебрался в небольшой городок Колорад-Спрингс, где начал исследовать природу молний и гроз. Эти исследования навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

В 1915 году в газетах писали, что Тесла был номинирован на Нобелевскую премию по физике. Одновременно был заявлен и Томас Эдисон. Изобретателям предлагалось разделить премию на двоих. По утверждениям некоторых источников, взаимная неприязнь изобретателей привела к тому, что оба отказались от неё, таким образом, отвергнув любую возможность разделения премии. В действительности Эдисону в 1915 не предлагали премии, хотя и номинировали на нее. [7]

18 мая 1917 года Тесле была вручена медаль Эдисона,
хотя сам он решительно отказывался от ее получения.[1]

Однажды с Теслой произошел несчастный случай – его сбила легковая машина. После этого случая уже пожилой Никола Тесла навсегда остался прикован к кровати.

Более того, он заболел воспалением легких и получил хроническую форму этого заболевания. В ночь 7 января 1943 года Никола Тесла умер в своем гостиничном номере отеля «Нью-Йоркер».[3]

12 января его тело кремировали, и урну с прахом установили на Фэрнклиффском кладбище в Нью-Йорке. В 1957 году она была перенесена в Музей Николы Теслы в Белграде.

Подводя итоги вышесказанному, можно сделать выводы, Никола Тесла, был неординарной, безусловно одаренной личностью, плюс ко всему обладающей необъяснимыми сверхспособностями. Ученые воспринимали его как человека из параллельного мира с гениальной интуицией. Сам же Никола говорил, что черпал свои знания из единого поля Вселенной.

Какие только прозвища ему не давали, от «странного изобретателя» и «талантливого инженера» до «чудаковатого профессора» и «ученого-чернокнижника». Но всегда преобладало: «выдающийся знаток электричества».

Таинственное явление «электричество» вошло в его жизнь в детстве и осталось с ним навсегда. Оно манило его за собой. А способности вроде отличной памяти, любознательности, воображения в итоге помогли ему добиться непревзойденных результатов.

Никола Тесла – его изобретения

Нет предмета более увлекательного для изучения, чем сама природа. Понять этот великий механизм, открыть его тайны и разгадать его загадки, это и есть высшая цель человеческого разума.

Природа хранит во вселенной бесконечную энергию. Явления, на которые мы привыкли смотреть как на некие чудеса, неподдающееся объяснению, теперь предстают перед нами в ином свете. Разряд индукционной катушки, свечение лампы накаливания, проявления механических сил электрических токов и магнитов — теперь уже не за пределами нашего понимания.

Но мы, все так, же восхищаемся этими красивыми явлениями, необыкновенными силами, но уже более не бессильны перед ними; мы можем в определенной мере объяснить их, и надеемся, в конце концов, разгадать тайну, которая окружает нас. Одна только мысль об идеи действия на расстоянии, наполнило бы радостью все человечество, открыв новые горизонты — новые непредвиденные возможности. Это явилось бы великим шагом на пути понимания сил природы и их многообразного проявления перед нашими чувствами.

И такой шаг сделал Никола Тесла. С 1889 года Тесла приступил к исследованиям токов высокой частоты и высоких напряжений. Изобрёл первые образцы электромеханических генераторов ВЧ (в том числе индукторного типа) и высокочастотный трансформатор (трансформатор Теслы, 1891), создав тем самым предпосылки для развития новой отрасли электротехники.

В ходе исследований токов высокой частоты Тесла уделял внимание и вопросам безопасности. Экспериментируя на своём теле, он изучал влияние переменных токов различной частоты и силы на человеческий организм. Многие правила, впервые разработанные Теслой, вошли в современные основы техники безопасности при работе с ВЧ-токами. Он обнаружил, что при частоте тока свыше 700 Гц электрический ток протекает по поверхности тела, не нанося вреда тканям организма. Электротехнические аппараты, разработанные Теслой для медицинских исследований, получили широкое распространение в мире.

