Авр принцип – Автоматический ввод резерва: задачи, характер действия, варианты реализации.

Содержание

Секционный АВР и его особенности.

Современные системы электрического снабжения защищены от многих внешних факторов и ситуаций, но ни один производитель не может гарантировать 100% защиту. Поэтому желательно использовать два источника питания, один из которых (резервный) начинает работать при отключении основного. Для этого система должна «считывать» и контролировать ток нагрузки и проходящее по проводам напряжение, чтобы в нужный момент автоматически переключиться на аварийный режим. Именно это и делает АВР – автоматический ввод резерва.

Для чего используется?

В частных или многоквартирных домах такая система используется редко, а вот в городской электросети или на промышленных предприятиях без нее никуда. Отключение электрики даже на короткое время чревато большими материальными потерями, поэтому необходимо обеспечить бесперебойную работу цепей напряжения до устранения поломки. АВР помогает в считанные минуты возобновить подачу электрической энергии и при этом пользователю ничего не нужно делать.

Крупные фирмы и предприятия уже давно устанавливают минимум два ввода на две секции распределительных приборов. Их между собой разделяет секционный выключатель и обе секции функционируют автономно друг от друга. Для потребителей первой категории – это обязательная мера предосторожности, которая прописана в ПУЭ.

Время срабатывания резерва зависит от модели прибора, качества сборки деталей, производителя и марки. Но в идеале оно должно быть от 3 до 8 секунд. Необходимость АВР проще доказать на примере. Допустим, есть важный охраняемый объект, который всегда должен быть освещен. По разным причинам основной источник питания может дать сбой. Тогда автоматически начинает действовать ввод резерва и при этом свет не будет отключен даже на минуту, освещение лишь станет немного более тусклым на 8 секунд до срабатывания аппарата.

Принцип работы.

Какая бы ни была конструкция автоматического ввода, ее главная задача – контроль напряжения. Он может осуществляться двумя способами: цифровой блок защиты или реле напряжения. Но в любом из вариантов сама схема работы одинакова. Ее проще объяснить на примере.

Есть две рабочие линии А (основная) и В (резервная). Также у нас есть К – катушка реле и Л – лампа индикатора напряжения. При нормальных режимах ток проходит через катушку реле и лампу. Нормально-разомкнутые и нормально-замкнутые контакты функционируют по своей основной схеме, подавая напряжение на основную линию А. Но если на входе А ток пропадает, обе группы контактов возвращаются в исходное положение. Катушка прекращает свою работу и лампочка гаснет. Тогда срабатывает механизм защиты и замыкается контакт линии В, что приводит к возобновлению подачи электроэнергии. Как только неполадка будет устранена, К1 перекоммутирует все к исходному состоянию, то есть на линию А.

Классификация.

По своему устройству АВР могут быть:

Односторонние. В данном случае предусмотрено два ввода, один из которых главный, а другой – дополнительный.

Двухсторонние. Также два ввода, но оба используются в качестве основных источников питания.

В первом варианте в конструкции предусмотрена возможность переключения от одного источника к другому, а во втором она отсутствует, поскольку оба имеют одинаковый приоритет.

АВР на аккумуляторах.

Рынок электроники постоянно совершенствуется и сейчас в качестве резервного источника можно использовать даже аккумулятор транспортного средства. Но для этого нужно прикупить еще и инвертор, который будет преобразовывать постоянное напряжение в переменное. Конечно, для силовых цепей такой мощности маловато. Но вот при неожиданных отключениях осветительных линий такая схема вполне может обеспечить стабильное напряжение на время аварии. Но учитывайте, что аккумуляторы малой мощности помогут только на короткое время.

Логический контроллер.

Применяется для трехфазных сетей и учитывает практически все параметры сети, для создания совершенной системы. Это уже готовый блок, в конструкцию которого вмонтирован цифровой контроллер. Именно он и «считывает» все необходимые данные. Преимущество в том, что на корпусе очень подробная маркировка. Кроме того в комплекцию включена инструкция, разъясняющая как правильно подключать и отключать аппарат.

Но тут нужно подумать, есть ли смысл в покупке модуля. Подключить его к трехфазной сети, которая питается от одного трансформатора не очень целесообразно. Только если имеется дополнительный мощный резервный источник питания.

Бесконтакторные системы.

Еще одно чудо техники, в котором для управления используется микропроцессорный блок. Переключение выполняют полупроводниковые коммутаторы, которые считаются более быстрыми и надежными, чем контакторы. Это идеальный модуль для тех, кто не любит возиться с проводами, поскольку в конструкции не предусмотрены механические контакты. А значит, не нужно проводить механическую блокировку. У таких аппаратов множество функций, которые расширяют возможности управления. И всего один недостаток: сложный ремонт, который потребует не только вмешательства электрика, но и помощи программиста.

Особенности АВР в высоковольтных цепях.

На первый взгляд схема может показаться сложной, но это из-за необходимости использования дополнительного оборудования. В цепях с напряжением, превышающим 1000 Вольт необходимо использовать трансформатор напряжения. Он будет контролировать и измерять сетевую энергию. На вторичной обмотке такого механизма напряжение в 100 Вольт (при нормальной работе). Чтобы связать его с автоматическим вводом, необходимо реле контроля фаз. Оно среагирует и на понижение электрической энергии, и на обрыв любой из фаз.

Важно: такую схему можно реализовать только на новейшем оборудовании (многофункциональные терминалы защиты) или на механических реле старого образца.

Автоматический ввод резерва: задачи, характер действия, варианты реализации.

                    Наша жизнь напрямую связана с электричеством. Мы с ним сталкиваемся дома, на работе, в больнице, в магазине и т. п. Плохое качество или перебои в электроснабжении приводят кроме неудобств, связанных с отсутствием света в помещении и невозможностью войти в интернет, также и к материальному ущербу (например, выход из строя оборудования, простой цеха предприятия), а в некоторых случаях могут нести угрозу жизни человека (например, отключение электропитания больницы). Поэтому одним из главных требований, предъявляемых к электропитанию, считается бесперебойность.

               Бесперебойность электропитания можно осуществить путем реализации питания каждого потребителя одновременно от двух независимых источников питания (ИП). Такой способ решения проблемы имеет ряд недостатков: высокие токи короткого замыкания, большие потери электроэнергии на питающих трансформаторах, сложная релейная защита (у раздельного электропитания проще и надежней), невозможность реализации параллельной работы источников питания из-за ранее установленной релейной защиты. Поэтому специалисты рекомендуют применять раздельное электроснабжение при быстром возобновлении электропитания потребителя. Для реализации этой задачи используют АВР – автоматический ввод резерва

.

               Бесперебойное электропитание потребителей может иметь разную степень резервирования основного источника питания, которая зависит от того, к какой категории надежности по электроснабжению (согласно ПУЭ) относится потребитель. Всего существует 4 категории: особая, первая, вторая и третья. Резервный источник питания должен быть независимым от основного. В роли резервного источника используют линию электропередачи, подключенную к подстанции не основного источника питания, дизель-генераторная установка, аккумуляторные батареи. За автоматическое подключение к резервному источнику питания отвечает АВР.

               В каких случаях будет срабатывать АВР?

В большинстве схем АВР реле контроля фаз (РКФ) определяет ситуации, когда необходимо включить резервный источник питания. Основная функция РКФ – это контролировать наличие напряжения на каждой из фаз (при 3-хфазном питании). Существуют АВР с реле, у которых можно задавать уставки по напряжению, частоте переменного тока, правильному чередованию фаз. Если параметры напряжения выйдут за установленные на реле пределы, то мгновенно подастся сигнал на выключение «аварийного источника питания» и включение резервного (только после проверки наличия напряжения).

               Давайте разберем, из чего состоит АВР. Условно в каждой АВР можно выделить три составляющие: релейный блок управления, силовой блок, блокировка (механическая и электрическая) одновременной подачи электроэнергии от двух вводов.

Современные модели в своем составе помимо упомянутых частей имеют в своем составе микроконтроллер, который обрабатывает сигналы с датчиков, реле и по заранее прописанному алгоритму подает управляющие сигналы силовому блоку. Релейный блок включает в себя не только РКФ, но и реле контроля напряжения (РКН), реле времени (РВ). С помощью реле времени можно менять задержку между переключениями между основным и резервным источниками питания. РВ при необходимости помогает предотвратить ложное срабатывание АВР в таких случаях: при пуске нескольких двигателей, вызывающем просадку напряжения, при кратковременном отключении электропитания основного источника.
Силовая часть АВР
отвечает за подачу электроэнергии по одному из ИП. В качестве силовой части могут использоваться электромагнитный контактор (пускатель), рубильник с электроприводом и статический переключатель (симистор, тиристор). Для питания микроконтроллера схему АВР дополняют источником бесперебойного питания (ИБП), так как в случае питания микроконтроллера от какого-либо ввода существует возможность отключения напряжения, что станет причиной неработоспособного состояния АВР. Специалисты рекомендуют дополнять АВР понятной схемой индикации рабочего состояния и элементами, позволяющими управлять АВР в ручном режиме.

               Разнообразие схем и модификаций АВР позволяет подобрать необходимую модель под Ваш частный случай. Существуют общие требования, предъявляемые к проектируемой АВР. Во-первых, АВР должен обладать быстродействием и безотказностью. Под быстродействием понимается как можно меньшее время между отключением основного источника питания и включением резервного. Безотказность означает, что АВР должен выполнять поставленные перед ним задачи при любых обстоятельствах: исчезновение напряжения на питающей линии (по любой причине) или поломка силового трансформатора. Второе требование – селективность (избирательность) работы АВР. Примером селективности может быть предусмотренное отсутствие реакции АВР на просадку напряжения в результате запуска мощного оборудования потребителем (системы отопления, вентиляции и т. п.). Поэтому особое внимание уделяют регулировкам порогов срабатывания контролируемых величин АВР для каждого ввода. С помощью реле времени устраняют ложные срабатывания АВР, которые возможны при кратковременном отключении питания. Если между АВР и потребителем установить ИБП, то он может подпитывать потребителей (или часть потребителей) электроэнергии в момент принятия системой АВР решения на включение/отключение основного/резервного источника питания. Установка ИБП позволит реализовать следующее требование к АВР – однократность действия, под которым подразумевается предотвращение череды переключений между основным и резервным источником питания из-за неустранённых причин неисправности. При проектировании АВР исключают возможность замыкания между собой 2-х независимых ИП (согласно требованию ПУЭ). Энергонадзор проверяет выполнение данного требования к АВР. В большинстве случаев кроме электрической блокировки коммутирующих элементов силового блока предусматривают еще и механическую блокировку.

               В зависимости от необходимости существуют следующие типовые варианты реализации АВР объекта:

  • Два независимых источника питания и одна нагрузка.
  • Два независимых источника питания и две нагрузки с секционированием.
  • Два независимых источника питания и 3-й источник – дизель-электростанция (ДЭС), с секционированием (или без него), две нагрузки.
  • Два независимых источника питания и 3-й источник – ДЭС с секционированием 1-ого и 2-ого ввода. В случае отсутствия напряжения на обоих вводах происходит питание от ДЭС приоритетной группы потребителей.
  • Один источник питания, а второй – ДЭС.

               Принцип работы АВР носит односторонний характер действия (с приоритетным источником питания) или двухсторонний характер действия (с равноценными источниками питания). При одностороннем действии АВР один ИП является основным, а второй – резервным. При отсутствии напряжения (или при недостаточном уровне напряжения для питания оборудования) АВР переключит питание потребителя с основного на «запасной» ввод. При восстановлении работоспособности основного ввода АВР восстановит электропитание секции потребителей от основного (приоритетного) ИП. Односторонний принцип работы может носить АВР 2, 3 или 4 варианта исполнения. Двухстороннее действие АВР подразумевает наличие двух независимых источников питания, каждый из которой может быть как рабочим (основным), так и резервным. Примером такой АВР может служить первый вариант.

               Одна из главных классификаций АВР, на которую обращают внимание при проектировании системы электроснабжения, – классификация по виду используемого коммутирующего силового устройства. Существует три вида коммутирующего оборудования для АВР – электромагнитный контактор, рубильник с электроприводом, электронный контактор. АВР с применением электромагнитных контакторов – самый распространённый вид, который обязан своей популярностью простоте и относительной дешевизне оборудования. В основе щита АВР используется два силовых контактора с механической или электромеханической блокировкой от одновременного включения и РКФ. К недостаткам такого типа АВР относят отсутствие возможности ручного переключения при неисправности в цепях АВР, вероятность залипания контактов и малое количество циклов срабатывания пускателей.

               АВР с электроприводом рубильника уступает предыдущему типу АВР по быстродействию, но отличается высокой надежностью. Можно также применять механическую или электромеханическую блокировку. К недостаткам данного типа АВР относят дороговизну и сложность конструкции. Теперь о «плюсах» конструкции. В основе АВР лежит рубильник, приводящийся в действие моторным приводом. Привод зачастую управляется микроконтроллером, который может быть частью рубильника или устанавливаться дополнительно. К плюсам можно отнести возможность при необходимости осуществлять переключения в ручном режиме. АВР с электромагнитными контакторами применяют при небольших токах потребителя (до 400 А), а АВР с электроприводом рубильника – свыше 400 А.

               В качестве коммутирующего устройства в схеме электронного АВР используются силовые тиристоры. Основное преимущество данного типа АВР – практически нулевое (меньше, чем частота колебания переменного тока) время переключения между ИП, поэтому переключение между ИП никак не сказывается на работе питаемого оборудования. Эта особенность позволяет не использовать в системе АВР ИБП, применяемые при АВР с электромеханическим коммутирующим устройством.

               От верно подобранного типа АВР, от правильно выполненного подбора комплектующих АВР, от качества монтажа зависит качество и бесперебойность электроснабжения Вашего объекта. Доверять проектирование и установку АВР необходимо только специалистам. Самостоятельные непрофессиональные действия могут привести к непоправимым последствиям. Огромный опыт по реализации проектов, связанных как с разработкой, так и с монтажом шкафа АВР, имеет коллектив компании ЭДС-ИНЖИНИРИНГ.

Автоматический ввод резерва — это… Что такое Автоматический ввод резерва?

Автомати́ческий ввод резе́рва (Автомати́ческое включе́ние резе́рва, АВР) — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.

Общие требования к АВР

  • АВР должен срабатывать за минимально возможное после отключения рабочего источника энергии время .
  • АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.
  • АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.

Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.

Применение

Практическая реализация различных схем, обзорные статьи: Что такое АВР ? Часть вторая. Часть третья Часть четвертая Часть пятая Часть шестая Часть седьмая

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.
Question book-4.svg Схема секционированной системы сборных шин. Секции имеют связь посредством секционного выключателя QS

Согласно ПУЭ все потребители электрической энергии делятся на три категории: I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр. II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта. III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.

АВР разделяют на:

  • АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
  • АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
  • АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
  • АВР без восстановления.

Принцип действия

В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения, подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён еще ряд условий:

  • На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
  • Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
  • На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.

После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился.

В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.

См. также

Источники

  • «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. Энергоатомиздат 1998 ISBN 5-283-010031-7
  • «Автоматическое включение резерва» М. Т. Левченко, М. Н. Хомяков «Энергия» 1971

Ссылки

Принцип работы авр генератора — Морской флот

Содержание

Автомат включения резерва [ править | править код ]

Принцип работы авр генератора

Принцип работы авр генератора

Автоматическое восстановление питания должно обеспечиваться для:

  • электроприемников первой категории — обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания;
  • особая группа электроприемников первой категории — обеспечиваются электроэнергией от трех независимых взаимно резервирующих источников питания. [6]

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Гарантированное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токикороткого замыкания при параллельной работе источников питания гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определённого режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.

АВР разделяют на:

  • АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
  • АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
  • АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
  • АВР без восстановления.

АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.

АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.

Принцип действия [ править | править код ]

Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.

В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения (реле контроля фаз), подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён ещё ряд условий:

  • На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
  • Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
  • На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.

После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился. АВР подразделяется также на системы с восстановлением и без восстановления: при работе с восстановлением при возникновении напряжения на вводе с установленной выдержкой схема восстанавливает исходную конфигурацию. Обычно данный режим выбирается установкой накладок вторичных цепей в соответствующее положение. При восстановлении АВР допускается кратковременная работа питающих трансформаторов «в параллель» для бесперебойности электроснабжения.

В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.

Коммутационный аппарат переключения (переключатель питания) [ править | править код ]

Автоматический [ править | править код ]

Принцип работы авр генератора

Коммутационная аппаратура автоматического переключения — аппаратура автономного действия, состоящая из коммутационного аппарата (аппаратов) переключения и других устройств, необходимых для контроля цепей питания и переключения одной или нескольких цепей нагрузки от одного источника питания к другому. [4] :п. 2.1.2

Автоматические переключатели питания делятся на оборудование:

  • постоянного тока;
  • переменного тока
  • использующие релейно-контакторные схемы;
  • с непрерывной подачей питания при переключении нагрузок;
  • источники бесперебойного питания. [7] :п.1

При автоматическом переключении обеспечивается гарантированное электропитание, когда допускается перерыв на время ввода в действие резервного источника. Бесперебойное электропитание с «мгновенным» вводом в действие резервного источника обеспечивает источник бесперебойного электропитания. [8]

Возможно использование автоматической коммутационной аппаратуры не только во время длительных отключений рабочего источника питания, но и при кратковременных провалах напряжения. Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать автоматическую коммутационную аппаратуру. [9] :с. 61

Принцип работы авр генератораПроблемы с перебоями в энергоснабжении существуют, пожалуй, со времен открытия электричества и знакомы каждому. Одним из выходов из создавшегося положения может стать резервный электрогенератор, на который можно перейти до устранения проблемы. Переключиться на него несложно и вручную, но если объект ответственный или у вас нет желания возиться с рубильниками, эту задачу можно возложить на автомат — АВР для генератора.

Требования к оборудованию резервного питания

Необходимость перехода на резервный источник, как правило, вызвана либо аварийной, либо нештатной ситуацией. В связи с этим нередко все переключения осуществляются неквалифицированным персоналом и зачастую в сложных условиях — в темноте, тесноте, под открытым небом. Именно поэтому требования к резервирующему оборудованию достаточно жесткие:

  1. Безопасность для оператора. Все резервное электрооборудование не должно иметь открытых токоведущих и движущихся частей (за исключением приводных ручек), а его металлические шасси и кожухи нужно заземлить. Отправляя даже неподготовленного человека на переключение, вы должны быть уверены, что он не попадет под напряжение и не повредит руки какими-нибудь фиксаторами или тягами, даже работая при плохом освещении.
  2. Безопасность для электрооборудования. Схема коммутации должна быть такой, чтобы даже при не полностью или не в той последовательности выполненном переключении оператор не смог создать аварийной ситуации — подать встречное напряжение, переключить не все фазы, вызвать короткое замыкание и пр. Все это обеспечит сохранность основных и резервных цепей даже при неумелых или ошибочных действиях человека.
  3. Оперативность. Переход на резервный генератор должен требовать минимум манипуляций и производиться по возможности быстро. Сами устройства коммутации должны быть максимально доступны, чтобы к ним не нужно было взбираться по стремянкам или лазить по люкам. Это особенно важно для ответственных объектов и специального электрооборудования (холодильные установки, системы микроклимата, котлы, печи и пр.).
  4. Наглядность и простота. Конструкция переключателей и рубильников должна быть максимально простой, а схема переключения — наглядной и интуитивно понятной. Это существенно сокращает вероятность ошибки человека и выхода из строя оборудования. Такие схемы проще обслуживать, а ремонт при их поломке будет стоить дешевле.

Стоит отметить, что каким бы методом переключения на резервное питание вы ни пользовались, ручным или автоматическим, все условия должны быть по возможности максимально соблюдены. Ведь именно от этого будет зависеть не только обеспечение бесперебойного питания объекта, но и безопасность людей.

Методы подключения резервного генератора

В зависимости от конкретных требований и возможностей (наличие или отсутствие дежурного персонала, его квалификации, финансов предприятия и пр.) переход на резервный источник может осуществляться одним из трех способов:

  1. Ручное переключение.
  2. Полуавтоматический переход.
  3. Автоматическое переключение.

Для небольших объектов и частных домов вполне подойдет ручная схема подключения бензогенератора к домашней сети. Оборудование таких систем стоит недорого, а присутствие людей в жилом доме подразумевается само собой. Полуавтоматический способ переключения требует участия оператора на том или ином этапе коммутации, а значит, он отлично подойдет как для частных домов, так и для объектов с постоянным, пусть даже неквалифицированным персоналом.

Полностью автоматический переход обычно используется на автоматизированных и ответственных объектах или участках, а также там, где постоянный персонал отсутствует.

Ручное подключение

Для реализации этого метода достаточно обычного перекидного рубильника на нужное количество полюсов и резервного генератора, подходящих мощности и напряжения.

Принцип работы авр генератора

Схема подключения генератора к сети дома через перекидной рубильник

Для того чтобы запитать дом от резервного источника, здесь достаточно лишь повернуть ручку рубильника, на оси которой находятся переключатели А и В. При этом ножи устройства сначала отключат потребителя от основного источника (сети), и лишь затем подключат его к резервному (генератору). В схеме необходимо коммутировать однофазную цепь, рубильник имеет два переключателя или, как принято говорить, полюса. Но существуют и многополюсные приборы, коммутирующие трехфазные линии.

Принцип работы авр генератора

Трехполюсные перекидные рубильник (слева) и переключатели

Первым на рисунке приведен двухпозиционный рубильник, два последних — переключатели, имеющие по три позиции. Рубильник позволяет подключить нагрузку либо к сети, либо к резервному источнику. Третьего не дано. Трехпозиционные приборы имеют третье (промежуточное) положение, в котором нагрузка уже отключена от сети, но еще не подключена к генератору.

Если потух свет, рубильник переключается на бензиновый или дизельный генератор и этот самый генератор запускается. Во время пуска на выходе напряжение частота начнут плавно увеличиваться от нуля до номинала.

В это время двигатели электроприборов сгорят. Будь в вашем распоряжении трехпозиционный переключатель, вы бы смогли сначала просто отключить дом от сети, потом спокойно запустить генератор, вывести его на режим, а уж затем переключиться к резервному электропитанию.

Полуавтоматический переход на другой источник

Этот метод подразумевает автоматизацию тех или иных (не всех) процессов переключения. Участие человека в таком типе переключения все равно необходимо, но сама коммутация становится намного проще и безопаснее как для человека, так и для оборудования.

Автомат переключения на резерв

Этот узел, который несложно собрать своими руками, предназначен для автоматического переключения нагрузки с основного на резервный источник при пропадании первого и наоборот. Для его реализации понадобится электромагнитный пускатель или реле, срабатывающие от 220 В и с контактами, выдерживающими ток домовых потребителей. В качестве примера взято электромагнитное реле РЭК77/3 с тремя группами переключающих контактов:

Принцип работы авр генератора

Электромагнитное реле РЭК77/3 с обмоткой 220 В / 50 Гц

Устройство выдерживает ток до 10 А, и вполне может использоваться в качестве автоматического переключателя на небольшом объекте или в частном доме. Схема же автомата будет выглядеть следующим образом:

Принцип работы авр генератора

Здесь реле исполняет роль автоматического перекидного выключателя. Одна группа контактов переключает фазу, другая — ноль, третья не используется. Обмотка реле питается от основной сети. В исходном положении в линии «Сеть» присутствует напряжение, реле включено и подает напряжение на нагрузку. При пропадании сети реле отпускает и переключает нагрузку на питание от генератора. При возобновлении электроснабжения реле К1 вновь срабатывает, и схема возвращается к питанию от основного источника.

Это полный автомат ввода резерва, но лишь в том случае, когда сам резервный источник всегда под напряжением. Если же в качестве резерва используется бензогенератор, а это чаще всего именно так, то понятно, что система будет полуавтоматической — генератор придется запускать вручную.

С запуском бензогенератора

Эта конструкция в состоянии самостоятельно запустить генератор. Единственное условие — сам генератор должен иметь стартер и дистанционную систему пуска хотя бы кнопкой. Для реализации этой идеи понадобится еще одно реле и пусковой таймер произвольной конструкции:

Принцип работы авр генератора

Подключение бензогенератора к сети дома, схема с автостартом

Здесь реле К1 исполняет те же функции — переключает нагрузку при пропадании основного напряжения. Но дополнительно оно своей третьей группой контактов подает напряжение на стартер и реле времени. Реле периодически пытается завести генератор, с его запуском появляется напряжение на резервной линии. При этом срабатывает реле К2 и своими контактами отключает систему автозапуска бензогенератора.

Но и эта конструкция не является полным автоматом. Во-первых, если генератор по каким-либо причинам не запустится (холодно, плохая регулировка пуска, нет топлива и пр.), устройство будет пытаться заводить его до тех пор, пока не сожжет стартер или не посадит пусковой аккумулятор. Во-вторых, при появлении основного напряжения автоматика переключит нагрузку на него, но не заглушит генератор.

Полный автомат ввода резерва

Для того чтобы полностью автоматизировать процесс, необходимо нечто большее, чем 2 реле — полноценная система контроля. Такая система существует и называется АВР — Автоматический Ввод Резерва. Создаются подобные устройства на базе программируемых AVR контроллеров, имеют в своем составе множество датчиков обратной связи и регуляторов. Сделать такое оборудование самостоятельно сможет лишь квалифицированный специалист.

Но оснастить свой дом или любой другой объект подобным автоматом можно — они есть в продаже, хотя и стоят недешево. Зато список функций, выполняемых стандартным АВР, достаточно велик:

  1. Отключение потребителей от основного источника при пропадании в нем питающего напряжения.
  2. «Умный» запуск генератора с контролем неудачного старта.
  3. Вывод бензогенератора на рабочий режим.
  4. Подключение потребителей к линии генератора.
  5. Подсчет моточасов, контроль температуры двигателя, расхода топлива и пр.
  6. Контроль напряжения, частоты и тока с автоподстройкой режима работы генератора.
  7. Автоматическое переключение на основной источник при возобновлении штатного электроснабжения.
  8. Остановка бензогенератора.
  9. Зарядка аккумулятора стартера.

Сегодня купить блок АВР можно как в комплекте с бензогенератором, так и отдельно. Первый вариант, конечно, проще (узлы адаптированы и подключены друг к другу уже производителем), но финансово неоправдан, если генератор уже есть. В этом случае достаточно приобрести АВР, но перед покупкой обязательно проконсультируйтесь со специалистом о том, сможет ли конкретная модель автомата работать именно с вашим генератором. Структурная же схема подключения генератора с АВР в домовую сеть будет выглядеть примерно так:

Принцип работы авр генератора

Общая схема подключения генератора с блоком АВР

Принцип работы авр генератораПрактически каждый попадал в ситуацию, когда по тем или иным причинам электросети отключали подачу электроэнергии. Перебои в энергоснабжении — это не только мелкие неудобства, но и зачастую серьезные проблемы. Порча продуктов в холодильнике и электродуховке, прерванный процесс стирки. Ну и стоит добавить ко всему этому возможный выход из строя электроприборов, которые начав определенную операцию, не могут остановить ее до окончания процесса.

Наиболее страдают от отключения электроэнергии районы с не особо развитым электрохозяйством — сельские и загородные дома, частные дачи и пр. Но избежать всех вышеперечисленных неприятностей совсем несложно, хотя и потребуются определенные расходы. Для этого достаточно обзавестись резервным мотогенератором. Подключение генератора к домашней сети

Схема и оборудование для подключения должны отвечать следующим требованиям:

  • Оперативность. При пропадании основного напряжения подключение резервного источника должно быть максимально простым и требовать минимум манипуляций, провести которые можно даже при свете спички.
  • Безопасность для человека. Все переключения должны быть безопасны для оператора — он не попадет в темноте под напряжение, не повредит руку каким-нибудь рубильником, не упадет со стремянки и пр.
  • Безопасность для оборудования. Схема должна иметь надежную защиту от нештатных ситуаций, таких как, к примеру, подача встречного напряжения при внезапном появлении основного питания, пропадание «нуля» или заземления на подстанции и пр. Все это может привести к серьезным авариям как в доме, так и на подстанции.
  • Максимальная простота схемы. Это не только обеспечит надежность и наглядность работы оборудования, но и хорошую ремонтопригодность, а также, что немаловажно, более низкую стоимость комплектующих и ЗИПа.

Ручное подключение

Для того чтобы запитать потребитель от генератора, нужно произвести следующие действия:

  1. Отключить домовую сеть от основного источника.
  2. Запустить резервный генератор и дождаться выхода его на рабочий режим.
  3. Подключить домовую сеть к резервному источнику. Именно в такой последовательности. Единственно, первым пунктом в списке можно поставить предварительный пуск резервного генератора, но отключение основной сети и подключение резервной — именно в указанной выше последовательности. Они не должны пересекаться ни при каких обстоятельствах. В противном случае вы рискуете включить источники питания встречно и последствия такого «недоразумения» могут оказаться весьма плачевными.

Специально для исключения подобных ситуаций созданы так называемые перекидные рубильники или переключатели. Взглянем на нижеприведенную схему:

Принцип работы авр генератора

Есть переключатели, имеющие и три положения: основное питание / резервное питание / цепь разомкнута. В среднем положении такого прибора потребитель не подключен ни к одному источнику.

Если в вашем распоряжении не окажется перекидного выключателя, то его несложно собрать самому. Для этого достаточно взять два обычных «автомата» и собрать по схеме, предложенной ниже:

Принцип работы авр генератора

Обратите внимание: при использовании такой конструкции обязательно вставьте фиксирующую планку в специально предусмотренные отверстия каждого из выключателей (отмечена оранжевой полосой). Эта планка не даст переключать каждый прибор отдельно и не допустит встречного включения источников тока.

Автоматическое подключение генератора

Самая простая схема автоматического подключения потребителя к генератору при пропадании основного напряжения не вызывает проблем и реализуется, что говорится, в 5 секунд. Для этого достаточно взять любой соответствующий по мощности и напряжению пускатель с нужным количеством групп переключающих контактов. К примеру, трехполюсное реле РЭК77/3:

Принцип работы авр генератора

При соответствующем включении такое реле будет самостоятельно следить за сетевым напряжением, и при его пропадании переключать потребитель на резервный источник:

Принцип работы авр генератора

Пока в линии «Сеть» есть напряжение, реле находится во включенном состоянии и нагрузка подключена к этой линии. Как только сетевое напряжение пропадет, реле отпустит (на схеме изображено именно такое положение пускателя) и своими нормально замкнутыми контактами подключит нагрузку к линии «Генератор», предварительно отключив ее от основного источника. Когда сетевое напряжение вновь появится, автомат сработает и восстановит питание нагрузки от сети. Тут вроде проблем нет, но как быть с автозапуском генератора? Если его нужно запускать вручную, какой смысл городить огород с автоматическим переключением нагрузки?

Автоматический запуск генератора

Если в конструкции бензогенератора предусмотрена возможность дистанционного пуска, скажем, кнопкой, то вопрос автопуска можно решить минимальными затратами сил и средств. Взгляните на схему ниже:

Принцип работы авр генератора

Несмотря на исключительную простоту такой схемы, она имеет и множество недостатков. Прежде всего, нагрузка переключается на питание от генератора до его пуска — немедленно после пропадания сети. Это значит, что некоторое время, пока генератор не запустится и не выйдет на рабочий режим, на нагрузку будет подаваться неизвестно какое напряжение неизвестной частоты. Это грозит серьезными проблемами очень многим типам оборудования, к примеру, электродвигателям или трансформаторам.

Ну и если генератор не запустится, таймер будет «толкать» его до тех пор, пока полностью не разрядит аккумулятор, лишая вас возможности запустить двигатель хотя бы вручную. Всего этого, конечно, можно избежать, но схема автоматического пуска и переключения на резервное питание серьезно усложнится, и собрать ее сможет только профессионал, знающий как электрику, так и электронику.

Кто не хочет или не может «заморачиваться», а просто желает получить надежный автоматический альтернативный источник питания у себя дома или на даче, необходимо установить модуль АВР — Автоматического Ввода Резерва.

АВР для генератора

Этот прибор может идти как в комплекте с самим генератором, так и докупаться отдельно к уже существующему. Единственное условие — бензогенератор должен предусматривать такую доработку (иметь электрический стартер, дроссельную/воздушную заслонку с электроприводом и пр.).

Функции АВР:

  1. Отключение нагрузки от основной сети при снижении в ней напряжения.
  2. Самостоятельный пуск генератора.
  3. Вывод генератора на рабочий режим.
  4. Переключение нагрузки на питание от генератора.
  5. Постоянный контроль и автоматическая регулировка режима работы генератора — частоты, напряжения, оборотов и пр. (регулятор может быть опцией, т. к. некоторые генераторы им уже оснащены).
  6. Переключение нагрузки на основной источник (сеть) при возобновлении подачи с него напряжения.
  7. Остановка электрогенератора.
  8. Подзарядка стартерного аккумулятора.

Работу АВР проделывает основательную, и собрать его, обладая даже хорошими знаниями электротехники, не так-то просто. Обычно для построения таких агрегатов используются avr — контроллеры, реже — полноценные микропроцессоры и даже компьютерные системы, требующие от мастера глубоких знаний не только электротехники и электроники, но и программирования. Именно из-за сложности повторения полноценных АВР тема самостоятельного изготовления их в данной статье рассматриваться не будет.

«>

почти мгновенное переключение при исчезновении питания

Отдельно стоит упомянуть о том, что такое АВР. Автоматический ввод (включение) резерва. Если у нас есть распредустройство, а это может быть РУ-0,4кВ, РУ-3,15 кВ, РУ-6,3 кВ, РУ-10,5кВ, то у этого РУ есть секции.

От этих секций запитаны всевозможные нагрузки: двигатели синхронные и асинхронные, трансформаторы собственных нужд, сборки сварки, сборки освещения и прочие и прочие ответственные и неответственные механизмы.

Секций может быть от двух до восьми. Может быть и больше, но я не встречал. У каждой секции есть ввод рабочего питания и ввод резервного питания.

Тут возможно много вариантов, но существуют стандартные, которые от объекта к объекту повторяются. Это или у каждой секции свой ввод рабочего питания и между ними секционный выключатель (неявный резерв).

Тут на картинке для примера две секции РУ-6 кВ. От каждой секции запитаны по одной секции 0,4кВ, по одному двигателю 6кВ, и по одному двигателю 0,4кВ с ЧРЭП через понижающий трансформатор. В данном случае при отключении рабочего ввода одной из секций (ВВ1 и ВВ2) происходит АВР (включение секционного выключателя СВ), и секция запитывается от нагруженной секции до восстановления питания.

Второй распространенный вариант, когда секций больше двух, хотя встречается и на двух секциях — у каждой секции по рабочему вводу и резервному вводу. Резервные ввода “собираются” вместе и идут к резервному трансформатору собственных нужд (РТСН) — явный резерв.

При исчезновении рабочего питания отключается выключатель рабочего питания и с заданной выдержкой времени включается ввод резервного питания. Под исчезновением рабочего питания понимаю следующее: напряжение на вводе опускается до величины уставки срабатывания органа минимального напряжения и выключатель отключается.

Также уместным будет упомянуть про время перерыва питания. Значит, у нас напряжение просело до величины — пошел сигнал на отключение рабочего выключателя (это мгновенно) — отключение рабочего выключателя (про это подробнее ниже) — срабатывание уставки АВР — включение резервного выключателя.

Затем когда питание на отключенном вводе восстанавливается происходит переход в нормальное положение. Резервный ввод отключается и включается рабочий. Это вручную или автоматически.

АВР необходим, чтобы быстро восстановить электроснабжение при морганиях напряжения, коротких замыканиях, авариях на оборудовании. Однако, время действия АВР составляет от полсекунды до пары секунд. Теоретически это может привести, но не обязательно, к следующему:

С точки зрения электрика это приводит к:

  • отпаданию пускателей 0,4 кВ
  • большим пусковым токам у ЭД
  • зависанию отдельных систем ЧРЭП

Отпадание пускателей — это отключение электродвигателей, обесточивание сборок КИПиА, несохранение данных в административных корпусах в конце то концов. Для предотвращения этого на пускатели ставят например УЗОПы, которые задерживают механизмы на время действия АВР, тем самым обеспечивая их самозапуск.

Большие пусковые токи при серьезной загрузке секции могут привести к срабатыванию МТЗ вводов, ну и навредить оборудованию. Чтобы снизить пусковые токи на мощные электродвигатели ставят системы частотного регулирования, гидромуфты, или РЭПы. Причем, чем выше напряжение, тем выше стоимость ЧРЭПа. Поэтому на станциях подключают двигатели 6 кВ через понижающие трансформаторы 6/0,4 и покупают ЧРЭПы на 0,4 кВ.

Но и тут встречаются казусы, когда вроде купили ЧРЭП, а потом оказывается, что к нему надо покупать бесперебойник, который стоит как сам этот ЧРЭП. А без бесперебойника при кратковременном исчезновении питания ЧРЭП зависает и всё тут. Но не все частотники этим грешат. Да и вообще это ошибка тех, кто выбирал.

С точки зрения директора это приводит к:

  • нарушению производственного цикла
  • потерям в биллионы долларов из-за недоотпуска
  • серьезным авариям

И будь то потери электроэнергии, тепла, нефти, газа или металла суть ясна — перерыв питания должен быть кратковременный и безаварийный.

БАВР — быстродействующий спаситель заводов

Значит будем разбираться что за зверь такой и где его внедряют и зачем. Быстродействующим АВР можно считать тот, у которого весь цикл переключения составляет до 0,1с. Впечатляющая цифра, не так ли?

За счет чего такое вообще стало возможно? В самую первую, в самую главную очередь виной тому стали новые поколения выключателей, которые пришли вместо масляных и воздушных — это вакуумные и элегазовые выключатели, которые позволяют производить переключения уже не за десятые доли секунды, а за сотые.

На запрос про БАВР интернет предложил ознакомиться с различными устройствами. Про них речь и пойдет ниже: SUE_3000, БАВР_072, БАВР10_SHELL_FT2, БМРЗ-БАВР, БАВР-НАТЭК. Сто процентов существуют и другие аналоги, но я рассматриваю то, что открыто в интернете для ознакомления.

Любой быстродействующий АВР состоит из блока управления и быстродействующих выключателей рабочих и резервных вводов. На БАВР приходят сигналы от трансформаторов напряжения и трансформаторов тока, а также дискретные сигналы положения контактов выключателей. Заводятся и другие аналоговые и цифровые сигналы, но это индивидуально для каждого устройства. Кроме этого существуют условия пуска и блокировки от пуска.

Так как время срабатывания БАВР составляет десятки миллисекунд, то необходимо предотвратить возможные синфазные включения. Это когда напряжения рабочего и резервного вводов отличаются по фазе и при включении может произойти наложение, которое удвоит итоговую величину напряжения. А это неблагоприятно для механизмов и всего РУ. Питание различных БАВРов осуществляется от постоянного или переменного опертока. Ниже приведу известные данные по отдельным системам быстрого АВР.

SUE3000 от ABB

По данному БАВРу имеется достаточно подробное описание, которое легко раздобыть в интернете, или в бумажном варианте на специализированной выставке. Особое внимание производитель уделяет пункту про то, что параметры для пуска устройства постоянно подсчитываются и во время подачи сигнала на БАВР все параметры уже подсчитаны. Но с другой стороны питание только от постоянного тока. Все классы напряжения по паспорту, но про 400В ничего не написано, так что любые классы напряжения с ТТ-1 или 5А, ТН-100…145В.

Характеристики SUE_3000
Производитель ABB
Классы напряжения 6, 10
Выключатели Быстродействующие выключатели
Возможные схемы
  • рабочий и резервный ввод на секции
  • неявный резерв
  • три питания на секцию
Что измеряет Идут показания с трансформаторов тока и напряжения, а также положения контактов выключателей и происходят постоянные замеры величин. Если приходит сигнал, то токи, напряжения и блокировки уже высчитаны и сразу происходит БАВР
Блокировки

По величине заданной уставки могут помешать работе следующие параметры:

  • угол сдвига фаз между Uраб и Uрез
  • разность частот между Uраб и Uрез
  • контроль напряжения Uрез
  • контроль напряжения Uраб
Условия пуска

Срабатывает от быстродействующего реле, параллельно с ним

Режимы переключения:

  • быстрое (сразу на отключение и включение), не произойдет, если сети не синхронизированы
  • на первом совпадении фаз
  • с функцией времени
  • по остаточному напряжению
Время переключения устройства, мс Время между защитным срабатыванием устройства и подачей сигнала на выключатель
Осциллографирование +
Питание устройства судя по инструкции =
Документация bavrsue3000.pdf

БАВР_072

Для данного устройства также доступна подробная документация с примерами внедрения на различных объектах. Особо следует рассмотреть устройство БАВР для сетей 0,4кВ.

Характеристики БАВР_072
Производитель НПК Энергетическое оборудование
Классы напряжения 0,4 6 10 20 35
Выключатели Статические, вакуумные, элегазовые
Возможные схемы Явный, неявный резерв 1-, 2-, 3-х секционных РУ
Что измеряет

Показания с ТН, ТТ и выключателей подаются на:

  • орган минимального напряжения
  • орган направления тока
  • орган угла рассогласования между векторами напряжений рабочей и резервной секций двух ТП
  • орган контроля синхронизма при включении
  • орган максимального и минимального тока
Блокировки
  • сигнал от РЗА
  • от блока контроля синфазного включения
  • неисправность ТН
  • отключен другой ВВ
  • одновременное снижение напряжение на двух секциях
Условия пуска
  • обесточен ввод
  • отключение рабочего ввода при отсутствии запрета БАВР
  • сформирован сигнал на отключение вводного выключателя
Время переключения устройства, мс >3…9
Полное время АВР, мс
  • Заявлено
  • 0,4 кВ – 23-70
  • 6(10) кВ – 23-78
  • 20-35 кВ – 46-110
Осциллографирование + (запись 200мс)
Питание устройства AC, DC 110,220
Документация bavr072.pdf

БАВР10_SHELL_FT2

Достойный конкурент, но для своих целей.

Характеристики БАВР10_SHELL_FT2
Производитель Таврида электрик
Классы напряжения 6, 10кВ
Выключатели Рекомендуется BB/TEL
Возможные схемы Схема неявного резерва
Что измеряет Фазные токи, напряжения до вводов, напряжения нулевой последовательности секций, P и Q вводов, cosf вводов, напряжения симметричных составляющих
Блокировки
  • от РЗА на вводе
  • от синфазного включения
  • неисправность ТН
  • сигнал от отключенного выключателя
  • одновременное снижение напряжения на двух секциях
  • при других запрограммированных условиях
Время переключения устройства, мс
Полное время АВР, мс
Осциллографирование память от 4МБ до 4ГБ, просмотр с помощью HiperTerminal
Питание устройства =110/220, ~110/220
Документация bavr10shellft21.pdf

БМРЗ-БАВР

Время работы устройства чуть больше, чем у аналогов. Но в документации приведены все данные. Хоть бери и делай свой аналог. Шутка. Это очень почетно и круто, когда вся документация есть.

Характеристики БМРЗ-БАВР
Производитель НТЦ Механотроника
Каналы

Аналоговые:

  • 6 входов по току (0,25…250А)
  • 10 входов по напряжению (2…264В)

Дискретные:

  • 30 универсальных (постоянка и переменка)
  • 2 постоянного тока
Выключатели быстродействующие
Возможные схемы Явный и неявный резерв; режимы АВР, БАВР и возврат нормального режима (ВНР)
Пуск происходит по команде от быстродействующей РЗА, по углу, изменение направления мощности
Блокировки
  • по углу
  • от несинхронного включения
  • контроль измерительных цепей ТН
  • по реактивному току
Время переключения устройства, мс
Полное время АВР, мс зависит от типа выключателей
Осциллографирование Устройство регистрирует параметры девяти срабатываний АВР, БАВР, ВНР. Осциллограммы можно изучить в программе fast view от Механотроники
Питание устройства постоянный или переменный, 110 или 220В
Документация bavrbmrz.pdf

В общем, БАВРы достаточно активно распространяют в нефтегазовой отрасли, на заводах, так как там потеря электроэнергии несет существенные экономические потери в виде недоотпуска производимой продукции. Встречаются БАВРы и на ТЭЦ. В общем, использование данного устройства должно рассматриваться в каждом случае индивидуально. И при выборе среди отдельных производителей следует опираться на опыт внедрения на других предприятиях в рамках одного региона, наличие русской документации и полноты документации (схемы, описание функций, техподдержка).

Достоинства всех БАВРов примерно одинаковы, хотя отдельные производители заявляют о конкурентных преимуществах. Общие для всех устройств преимущества вытекают одно из одного и взаимосвязаны, перечислим их:

  • Уменьшение пусковых токов. Вместо стандартных 5-7*Iном, это будут 2-3*Iном. Уменьшение пусковых токов также увеличивает срок службы электродвигателей и насосов
  • Остаточное напряжение остается на высоком уровне
  • Повышается успешность самозапуска, причем не только ответственных механизмов, но и всех механизмов собственных нужд
  • Обеспечивается непрерывный технологический процесс
  • Значительно уменьшается время переходного процесса по сравнению с традиционными АВР

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *