Беспроводное электричество кпд: Беспроводная передача электричества — Википедия – Может ли электричество стать полностью беспроводным? – ответы на главные вопросы

Содержание

Может ли электричество стать полностью беспроводным? – ответы на главные вопросы

Волна всегда будет разбегаться в стороны. И если приемник находится за сотни километров от передатчика, то он примет только маленькую часть всей энергии, а вся остальная энергия пролетит мимо. Поэтому ни на какой разумной частоте эффективная передача энергии без провода на большие расстояния не осуществима. Другая причина, почему такая передача не получится, — взаимодействие энергетического луча с воздухом, пылью и биологическими объектами. Все живое, что попадет под действие луча мощностью 1 ГВт, мгновенно зажарится или даже испарится.

 

Значит, мы должны передать в нашем условном городе 2 ГВт электроэнергии с помощью проводов. Что ограничивает ток, который можно пустить по проводу? Разогрев самого провода: тонкий и толстый провода от одинакового тока будут по-разному разогреваться. К маленькой лампочке изготавливают тонкий медный провод, потому что лампочка потребляет маленький ток, а к электрочайнику — толстый провод, потому что по нему течет большой ток. То, какой ток вы можете пропустить, определяет электрическое сопротивление, то есть в конечном счете толщину провода. Если попытаться пропустить большой ток через тонкий провод, то провод нагреется или даже сгорит.

 

У электрочайника, скажем, провод имеет сечение 1,5–2,5 квадратных миллиметра (1 квадратный миллиметр медного провода может нести ток около 10 А). Разумеется, для города, в котором миллион таких чайников, никто не будет изготавливать провод диаметром миллион квадратных миллиметров: так никаких запасов металлов на Земле не хватит. Для этого люди поступают по-другому: поскольку мощность — это ток, умноженный на напряжение, то для передачи большой мощности можно поднять напряжение, тогда не надо изготавливать совсем уж толстый провод. От электростанции строятся линии электропередачи, напряжение в которых уже не 220 В, а минимум 220 кВ (бывают до 1 МВ). И провод там не 1,5 квадратных миллиметра, а 300. Он способен нести ток около 500 А. Если умножить 500 А на 220 кВ, мы получим примерно одну двадцатую от того, что будет потреблять наш город. Есть, конечно, тонкости (например, используется трехфазный ток), но вывод такой, что для питания крупного города придется построить примерно десять высоковольтных линий электропередачи среднего размера. Если посмотреть на крупные города, то так примерно и есть.

 

Однако нужно понимать, что эти линии электропередачи сделаны из меди или алюминия со сталью, которые в любом случае нагреваются. Соответственно, будут потери энергии, и чем длиннее линия электропередачи, тем больше потери, так как у проводов есть сопротивление. Потери могут доходить до 10–30%. Получаемое тепло идет на разогрев окружающего пространства. Одним из вариантов исключить потери было бы использование сверхпроводящего кабеля.

 

 

Сверхпроводники

 

Явление сверхпроводимости было открыто больше ста лет назад. Оно проявляется в том, что вещество теряет сопротивление и может переносить ток без потерь. Большинство известных сверхпроводящих материалов становятся такими при температурах, близких к температуре жидкого гелия (-269 °C, или примерно 4 К) или ниже. Но существуют также высокотемпературные сверхпроводники (ВТСП), которым достаточно более доступной температуры жидкого азота — -196 °C, или 77 К.

Беспроводная передача до 1900 Вт по комнате с КПД 45-95% / Habr


Изолированная камера (комната) 5×5×2,3 м со стенами, полом и потолком с алюминиевым покрытием. 15 конденсаторов на центральной колонне завершают схему квазистатического резонатора

Прогресс в беспроводной передаче данных приучил человека к мысли, что при входе в квартиру смартфон сразу подключается к домашнему WiFi. Все устройства в доме по умолчанию выходят в интернет по WiFi через домашнюю точку доступа. Никаких проводов — красота. Проблема только в том, что электричество не передаётся точно таким же удобным способом, и каждое устройство всё равно приходится соединять проводом. От такой же проблемы страдает робототехника и медицина. Очень неудобно каждый раз подключать гаджеты к розетке.

Более стал лет назад Никола Тесла показал, как передавать электричество на расстоянии (а до него показали Максвелл, Хевисайд и Герц), но инженеры до сих пор не сумели реализовать это изобретение в удобную технологию для практического применения с достаточно высоким КПД. Есть ещё одна проблема: неизвестно, как влияет на организм беспроводная передача электричества через тело в течение длительного периода времени, поэтому регулирующие органы во многих странах ввели строгие нормативные ограничения для этой технологии.

Из-за нормативных ограничений и потенциальных проблем с безопасностью инженерам приходится искать компромисс между расстоянием для беспроводной передачи энергии и максимальным количеством энергии, которую можно безопасно транслировать сквозь тело человека в жилых помещениях. Например, перенос энергии излучением (радиационный теплообмен) получил большое распространение в радиосвязи, но он безопасно переносит только несколько милливатт, чего недостаточно для зарядки обычных гаджетов.

Поэтому вместо переноса энергии излучением в бытовой электротехнике принято использовать нерадиационные методы переноса, такие как индукционная зарядка и резонансная зарядка. Там уже совершенно другие мощности: десятки или сотни ватт передаются с очень быстрым затуханием в пространстве на маленькие расстояния. Безопасность обеспечивается переводом энергии из потенциально опасного электрического поля в магнитное поле, с большими потерями и низким КПД. Но феномен связывания ближних полей очень ограничен по расстоянию. Эффективность передачи быстро падает, если расстояние от передатчика до приёмника энергии превышает диаметр катушки. Кроме того, невозможно нормально связать в одном поле катушки, сильно отличающиеся по диаметру.

Начиная с 2014 года группой физиков под руководством Мэтью Чабалко (Matthew J. Chabalko) проведён ряд удачных экспериментов по использованию стоячих электромагнитных волн в дальней зоне поля для генерации однородного электрического поля в металлической полости. Эти эксперименты позволяют преодолеть ограничения прежних технологий.

Для проверки этой теории Мэтью Чабалко и его коллеги из научно-исследовательского подразделения Disney Research разработали практический метод зарядке электрических приборов на расстоянии — метод называется Quasistatic Cavity Resonance (QSCR), то есть «квазистатический резонатор в полости». Это уже реальная технология, которую можно применять на практике, если разрешат регулирующие органы.

Суть в том, что стоячие электромагнитные волн в дальней зоне поля заполняют пространство резонансной структуры однородными магнитными полями, что позволяет использовать в этих зонах маленькие приёмники — такие, как в обычных бытовых приборах.

Для создания колебательного контура нужно пропускать резонансный ток по стенам, полу и потолку через специально спроектированные металлические структуры — например, алюминиевые металлические листы. В любом месте комнаты устанавливается устройство с конденсаторами, которое завершает схему колебательного контура (в эксперименте устанавливались 15 конденсаторов high-Q по 7,3 pF, которые обеспечивали резонанс на 1,32 МГц). В результате внутри комнаты образуются однородные магнитные поля. Концептуальная схема квазистатического резонатора в полости показана на иллюстрации.

Магнитные поля затухают от колонны к стенам с коэффициентом менее 1/p, что делает возможным использование во всей комнате приёмников энергии с катушками в тысячи раз меньше, чем размер резонатора QSCR.


Схема изолированной камеры (комнаты) и колебательного контура в эксперименте

Работа в такой замкнутой камере позволяет транслировать энергию из магнитного поля в электрическое поле с эффективностью в сотни раз выше, чем в открытом пространстве. Это означает, что можно передавать гораздо более высокие энергии без опасности для человеческого здоровья, с соблюдением ограничений, установленных регулирующими органами.


Эффективность беспроводной передачи QSCR

Фактически, если масштабировать камеру на размер комнаты, офиса или складского помещения, становится возможной эффективная беспроводная зарядка мобильных гаджетов, которые находятся внутри контура.


Электрические устройства, которые получают беспроводную энергию внутри комнаты во время эксперимента

Воздействие излучения на человека невелико даже рядом с конденсаторами на колонне. Симуляция показала, что при трансляции 1900 Вт воздействие на человеческое тело не превысит установленные нормы по удельному коэффициенту поглощения электромагнитной энергии на килограмм тела (SAR).


Удельный коэффициент поглощения. Примечание: в России SAR считается как коэффициент поглощаемой мощности не на грамм ткани, как в США и Европе, а на квадратный сантиметр

Эксперимент физиков из Disney Research был проведён в помещении объёмом 54 м

3. В нём энергия передавалась на приёмник практически в любом месте комнаты с эффективностью от 40% до 95%.



Научная работа опубликована 15 февраля 2017 года в журнале PLOS One (doi: 10.1371/journal.pone.0169045).

как работает беспроводная передача электричества

Вопросом передачи электричества без проводов ученые занимаются уже третий век. В последнее время вопрос не то чтобы не потерял актуальности, а наоборот сделал шаг вперед, что только радует. Читателям сайта мы решили подробно рассказать как развивалась беспроводная передача электроэнергии на расстояния от начала и до наших дней, а также какие технологии уже практикуются.