Эксперименты с высокочастотными токами большого напряжения привели изобретателя к открытию способа очистки загрязнённых поверхностей. Аналогичное воздействие токов на кожу показало, что таким образом, возможно удалять мелкую сыпь, очищать поры и убивать микробы. Данный метод используется в современной электротерапии.

12 октября 1887 года Тесла дал строгое научное описание сути явления вращающегося магнитного поля.

1 мая 1888 года Тесла получил свои основные патенты на изобретение системы передачи электроэнергии посредством многофазного переменного тока. С использованием двухфазной системы, которую он считал наиболее экономичной, в США был пущен ряд промышленных электроустановок, в том числе Ниагарская ГЭС (1895), крупнейшая в те годы. [7]

Тесла одним из первых запатентовал способ надёжного получения токов, которые могут быть использованы в радиосвязи. Патент описывал “Метод управления дуговыми лампами”, в котором генератор переменного тока производил высокочастотные (по меркам того времени) колебания тока порядка 10 000 Гц.

Запатентованной инновацией стал метод подавления звука, производимого дуговой лампой под воздействием переменного или пульсирующего тока, для чего Тесла придумал использовать частоты, находящиеся за рамками восприятия человеческого слуха. По современной классификации генератор переменного тока работал в интервале очень низких радиочастот.

Идея о беспроводной передаче электричества преследовала Николу долгие годы. Для него было несомненно, что должен быть открыт способ передачи электроэнергии вовсе без проводов.

В 1891 году на публичной лекции Тесла описал и продемонстрировал принципы радиосвязи. В 1893 году вплотную занялся вопросами беспроволочной связи и изобрёл мачтовую антенну. В 1893 году Тесла построил первый волновой радиопередатчик, опередив Маркони и Попова на несколько лет. В 1943 году Верховный суд США подтвердил первенство Теслы в этом изобретении. [7]

В одном из научных журналов Тесла рассказывал об опытах с механическим осциллятором, настроив который на резонансную частоту любого предмета, его можно разрушить. В статье Тесла говорил, что он подсоединил прибор к одной из балок дома, через некоторое время дом стал трястись, началось небольшое землетрясение. Тесла взял молоток и разбил изобретение. Приехавшим пожарным и полицейским Тесла сказал, что это было природное землетрясение, своим помощникам он велел молчать об этом случае.

Одним из условий создания всемирной беспроводной системы является строительство резонансных приёмников. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приёмной катушке Теслы. Это стало частью его беспроводной системы передачи. Тесла предложил установить более тридцати приёмо-передающих станций по всему миру. В этой системе приёмная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приёмной. [7]

Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействовало бы объединению электрических генераторов в глобальном масштабе.

Во время первого испытания своей установки Тесла создал гигантский разряд молнии, грохот от которого было слышно на расстоянии 100 километров, заставил светиться лампы, установленные в землю на расстоянии нескольких километров от своей установки, и как следует «наэлектризовал» нескольких лошадей через металлические подковы. В общем, можно сказать, это был грандиозный успех изобретателя. И это доказательство того, что Никола Тесла преуспел в области, которую современные ученые относят к научной фантастике. [6]

Есть предположение, что «Тунгусский метеорит» – результат экспериментов Тесла по передаче энергии на большие расстояния.

В 1899 Тесла пyблично пpодемонстpиpовал лампы и двигатели, pаботающие на высокочастотном токе без пpоводов. В конце — концов экспеpименты Тесла pазpyшили генеpатоp на местной электpостанции и в 1900-м годy Hикола Тесла веpнyлся в Hью-Йоpк, где взялся, по поpyчению банкиpа Моpгана за стpоительство башни для тpансатлантической связи.

Ну и конечно мы не можем обойти изобретение, которое интересует нас больше всего, это трансформатор Тесла возможно, это единственное из изобретений Тесла, носящих его имя сегодня. Это — устройство, производящее высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. Трансформатор Тесла, также известный как катушка Тесла, используется сегодня в различных применениях радио и телевидении.

     В элементарной форме трансформатор Тесла состоит из двух катушек, первичной и вторичной, при «потере индуктивной связи». Первичная катушка построена из нескольких витков провода большого диаметра и вторичная из многих витков провода меньшего диаметра. В отличие от других трансформаторов, здесь нет никакого ферромагнитного ядра и таким образом взаимоиндукция между двумя катушками маленькая. [6]

     В первичной катушке применяются электрические волны высокой интенсивности, разряжая соответствующий конденсатор, первоначально заряженный до напряжения несколько киловольт. Процедура осуществляется посредством устройства искрового промежутка. Искровой промежуток настроен так, чтобы стрелять, как только напряжение между конденсаторными терминалами достигает определенной величины.

     Когда искровой промежуток находится в проводящем состоянии, конденсатор и первичная катушка связаны последовательно, таким образом, формируя RLC цепь, в которой произведены электрические колебания определенной частоты. Во вторичной катушке, которая также формирует другую RLC цепь, также производятся электрические колебания из-за индукции напряжения. Частоты колебания обоих цепей определены их структурными параметрами.

     Для надлежащего действия трансформатора две RLC цепи (первичная и вторичная) должны быть в резонансе, то есть их частоты колебаний должны совпасть. Когда это случается, амплитуда колебания во вторичной катушке умножается, и трансформатор производит высокое напряжение на выходе.

     Выходное напряжение трансформатора Тесла может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно к созданию внушительных электрических разрядов в воздухе, которые могут иметь длину многих метров.

     Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов, беспроволочной связи.

В заключении данной главы можно точно сказать, что инженерные разработки Николы Тесла нашли применение в области электроэнергетики, электротехники, кибернетики, медицине. Вопросы, которыми занимался Никола Тесла, остаются актуальными и сегодня.

А блестящая память и пытливый ум в силу яркого воображения, в конечном счете, привели Теслу на «электрический Олимп» среди всех ученых-физиков-электриков мира.

Факты жизни Николы Тесла удивляют и завораживают. Он удостоился высшей награды доступной для ученого — его именем названа единица измерения магнитной индукции. Открытия в области электротехники определили развитие мировой цивилизации, на них базируется вся энергетика XX века.

III. Эксперимент

В наше время ученые пытаются повторить опыты Николы Тесла и найти им применение. Нас очень заинтересовало это изобретение,мы решили провести практический эксперимент по созданию прибора, способного передавать электрическую энергию по воздуху.

В схеме Теслы не использовались ни транзисторы, ни радиолампы, и это неудивительно: в те времена они ещё не были открыты. Сегодня существует возможность применить их. Одна из таких конструкций, больше известная под названием «качер Бровина», пользуется большой популярностью для демонстрации разнообразных проявлений высокочастотного электромагнитного поля, он является замечательным демонстрационным прибором для школьной лаборатории.

Созданный нами прибор представляет собой катушку из малого числа витков толстого медного кабеля снаружи и многовитковой катушки, находящейся внутри, состоящей из тонкого кабеля. На внешнюю обмотку подаются импульсы переменного тока, которые во внутренней обмотке будут генерировать импульсы ударных волн. В результате можно будет увидеть свечение на одном из проводов внутренней обмотки в виде голубоватых искр, а поднесенные к внутренней обмотке неоновые или газонаполненные лампы должны светиться.

Описание модели устройства

« Качер» представляет собой транзисторный автогенератор с индуктивной обратной связью. Ввиду своей простоты, работоспособности, доступности компонентов, низкого напряжения питания (стабильно работает, начиная с 6 вольт) схема является самой простой в изготовлении демонстрационной установкой для получения высокочастотного электромагнитного излучения. Нетрудно заметить наличие первичной (L1) и вторичной (L2) катушек, подобных катушкам на схеме трансформатора Тесла. Однако в разных схемах они выполняют разную роль: в схеме трансформатора Тесла они образуют контуры, благодаря совпадению частот которых между катушками возникает резонанс, а в схеме «качера» эти катушки дополнительно обеспечивают обратную связь, обеспечивающую непрерывную генерацию[4].

Для сборки нам понадобилось:

1 повышающий трансформатор;

1 транзистор с радиатором;

1 конденсатор;

обмоточный провод, толщиной 0,9 мм; 

антенный кабель с медной оплеткой; 

отрезок пластиковой трубы диаметром 5 см и длиной примерно 50 см;

входное напряжение 220 v

Этапы сборки «Качера»

Для первичной катушки используем медный провод и мотаем его на трубке из любого диэлектрика диаметром примерно 15 сантиметров, делаем 7 витков.

Для вторичной катушки мотаем тонкий обмоточный провод вокруг пластиковой трубы, делаем 1000 витков. Чтобы обмотка не сбилась и не перепуталась, я ее заизолировал. Устанавливаем первичную обмотку вокруг нижней части вторичной катушки.

Остальные элементы собираем по схеме. Трубу закрепляем в вертикальном положении.

Результаты эксперимента

При включении устaновки на верхнем выводе кaтушки вторичного контурa нaблюдaется тaк нaзывaемый «фатонный рaзряд». Это крaсивое явление вызывaется ионизацией нaходящихся у острия aтомов газa свободными зaрядами воздухa, разогнанными сильным полем.

Явления электролюминесценции при работе «качера» можно наблюдать наиболее красочно. Поднесём к катушке вторичного контура небольшую лампу дневного света. Без каких-либо проводов, прямо в руке лампа начнёт светиться, причём достаточно ярко, свечение газов можно наблюдать и в спектральных трубках. Ну чем не беспроводная передача электроэнергии?

На опытах мы убедились, что метод беспроводной передачи электроэнергии является революционным, так как обладает рядом преимуществ: снижение затрат на производство высоковольтных кабелей, значительная экономия цветных металлов, возможность использования в местах, где постройка стационарных линий затруднена или отсутствует необходимость продолжительного её использования. Прибор, который я собрал, передает энергию на расстояния нескольких метров, при этом загорается люминесцентная лампа. Когда работала «Катушка Тесла», сотовые телефоны приходилось убирать на расстояния не менее 5 метров для предотвращения выхода их из строя.

Заключение

Насколько глубоко мы сможем постичь окружающий нас мир. Эта мысль волнует каждого исследователя природы. Сила духа может вести нас далеко за пределы восприятия наших чувств, мы можем надеяться, что неизвестные миры — безгранично маленькие и большие — в определенной мере откроются нам.

Теслу, во многом опередившего свое время, называют «изобретателем ХХ века». Впрочем, существует мнение, что он «изобрел» и ХХI век. Его имя окутано ореолом тайны, и отделить истину от домыслов бывает трудно. 

Публичные эксперименты Николы Теслы как ученого-исследователя-инженера удивляли его способностью создавать действующие механизмы необычным образом. О нем говорили, что он мог зажечь небо над океаном и создавать шаровые молнии. Правда, зловеще звучали оценки его деяний: утверждали, что его опыты делались как ради добра, так и ради зла. И тогда его обвиняли в способности вызывать землетрясения и даже в испытании «электрического оружия», которое он посылал за тысячи километров и производил колоссальный взрыв…

Дaннaя работа, покaзалa, что Никола Тесла был одной из самых ярких, интересных личностей среди ученых-физиков. На страницах школьных учебников физики о нем мало упоминаний, хотя без его трудов, открытий и изобретений трудно представить себе существование многих вещей. Вопросы, которыми занимался Никола Тесла, остаются актуальными и сегодня. Их рaccмотрение позволяет инженеpам шиpе cмотреть нa пpoблемы cовременной науки, обобщaть и cтруктурировать мaтериал.

Мы считаем, что взгляды Н. Тесла остаются актуальными сегодня не только для исследований в области истории науки и техники, но и как средство поисковых работ, изобретение новых технологических процессов и использования новейших технологий.

Таким образом, цель работы достигнута, теоретическими исследованиями и практическим опытом мы доказали возможность использования альтернативных методов передачи электричества. Данное исследование и собранная нами работающая модель показали, что возможность передачи электричества по воздуху существует. Проведенный эксперимент Тесла, доказывает возможность существования передачи электричества на расстоянии.

Для проведения подобных экспериментов необходимо использовать аппаратуру (магнетроны, фокусирующие параболические тарелки, магнитные ловушки и т.п.), которую достаточно сложно изготовить в кустарных условиях. Поэтому мне хотелось бы и дальше работать над этой проблемой на профессиональном уровне и найти её решение, поскольку это принесло бы ощутимые достижения в снижении расходов на передачу энергии в масштабах страны.

В результате работы удалось объединить и структурировать информацию из разных источников о Николе Тесла. Была отработана схема «Катушки Тесла», пригодная для изготовления в обычных условиях. Так же мы изготовили и продемонстрировали макет установки для демонстрации передачи энергии на расстоянии.

Список используемых источников

Максимов А.Б.  — Никола ТеслаТри феномена гения Алгоритм. 2016

Никола Тесла — Утраченные изобретения Издательство: Эксмо, 2009 г.

Никола Тесла. Лекции и статьи. М.: Tesla Print, 2003.

Ржонсницкий Б.Н., Никола Тесла, Серия: ЖЗЛ, 1959 г.

https://www.asutpp.ru/osnovy-elektrotexniki/besprovodnaya-peredacha-elektrichestva.html

О проекте TeslaCoilRu

http://bourabai.ru/tesla/

Просмотров работы: 333

Беспроводная передача электроэнергии, история становления

Беспроводная передача электроэнергии

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электроэнергии. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Возможность передачи электроэнергии на расстояние впервые обнаружил Стивен Грей в 1720-е годы. В опытах Грея заряд передавался по шёлковому проводу на расстояние до 800 футов.

Закон открытый Андре Мари Ампером в 1820 году, о взаимодействии электрических токов, положил начало дальнейшему развитию науки об электричестве и магнетизме.

Спустя 11 лет, Майкл Фарадей экспериментально установил, что порождаемое электрическим током меняющееся магнитное поле способно индуцировать электрический ток в другом проводнике. Так был создан первый электрический трансформатор.

В 1864 году Джеймс Клерк Максвелл окончательно систематизировал экспериментальные данные Фарадея, придав им форму точных математических уравнений. Благодаря которым была создана основа классической электродинамики, ведь эти уравнения описывали связь электромагнитного поля с электрическими токами и зарядами. А следствием этого должно было быть существование электромагнитных волн.

Беспроводная передача электроэнергии, первые опыты

В 1888 году Генрих Герц экспериментально подтвердил существование электромагнитных волн, предсказанных Максвеллом. Его искровой передатчик с прерывателем на основе катушки Румкорфа мог производить электромагнитные волны частотой до 0,5 гигагерц. Которые могли быть приняты несколькими приемниками, настроенными в резонанс с передатчиком. 

   Генрих Герц и его творение

Приемники могли располагаться на расстоянии до 3 метров, и при возникновении искры в передатчике, искры возникали и в приемниках. Так были проведены первые опыты по беспроводной передаче электрической энергии с помощью электромагнитных волн.

В 1891 году Никола Тесла, занимаясь исследованием переменных токов высокого напряжения и высокой частоты, приходит к выводу, что крайне важно для конкретных целей подбирать как длину волны, так и рабочее напряжение передатчика, и совсем не обязательно делать частоту слишком высокой. Ученый отмечает, что нижняя граница частот и напряжений, при которых ему на тот момент удалось добиться наилучших результатов, — от 15000 до 20000 колебаний в секунду при потенциале от 20000 вольт.

   Никола Тесла

Тесла получал ток высокой частоты и высокого напряжения, применяя колебательный разряд конденсатора. Он заметил, что данный вид электрического передатчика пригоден как для производства света, так и для передачи электроэнергии для производства света.

В период с 1891 по 1894 годы ученый многократно демонстрирует беспроводную передачу, и свечение вакуумных трубок в высокочастотном электростатическом поле. При этом отмечая, что энергия электростатического поля поглощается лампой, преобразуясь в свет. А энергия электромагнитного поля, используемая для электромагнитной индукции с целью получения аналогичного результата, в основном отражается, и лишь малая ее доля преобразуется в свет. Даже применяя резонанс при передаче с помощью электромагнитной волны, значительного количества электрической энергии передать не удастся, утверждал ученый. Его целью в этот период работы была передача именно большого количества электрической энергии беспроводным способом.

Вплоть до 1897 года, параллельно с работой Тесла, исследования электромагнитных волн ведут: Джагдиш Боше в Индии, Александр Попов в России, и Гульельмо Маркони в Италии.

Вслед за публичными лекциями Тесла, Джагдиш Боше выступает в ноябре 1894 года в Калькутте с демонстрацией беспроводной передачи электричества, там он зажигает порох, передав электрическую энергию на расстояние.

После Боше, а именно 25 апреля 1895 года, Александр Попов, используя азбуку Морзе, передал первое радиосообщение, и эта дата (7 мая по новому стилю) отмечается теперь ежегодно в России как «День Радио».

В 1896 году Маркони, приехав в Великобританию, продемонстрировал свой аппарат, передав с помощью азбуки Морзе сигнал на расстояние 1,5 километра с крыши здания почтамта в Лондоне на другое здание. После этого он усовершенствовал свое изобретение и сумел передать сигнал по Солсберийской равнине уже на расстояние 3 километра.

Успешная беспроводная передача электроэнергии

Тесла в 1896 году удачно передает и принимает сигналы на расстоянии между передатчиком и приемником примерно в 48 километров. Однако значительного количества электрической энергии передать на большое расстояние пока никому из исследователей не удалось. Экспериментируя в Колорадо-Спрингс, в 1899 году Тесла напишет: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха». Это станет началом исследований ученого, направленных на передачу электроэнергии на значительные расстояния без использования проводов.

В январе 1900 года Тесла сделает в своем дневнике запись об успешной передаче энергии на катушку, «вынесенную далеко в поле», от которой была запитана лампа. А самым грандиозным успехом ученого станет запуск 15 июня 1903 года башни Ворденклифф на Лонг-Айленде. Она была предназначена для передачи электрической энергии на значительное расстояние в больших количествах без проводов. Заземленная вторичная обмотка резонансного трансформатора, увенчанная медным сферическим куполом, должна была возбудить заряд земли и проводящие слои воздуха, чтобы стать элементом большой резонансной цепи. Так ученому удалось запитать 200 ламп по 50 Ватт на расстоянии около 40 километров от передатчика. Однако, исходя из экономической целесообразности, финансирование проекта было прекращено Морганом. Который с самого начала вкладывал деньги в проект с целью получить беспроводную связь. А передача бесплатной энергии в промышленных масштабах на расстояние его, как бизнесмена, категорически не устраивала. В 1917 году башня, предназначенная для беспроводной передачи электрической энергии, была разрушена.

 

Так же читайте по теме:

   Передача электроэнергии по одному проводу, правда или нет.

   Беспроводная зарядка для телефона. Как устроена и работает?

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Добавить комментарий

Ваш адрес email не будет опубликован.