Раскрываем тайны бесконтактных датчиков температуры
Датчики температуры на основе термоэлементов позволяют измерять температуру бесконтактным способом, что выгодно отличает их от традиционных термодатчиков контактного типа. Бесконтактные датчики используют инфракрасное (ИК) излучение и обычно их применяют в таких портативных устройствах как инфракрасные термометры. Еще одной привлекательной областью применения датчиков на термоэлементах является мониторинг температуры подвижных объектов. В этом случае применение стандартных контактных датчиков температуры имеет серьезные недостатки. Данная статья является обзором бесконтактных инфракрасных датчиков температуры и должна помочь разработчикам в использовании всех преимуществ этой технологии.
Рис. 1. Структура термоэлемента
Датчик изнутри
Инфракрасный датчик на термоэлементах состоит из ряда последовательно cоединенных термопар, «горячие» спаи которых прикреплены к тонкой, специальным образом обработанной пластине кремния, которая выполняет роль абсорбера – поглотителя инфракрасного излучения (рис. 1). В процессе обмена инфракрасным излучением температура абсорбера растет или падает в зависимости от разницы температур между ним и объектом (рис. 2).
Рис. 2. Устройство кремниевой линзы/фильтра
Чтобы температура объекта была измерена точно, он должен полностью перекрывать сектор обзора датчика. Это гарантирует, что воздействующее на термоэлемент (рис. 3) инфракрасное излучение приходит только от объекта измерения, а не от окружающего фона. Кроме того, использование фильтра и линзы значительно повышает качество работы инфракрасных датчиков.
Рис. 3. Датчики и модули на основе термоэлементов
Обычный кремний является абсолютно непрозрачным материалом для видимого света, но он прозрачен для излучения с длиной волны более 2 мкм, где располагается большинство спектральных выбросов при температурах ниже 500 К (200°C или 450°F). Поэтому кремний может быть использован для фильтрации видимого и ультрафиолетового (УФ) спектра для предотвращения их влияния на датчик. Для того чтобы увеличить чувствительность датчика (или расстояние, на котором датчик может измерять температуру объекта фиксированного размера), широко используются специальным образом обработанные кремниевые линзы, позволяющие сконцентрировать больше инфракрасного излучения на датчике или ограничить его сектор обзора.
Назначение и возможности датчиков
В настоящее время ИК-датчики на основе термоэлементов могут поставляться с различными линзами/ фильтрами, что позволяет использовать их в приборах разного класса и назначения, начиная от промышленных пирометров и до бытовых устройств. В зависимости от датчика, выходной сигнал может быть представлен стандартным выходным сопротивлением или аналоговым/ цифровым выходным сигналом.
Разнообразные датчики (полезные как для любителей, так и для профессиональных разработчиков), включая изделия в герметичных корпусах из нержавеющей стали и модули с выведенными проводами, сегодня продаются по доступным ценам. Все эти термоэлементы предназначены для дистанционного измерения температуры путем детектирования инфракрасной энергии объекта. Чувствительный термоэлемент, составленный из небольших термопар на кремниевом чипе, поглощает энергию и генерирует выходной сигнал. В комплект приборов входит также источник опорного напряжения в качестве эталона для коррекции.
Датчик TPS334
Изготавливаемый компанией Excelitas детектор TPS334 – это стандартный датчик, который использует пластину размером 0,7 x 0,7 мм2 в качестве абсорбера и термистор на 30 кОм в качестве опорного источника температуры (рис. 4). Круглое окно оснащено инфракрасным фильтром на 5,5 мкм с пропусканием длинноволновой части спектра. TPS334 выпускается в корпусе типа TO-5.
Рис. 4. TPS334 (слева) и расположение выводов (справа)
Датчик A2TPMI
A2TPMI — еще один термоэлемент производства Excelitas. Это универсальный инфракрасный датчик с интегрированной специализированной микросхемой для обработки сигналов и компенсации температуры окружающей среды. Этот интегрированный инфракрасный модуль воспринимает тепловое излучение объектов и преобразует его в аналоговое напряжение. Благодаря внутренней обработке цифрового сигнала и 8-разрядному разрешению внутренних регистров управления A2TPMI имеет повышенную точность регулировки и улучшенные характеристики. Примененная технология E2PROM обеспечивает неограниченное количество изменений в конфигурации. A2TPMI является удачным выбором и для любительских конструкций благодаря интеграции датчика и электроники в компактном корпусе ТО-39. Функциональная схема A2TPMI показана на рис. 5.
Рис. 5. Функциональная схема A2TPMI
Датчик MLX90614
Очень популярным инфракрасным термометром для бесконтактного измерения температуры является MLX90614 производства компании Melexis (рис. 6). Он представляет собой сочетание в одном 4-контактном корпусе ТО-39 инфракрасного высокочувствительного детектора на термоэлементах и специализированного стандартного формирователя сигналов. Этот термометр включает в себя малошумящий усилитель, 17-разрядный аналого-цифровой преобразователь и мощный процессор цифровых сигналов. Он откалиброван на заводе-изготовителе с возможностью использования на цифровом выходе широтно-импульсной модуляции (ШИМ) и системной шины управления (SMBus).
Рис. 6. Конфигурация выводов MLX90614*
*Обозначения:
- Bottom view – Вид снизу
- Pin name – Вывод
- Function – Функция
- Serial clock … – Вход синхросигнала для 2-проводного коммуникационного протокола. На этом выводе MLX-90614Axxx установлен стабилитрон на 5,7 В для подключения биполярного транзистора из состава внешнего источника питания напряжением 8…16 В
- Digital input/ … – Цифровой вход/выход. В стандартном режиме измерения температуры объекта на этом выводе представлен сигнал с ШИМ. В режиме, совместимом с шиной
- Exetnal … Внешний источник питания
- Ground … – Общая шина. Металлические части могут соединяться с этим контактом.
Замечания по проектированию
Подключить к микроконтроллерам термоэлементы с последовательным интерфейсом, такие как A2TPMI, не очень сложно. Тем не менее, для датчиков без встроенного процессора (например, TPS334), может возникнуть необходимость в добавлении внешней схемы обработки сигнала на основе высококачественного операционного усилителя с малым уровнем шума, каким является
Рис. 7. Плата с датчиком TMP006
Рис. 8. Схема TMP006
Эксплуатация и текущее обслуживание
Поскольку датчики на термоэлементах чувствительны к зарядам статического электричества, запасные неиспользуемые датчики должны храниться в токопроводящей упаковке для защиты от статических разрядов и статических полей. Превышение абсолютных максимальных уровней напряжения и подключенный в обратной полярности источник питания повреждают датчик. Кроме того, датчики на основе термоэлементов не должны подвергаться воздействию прямых солнечных лучей или влаги. Будьте осторожны при обращении с этими датчиками и не прикасайтесь к оптическому окну. Жировые выделения кожи, пыль или грязь могут негативно повлиять на работу датчика. В таких случаях оптическое окно (фильтр и линза) следует очищать с помощью спирта и ватного тампона.
Вместо заключения
Возможность считывать температуру объекта, даже не прикасаясь к нему, открывает удивительные перспективы. Инфракрасные датчики на основе термоэлементов обладают наилучшим сочетанием характеристик, включая малый размер, пониженное энергопотребление и малую стоимость конечного прибора для бесконтактного измерения температуры. Правда, их не так легко реализовать, как традиционные контактные измерители температуры.
![]() |
PyroCouple — простой инфракрасный датчик температуры с аналоговым выходом PyroCouple — идеальный датчик общего назначения для широкого спектра применений. • Диапазоны температур: От -20 °C до 100 °C (модели LT), от 0 °C до 250 °C (модели MT), от 0 °C до 500 °C (модели HT) • Типовые модели: PC151LT-0, PC151MT-0, PC151HT-0, PC21LT-0, PC21MT-0, PC21MT-3, PC301LT-0, PC301MT-0 PC151MT-0 Поддерживается в наличии на складе г. Екатеринбурга. ![]() |
![]() |
PyroMiniUSB идеально подходит для использования в настольных, лабораторных и учебных приложениях. • Миниатюрный бесконтактный датчик температуры с интерфейсом USB |
![]() |
PyroNFC — инфракрасный датчик температуры, конфигурируемый при помощи смартфона • Диапазон температур от 0 °C до 1000 °C |
![]() |
ExTemp — искробезопасный инфракрасный датчик температуры, сертифицированный по ATEX и IECEx ExTemp является искробезопасным пирометром от Calex. Он измеряет температуру поверхностей в опасных зонах без контакта и имеет выход 4-20 мА. Он сертифицирован по стандартам ATEX, IECEx и TIIS. • Температурный диапазон: от 0 °C до 250 °C (модели LT), от 0 °C до 500 °C (модели MT), от 0 °C до 1000 °C (модели XT), специальный температурный диапазон (модели ST) |
![]() |
PyroMini — фиксированный инфракрасный датчик температуры с удаленной чувствительной головкой • Температурные диапазоны: от -20 °C до 100 °C (модели LT), от 0 °C до 250 °C (модели MT), от 0 °C до 500 °C (модели HT), от 0 °C до 1000 °C (модели XT), конфигурируемые значения между -20 °C до 1000 °C (модели CT) |
![]() |
PyroMini 2.2 — двухкомпонентный пирометр для высокотемпературных целей и металлов PyroMini 2.2 — это идеальное решение для сложных промышленных применений, где температура цели очень высокая или где поверхность цели имеет низкую излучательную способность, например, многие виды металлов. • Диапазон температур: от 100 °C до 400 °C (модели PT), от 250 °C до 1000 °C (модели MT), от 450 °C до 2000 °C (модели HT) |
![]() |
PyroBus — фиксированный инфракрасный датчик температуры с выходом RS485 Modbus PyroBus может быть установлен как в виде отдельной сети датчиков или интегрирован в существующую сеть Modbus. Датчики могут быть подключены в цепочку через распределительные коробки к одному кабелю сетевой шины, что может значительно упростить прокладки кабелей и снизить стоимость кабельных систем по сравнению с использованием аналоговых датчиков. • Диапазон температур: от -20 °C до 500 °C |
![]() |
FibreMini — волоконно-оптический пирометр для сложных условий применения FibreMini — это промышленный пирометр с волоконно-оптической чувствительной головкой и отдельным электронным модулем с сенсорным экраном. • Диапазон температур: от 250 °C до 1000 °C (модели MT), от 450 °C до 2000 °C (модели HT) |
![]() |
PyroUSB – инфракрасный датчик температуры с выходом 4-20 мА, конфигурируемый через компьютер Аналоговые и USB выходы PyroUSB делают его идеальным для использования на заводе или на стенде. • Диапазоны температур от -40 °C до 2000 °C |
![]() |
PyroCAN – Пирометр с цифровым интерфейсом CAN PyroCAN измеряет температуру поверхности и передает ее через CAN-Bus с использованием протокола Raw CAN. • Диапазон температур от -20 °C до 1000 °C |
![]() |
PyroEpsilon — фиксированный инфракрасный датчик температуры с регулируемой излучательной способностью Установка коэффициента излучения инфракрасного датчика температуры PyroEpsilon происходит через аналоговый вход, таким образом он может управляться автоматически, например, посредством ПЛК, или вручную, с помощью контроллера PPT245 или регулятора излучательной способности PyroTune. Если излучательная способность цели изменяется в процессе, то PyroEpsilon является идеальным выбором. • Диапазон температур от -20 °C до 500 °C |
![]() |
PyroCube G — пирометр для измерения стекла PyroCube — это инфракрасный пирометр с очень быстрым временем отклика и очень небольшим размером области измерения. Он доступен с модулем PM030 или без него. PyroCube G измеряет температуру поверхности стекла от 50 °C до 2400 °C. • Диапазоны температур: от 50 °C до 1200 °C (модели G), от 50 °C до 2400 °C (модели GH) |
![]() |
PyroCube M — пирометр с быстрым откликом и маленьким пятном измерения для низкотемпературных металлов PyroCube — это инфракрасный пирометр с очень быстрым временем отклика и очень небольшим размером области измерения. Он доступен с модулем PM030 или без него. • Измеряет небольшие отражающие металлические цели при низких температурах |
![]() |
PyroCube P — пирометр для тонкопленочной пластмассы PyroCube — это инфракрасный пирометр с очень быстрым временем отклика и очень небольшим размером области измерения. Он доступен с модулем PM030 или без него. • Измеряет тонкие пленки из полиолефина, полиамида, полиэтилена, полипропилена, полистирола, нейлона, ПВХ, акрила, полиуретана и поликарбоната |
![]() |
PyroCube S и F — инфракрасные датчики температуры с быстрым откликом, малым пятном измерения и светодиодным прицелом PyroCube — это инфракрасный пирометр с очень быстрым временем отклика и очень небольшим размером области измерения. Он доступен с модулем PM030 или без него. • Время отклика 1 мс |
![]() |
PyroCube XS – датчик с фокусированной оптикой для измерения чрезвычайно малых целей PyroCube XS — это ряд инфракрасных датчиков температуры с плотно сфокусированной оптикой, которые способны измерять очень маленькие области. Встроенный светодиодный прицел точно освещает площадь, измеряемую датчиком. Применения включают в себя измерение температуры отдельных электронных компонентов на печатных платах, огневой полировки изоляционной оболочки на электрическом проводе и сварке пластмасс, где шов очень узкий. • Диапазон температур от 0 °C до 500 °C |
Система многоканального бесконтактного температурного контроля «Зной». Пирометрический датчик температуры.
Опросный лист
Система бесконтактного температурного контроля «Зной» предназначена для осуществления непрерывного многоканального дистанционного контроля температур любых труднодоступных зон объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (пищевая и сталелитейная промышленность, нефтеперерабатывающая отрасль), измерении температуры поверхности любого рода.
Приборы используются в роли средства безопасного бесконтактного измерения температур объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур, высокого напряжения или труднодоступных местах. На объектах энергетической отрасли в распределительных устройствах для контроля температуры главных цепей — контактов высоковольтного выключателя или разъединителя, соединений сборных шин, места соединения и оконцевания кабельных муфт находящихся под напряжением. Их можно применять в качестве теплолокаторов, для определения областей критических температур в различных производственных сферах например для включения вентиляторов охлаждения.
Состав системы
Система состоит из модуля температурного контроля и набора бесконтактных пирометрических датчиков температуры ДТП-300 (Датчик Температуры Пирометрический). Модуль бесконтактного температурного контроля имеет металлический корпус с кронштейном для крепления на DIN-рейку. Датчик температуры выполнен в металлическом корпусе. Все датчики, применяемые в системе, подключаются к модулю температурного контроля параллельно посредством кабельного шлейфа. Каждый датчик опционально может быть снабжен лазерным указателем места измерения температуры.
Работа системы
При подаче напряжения питания на систему «Зной» модуль температурного контроля производит последовательный циклический опрос всех подключенных датчиков. Типовая функция модуля – это сигнализация с помощью светодиодных индикаторов и сухих контактов реле о превышении установленных порогов температуры хотя бы на одном из подключенных датчиков. Модуль имеет три релейных канала сигнализации COM1, СОМ2 и СОМ3, для каждого из которых может быть установлена необходимая рабочая функция, например, контроль связи со всеми температурными датчиками, или сигнализация превышения установленного порога значения температуры какого-либо или нескольких выбранных датчиков. Описание всех функций доступно в опросном листе на систему.
Модуль также снабжен светодиодными индикаторами для визуального контроля работы системы:
- Индикатор контроля питания — контроля наличия напряжения питания.
- Индикатор связи с датчиками — двуцветный индикатор, зеленый свет которого сигнализирует о нормальной связи со всеми датчиками, вспышки красного цвета сигнализируют о сбоях в получении информации с датчиков.
- Индикатор превышения температурного порога 1.
- Индикатор превышения температурного порога 2.
Все настройки (значения температурных порогов, значение гистерезисов отпускания реле, количество датчиков в системе и др.) хранятся в энергонезависимой памяти модуля и могут быть изменены пользователем. Для внесения изменений необходимо подключиться к разъему интерфейса RS-485 модуля с помощью персонального компьютера, адаптера RS-485 и программной утилиты работы с модулем.
Интерфейс RS-485 с поддержкой протокола Modbus RTU на борту модуля также предоставляет пользователя возможность удаленного получения данных о значениях температур всех подключенных датчиков в непрерывном режиме.
Технические характеристики
Параметры | Значение |
Напряжение питающей сети и сигналов дискретных входов перем/пост, В | 85—265/120—375 |
Номинальная потребляемая от сети мощность, Вт не более | 2 |
Количество каналов измерения температур | 15 |
Количество выходов типа «сухой контакт» | 3 |
Максимальное рабочее напряжение контактов сигнального реле, перем/пост В | 220 |
Максимальный рабочий ток контактов сигнального реле, А | 2 |
Соотношение диаметра пятна зоны измерения к расстоянию от датчика до поверхности измерения | 1:3, 1:8 |
Диапазон измерения температур, °С | -40…+300 |
Максимальная погрешность измерения температуры в всем диапазоне измеренния, градусов Цельсия | ±4 |
Диапазон рабочих температур модуля, °С | -40…+60 |
Диапазон рабочих температур датчика, °С | -40…+60 |
Относительная влажность воздуха, % | 30—80 |
Габаритные размеры модуля температурного контроля, ДхШхВ, мм | 117х70х30 |
Схема электрическая подключения модуля температурного контроля
Х1 — разъем для подключения внешних устройств приема команд сигнализации.
Х2 — разъем интерфейса RS-485 для подключения адаптера связи с устройством.
Х3 — разъем для подключения питания.
Схема электрическая подключения датчиков ДТП-300
Датчики температуры подключаются по параллельной схеме. Данное решение является наиболее оптимальным, так как подключение всех датчиков к модулю производится одним кабелем. К клемме 5 датчика, которая гальванически соединена с его корпусом, подключается экран кабеля. При установке в устройствах имеющих металлическую оболочку, заземление датчика к корпусу производится подключением заземляющего провода либо непосредственно к корпусу датчика с применением царапающей шайбы, либо к клемме 5 датчика.
Рекомендации по установке датчика ДТП-300
При измерении температуры контролируемого объекта в поле зрения пирометрического визира не должны попадать посторонние предметы. На рисунках 1, 2 показана зависимость размера пятна измерения от расстояния до поверхности для датчика с оптическим соотношением 3:1 и 8:1.
Рисунок 1. Датчик ДТП-300 с оптическим соотношением 3:1 |
Рисунок 2. Датчик ДТП-300 с оптическим соотношением 8:1 |
Необходимо учитывать, что метка лазерного указателя не совпадает с оптической осью пирометрического визира, поэтому центр зоны смещен относительно метки лазерного указателя в горизонтальной оси на фиксированное расстояние 9 мм. Для включения/отключения лазерного указателя датчика необходимо произвести переключение кнопки, расположенной около пирометрического визира. После проведения настройки указателя на центр измерения температуры произвести отключение лазерного указателя.
Поскольку разные материалы имеют разные коэффициенты теплоизлучения, для обеспечения указанной погрешности измерения температур необходимо производить подготовку поверхности, например покрытие области на поверхности измерения слоем эмали черного цвета или произвести установку коэффициента в меню системы в соответствии с типом поверхности.
Особенности организации системы температурного мониторинга высоковольтных контактных соединений на базе пирометрических датчиков ДТП-300
- Для обеспечения заявленной достоверности значения температуры металлическую (медную, алюминиевую, стальную и т.д.) поверхность зоны мониторинга НЕОБХОДИМО покрыть полимерным покрытием. Возможный тип покрытия
- термоусадочная трубка (при условии отсутствия воздушного зазора между трубкой и металлом или плотного прилегания трубки к металлу)
- термостойкая краска любого цвета, например, термостойкая эмаль Церта +700 / +500 °С RAL 8017
- NITOFLON 973 UL-S — тефлоновая пленка (PTFE) армированная стеклотканью самоклеящаяся в роликах
- Поверхность зоны мониторинга может быть не плоскостью, а трехмерной объемной поверхностью, при этом достоверность значения температуры сохраняется при условии покрытия поверхности, а также соблюдения расстояния от датчика ДТП-300 до поверхности, исходя из оптических показателей датчика ДТП-300.
- Допускается устанавливать датчик ДТП-300 не только по нормали измерительной оси датчика к поверхности, но и под углом до 30 градусов между измерительной осью датчика и поверхностью. При этом значение температуры сохраняет свою достоверность, при условии покрытия поверхности и соблюдения расстояния от датчика до поверхности. При выборе или расчете расстояния необходимо учитывать, что измерительное пятно в этом случае не круглое, а эллиптическое, кривизна эллипса зависит от угла. Рекомендуем геометрически оценить при проектировании, умещается ли эллиптическое пятно целиком с запасом на поверхности мониторинга в данном случае.
Габаритные и установочные размеры датчика ДТП-300
Габаритные размеры модуля температурного контроля
Бесконтактный датчик температуры MLX90614 — Как подключить — AVR project.ru
Наконец-то заполучил в свои руки один интересный датчик-пирометр MLX90614. Это инфракрасный датчик, позволяющий определять температуру бесконтактным методом. Такой датчик позволяет практически моментально считывать температуру тела, измеряя инфракрасное излучение объекта. Сейчас познакомимся с ним поближе и разберем работу в Bascom-AVR.
Для начала разберемся с тем, какие модификации датчика существуют. Во-первых, они различаются по напряжению питания, бывают 3-х и 5-и вольтовые версии.
Во-вторых, различаются количеством сенсоров внутри датчика: бывают с одним сенсором и двумя:
Также есть версия датчика, в которой два сенсора, но показания с них суммируются и усредняются. Именно такой датчик и попал ко мне.
Третье различие в угле обзора. Бывают, как на картинке выше, с открытым окном, у которых угол обзора стремится к 180°. А есть версии с уменьшенным до 35°, 10° и 5° углом. Я приобрел датчик с углом обзора 10°, но как оказалось ничего хитрого там нет, просто на корпус датчика запрессована черная трубка, обрезающая часть обзора. Поэтому можно брать открытые датчики, они дешевле, и уже самим приклеить трубочку. Но интересней было бы добавить пару линз, только найти такие, чтобы пропускали инфракрасное излучение наверно будет не просто.
Все датчики подключаются по стандартному интерфейсу I2C. Распиновка со стороны ножек.
На шине I2C датчик имеет настраиваемый адрес, по умолчанию отзывается на &hB4 (&b10110100) Для считывания температуры измеряемого объекта нужно обратится по адресу &h07 (&b00000111) для первого сенсора, и &h08 (&b00001000) для второго (если датчик имеет два отдельных сенсора).
Для моего варианта, в котором два сенсора объединены, показания считываются только с первого сенсора. Также датчик может измерить собственную температуру, ее значение хранится по адресу &h06 (&b00000110)
К слову об измеряемых температурах. Предел температур для измеряемого объекта составляет -70÷380 °C, а для самого датчика -40÷125°C.
Данные в датчике хранятся в сыром виде и занимают два байта, поэтому для перевода их в градусы Цельсия необходимо преобразование: поделить значение на 50 и затем вычесть из результата 273,15. Еще нужно учитывать одну особенность — датчик сперва отправляет младший байт, а затем старший. Поэтому полученные данные перед преобразованием приходится «переворачивать».
Для примера собрал схему на микроконтроллере ATmega8, показания будут выводиться на жк дисплей. Датчик у меня приехал в пятивольтовой версии, поэтому никаких преобразователей между ним и схемой не нужно. Только подтяжка резисторами к плюсу согласно стандарту протокола I2C
Программа в Bascom-AVR:
$regfile = «m8def.dat»$crystal = 8000000
‘конфигурация дисплея
Config Lcd = 16 * 2
Config Lcdpin=Pin, Rs=Portb.5, E=Portb.4, Db4=Portb.3, Db5=Portb.2, Db6=Portb.1, Db7=Portb.0
‘подключение датчика
Config Scl = Portc.0
Config Sda = Portc.1
I2cinit
Dim Value As Byte ‘принимаемый байт
Dim Temp As Single ‘температура
Dim Tempword As Word ‘вспомогательная переменная
Dim Irtemp As String * 8 ‘температура объекта
Dim Senstemp As String * 8 ‘температура датчика
Dim Cmd As Byte ‘команды для датчика
Cls
Cursor Off
Do
Cmd = &B00000111 ‘адрес чтения температуры объекта
Gosub Read_mlx ‘опрашиваем датчик
Irtemp = Fusing(temp , «##.##»)
Cmd = &B00000110 ‘адрес чтения температуры датчика
Gosub Read_mlx ‘опрашиваем датчик
Senstemp = Fusing(temp , «##.##»)
Cls
Locate 1 , 1
Lcd «To » ; Irtemp ; «°C» ‘выводим температуру объекта
Lowerline
Lcd «Ts » ; Senstemp ; «°C» ‘выводим температуру датчика
Waitms 500
Loop
‘подпрограмма опроса датчика
Read_mlx:
I2cstart
I2cwbyte &B10110100 ‘отправляем адрес датчика
I2cwbyte Cmd ‘отправляем команду с адресом
I2cstart
I2cwbyte &B10110101 ‘отправляем адрес датчика с битом чтения
I2crbyte Value , Ack ‘принимаем первый байт
Tempword = Value
Shift Tempword , Left , 8
I2crbyte Value , Ack ‘принимаем второй байт
Tempword = Tempword Or Value ‘складываем два байта
I2cstop ‘окончание опроса датчика
Rotate Tempword , Left , 8 ‘меняем местами два байта в переменной
Temp = Tempword * 0.02 ‘преобразование данных в температуру по Цельсию
Temp = Temp — 273.15
Return
Программа выводит на дисплей две температуры. В верхней строке температуру измеряемого объекта, в нижней — температуру самого датчика.
Фото с экспериментов. Температура горячего чайника
чайник только вскипел, но температура пластикового корпуса выше 80 не поднималась.
температура в морозилке
А вот интересная картинка из даташита, показывающая погрешность датчика в зависимости от внешних факторов.
To — измеряемая температура объекта, Ta — температура окружающей среды
В ходе тестирования заметил одну особенность, для более точного измерения температуры, датчик нужно подносить как можно ближе, чтобы объект перекрывал весь угол обзора датчика. В общем датчик интересный, мне понравился. А вот интересный проект с этим датчиком https://geektimes.ru/post/257850/
Исходник и прошивка
Документация на датчик MLX90614
Датчик покупался здесь
Могу рекомендовать также присмотреться к готовому прибору в котором используются аналогичные сенсоры. При цене отдельного датчика мы сразу получаем законченное устройство, с хорошими характеристиками.
Купить можно например здесь
Бесконтактные датчики температуры в Санкт-Петербурге (500 товаров) 🥇
Тип: автоматика для котлов, Цвет: белый, Материал: пластик

Бесконтактные датчики температуры
Бесконтактные датчики температуры созданы для обеспечения контроля температуры удаленных или труднодоступных объектов. Отсутствие необходимости соприкосновения позволяет бесконтактным датчикам измерять очень большие диапазоны температур.
Варианты исполнения бесконтактных датчиков температуры
В качестве датчиков с бесконтактным измерением температуры применяются переносные датчики с инфракрасным излучением. Они отличаются диапазоном измеряемых температур, используемыми материалами и временем отклика.
Область применения бесконтактных датчиков измерения температуры
Бесконтактные датчики применяются для контроля температуры во многих отраслях, где требуется удаленный контроль состояния объектов и возможность оценки температуры без непосредственного контакта:
- энергетическая отрасль, включая тепло- и электроснабжение,
- металлургия и металлообработка,
- производство электронных компонентов,
- машиностроение и автомобилестроение,
- сфера строительства и жилищно-коммунального хозяйства,
- транспортная отрасль, включая диагностику работы транспорта,
- производство продуктов питания,
- фармацевтика,
- складские комплексы различных отраслей.
Помимо этого, бесконтактные датчики используются для контроля температуры различных производственных процессов.
Задачи, решаемые с помощью бесконтактных датчиков температуры
Возможность измерения температуры без непосредственного контакта позволяет решать несколько задач:
- контроль температуры отдаленных и малодоступных объектов,
- определение температуры движущихся частей машин и механизмов,
- измерение температуры элементов под напряжением или в опасных условиях,
- контроль высокотемпературных производственных процессов,
- непрерывное отслеживание изменения температуры,
- контроль элементов и поверхностей объектов, недоступных для стандартных способов измерения,
- работа с объектами из материалов с невысокой теплопроводностью или низкой теплоемкостью.
Преимущества использования бесконтактного датчика температуры
Неоспоримые достоинства бесконтактных датчиков температуры обеспечивают большое число преимуществ перед любыми контактными способами температурного контроля:
- измерение температуры удаленных и малодоступных объектов и их поверхностей, включая работу в опасных условиях,
- измерение очень высоких значений температур, при которых другие датчики не способны работать,
- датчик всегда чистый, т.к. отсутствует необходимость контакта с объектом контроля,
- малое время отклика, что позволяет обеспечить высокую скорость получения результатов измерения,
- возможность работы с любыми материалами.
При этом бесконтактные датчики очень просты в использовании.
Возможные недостатки работы с бесконтактными датчиками температуры
Основным недостатком работы бесконтактных датчиков является необходимость тщательной настройки работы прибора для обеспечения высокой точности результатов. При этом необходимо вносить поправочные коэффициенты, учитывая тип контролируемой поверхности.
Для получения наиболее точных результатов измерения необходимо тщательно подбирать бесконтактный датчик температуры для работы в конкретных условиях и с заданными контролируемыми объектами и поверхностями.
Принцип работы бесконтактного датчика температуры
Современные бесконтактные датчики температуры по своему принципу работы являются детекторами инфракрасного излучения. Датчик способен определять температуру благодаря определению уровня электромагнитной энергии, излучаемой объектом контроля в инфракрасном диапазоне. При этом датчик может определять как очень низкие температуры до -45oC, так и очень высокие – вплоть до +3000oC.
Для работы с различными материалами и температурами необходимо проводить настройку прибора в зависимости от конкретных условий работы. Точность результатов измерения зависит от характеристик датчика, включая диапазон измеряемой длины волны, и излучательной способности объекта контроля. Эти параметры влияют на коэффициенты настройки датчика.
Современные бесконтактные датчики температуры способны определять температуру на большом удалении. Некоторые модели датчиков могут быть дополнительно снабжены лазерным указателем, позволяющим более точно захватывать объект для измерения.