История развития

Передача электроэнергии на расстояние без проводов рука об руку развивается с прогрессом в области радиопередачи, потому что принцип действия в этих явлениях во многом схож, если не сказать одинаков. Большая часть изобретений основывается на методе электромагнитной индукции, а также электростатического поля.

В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно мы рассматривали в статье ранее.

Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.

Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:

Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.

Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.

Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:

  1. Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
  2. А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
  3. В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.

Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.

И к 1899 году Тесла приходит к выводу:

Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожа

Исследовательская работа на тему: «Беспроводное электричество»

Научно-практическая конференция учащихся и педагогов

«Первые шаги в науку».

Предметная область – физика.

Исследовательская работа на тему:

«Беспроводное электричество»

Выполнила: ученица 9 класса

МБОУ СОШ №18

им. братьев Могилевцевых г. Брянска

Малашенко Анастасия

Научный руководитель:

учитель математики и физики

МБОУ СОШ №18

Степанова Ольга Николаевна

Брянск — 2012

Cодержание

Введение

1. Возможность передачи электричества по воздуху

1.1. Открытие Тесла

1.2. Электричество в Древнем Египте

2. Беспроводное электричество в 21 веке – реальность?!

3. Экспериментальная часть работы

3.1. Разработка простейшей модели устройства для передачи электричества по воздуху

3.2. Описание модели устройства

3.3. Результаты опытов

Заключение

Cписок информационных ресурсов

Приложения

1

2

4

5

6

8

8

8

9

9

10

11

Введение

Трудно сейчас представить нашу жизнь без электричества. Электричество повысило коммуникабельность, позволило ускорить и автоматизировать многие процессы в нашей жизни. С использованием электричества осуществляется обустройство жилищ, на электричестве работают некоторые виды транспорта, в больницах от электричества зависят многие аппараты, поддерживающие жизни пациентов, от электричества зависит любое производство (а на опасных производствах и работа систем безопасности). Но с появлением электричества и сама наша жизнь чрезвычайно усложнилась. Чрезвычайные ситуации и природные катаклизмы на нашей планете происходят настолько часто, что не обращать на это внимание просто невозможно. Не смотря на то, что в наше время линии передачи электричества имеют резервирование, все чаще население планеты становится заложником слишком серьезной зависимости от электричества. Главный недостаток электричества – использование для его передачи проводов и различных линий электропередач. Если бы была возможность передачи электричества по воздуху, то многие бы проблемы были решены. В наше время Массачусетский технологический институт (MIT) первым провел эксперименты в области беспроводной передачи электричества. Эксперты утверждают, что через некоторое время беспроводная передача электроэнергии прочно войдет в нашу жизнь. Беспроводная зарядка телефона или ноутбука станет обычной вещью.

Поэтому, я в своей работе хочу изучить актуальную тему: возможность передачи электричества без использования проводов и линий электропередач.

Цель работы: исследовать явление передачи электричества без использования линий электропередач.

Задачи исследования:

  1. Изучить информацию по заявленной теме.

  2. Подобрать и использовать для исследования данные в сети Интернет.

  3. Разработать схему устойства для беспроводной передачи электричества.

  4. Собрать устройство для беспроводной передачи электричества и провести эксперименты.

Гипотеза: передача электричества возможна беспроводным путем.

Объект исследования: процесс беспроводной передачи электричества.

Предмет исследования: беспроводное электричество.

В ходе исследования беспроводного электричества я познакомлюсь с опытами, которые проводил в данной области Никола Тесла, изучу гипотезу использования пирамид в Древнем Египте, попытаюсь разработать и собрать простейшую схему генератора Тесла (доказать себе и одноклассникам возможность передачи электричества по воздуху) и рассмотрю решение этой проблемы в современных условиях.

  1. Возможность передачи электричества по воздуху

Когда речь заходит о беспроводной передаче энергии, необходимо сделать важную оговорку: с точки зрения физики, выпущенный из орудия снаряд, тоже переносит энергию на расстояние — кинетическую и химическую. И, заметьте, совсем без проводов! Так что, когда говорят о проблеме беспроводной передачи энергии, имеют в виду только передачу электроэнергии.

Причем передача эта должна осуществляться достаточно эффективно, чтобы энергию имело смысл использовать в повседневных целях. Человечество уже сотню лет успешно передает электроэнергию на расстояние при помощи радиоволн. Передатчик их излучает, приемник снова переводит в электричество, и мы слушаем, к примеру, джаз. Другое дело, что КПД этой передачи ничтожно мал. Энергия радиоволн способна донести информацию с границ Солнечной системы, от летящего там зонда «Вояджер», но ей не под силу зажечь даже обыкновенную лампочку.

И, наконец, в разговоре о беспроводной передаче энергии выделяются две существенно различные задачи: 1)избавиться от надоевших проводов, которые путаются под ногами; 2) передать энергию туда, куда тянуть кабель крайне накладно, а то и просто невозможно.

Беспроводная передача электричества — способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи. К 2009 году имели место успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 % — в 1975 в Goldstone, Калифорния, и в 1997 в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от лазерного до микроволнового радиочастотного) (приложения таблица 1).

1.1. Открытие Теслы

Одним из первых о беспроводной передаче электричества задумался гениальный изобретатель-электротехник Никола Тесла. Еще в 1900 году он описывал в своих дневниках принципы беспроводной передачи электричества на расстоянии. В 1889 году Никола Тесла пытался повторить эксперимент Генриха Герца, в результате которого им были открыты электромагнитные волны. Тесла обратил внимание, что, при выключении высоковольтного генератора постоянного тока, образовывались ударные волны. При замыкании же выключателя образовывалась цепочка голубоватых искр, направленных под прямым углом к кабелю, подключенному к генератору. Было предположено, что данный эффект был вызван «совокупным» действием, возникшим в результате того, что ЭДС не может достаточно быстро перемещать заряд через систему, словно проволока, вместо проводящего действия, оказывала противодействие электронам, когда они перемещались из зажимов генератора. Электростатическое поле двигалось быстрее, чем реальные заряды. Тесла понял, что разряды обычного конденсатора являлись колебательными или «искровыми» токами, которые «метались» между обкладками конденсатора до тех пор, пока запас их энергии не истощался. Так был открыт новый вид электричества, обладающего особыми свойствами. Это были продольные волны, состоящие из последовательных ударных волн, которые вызывали эффекты, видимые и ощутимые на расстоянии. Тесла, после проведения многих экспериментов обнаружил, что продольные волны «свободной энергии» способны проникать через все материальные объекты и вызывать «ответную электронную реакцию» у металлов, таких, как медь и серебро. Импульсы, превышающие по продолжительности 0,1 миллисекунды, вызывали такие эффекты, как боль, механическое давление, взрыв проволоки и вибрацию объектов. Более короткие импульсы вызывали ощущение тепла. Еще более короткие импульсы приводили к освещению комнаты белым светом. А импульсы короче 100 микросекунд представлялись безопасными, поэтому Тесла планировал использовать их в своей системе передачи энергии, поскольку они были способны проникать через любое вещество.

Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. (Приложения рис.1 , рис.2, рис.3).

1.2. Электричество в Древнем Египте

Использовал ли кто-нибудь до Тесла данный вид энергии и способы его передачи? Рассмотрим некоторые гипотезы, связанные с созданием пирамид в Древнем Египте. Сирано де Бержерак драматург Франции в 17 веке в книге «Путешествие на Солнце» описывая усыпальницы в Древнем Египте знаменитых лиц, а также самые почитаемые храмы, говорил о том, что там имелись источники искусственного освещения. Различные древние письменные источники тоже сообщают, что в Египте были в ходу светильники, которые горели сотни лет. Писатель Лукиан (190-120 гг. до н. э.), например, лично побывал в Гелиополисе и видел странный «камень», который в ночное время освещал весь храм. Древнегреческий философ Плутарх рассказывал, что над входом в храм Юпитера-Амона он видел древний горящий светильник, дававший свет несколько сотен лет и при этом не требовавший никакого ухода. На некоторых фресках попадаются изображения необычных «колб», «лотосов», «кувшинов», от которых исходит свет.

Одно из самых знаменитых изображений батарей и ламп находится в небольшом египетском городке Дендере, в храме богини Хатор. На фресках храма можно увидеть людей, которые держат в руках большие колбы с извилистыми линиями внутри (приложения рис. 4, 5). Все «лампочки» снабжены «патроном» в виде лотоса, от которого идут толстые шнуры. Специалисты предполагают, что таким образом жрецы «законспектировали» устройство мини-электростанции, некогда работавшей в храме (приложения рис.6).

Столь долгому горению некоторых светильников может быть и другое объяснение. Одна из гипотез создания пирамид раскрывает возможность использования их как генераторов особого вида энергии. Пирамиды строились из гранита, который имеет природную повышенную радиоактивность, а сверху облицовывали песчаником, который значительно менее прочный, чем гранит, но имеет лучшие характеристики как изолятор. (Тесла строил свои вышки на особых местах пересечения энергетических линий Земли). Считается, что пирамиды расположены в определенных энергетических центрах. Под вышками Тесла в земле располагались определенные водоносные слои, изменение которых приводило к изменению энергетических полей. Есть предположение, что во времена создания пирамид в земле под ними располагались подобные водоносные слои. Однако, если предположить, что пирамиды генерировали определенный вид энергии, то значит, должны были быть и устройства использования этой энергии, которыми могли быть светящиеся сферы и камни.

  1. Беспроводное электричество в 21 веке – реальность?!

Мечта Теслы стала реализовываться лишь век спустя. История беспроводной передачи энергии насчитывает многие годы. (Приложения таблица 2). В 2007 году удалось послать направленный электрический пучок как радиоволну, от одной точки к другой, и зажечь с его помощью 60-ваттную лампочку. Она загорелась от источника питания, расположенного на расстоянии более 2 м от нее, без какого-либо физического соединения. Этот проект получил название «WiTricity» («беспроводное электричество»).

Мобильный компьютер с поддержкой WiTricity в комнате с передающим устройством будет заряжаться автоматически. Его не нужно подключать непосредственно к источнику, и он может работать без аккумулятора. Принцип действия «беспроводного электричества» чем-то схож с явлением магнитной индукции. Сотрудник компании Intel, Джошуа Смит ,работающий в команде с физиком Массачусетского Технологического Института Марином Сольячичем, разработали уникальную на сегодняшний день систему передачи электроэнергии, основанную на резонансной электромагнитной индукции. Теоретическая база разработана сотрудниками MIT, а совместно с исследователями Intel проект, получивший обозначение WiTricity (Wireless Electricity – беспроводное электричество), доведен до воплощения в «железе».

Установка представляет собой две антенны (диаметр основной антенны составляет чуть более полуметра), выполненные, по всей видимости, из меди, одна из которых создает в пространстве около себя электромагнитное поле, индуцирующее переменный электрический ток в контуре второй антенны. В ходе демонстрации исследователи передавали электроэнергию, которой хватало для работы 60-ваттной лампочки, на расстояние от 0,6 до 1,0 метра. Довольно высок и КПД– около 75%. В случае беспроводной передачи электроэнергии на расстояние до нескольких метров КПД установки заметно падает – до 50%. Но даже в этом случае установку WiTricity можно использовать, например, для подзарядки аккумуляторов ноутбука, мобильного телефона, плеера и пр. В 2009 году американская компания WiTricity заявила о готовности одноименной технологии передачи энергии «по воздуху» для коммерческого использования. Технология WiTricity обеспечивает беспроводное питание мобильных устройств, бытовой техники и даже электромобилей на расстоянии от десяти сантиметров до нескольких метров. Потребляемая мощность питаемых устройств может составлять от сотен милливатт до нескольких киловатт. В октябре 2009 года Sony продемонстрировала 22-дюймовый ЖК-телевизор, который питается беспроводным способом на расстоянии 50 сантиметров от передатчика. . Создан «Консорциум беспроводной энергии», в котором предлагают участвовать всем желающим (www.wirelesspowerconsortium.com), и он уже готовит к выпуску стандарт технологии WiTricity. В ближайшем будущем обещают расширение радиуса действия до 5 м , если разместить «катушку-передатчик» на потолке или под полом в центре комнаты, то в радиусе действия зарядки окажется все помещение. Долговременное воздействие на здоровье такого рода систем предстоит еще тщательно изучить.

3. Экспериментальная часть работы

3.1. Разработка простейшей модели устройства для передачи электричества по воздуху

Изучив схему генератора Тесла и его опыты, я решила провести практический эксперимент по созданию прибора, способного передавать электрическую энергию по воздуху. Основная часть работы представляла собой создание специальной катушки из малого числа витков толстого медного кабеля снаружи и многовитковой катушки, находящейся внутри, состоящей из тонкого кабеля. На внешнюю обмотку необходимо подавать импульсы постоянного тока, которые во внутренней обмотке будут генерировать импульсы ударных волн. В результате действия этих импульсов возможно будет увидеть свечение на одном из проводов внутренней обмотки в виде голубоватых искр, а поднесенные к внутренней обмотке неоновые или газонаполненные лампы должны светиться. Для создания импульсов во внешней обмотке используем простейшее устройство в виде стандартного блока питания на 12 В, а также схемы электронного ключа на транзисторе в режиме автоколебаний. Необходимо помнить, что данный опыт проводится не с электричеством, а с радиантными ударными волнами, которые используются для получения «чистого напряжения». При этом будет практически невозможно определить силу тока.

3.2. Описание модели устройства

Для облегчения работы и повышения безопасности я выбрала наиболее простую схему катушки Тесла на транзисторе, она работает в непрерывном режиме, работает всегда на строго резонансной частоте, не имеет лишних блоков преобразования, имеет небольшое напряжение на выходе.

Для работы понадобились: один транзистор на радиаторе, два резистора, блок питания с выпрямителем и конденсаторами и, собственно, сама катушка. Схема очень неприхотлива к параметрам катушки и номиналам резисторов (приложения рис.7), модель (приложения рис.8,9).

T1 — трансформатор, VD1-VD5 – диоды для выпрямления переменного тока, C1- конденсатор для сглаживания пульсаций (блок питания на 12В 1А),

C2 конденсатор- 100nF 250В, R1 резистор — 33К, R2 — резистор переменный на 10К в положении приблизительно 3К, VT1 — КТ817Г транзистор (100В 3А 20Вт) на радиаторе, L1-катушка 7 витков, виток к витку, проводом диаметром 6 мм, L2 — катушка~900 витков проводом диаметром 0,28 мм, 30 см в длину, 5 см диаметр катушки. Фазировка катушек обратная (L2 относительно L1 повёрнута на 180 градусов).

3.3. Результаты опытов

Количество витков в катушках подберем экспериментальным путем. После намотки 900 витковой катушки L2 и слоя изоляции проведем намотку катушки L1. Опыт №1. После намотки 3-х витков L1 в рабочем режиме, поднесем к катушке L2 неоновую и энергосберегающую газонаполненную лампу. Лампы в опытах не светятся. Опыт №2. После намотки 5-ти витков L1 лампы начали светиться на малом расстоянии. Опыт №3. После намотки 7-ми витков L1 неоновая лампа и энергосберегающая газонаполненная лампа начали светиться на расстоянии 20 см от катушки L2. Опыт №4. В рабочем режиме, поднесем к выводу обмотки катушки L2 метталический предмет (цоколь энергосберегающей лампы). В результате опыта было получено голубоватое свечение в виде искр 3 мм длиной, которое легко поджигает бумагу. (приложения рис.12).

В результате опытов собранное устройство генерирует энергию, которая волновым методом передается на расстояние.

Заключение

Данное исследование и собранная работающая модель показали, что возможность передачи электричества по воздуху существует. Проведенный анализ опытов Тесла, доказывает возможность передачи электричества по воздуху. Гипотезы о назначении египетских пирамид в качестве генераторов для передачи электричества по воздуху, после завершения исследований в данной работе, представляются очень правдоподобными. Таким образом, цель работы достигнута, теоретическими исследованиями и практическим опытом доказана возможность использования альтернативных методов передачи электричества. Учитывая, что в данном практическом опыте использовалась наиболее простая и маломощная модель генератора Тесла, есть возможность совершенствования данной модели с использованием более мощного транзистора для увеличения расстояния передачи энергии холодного электричества. Но уже данный опыт и анализ информации из Интернет показывает возможность и необходимость изучения данного явления, для создания различных систем передачи электрической энергии.

Cписок информационных ресурсов

1. В.А. Ацюковский.Трансформатор Тесла. Энергия из эфира. Изд-во «Петит», 2004.

2. В.А. Ацюковский. Энергия вокруг нас. Жуковский. Изд-во «Петит», 2003.

3. Веселовский О.Н., Шнейберг Я.А., Очерки по истории электротехники. — МЭИ, 1993.

4. Шнейберг Я.А. (соавтор), Академия электротехнических наук РФ, История электротехники. — М., МЭИ, 1999.

5. Цверава Г.К. Никола Тесла, 1856–1943. Л., 1974.

6. http://www.electrificator.ru. Беспроводное электричество — будущее наступило!

7. http://www.pravda.ru.Наука и техника. «Эврика» Открытия.

8. http://www.eti.su/press/news/news_32.html

9. http://ru.wikipedia.org/wik

10. www.genon.ru

ПРИЛОЖЕНИЯ

Таблица №1

Длина волны ЭМ излучения приближается к видимой области спектра (от 10 мкм до 10 нм), энергию можно передать путем ее преобразования в луч лазера, который затем может быть направлен на фотоэлемент приемника.

Монохроматическая световая волна, обладающая малым углом расходимости, позволяет узкому пучку эффективно передавать энергию на большие расстояния. Компактный размер твердотельного лазера — фотоэлектрического полупроводникового диода удобен для небольших изделий. Лазер не создает радиочастотных помех для существующих средств связи. Недостатки: преобразование низкочастотного ЭМ излучения в высокочастотное, которым является свет, неэффективно. Преобразование света обратно в электричество также неэффективно, так как КПД фотоэлементов достигает 40-50 %. Потери в атмосфере. Требует прямой видимости между передатчиком и приемником.

hello_html_6ec8e091.jpg

Иллюстрация из патента Тесла под названием «Искусство передачи электрической энергии через естественные среды», нарисована схема устройства и его внешний

вид.

рис. 1

hello_html_m14ad2bca.jpg

Схема Усиливающего Передатчика Тесла

Источник «В», питает двухвитковую первичную обмотку, и спиральную катушку в его середине. Этот аппарат был спроектирован для передачи энергии на большие расстояния, так что он также включает соединения с землёй и небом. Элемент «Е*» соединялся с землёй, а элемент «Е» Тесла называл «поднятой ёмкостью», и он должен был располагаться на аэростате. Это и было сердцем усиливающей передающей системы, которую Тесла попытался построить в Ворденклиффе (рис.3), для того, чтобы передавать энергию в любую точку планеты.

рис.2

рис. 3 Башня «Уорденклиф» (1902) — символ неудачной попытки Николы Тесла подступиться к проблеме беспроводной передачи энергии.

hello_html_13331c.jpg

рис.4

hello_html_m34f2d68c.jpg

рис. 5

hello_html_m5bf7d72a.jpg

рис.6

hello_html_m28c0f7ef.jpg

T1- трансформатор, VD1-VD5 – диоды, C1- конденсатор (блок питания на 12В 1А),

C2 конденсатор- 100nF 250В, R1 резистор — 33К, R2 — резистор переменный на 10К, VT1 — КТ817Г транзистор (100В 3А 20Вт) на радиаторе, L1-катушка 7 витков (диаметр 6 мм), L2 — катушка~900 витков (диаметр 0,28 мм).

рис.7

Таблица №2 История беспроводной передачи энергии

1820: Андре Мари Ампер открыл закон Ампера, показывающий, что электрический ток производит магнитное поле.

1831: Майкл Фарадей открыл закон индукции, важный базовый закон электромагнетизма.

1862: Карло Маттеучи впервые провел опыты по передаче и приёму электрической индукции с помощью плоско спиральных катушек

1864: Джеймс Максвелл систематизировал все предыдущие наблюдения, эксперименты и уравнения по электричеству, магнетизму и оптике в последовательную теорию и строгое математическое описание поведения электромагнитного поля.

1888: Генрих Герц подтвердил существование электромагнитного поля.

1891: Никола Тесла улучшил передатчик волн Герца радиочастотного энергоснабжения в своём патенте No. 454,622, «Система электрического освещения».

1893: Тесла демонстрирует беспроводное освещение люминесцентными лампами в проекте для Колумбовской всемирной выставки в Чикаго.

1894: Тесла зажигает без проводов лампу накаливания в лаборатории на Пятой авеню, а позже в лаборатории на Хьюстон стрит в Нью-Йорке, с помощью «электродинамической индукции», то есть посредством беспроводной резонансной взаимоиндукции.

1894: Джагдиш Чандра Боше дистанционно воспламеняет порох и ударяет в колокол с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов.

1895: А. С. Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля (7 мая) 1895 года

1895: Боше передаёт сигнал на расстояние около одной мили.

1896: Гульельмо Маркони подает заявку на изобретение радио 2 июня 1896 года.

1896: Тесла передаёт сигнал на расстояние около 48 километров.

1897: Гульельмо Маркони передает текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.

1897: Тесла регистрирует первый из своих патентов по применению беспроводной передачи.

1901: Маркони передаёт сигнал через Атлантический океан, используя аппарат Тесла.

1917: Разрушена Башня Ворденклифа, построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.

1926: Шинтаро Уда и Хидецугу Яги публикуют первую статью «о регулируемом направленном канале связи с высоким усилением», хорошо известном как «антенна Яги-Уда» или антенна «волновой канал».

1961: Уильям Браун публикует статью по исследованию возможности передачи энергии посредством микроволн.

1968: Питер Глейзер предлагает беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч». Это считается первым описанием орбитальной энергетической системы.

1975: Комплекс дальней космической связи Голдстоун проводит эксперименты по передаче мощности в десятки киловатт.

2007: Исследовательская группа под руководством профессора Марина Солячича из Массачусетского технологического института передала беспроводным способом на расстояние 2 м мощность, достаточную для свечения лампочки 60 вт, с к.п.д. 40 %, с помощью двух катушек диаметром 60 см.

2008: Фирма Bombardier предлагает новый продукт для беспроводной передачи PRIMOVE, мощная система для применения в трамваях и двигателях малотоннажной железной дороги.

2008: Корпорация Intel воспроизводит опыты Никола Тесла 1894 года и группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с к.п.д. 75 %.

2009: Представлен промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом. Это изделие было разработано норвежской компанией Wireless Power & Communication.

2009: Haier Group представила первый в мире полностью беспроводной LCD телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI).

рис.9

hello_html_c32336f.jpgрис.10

hello_html_m4c1cb0b.jpgрис.11

hello_html_5d0735a9.jpghello_html_330e1e94.jpg

рис.12

Введение в беспроводную передачу электрической энергии

Добавлено 24 декабря 2016 в 16:00

Сохранить или поделиться

Основы беспроводной зарядки

Беспроводная передача электрической энергии (WPT) дает нам шанс избавиться от тирании кабелей питания. В настоящее время эта технология проникает во все виды устройств и систем. Давайте взглянем на нее!

Беспроводной путь

Большинство современных жилых домов и коммерческих зданий питаются от сетей переменного тока. Электростанции генерируют электричество переменного тока, которое доставляется в дома и офисы с помощью высоковольтных линий электропередачи и понижающих трансформаторов.

Электричество поступает в распределительный щит, а затем электропроводка доставляет электричество к оборудованию и устройствам, которые мы используем каждый день: светильники, кухонная техника, зарядные устройства и так далее.

Все компоненты стандартизованы. Любое устройство, рассчитанное на стандартные ток и напряжение, будет работать от любой розетки по всей стране. Хотя стандарты разных стран и различаются между собой, в конкретной электрической системе любое устройство будет работать при условии соблюдения стандартов данной системы.

Тут кабель, там кабель… Большинство наших электрических устройств обладает кабелем питания от сети переменного тока.

Кабели питания

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).

Изображение из патента Теслы на «устройство для передачи электрической энергии», 1907 годИзображение из патента Теслы на «устройство для передачи электрической энергии», 1907 год

Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф, расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)
ТехнологияПереносчик электрической энергииЧто позволяет передавать электрическую энергию
Индуктивная связьМагнитные поляВитки провода
Резонансная индуктивная связьМагнитные поляКолебательные контуры
Емкостная связьЭлектрические поляПары проводящих пластин
Магнитодинамическая связьМагнитные поляВращение постоянных магнитов
СВЧ излучениеВолны СВЧФазированные ряды параболических антенн
Оптическое излучениеВидимый свет / инфракрасное излучение / ультрафиолетовое излучениеЛазеры, фотоэлементы

Qi зарядка, открытый стандарт для беспроводной зарядки

В то время как некоторые из компаний, обещающих беспроводную передачу электрической энергии, всё еще работают над своими продуктами, уже существует стандарт Qi (произносится как «ци») зарядки, и уже доступны использующие его устройства. Консорциум беспроводной электромагнитной энергии (Wireless Power Consortium, WPC), созданный в 2008 году, разработал стандарт Qi для зарядки аккумуляторов. Данный стандарт поддерживает и индуктивные, и резонансные технологии зарядки.

При индуктивной зарядке электрическая энергия передается между катушками индуктивности в передатчике и приемнике, расположенными на близком расстоянии. Индуктивные системы требуют, чтобы катушки индуктивности находились в непосредственной близости и были выровнены друг с другом; обычно устройства находятся в непосредственном контакте с зарядной панелью. Резонансная зарядка не требует тщательного выравнивания, а зарядные устройства могут обнаружить и зарядить устройство на расстоянии до 45 мм; таким образом, резонансные зарядные устройства могут быть встроены в мебель или установлены между полками.

Логотип Qi, показанный на беспроводной зарядной панели QiminiЛоготип Qi, показанный на беспроводной зарядной панели Qimini

Наличие логотипа Qi означает, что устройство зарегистрировано и сертифицировано Консорциумом беспроводной электромагнитной энергии WPC.

В начале Qi зарядка обладала небольшой мощностью, около 5 Вт. Первые смартфоны, использующие Qi зарядку, появились в 2011 году. В 2015 году мощность Qi зарядки увеличилась до 15 Вт, что позволяет осуществлять быструю зарядку устройств.

Следующий рисунок от Texas Instruments показывает, что охватывает стандарт Qi.

Обзор технологий беспроводной передачи электрической энергии и их охват стандартом QiОбзор технологий беспроводной передачи электрической энергии и их охват стандартом Qi

Совместимость с Qi гарантировано могут обеспечить только те устройства, которые перечислены в регистрационной базе данных Qi. В настоящее время там содержится более 700 продуктов. Важно понимать, что продукты с логотипом Qi были проверены и сертифицированы; и магнитные поля, используемые этими устройствами, не вызовут проблем для таких чувствительных устройств, как мобильные телефоны или электронные паспорта. Зарегистрированные устройства будут гарантировано работать с зарегистрированными зарядными устройствами.

Физика беспроводной передачи электрической энергии

Беспроводная передача электрической энергии для бытовых устройств является новой технологией, но принципы, лежащие в ее основе, известны давно. Там, где участвуют электричество и магнетизм, по-прежнему руководствуются уравнениями Максвелла, и передатчики посылают энергию на приемники так же, как и в других формах беспроводной связи. Однако, беспроводная передача электроэнергии отличается от них основной целью, которая заключается в передаче самой энергии, а не закодированной в ней информации.

Структурная схема передатчика и приемника беспроводной передачи электрической энергииСтруктурная схема передатчика и приемника беспроводной передачи электрической энергии

Электромагнитные поля, участвующие в беспроводной передаче электрической энергии, могут быть достаточно сильными, и поэтому необходимо принимать во внимание безопасность человека. Воздействие электромагнитного излучения может вызвать проблемы, а также существует возможность того, что поля, создаваемые передатчиками электрической энергии, могут помешать работе носимых или имплантированных медицинских устройств.

Передатчики и приемники встраиваются в устройства беспроводной передачи электрической энергии так же, как и аккумуляторы, которые будут ими заряжаться. Реальные схемы преобразования будут зависеть от используемой технологии. Кроме самой передачи электроэнергии, WPT система должна обеспечить связь между передатчиком и приемником. Это гарантирует, что приемник сможет уведомить зарядное устройство о том, что аккумулятор полностью заряжен. Связь также позволяет передатчику обнаружить и идентифицировать приемник, чтобы подстроить значение мощности, передаваемой на нагрузку, а также контролировать, например, температуру аккумулятора.

В беспроводной передаче электрической энергии имеет значение выбор концепции либо ближнего, либо дальнего поля. Технологии передачи, количество энергии, которое может быть передано, и требования к расстоянию влияют на то, будет ли система использовать излучение ближнего поля или излучение дальнего поля.

Точки, для которых расстояние от антенны значительно меньше одной длины волны, находятся в ближней зоне. Энергия в ближней зоне неизлучающая, и колебания магнитного и электрического полей не зависят друг от друга. Емкостная (электрическая) и индуктивная (магнитная) связи могут использоваться для передачи энергии к приемнику, расположенному в ближнем поле передатчика.

Точки, для которых расстояние от антенны больше примерно двух длин волны, находятся в дальней зоне (между ближней и дальней зонами существует переходная область). Энергия в дальней зоне передается в виде обычного электромагнитного излучения. Перенос энергии в дальней зоне также называют лучом энергии. Примерами передачи в дальней зоне являются системы, которые используют для передачи энергии на большие расстояния мощные лазеры или СВЧ излучение.

Где работает беспроводная передача электрической энергии (WPT)

Все технологии WPT в настоящее время находятся на стадии активных исследований, большая часть сосредоточена на максимизации эффективности передачи энергии и иследованию технологий для магнитной резонансной связи. Кроме того, самыми амбициозными являются идеи оснащения WPT системой помещений, в которых человек будет находиться, а носимые им устройства будут заряжаться автоматически.

В глобальном плане, электрические автобусы становятся нормой; планируется ввести беспроводную зарядку для культовых двухэтажных автобусов в Лондоне так же, как и у автобусных систем в Южной Корее, в штате Юта США и в Германии.

Используя WiTricity, изобретенную учеными MIT, электромобили можно заряжать без проводов, а эти автомобили могут без проводов заряжать ваши мобильные телефоны! (Разумеется, используя Qi зарядку.) Эта беспроводная технология более удобна, а также она может заряжать автомобили быстрее, чем подключаемая зарядка.

Беспроводная зарядка электромобиля, встроенная в парковочное местоБеспроводная зарядка электромобиля, встроенная в парковочное место

Уже была продемонстрирована экспериментальная система для беспроводного питания дронов. И, как уже упоминалось ранее, текущие исследования и разработки сосредоточены на перспективе удовлетворении некоторых энергетических потребностей Земли путем использования беспроводной передачи энергии и солнечных панелей, расположенных в космосе.

WPT работает везде!

Заключение

В то время как мечта Теслы о беспроводной передаче энергии любому потребителю еще далека от реализации, множество устройств и систем используют ту или иную форму беспроводной передачи электроэнергии прямо сейчас. От зубных щеток до мобильных телефонов, от личных автомобилей до общественного транспорта, существует множество применений беспроводной передачи электрической энергии.

Оригинал статьи:

Теги

Qi зарядкаTeslaWPT (Wireless Power Transfer)Беспроводная зарядкаБеспроводная передача энергииБлижнее полеДальнее полеИндуктивная связьРезонансная связьСтандарт QiЭлектромагнитное излучение

Сохранить или поделиться

V Международный конкурс научно-исследовательских и творческих работ учащихся Старт в науке

Беспроводная передача электроэнергии – экспериментальные исследования по увеличению расстояния передачи

Кислов К.А. 1

1МБОУ «СОШ №5»

Красавин Э.М. 1Касауров  Ю.А. 2

1МОУ «Средняя общеобразовательная школа №1»

2МБУДО «ЦДОД»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

С самого начала открытия электричества возникла проблема его передачи конечному потребителю. Развитие промышленного производства привело к резкому увеличению спроса на электроэнергию. Провода и столбы линий электрических передач стали неотъемлемым элементом пейзажей. Развитие современных средств связи и мобильных вычислительных устройств требует частой подзарядки их аккумуляторов. А наличие у каждой модели своего зарядного устройства очень отягощает процесс подзарядки и исключает возможность одновременного подключения нескольких электрических приборов. Сравнительно новая технология беспроводной зарядки – всего лишь одно из многочисленных направлений технологии беспроводной передачи электроэнергии. Беспроводная передача электричества на расстоянии известна с тех пор, как в1831 году Майкл Фарадей открыл явление электромагнитной индукции. Экспериментируя с магнитами, Фарадей ставил перед собой конкретную цель: добыть электричество с помощью магнетизма. Ученый воспринимал магниты как источник электроэнергии — и его опыты увенчались успехом. Фарадей доказал, что при изменении магнитного потока, проходящего через замкнутый контур, в последнем возникает электрический ток. Никола Тесла впервые предложил и продемонстрировал беспроводную передачу энергии в качестве альтернативы передачи и распределения электрических линий в 1899 году (Приложение лист I, рис. 1). Наиболее перспективным, в направлении беспроводной передачи электроэнергии, является индукционный способ. Профессор Джон Пендри из лондонского Имперского колледжа полагает, что подобные устройства вполне могли быть сделаны и 10, и 20 лет тому назад. В то же время он считает, что решающую роль сыграло появление в последнее время огромного количества переносных устройств, нуждающихся в постоянной подпитке энергией: «Провод зарядного устройства стал последним звеном в беспроводной цепи, от которого надо избавиться». На данный момент существует несколько стандартов, которые уже действуют и позволяют производителям выпускать готовые решения. Например, глобальный международный стандарт Qi, разработанный Консорциумом беспроводной электромагнитной энергии (Wireless Power Consortium, WPC) направлен, прежде всего, на бытовое использование беспроводных зарядных устройств. Беспроводные системы зарядки можно использовать и для зарядки аккумуляторов электромобилей. В этом случае необходимо обеспечить эффективную передачу мощности более 3 кВт на расстояние 10–20 см. Для выполнения зарядки индукционным способом достаточно установить автомобиль над передатчиком, и процесс зарядки начнется автоматически. Ожидается, что использование беспроводной зарядки будет способствовать росту популярности таких транспортных средств. В качестве источника энергии для светодиодного освещения в помещении, также можно использовать беспроводные системы передачи электроэнергии. В этом случае перед дизайнерами светодиодного освещения открываются широкие возможности реализации новых решений для подвесных светильников, которые, как может показаться, «парят» в воздухе. В таком случае для единичных светильников достаточно передавать мощность около 10 Вт. Одно из важнейших преимуществ беспроводной технологии – применение во взрывоопасных средах, так как из-за отсутствия разъемов питания исключается возможность взрыва от искры, которая может возникнуть при подключении или отключении зарядного устройства. Таким образом, сферы использования технологий беспроводной передачи энергии, достаточно разнообразны и сдерживает внедрение этих технологий лишь одна проблема, небольшие расстояния передачи энергии, и незначительные мощности. Решение этой проблемы позволит перейти на новый уровень конструирования электротехнических изделий и в целом изменит многие технологии производства.

Цель и задачи работы

В современное время развивается направление конструирования беспроводных зарядных устройств малой мощности для зарядки мобильной техники. Основной принцип работы индуктивной зарядки весьма прост и основывается на электромагнитной индукции. В отличие от классических зарядных устройств, их беспроводные аналоги вместо медного проводника используют дополнительный блок преобразования, аналогичный обычному трансформатору, что приводит к некоторому снижению эффективности КПД этого блока. По данным разных производителей КПД, колеблется от 50% до 90%. Wireless Power Consortium называет промежуточную цифру – 70%. Индуктивное зарядное устройство рассчитано на возможность одновременного «подключения» нескольких аппаратов. В отличие от традиционных зарядных устройств, соответственно для этого не понадобятся дополнительные розетки. Ну а с точки зрения эстетики отсутствие лишних проводов всегда было большим плюсом. Однако в этих исследованиях существуют и значительные проблемы, такие как съём индукционной энергии значительной мощности. Прошлогодние разработки и исследования возможностей беспроводной передачи энергии, показали, что осуществить передачу энергии без проводов на небольшие расстояния достаточно просто. Было изготовлено несколько устройств, позволяющих успешно осуществлять беспроводную зарядку аккумуляторов на малых расстояниях между передающей и приёмной катушками. КПД передачи энергии, в наших устройствах не превышал 50%. Изучив значительный объём литературы и интернет – источников, мы пришли к выводу, что существуют реальные возможности увеличения расстояния передачи энергии, повышение мощности и КПД приёмопередающих устройств.

Целью новой работы является: исследование возможностей увеличения расстояния беспроводной передачи электроэнергии с сохранением эффективных показателей мощности.

Цель предполагала решение следующих задач:

  • Знакомство с литературными и интернет источниками по вопросам индукционной передачи электроэнергии.
  • Анализ характеристик прошлогодних разработок беспроводных зарядных станций.
  • Изучение принципов работы высокочастотных индукционных инверторов высокой мощности.
  • Проведение экспериментальных работ по увеличению расстояния передачи энергии индукционным способом, с помощью инвертора.
  • Изготовление и проверка характеристик инверторных устройств, для беспроводного питания энергопотребителей.

Технология беспроводной передачи энергии [1-9]

Возможные варианты технологии беспроводной передачи электроэнергии, используемые для питания электроприборов и зарядки аккумуляторов, достаточно разнообразны (Приложение лист I, рис. 2). Первая группа способов (дальняя зона) относится к электромагнитному излучению. Электромагнитные волны окружают нас повсюду. Они излучаются множеством радиочастотных передатчиков, телебашнями, антеннами сотовой связи, промышленным оборудованием. Но возможности использования этой энергии ограничены её малой мощностью. Для человечества это является спасением, поскольку мощное электромагнитное излучение губительно для всего живого. Таким образом, наиболее приемлемым вариантом беспроводной передачи энергии является вторая группа методов, основанных на явлении электромагнитной индукции. Как известно, область распространения электромагнитного поля разделяется на две основные зоны в зависимости от расстояния от источника излучения. Ближняя зона (зона индукции) ограничивается расстоянием, равным λ/2π, где λ – длина волны. Техника беспроводной передачи методом электромагнитной индукции использует ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери всё же происходят. Кроме того, как правило, имеют место и резистивные потери. Зона индукции постепенно переходит в зону излучения (волновую). На границах ближней и дальней зон различают переходную промежуточную зону (Приложение лист I, рис. 3). Если рассматривать частотные характеристики излучения, то можно определить значения ближней зоны, соответственно этим частотам (Приложение лист II, таблица 1). Зависимость расстояния ближней зоны (зоны индукции) от частоты электромагнитного излучения наглядно показывает, уменьшение расстояния ближней зоны с ростом частоты излучения. В системах беспроводной зарядки (как простой случай беспроводной передачи энергии) для передачи энергии от источника (передатчика) к приемнику используется явление электромагнитной индукции. В 1831 г. Майкл Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток. Этот ток назвали индукционным током. Изменять магнитное поле можно с помощью магнита или катушки. Таким образом, Электромагнитная индукция – это физическое явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур. Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил или о возникновении ЭДС индукции. Количественное описание явления электромагнитной индукции дается на основе установления связи между ЭДС индукции и магнитным потоком Ф. В системе СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. Следовательно, закон электромагнитной индукции формулируется так — ЭДС электромагнитной индукции, возникающая в замкнутом контуре, равна, и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром:

где — электродвижущая сила, действующая вдоль произвольно выбранного контура;

– малое значение магнитного потока;

– малый промежуток времени.

Система состоит из первичной катушки L1 (источника) и вторичной катушки L2 (приемника). Катушки образуют систему с индуктивной связью (бессердечниковый трансформатор). Переменный ток, протекая в обмотке первичной катушки, создает магнитное поле, индуцирующее напряжение в приемной катушке, которое может быть использовано как для зарядки аккумулятора, так и для питания устройства (Приложение лист II, рис. 4). Однако, по мере удаления вторичной катушки от первичной большая часть магнитного поля рассеивается и не достигает вторичной катушки. Даже при относительно малых расстояниях индуктивная связь уменьшается настолько, что становится неэффективной. Взаимная индуктивность катушек (М) определяется из соотношения:

где k – коэффициент связи между катушками, зависящий от многочисленных факторов (расстояния между катушками (z), соотношения диаметров катушек, смещения между их центрами, от формы катушек). Исходя из графиков, приведённых в приложении (лист III, рис. 5) можно легко определить коэффициент (k) для катушек диаметром 30 мм, разнесённых на расстояние от 0,2 до 10 мм. Резонансные контуры с индуктивной связью, применяемые в системах беспроводной зарядки, уже на протяжении десятков лет успешно используются в разнообразных радиотехнических устройствах. В настоящее время разработаны две промышленные технологии беспроводной передачи энергии (зарядки), использующие явление электромагнитной индукции. Одна из них, в которой используются сильно связанные катушки, получила название MI (магнитно-индуктивная), другая со слабосвязанными – MR (магнитно-резонансная). Эти две технологии похожи, но имеются и отличия. В каждой из них для беспроводной передачи энергии используется электромагнитное поле и применяются резонансные контуры. Магнитный поток, создаваемый источником электромагнитного поля и пронизывающий вторичную катушку, зависит от конфигурации поля. От взаимной ориентации, передающей и принимающей катушек, а также от расстояния между ними зависит эффективность системы передачи энергии. Чем больше расстояние между катушками, тем менее эффективна система. В технологии MR применяется несколько приёмных катушек, компенсирующих смещение передающей катушки и расстояние до неё (Приложение лист III, рис. 6). Но такое решение значительно усложняет настройку резонансного контура и увеличивает габариты устройства.

Схемотехника практического изготовления беспроводных передающих устройств и анализ их эффективности [10-12]

Электрический ток — упорядоченное движение свободных электронов от отрицательно заряженного тела (недостаток положительно заряженных электронов) к положительно заряженному (избыток положительно заряженных электронов). Вокруг проводника, в котором возникла электродвижущая сила, образуется электромагнитное поле. Электромагнитное поле способно заставить свободные электроны двигаться. Поэтому, перемещая проводник в созданном внешним источником (металлический магнит, электромагнит, другие проводники и содержащие их электроприборы) электромагнитном поле можно получить течение тока. Строго говоря, электричество идет к нам в дома не по проводам, оно передается посредством электромагнитного поля вокруг проводника. При этом часть энергии разогревает сам проводник, в котором двигаются электроны, а часть рассеивается в пространство. Создание движения электронов внутри проводника, путем пересечения этого проводника с линиями магнитного поля, как уже говорилось выше, называется электромагнитной индукцией — превращением механической энергии в электрическую. Индукционный генератор, индукционная плита, индукционное зарядное устройство работают именно на этом принципе. В источнике энергии установлена замкнутая катушка из проводника, по которому течет ток. Катушка создает вихревое электромагнитное поле, так как электроны внутри катушки начинают перемещаться. Устройство, поддерживающее способ беспроводной зарядки, имеет подобную катушку, которая улавливает вихревое поля катушки-источника. Ну и дальше всё просто — электромагнитное поле создает индукционный ток — движение электронов — на катушке-приемнике в устройстве. Важно отметить, что вихревое электромагнитное поле на катушке-источнике является переменным. То есть, колеблется, что и заставляет электроны в катушке-приёмнике двигаться. Для питания устройства, колебания необходимо сгладить, преобразовав переменный ток в постоянный. Для этого ток с катушки проходит через специальное устройство — выпрямитель электрического тока — с тем, чтобы в виде тока с постоянным напряжением зарядить аккумулятор. Задача высокочастотного генератора создать электромагнитное поле в индукторе (катушке-передатчике). Основой любого индукционного беспроводного устройства является высокочастотный генератор, передающий и приёмный контур. Изготовление их, может быть организовано различными путями и различной элементной базой. В общем случае передатчик энергии представляет собой задающий генератор и достаточно мощный ключевой узел, который формирует импульсы на передающую рамку. Наиболее простым и дешёвым решением является схема обычного мультивибратора на двух полевых транзисторах (ключах) (Приложение лист IV, рис. 7). Передающая рамка включена в стоки транзисторов с параллельным частотозадающим конденсатором. Ключевые транзисторы – полевые, их целесообразность применения определяется, значительно более высокой частотой и быстродействием, а также достаточной мощностью. Подобное схемотехническое решение имеет преимущество в автоматической настройке резонанса в передающем контуре L3-C1 и позволяет при низковольтном питании получить в передающем контуре значительную мощность. Приёмная рамка настраивается в параллельный резонанс конденсатором C2. Нагрузкой в наших экспериментах являлась резистивная нагрузка (лампочка и светодиоды). Конечный экспериментальный вариант схемы выполненной по структуре мультивибратора, приведён в приложении (лист IV, рис. 8). При изготовлении использованы мощные полевые транзисторы, рассчитанные на напряжение в импульсе до 500 вольт. Необходимость этого вызвана тем, что при последующих измерениях напряжения на выходе ключей без нагрузки, напряжение достигает 200 вольт. Значительная частота мультивибратора (50-60 МГц) предполагает использование в схеме сверхбыстрых диодов серии UF 4006-4007. Обычные диоды N4007 в данной схеме не работают. Конденсатор, стоящий в параллели с передающей катушкой необходим высоковольтный (плёночный). Дроссель, стоящий в цепи питания применён стандартный, от компьютерного блока питания. Более простым, с технической стороны, решением является применение схемы блокинг–генератора. Подобное устройство в простейшем варианте состоит всего из трёх деталей – транзистора, постоянного резистора и передающей катушки. В качестве ключевого элемента мы применили транзистор IRF 630A, сопротивление смещения можно подобрать в пределах от 100, до 300 Ом. Передающая катушка изготовлена со средней точкой и состоит из 10 витков. Приёмная катушка намотана более тонкой проволокой и содержит 25 витков. В приложении (лист V, рис. 9-10) приведена принципиальная схема демонстрационного и зарядного устройства, и фотографии изготовленного варианта. Недостатками предыдущих схем является относительно нестабильные частотные характеристики, поскольку ни мультивибратор, ни блокинг-генератор, не может обеспечить стабильную форму сигнала. В связи с этим, решено было изготовить экспериментальный вариант генератора с задающей цепью. В качестве задающего генератора частоты, наиболее простым вариантом, является использование широко распространённой микросхемы таймера NE 555. Она включена по стандартной схеме генератора. Частотозадающей цепью являются два резистора номиналом 1 Ком и конденсатор. Задающий генератор управляет мощным ключевым транзистором, включенным в цепь передающей катушки. Приёмный блок собран по стандартной схеме с использованием линейного стабилизатора 7805. Схема устройства и фотография экспериментального блока приведены в приложении (лист V, рис. 11). Функциональные возможности, изготовленных устройств были проанализированы, и на основе анализа сделаны выводы, и построены графики зависимости напряжения и тока от расстояния между катушками. Данные напряжения на приёмной катушке без нагрузки и схемы стабилизации, в зависимости от расстояния до передающего контура, представлено на графике в приложении (лист VI, рис. 12). В режиме нагрузки (штатное напряжение потребителей 12 В), работоспособность устройств, проверялась на двух лампах накаливания – обычной 5 Вт и галогеновой 24 Вт. В результате экспериментов были построены графики зависимости потребляемого тока от расстояния между приёмной и передающими катушками. Исходя из этих графиков, очень легко подсчитать и реальное напряжение, поступающее к потребителю при взаимодействии катушек:

Р = UI, U = P/I

Графики исследованных процессов взаимодействия и измеренные величины представлены в приложении (лист VI, рис. 13-14). Следующим этапом исследований был реальный режим зарядки стандартной батареи мобильного устройства. При проведении этих исследований применялась схема стабилизации выходного напряжения на микросхеме линейного стабилизатора 7805. При проведении этих исследований выяснилось, что при близких расстояниях между приёмной и передающей катушками сила тока при зарядке достаточно велика (до 4,5 А), что приводит к выходу из строя микросхемы. В результате исследований было определено оптимальное расстояние между передающей катушкой и потребителем в пределах от 2 до 4,5 См, что соответствует току зарядки от 2 до 1 А. При больших расстояниях зарядку проводить нецелесообразно, поскольку наблюдается резкое падение токового режима. Выявленные параметры представлены на графике приложения (лист VI, рис. 15). В целом все схемы работоспособны, но менее стабильные показатели у схемы собранной с применением блокинг-генератора.

Эксперименты по увеличению расстояния беспроводной передачи энергии

Как видно из вышеизложенного материала, расстояния передачи энергии без проводов очень незначительные (не превышают 4-5 см.). Мы поставили перед собой проблему, добиться, при беспроводной передаче энергии, больших расстояний между приёмной и передающей катушками. В этом случае, как нам кажется (исходя из изученных литературных и интернет – источников) исходя из принципов беспроводной передачи энергии, можно идти несколькими путями:

  • Увеличение мощности передающего генератора.
  • Экспериментальная подборка частотных характеристик генератора.
  • Настройка приёмного и передающего контура в резонанс.
  • Эксперименты с формой и размерами передающей и приёмной катушками.
  • Все эти пути можно использовать совместно и выяснить оптимальные параметры устройства.

1.Генератор

За основу схемотехники мощного генератора, мы решили взять вариант мультивибратора. Выбор обоснован простотой схемы и лёгкой перестройкой частотных характеристик. Наряду с недостатками (не совсем стабильная работа по частоте), имеется неоспоримое преимущество в настройке. В качестве силовых ключей применили мощные IGBT – транзисторы, рассчитанные на напряжение не менее 800В и токи до 80А (естественно в импульсном режиме). Схема устройства общепринятая и не имеет принципиальных инноваций, за исключением подбора времязадающих цепей (Приложение лист VII, рис. 16). Для контроля подачи питания в схеме применили индикатор – светодиод. Частотные характеристики генератора лежат в пределах 0,01 – 0,02 МГц. Настройку резонанса проводили подбором параллельных катушке конденсаторов, частотные характеристики подбором сопротивлений в цепях затвора IGBT – транзисторов. Напряжение питания генератора 24В, от импульсного источника питания мощностью 600Вт.

2.Приёмная и передающая катушки [13-16]

Для экспериментов, нами выбрана технология MI (магнитно-индуктивная), как более простая в изготовлении. Форма катушек плоская, для их изготовления применили тонкую (3мм) медную трубку. Намотка катушек спиральная. Катушка индуктивности — является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля. Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению. Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки. Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

где L — индуктивность, I — ток, протекающий через катушку индуктивности. Индуктивность плоской катушки рассчитывается по формуле:

где L = индуктивность в мкГн, r = средний радиус катушки, N = число витков, d = длина катушки. Катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению. Добротность катушки индуктивности может быть найдена через следующую формулу:

где R является собственным сопротивлением обмотки.

От диаметра провода индуктивность практически не зависит. Но в высокочастотных катушках стремятся получить минимальное сопротивление проводника, чтобы увеличить добротность (отношение индуктивного сопротивления к активному). С этой целью надо увеличивать диаметр провода, но только для плоских катушек, поскольку с увеличение длины намотки (вертикальной) снижает индуктивность. При тесном, многослойном расположении витков наблюдается эффект «вытеснения» тока из обмотки, что увеличивает сопротивление. Этот эффект аналогичен вытеснению тока, на высоких частотах, в любых проводниках. В результате этого, ток течет только в тонком скин — слое, у поверхности проводника. Толщина скин — слоя уменьшается, а сопротивление провода растет пропорционально корню квадратному из частоты. Для получения максимальной добротности и индуктивности катушку выгоднее делать короткой (глубина намотки), но большого диаметра, с отношением D/l порядка 2,5. Индуктивность таких катушек более точно рассчитывается по эмпирической (подобранной опытным путем) формуле:

L = 0.1D2N2/ (4D + 11 l)

где размеры берутся в сантиметрах, а индуктивность получается в микрогенри. Эта же формула, применима для спиральной или корзиночной плоской катушки. Передающая катушка в нашей конструкции имеет диаметр 40 см., количество витков 7, при длине намотки 0,3 см. Расчёты показывают, что индуктивность этой катушки составляет 48 мГн. Энергия, запасённая в катушке, составляет (при I =20-25А, исходя из потребляемой мощности) примерно 0,0096Дж. Частота резонанса передающего колебательного контура определяется по формуле:

Произведя расчёты получаем частоту резонанса 0,0283 МГц (учитывая емкость конденсатора 660000pF, и индуктивность катушки 48 мГн). Таблица расчёта и конструкция приёмной катушки приведены в приложении (лист VIII, рис. 17 – 18). Исходя из этих параметров определяем величину и параметры приёмной катушки. Приёмная катушка – диаметр 25 см., колличество витков 21. Произведя расчёты определяем индуктивность в 266,8 мкГн. Определяем ёмкость конденсатора колебательного контура приёмной катушки – 118544pF (0,12mF) (Приложение лист VIII, рис. 19). Расчёты проведены на калькуляторе, в интернете.

Проверка параметров эффективности передающего беспроводного устройства

В ходе экспериментальной проверки, нами определялись расстояния эффективной передачи энергии и проводились замеры качественных показателей принятой энергии. Графики построенные по проведённым замерам параметров приведены в приложении (лист IX, рис. 20-23). Коэффициент полезного действия вычисляли относительно параметров тока и напряжения на передающей катушке к параметрам тока и напряжения (под нагрузкой) приёмной катушки.

Перспективы дальнейших исследований [17]

Изучение влияния частотных характеристик генератора и резонансных контуров на расстояние передачи энергии, и коэффициент передачи.

Экспериментальная работа с формой приёмных и передающих катушек (Приложение лист X, рис.24).

Исследование возможности применения одновитковых резонансных систем для беспроводной передачи энергии (Приложение лист X, рис.25).

Выводы

В результате проделанной работы можно сделать следующие выводы:

Изучены доступные литературные и интернет – источники по вопросам беспроводной передачи энергии индукционным методом.

Изучены принципы работы инверторов высокой мощности и рассмотрены схемотехнические решения их построения.

Проведён анализ предыдущего опыта изготовления беспроводных систем передачи энергии без проводов. На основе проведённого анализа определены дальнейшие направления работы по повышению эффективности беспроводной передачи энергии.

Изготовлено экспериментальное приёмопередающее устройство высокой мощности и приемлемыми частотными характеристиками для проведения экспериментальных исследований.

Проведены экспериментальные исследования по определению параметров беспроводной передачи энергии и определены дальнейшие перспективы работы.

Список литературы и интернет источников

1.Сивухин, Д.В. Общий курс физики. / Д.В. Сивухин.— Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004.

2.Законы электромагнитной индукции [Электронный ресурс], http://www.naexamen.ru/otvet/11/fizika/884.shtml

3.Тамм, И.Е. Основы теории электричества / И.Е. Тамм — 9 изд., М., 1976.

4.Фарадей, М. Экспериментальные исследования по электричеству. / М. Фарадей —Том 1. Перевод с английского Е.А. Чернышевой и Я.Р. Шмидт-Чернышевой. Издательство академии наук СССР, 1947.

5.Беспроводная передача энергии [Электронный ресурс], http://www.scorcher.ru/art/theory/cosinov/tesla.htm

6.Бараш, Л. Беспроводная передача энергии, / Наука и технологии, Наука, [Электронный ресурс] http://www.membrana.ru/particle/ 2007.

7.Индукционная передача энергии [Электронный ресурс], http://altinfoyg.ru/index.php/energetika/analiz/ipe.html

8.Индукционная передача энергии [Электронный ресурс], http://hiendflow.do.am/publ/obzory_tekhnologij/indukcionnaja_peredacha_ehnergii/2-1-0-1

9.Способы беспроводной передачи энергии [Электронный ресурс], http://electrik.info/main/fakty/918-sposoby-besprovodnoy-peredachi-elektroenergii.html

10.Технология беспроводной зарядки: принцип действия, стандарты [Электронный ресурс], http://www.russianelectronics.ru/leader-r/review/doc/70732/

11.Как работает беспроводная зарядка [Электронный ресурс], https://masterok.livejournal.com/3054002.html

12.Принципы беспроводной передачи энергии. Стандарты. [Электронный ресурс], http://www.russianelectronics.ru/leader-r/review/doc/70732/

13. Свойства катушек индуктивности [Электронный ресурс], https://bourabai.ru/toe/coils.htm

14.Индуктивность плоских катушек [Электронный ресурс], http://twt.mpei.ac.ru/MCS/Worksheets/ET/p-149-1.xmcd -.

15.Расчёт индуктивности плоской спиральной катушки [Электронный ресурс], http://coil32.ru/calc/flat-spiral-coil.html

16.Калькулятор расчёта резонансного контура [Электронный ресурс], http://tel-spb.ru/lc.html

17.Беспроводная передача энергии на большие расстояния [Электронный ресурс], https://habrahabr.ru/post/219857/

Приложение

Рис. 1. Башня Wardenclyffe.

Рис. 2. Технологии беспроводной передачи электроэнергии.

Рис. 3. Ближняя и дальняя зоны электромагнитного излучения.

Частота излучения в мГц

Ближняя зона (зона индукции) в (м.).

100

0,47

10

4,7

1

47

0,1

477

Таблица 1. Зависимость расстояния ближней зоны (зоны индукции) от частоты электромагнитного излучения.

Рис. 4. Принцип действия беспроводных зарядных устройств.

Рис. 5. Графики зависимости коэффициента связи от смещения катушек (для катушек диаметром 30 мм).

Рис. 6. Особенности MI- и MR-технологий.

Рис. 7. Принципиальная схема генератора на основе мультивибратора.

Рис. 8. Экспериментальный вариант схемы на основе мультивибратора (изменён вариант подключения передающей катушки – схема с центральной точкой, соответственно применён один дроссель по питанию).

Рис. 9. Схема на основе простейшего блокинг-генератора.

Рис. 10. Фотографии демонстрационного устройства.

Рис. 11. Вариант устройства с задающим генератором.

Рис. 12. Напряжение на приёмной катушке без нагрузки и схемы стабилизации в зависимости от расстояния до передающего контура.

Рис. 13. Нагрузка лампа накаливания (12В,5Вт). Схема стабилизации напряжения отсутствует.

Рис.14. Нагрузка лампа накаливания (12В,24Вт — галогеновая). Схема стабилизации напряжения отсутствует.

Рис.15. Нагрузка стабилизатор 7805 (стандартная схема включения) и стандартная батарея (литий – ионная 3,7 В, 1700Ма/Ч).

Рис. 16. Принципиальная схема генератора.

Рис. 17. Определение частоты резонанса передающей катушки

Рис. 18. Конструкция передающей катушки.

Рис. 19. Расчёт ёмкости резонансного контура приёмной катушки.

Рис. 20. Напряжение на приёмной катушке без нагрузки и схемы стабилизации в зависимости от расстояния до передающего контура.

Рис. 21. Напряжение на приёмной катушке без схемы стабилизации с нагрузкой — лампа (24В,10Вт) в зависимости от расстояния до передающего контура.

Рис. 22. Сила тока на приёмной катушке без схемы стабилизации с нагрузкой — лампа (24В,10Вт) в зависимости от расстояния до передающего контура.

Рис. 23. КПД передачи энергии (исходя из эффективных потерь мощности) на приёмной катушке без схемы стабилизации с нагрузкой — лампа (24В,10Вт) в зависимости от расстояния до передающего контура.

Рис. 24. Перспективные разработки формы приёмной и передающей катушки.

Рис. 25. Перспективные одновитковые резонансные контуры в беспроводной передаче энергии.

Просмотров работы: 200

Будущее — за беспроводным электричеством

wireless charging

Беспроводная зарядка была изобретена Никола Тесла несколько десятилетий назад. Именно Тесла придумал способ передачи электроэнергии от одного устройства другому с помощью катушек через электромагнитное поле. Тем не менее, даже спустя долгие годы беспроводная зарядка воспринимается как что-то необычное, экзотическое и не очень удобное. В ближайшее время ситуация может измениться.

Огромного прорыва в технологии беспроводной зарядки добились российские ученые из Университета ИТМО и «НИИ Гириконд». Они изобрели принципиально новый способ беспроводной передачи энергии с применением керамических диэлектриков.

Технология беспроводной передачи энергии за счет эффекта резонансного взаимодействия двух медных катушек была изобретена в 2007 году специалистами Массачусетского технологического института (MIT). Во время испытаний им удалось зажечь лампочку мощностью 60 ватт, которая находилась на расстоянии 2,5 метров от источника энергии. Вокруг передатчика распространялось магнитное поле, которое доходило до лампочки, подключенной к катушке, настроенной на ту же частоту. Эта технология называется WiTricity (от Wireless Electricity — беспроводное электричество) и сейчас она используется для зарядки смартфонов, планшетов и прочих устройств. В настоящее время желателен физический контакт гаджета с базой, излучающей энергию, поскольку технология работает эффективно лишь на небольших расстояниях. Кроме того, требуется подобрать правильную ориентацию источника энергии и устройства со встроенным приемником.


WiTricity

Российским ученым удалось усовершенствовать этот метод, используя вместо медных катушек керамические резонаторы. Они излучают энергию на более дальнее расстояние с гораздо меньшими потерями. Резонансная частота была уменьшена, в результате чего структура магнитного поля стала сложнее, но энергия меньше затухает в пространстве.

В настоящее время КПД при зарядке устройства с расстояния 20 сантиметров от передатчика составляет 80 процентов, однако передаваемая мощность невелика — около одного ватта. Для понимания: зарядка современных смартфонов и планшетов обычно осуществляется зарядными устройствами мощностью не менее 10 ватт. Перед учеными из Университета ИТМО стоит сложная задача — на основе существующей технологии увеличить и мощность излучателя, и расстояние передачи энергии с сохранением примерно того же КПД. Для этой цели они собираются использовать разработанные в «НИИ Гириконд» новые образцы керамики с большим значением диэлектрической проницаемости и меньшими потерями.

Сегодня стало известно о том, что компания Apple тоже заинтересовалась технологией беспроводной зарядки с дальнего расстояния. По сведениям Bloomberg, эта технология будет использоваться в моделях iPhone и iPad, выпуск которых запланирован на 2017 год. Не исключено, что Apple обратит внимание на разработку ученых из Университета ИТМО, и именно их технология ляжет в основу дальней беспроводной зарядки новых устройств американской компании.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *