Асинхронный серводвигатель: . . :. . :. . . Mecapion. KEB SM. – Серводвигатели – синхронные и асинхронные

Содержание

Серводвигатели – синхронные и асинхронные

Для динамичных и точных сервоприводных систем у нас тоже есть модульная система двигателей. Выберите из трех синхронных и одной асинхронной серий свой оптимальный серводвигатель: компактный, малоинерционный и мощный. Множество типоразмеров и вариантов конструктивной длины обеспечивают широкую сферу применения и надежный пусковой момент.

Что такое серводвигатели?

Серводвигатели

Серводвигатель – это двигатель, который позволяет контролировать точное положение вала двигателя, а также частоту вращения и/или ускорение. Для этого применяются соответствующие датчики и способы автоматического регулирования. Раньше серводвигатели были вспомогательными приводами, которые конструировались для применения в станках. Впрочем, своим названием серводвигатель обязан латинскому слову „servus“, что по-русски означает „слуга“. В качестве серводвигателей может использоваться

асинхронный двигатель, синхронный двигатель или двигатель постоянного тока. То есть различие между этими двигателями заключается не в самом принципе привода, а только в их возможностях регулирования.

Какие серводвигатели существуют?

Серводвигатели можно разделить на синхронные и асинхронные. Но это всегда привод, работающий в условиях электронного регулирования положения, скорости или момента – либо комбинации этих параметров. При этом предъявляются очень высокие требования к динамике, диапазонам регулирования и/или к точности движения. Серводвигатели обычно применяются в сочетании с системами автоматизации и управления

, например в упаковочных машинах.

Наше предложение: Синхронные и асинхронные серводвигатели

Асинхронные серводвигатели

Асинхронные серводвигатели подходят для применения в таких системах, где большие внешние моменты инерции нужно перемещать в установках и машинах, обеспечивая высокую надежность регулирования. Для этого SEW-EURODRIVE предлагает в серии двигателей DRL.. соответствующие решения для привода.

Синхронные серводвигатели

Синхронные серводвигатели – это приводы, в которых ротор с помощью закрепленных на нем постоянных магнитов синхронно приводится в движение вращающимся полем в статоре. Синхронный двигатель вращается синхронно подаваемой частоте вращающегося поля

.

Этот вариант привода работает от преобразователя частоты, который обеспечивает подходящий, управляемый трехфазный ток. Для этого в ассортименте SEW-EURODRIVE есть различные исполнения. Оптимизированные серводвигатели серии CMP.. можно в зависимости от применения адаптировать к высокой динамике или высоким нагрузкам. Классические сферы применения – пищевая промышленность, строительство, автомобилестроение, упаковочная техника и деревообработка.

Основной особенностью синхронных серводвигателей серии CM..являются оптимальные характеристики регулирования, высокий вращающий момент и динамика. Эти двигатели идеально подходят для применения в логистике, например в качестве приводов портальных подъемников или стеллажных кранов-штабелеров.

Асинхронный серводвигатель (сервомотор). Частотное управление

Данный вид двигателей широко известен своей технологичностью и непритязательностью к условиям работы, что важно для условий промышленного производства со всеми его особенностями. Небольшая масса, скромные габариты и привлекательная себестоимость, лёгкость обслуживания выгодно выделяют его среди другого электрооборудования. Хотя в 90-е годы началась активная замена синхронными серводвигателями, но асинхронный тип по-прежнему занимает свою долю на предприятиях и массово используется в промышленности.

На рисунке схематичное изображение асинхронного двигателя.

Асинхронный двигатель с точки зрения математики

Полное описание нелинейной системы с элементами, которые взаимно перемещаются выходит довольно объемным. Физические явления кажутся простыми, напряжения, токи и потокосцепления являются изменяемыми векторными характеристиками. Это частота, фаза и амплитуда. Изучает работу такого оборудования теория электрических машин.

Асинхронные машины обладают заметной нелинейностью. Магнитный поток связан с намагничивающим током. Из-за переменного насыщения магнитной цепи сопротивления роторной цепи определяются частотой и температурой.

Для определения нагрузки асинхронного электродвигателя, в частном случае серводвигателя, нужно кроме сопротивлений схемы замещения знать и другие переменные, а именно частоты, напряжения и скольжения.

Для расчета и дальнейшего изучения и прогнозирования режима работы такого оборудования и электроприводов на этой базе требуется знать математическое выражения зависимостей скольжения от внутренних параметров и режимов его работы.

Тормозные режимы работы

При частотно-управляемом торможении – этот режим работы не уступает по важности двигательному. Возможно использование механики, тем не менее, частотное управление даёт возможность производить торможение привода за счёт электричества. Что в значительной степени выгоднее.

Асинхронный серводвигатель можно использовать в режиме двигателя и в 3-х режимах торможения, которые различаются направлением потоков энергии.

В режиме двигателя мощность передаётся от источника электроэнергии на вал двигателя. Магнитное поле вращается, дублируя направление, что и вал машины. Скорость вращения вала меньше скорости вращения поля.

Как регулировать напряжение.

Для управления асинхронными электродвигателями, регулировку напряжения статора в чистом виде не производят. Напряжение статора меняют вместе с частотой напряжения подаваемого на статор. Основные виды характеристик U/F и U/F2. Вид характеристики, по которой будет управляться двигатель, выбираются в преобразователе частоты или сервоприводе.

Для формирования синусоидального тока статора обычно используются векторный и скалярный способы формирования напряжения. Наиболее выгодным оказывается векторный режим, который позволяет создать б`ольшую амплитуду выходного напряжения, чем скалярный.

Когда мы управляем напряжением статора, то управляем скорее не крутящим моментом, а больше статическим запасом крутящего момента.

Асинхронный серводвигатель. Как это работает? Цикл ремонт

Асинхронные серводвигатели получили широкую известность за свою непритязательность к условиям работы и технологичность. Обладают небольшой массой, скромными габаритами и привлекательной себестоимостью, легки в обслуживании. Такое электрооборудование выгодно выделяется. В 90-е годы начинается активное применение синхронных сервомоторов, но и сейчас асинхронный серводвигатель сохраняет свою долю в массовом использовании, особенно в промышленности.
Более углубленное изучение нелинейных систем элементы которых перемещаются друг относительно друга было бы очень долгим. Токи, потокосцепления, напряжения представляют собой изменяемые векторные величины. Они называются частота, амплитуда и фаза. Всё это изучается в теории электрических машин.
Асинхронным двигателям свойственна значительная нелинейность. Магнитный поток и намагничивающий ток связаны между собой. Сопротивления роторной цепи определяются температурой и частотой.

Чтобы определить нагрузку асинхронного серводвигателя, требуется помимо сопротивлений схемы замещения ещё знать и другие переменные. Потребуются напряжения, частоты, скольжения.
Чтобы выполнять дальнейшие расчёты с изучением и прогнозированием режимов работы следует знать математические выражения зависимости скольжения и внутренних параметров, а также режимов его работы.
Для частотно-управляемого торможения тормозной режим работы так же важен как двигательный. Допускается применять механику, при этом частотное управление позволяет осуществлять торможение привода с помощью электричества, а это во многом выгоднее.
Асинхронный серводвигатель возможно применять в качестве двигателя, либо в трёх режимах торможения. Эти три режима различаются между собой тем как движутся потоки энергии. У них разное направление.
Режим двигателя предполагает передачу мощности от источника электроэнергии к валу двигателя. Магнитное поле при этом вращается и дублирует направление вала машины. Скорость вращения поля больше скорости вращения вала.
Чтобы управлять асинхронным серводвигателем, не производят регулировку напряжения статора, вместо этого, его(напряжение) меняют вместе с частотой напряжения, которое подаётся на статор. При этом основными параметрами являются U/F и U/(F в квадрате). В преобразователе частоты или сервоприводе выбирается вид характеристики по которой управляется серводвигатель.
Чтобы создать синусоидальный ток статор применяют скалярный и векторный способ формирования напряжения. Самым выгодным является векторный режим. Он даёт возможность получить увеличенную амплитуду входного напряжения, по сравнению со скалярным.
Управление напряжением статора ведёт больше не к регулированию крутящего момента, а скорее к изменению статического запаса крутящего момента.
Дополнительно планирую рассмотреть ремонт серводвигателей в домашних условиях и процесс работы в специализированных организациях.

Асинхронный сервомотор (серводвигатель, servo motor ) Bosch Rexroth Indramat IndraDyn A. Ремонт.

Многофункциональный Асинхронный сервомотор (серводвигатель, servo motor) Bosch Rexroth Indramat IndraDyn A это настоящее немецкое качество от известного производителя — хороший выбор!

Высокая удельная мощность модельного ряда асинхронных сервомоторов MAD и MAF позволяет применять их в системах с блоками управления электромоторов, сервоприводами и на шпинделях, например, в металлообрабатывающих станках. Датчики положения с высоким разрешением в однооборотном и многооборотном исполнениях для точного перемещения используется на обрабатывающих центрах.

В данных двигателях установлен стопорный тормоз, а также можно заказать мотор со специальными подшипниковыми опорами для высоких скоростей или повышенных радиальных нагрузок. Защита класса IP65 позволяет использовать сервомотор в сложных промышленных условиях. Благодаря конструктивным решениям Bosch Rexroth Indramat IndraDyn серии A удобно производить техническое обслуживание, например, вентилятор можно поменять при работающем двигателе.

Рассмотрим разновидности асинхронных сервомоторов (серводвигателей) Bosch Rexroth Indramat.

Наиболее часто встречаемые модели в ремонтном центре асинхронные сервомоторы и серводвигатели Bosch Rexroth Indramat:

Асинхронные серводвигатели модель Rexroth IndraDyn A модель MAD:

MAD100B, MAD100C, MAD100D, MAD130B, MAD130C, MAD130D, MAD160B, MAD160C, MAD180C, MAD180D, MAD225C,

Асинхронные серводвигатели модель Rexroth IndraDyn A модель MAF:

MAF100B, MAF100C, MAF100D, MAF130B, MAF130C, MAF130D, MAF160B, MAF160C, MAF180C, MAF180D, MAF225C,

Асинхронные серводвигатели модель Rexroth ADF:

ADF104B, ADF104C, ADF104D, ADF134B, ADF134C, ADF134D, ADF164B, ADF164C, ADF184D, ADF184C,

Сервисный центр производит ремонт асинхронных сервомоторов и серводвигателей (servo motor) Bosch Rexroth Indramat IndraDyn A.

При выходе из строя сервомотора (серводвигателя) мы не советуем заниматься самостоятельным ремонтом, а настоятельно рекомендуем обратится в специализированный сервисный центр.

Наш Сервисный центр «Кернел» сможет произвести диагностику сервомотора, а при наличии комплектующих, ремонт за 1 день.

Примерные сроки выполнения работ:

  • Настройка энкодера сервомотора 1 день.
  • Замена сальников и подшипников от 1 дня.
  • Ремонта тормоза от 1 дня.
  • Перемотка силовых обмоток сервомотора от 7 дней.

Если ваш сервомотор окажется неремонтопригодным, то у нас на складе есть много ходовых сервомоторов.

Звоните к нам по телефону +78482797854, +79171215301

и высылайте заявку на электронную почту [email protected]

Серводвигатели против шаговых двигателей — ООО «Артель» ЛТД

Серводвигатели против шаговых двигателей.

Что такое шаговый электродвигатель и принцип его работы:

Шаговый электродвигатель — это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.

Шаговые двигатели можно отнести к группе бесколлекторных двигателей постоянного тока. Шаговые двигатели, имеют высокую надежность и большой срок службы, что позволяет использовать их в индустриальных применениях. При увеличении скорости двигателя, уменьшается вращающийся момент.
Шаговые двигатели делают больше вибрации, чем другие типы двигателей, поскольку дискретный шаг имеет тенденцию хватать ротор от одного положения к другому. За счет этого шаговый двигатель во время работы очень шумный. Вибрация может быть очень сильная, что может привести двигатель к потери момента. Это связано с тем, что вал находится в магнитном поле и ведет себя как пружина. Шаговые двигатели работают без обратной связи, то есть не используют Энкодеры или резольверы для определения положения.
Типы:
Существует четыре главных типа шаговых двигателей:

  • Шаговые двигателя с постоянным магнитом
  • Гибридный шаговые двигателя
  • Двигатели с переменным магнитным сопротивлением
  • Биполярные и униполярные шаговые двигатели

Преимущества Шагового двигателя:

  • Устойчив в работе
  • Работает в широком диапазоне фрикционных и инерционных нагрузок и скоростей, скорость пропорциональна частоте входных импульсов.
  • Нет необходимости в обратной связи
  • Намного дешевле других типов двигателей
  • Подшипники — единственный механизм износа, за счет этого долгий срок эксплуатации.
  • Превосходный крутящий момент при низких скоростях или нулевых скоростях
  • Может работать с большой нагрузкой без использования редукторов
  • Двигатель не может быть поврежден механической перегрузкой
  • Возможность быстрого старта, остановки, реверсирования

Главным преимуществом шаговых приводов является точность. При подаче потенциалов на обмотки, шаговый двигатель повернется строго на определенный угол. Шаговый привод, можно приравнять к недорогой альтернативе сервоприводу, он наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.

Недостатки шагового двигателя:

  • Постоянное потребление энергии, даже при уменьшении нагрузки и без нагрузки
  • У шагового двигателя существует резонанс
  • Из-за того что нет обратной связи, можно потерять положение движения.
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность

Применение.
Шаговые двигателя имеет большую область применения в машиностроении, станках ЧПУ, компьютерной технике, банковских аппаратах, промышленном оборудовании, производственных линиях, медицинском оборудовании и т.д.

Что такое серво двигатель и принцип его работы:

схема серводвигателя

Серводвигателя делятся на категории щеточные (коллекторные) и без щеточные (без коллекторные) . Щеточные (коллекторные) серводвигатели могут быть постоянного тока, без коллекторные серводвигатели могут быть постоянного и переменного тока. Серводвигатели с щетками (коллекторные), имеют один недостаток каждые 5000 часов необходима замена щеток. На серводвигателях всегда есть обратная связь, это может быть энкодер или резольвером. Обратная связь необходима, чтобы достичь необходимой скорости, либо получить нужный угол поворота. В случаях высоких нагрузок и если скорость окажется ниже требуемой величины, ток пойдет на увеличение , пока скорость не достигнет нужной величины, если сигнал скорости покажет, что скорость больше, чем нужно, ток, пойдет на уменьшение. При использовании обратной связи по положению, сигнал о положении можно использовать чтобы остановить двигатель, после того, как ротор двигателя приблизится к нужному угловому положению.
АС серводвигатель — двигатель переменного тока. В ценообразовании двигатель переменного тока дешевле двигателя постоянного тока. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели и коллекторные.
В синхронных двигателях переменного тока ротор и магнитное поле вращается синхронно с одинаковой скоростью и в одном направлении с статором, а в асинхронных двигателях переменного тока ротор вращается несинхронно по отношению с магнитным полем. В асинхронном двигателе из-за отсутствия коллектора (щетки) регулировка оборотов происходит за счет изменения частоты и напряжения.

DC серводвигатель — двигатель постоянного тока.
Серводвигатели постоянного тока из за своих динамических качеств могут быть использованы приводом непрерывного действия. Серводвигатели постоянного тока могут постоянно работать в режимах старт, остановка и работать в обоих направлениях вращения. Обороты и развиваемый крутящий момент можно изменять путем изменения величины напряжения тока питания или импульсами.

Преимущества серводвигателей:

  • При малых размерах двигателя можно получить высокую мощность
  • Большой диапазон мощностей
  • Отслеживается положение, за счет использования обратной связи
  • Высокий крутящий момент по отношении к инерции
  • Возможность быстрого разгона и торможения
  • При высокой скорости, высокий крутящий момент
  • Допустимый предел шума при высоких скоростях
  • Полное отсутствия резонанса и вибрации
  • Точность позиционирования
  • Широкий диапазон регулирования скорости.
  • Точность поддержания скорости и стабильность вращающего момента.
  • Высокий статический момент Мо при нулевой скорости вращения.
  • Высокая перегрузочная способность: Mmax до 3.5Mo, Imax до 4Io
  • Малое время разгона и торможения, высокое ускорение (обычно > 5 м/с2 ).
  • Малый момент инерции двигателя, низкий вес, компактные размеры.

Пример работы двигателя:
На данном примере я перескажу вам принцип работы серводвигателя. После того, как вы сгенерировали управляющую программу, она создается в системе G-кодов, то есть ваша линия, окружность или любой созданный вами объект конвертируется в перемещение по координатам X,Y, Z на определённое расстояние. За расстояние отвечают импульсы, которые подаются через блок управления на двигатель. При перемещении любой из осей, например на 100 мм, драйвер (блок управления) подает определённое напряжение на двигатель, вал двигателя (ротор). Вал двигателя соединен с ходовым винтом (ШВП), вращение оборотов двигателя отслеживается энкодер. При вращении ходового винта по любой из осей, потому что при использовании серво, энкодеры (обратная связь) устанавливаются на тех осях, где вы хотите определить положение, на энкодер подаются импульсы, которые считываются системой управления ЧПУ. Системы ЧПУ программируются так, что ни понимают что, например, для перемещения на 100 мм необходимо получить определенное количество импульсов. Пока система ЧПУ не получит нужное количество импульсов на вход драйвера (блока управления) будет подаваться напряжение задания (рассогласование). Когда портал станка проедет заданные 100 мм, система ЧПУ получит нужное количество импульсов и напряжение на входе драйвера упадет до 0 и двигатель остановится. Прошу вас заметить, что преимущество обратной связи в том, что если по какое то либо причине произойдет смещение портала станка, энкодер отправит на систему управления нужное количество импульсов, для подачи нужного напряжения на согласования драйвера (блока управления), и двигатель поменяет угол. Для того что разногласие было равно 0, это помогает удерживать станок в заданной точке с высокой точностью. Не все типы двигателей способны, обеспечивать динамику разгона, нужный крутящий момент и т. п.

Сравнительная характеристика по основным параметрам

Шаговые двигателиСерво двигателя

Срок эксплуатации и обслуживание

Шаговые двигатели – нет щеток, это увеличивает срок эксплуатации до многих лет, единственным слабым местом являются подшипники, могут работать в большом диапазоне высоких температур. Срок эксплуатации в разы дольше любого типа двигателя.

Из всех видов серво двигателей, самые дешевые это двигателя коллекторного типа (со щетками), они менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.
Другой тип бесколлекторных сервоприводов производятся по надежности как и шаговые двигателя, отсутствие щеток увеличивает срок эксплуатации, но не уменьшает стоимость ремонта. В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Ремонт

Очень тяжело повредить и износить подшипник. Как и в любом двигателе возможно повреждение обмотки двигателя. Из низкой цены проще купить новый шаговый двигатель.

В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Точность перемещений

При использование точных механизмов, может быть не ниже +/- 0.01 мм

сервоприводы имеют высокую динамическую точность до 1-2мкм и выше (1 мкм = 0.001 мм)

Скорость перемещения

В лазерно гравировальных станках скорость 20 – 25 метров в минуту. Если мы говорим о фрезерных станках ЧПУ с тяжелыми порталами и балками. Максимальная скорость перемещения до 9 м/мин.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин при использование высокосортной механике.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Потеря шагов при повышении скорости и нагрузки

При высоких скоростях и высоких нагрузках происходит потеря шагов. Эта не проблема возможна при воздействии внешних факторов: ударов, вибраций, резонансов и т.п.

У серво двигателей присутствует обратная связь, что полностью исключает потерю шагов.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Разница в цене

По цене шаговый двигатель намного дешевле своего товарища серво двигателя.

Минимум в 1,5 раз дороже шагового двигателя.

Каждый тип двигателя предназначен для своей задачи. В некоторых случаях нужно использовать шаговых двигатель, а для некоторых задач необходимо использовать только серво двигатель. В фрезерных станках ЧПУ широко используются оба типа двигателей, просто у каждого из них есть свои задачи, и иногда не целесообразно переплачивать за серво, при небольших объемах производства.

Подведем черту сравнения серводвигателей и шаговых двигателей:

Как и было сказано раньше, шаговый двигатель не может вам дать высокую скорость и мощность и поэтому одно из его применений — в станках ЧПУ недорого сегмента, например фрезерных деревообрабатывающих станках с ЧПУ «АртМастер» 2112, 2515, 3015базовой комплектации. Данный вид станков на средней скорости покроет большой ассортимент работ: обработки дерева, пластика, ДСП, МДФ, легких металлов и других материалов.

Если же вас не устраивают скоростные характеристики, Вам необходимо рассмотреть фрезерные деревообрабатывающие станки с ЧПУ «АртМастер» 2112, 2515, 3015(авт.) и высокоскоростной фрезерный деревообрабатывающий станок «АртМастер 3015 Racer».

Вы всегда должны для себя понимать, что сервомоторы позволяют вам с экономить время на холостых переходах, при этом вы не должны забывать правильно оптимизировать количество проходов. Скорость фрезеровки всегда зависит от мощности режущего инструмента (электрошпинделя) и типа фрезы. Мы не сможете получить хорошую скорость фрезеровки при низком качестве инструмента. Вы получите либо брак в изделии, либо Вам потребуется постоянная замена режущего инструмента. То есть при использовании высоких скоростей, при обработке материала вы не должны забывать о качестве и типе инструмента для фрезеровки. Дорогой инструмент не только быстрее режет, но и служит дольше. И прошу не забывать другое преимущество серво: высокая скорость и производительность в разы выше, чем у шагового при фрезеровке объёмных изображений (фото), резьбы (фото). При наличии смены инструмента, вакуумного стола вы можете оптимизировать ваше производство и минимизировать отходы.

Если вы хотите добиться увеличения объёмов выполненной работы на вашем производстве, решение только одно — сервомоторы, а для старта или изготовления фасадов, дверей, столешниц, и прямолинейного, криволинейного раскроя при объёмах производства от 500-1000 кв.м, вы можете остановить свой выбор на станках с шаговыми двигателями.

какова разница и что выбрать? — MULTICUT

31.01.2019

В качестве электропривода порталов и исполнительных узлов фрезерно-гравировальных станков с чпу и оборудования для плазменной резки с ЧПУ применяются шаговые двигатели и сервоприводы. Что лучше: шаговый двигатель или сервопривод, и в каких случаях применение того или иного электропривода экономически и технически оправданно, рассмотрим в данной статье.

Сервопривод станка с ЧПУ

Устройство шагового привода

Шаговый привод состоит из синхронной электрической машины и управляющего контроллера. Последний обеспечивает подачу управляющих сигналов на обмотки двигателя и их попеременное включение в соответствии с заданной программой.

Устройство шагового двигателя

Шаговый двигатель — электрическая машина, преобразующая управляющие сигналы в перемещение вала на определенный угол и фиксацию его в заданном положении. Количество шагов таких электродвигателей составляет от 100 до 400, угол шага — от 0,9-3,6°.

Принцип работы шагового двигателя

Состоит это электромеханическое устройство из статора, где размещены катушки возбуждения, и вращающейся части с постоянными магнитами или обмотками. Такая конструкция ротора обеспечивает его фиксацию после отработки управляющей команды.

На статоре расположено несколько обмоток. При подаче напряжения на катушку, под воздействием магнитного поля ротор поворачивается на определенный угол в соответствии с пространственным положением обмотки. При ее обесточивании и подаче управляющего сигнала на другую катушку вращающаяся часть электродвигателя занимает другую позицию. Каждый поворот вала соответствует углу шага. При обратной последовательности подачи напряжения на катушки ротор вращается в противоположном направлении.

Для поворота ротора на меньший угол одновременно включаются 2 обмотки. Количество шагов ограничено и зависит от числа полюсов статора электромотора. Для обеспечения плавного вращения ротора на катушки статора подают разные токи, разность которых определяет положение ротора. Такой способ управления позволяет снизить дискретность и увеличить количество шагов до 400.

К числу недостатков шаговых двигателей можно отнести довольно низкую скорость, пропуск шагов при высокой (выше расчетной) нагрузке на валу, снижение момента при высокой частоте вращения и большое время разгона.

Шаговые двигатели

Устройство сервопривода

Сервопривод состоит из синхронного двигателя, датчика скорости и положения, а также управляющего контроллера. Основная разница между шаговым двигателем и сервоприводом состоит в наличии обратной связи по положению, скорости, моменту на валу ротора.

Электропривод такого типа построен на базе следящей схемы автоматического регулирования. При несоответствии скорости или другой величины контроллер будет подавать сигналы на отработку, пока требуемый параметр или положение вала не будет соответствовать заданному. В качестве датчика обратной связи используют абсолютные и относительные энкодеры различных типов и конструкций.

Устройство сервопривода

Принцип действия сервопривода

Управляющее устройство в соответствии с заданной программой подает напряжение на сервопривод, который соединен с порталом станка. Двигатель перемещает рабочий орган. При этом энкодер вырабатывает импульсы, поступающие на контроллер. Подсчет их числа осуществляет управляющее устройство. Количество импульсов пропорционально перемещению портала. При достижении рабочим органом заданного положения на электромотор перестает поступать напряжение. Портал фиксируется. Пока число импульсов, зафиксированных контроллером с датчика, не достигнет запрограммированной величины, двигатель будет осуществлять перемещение рабочего органа.

Шаговый сервопривод можно также настроить на поддержание постоянной частоты вращения вне зависимости от нагрузки или постоянного момента при разной скорости.

К достоинствам сервоприводов относятся точность позиционирования, динамика разгона и отсутствие снижения момента при высоких скоростях. Ограничивает применение сервопривода, как правило, достаточно большая стоимость.

Чем отличается сервопривод от шагового двигателя?

Критерий сравнения Шаговые двигатели Сервоприводы
Эксплуатационный ресурс Шаговые электромоторы не имеют коллекторного узла, подверженного износу. Также они не имеют частей, нуждающихся в регулярном техобслуживании и замене Коллекторные серводвигатели необходимо регулярно обслуживать. Максимальный срок службы коллекторного узла — 5000 часов непрерывной работы. При этом бесщеточные сервомоторы не уступают в надежности шаговым двигателям
Точность перемещений исполнительного органа

Современные шаговые электродвигатели обеспечивают перемещение рабочей части с точностью до 0,01 мм.

Отличие шагового двигателя от сервопривода заключается в пропуске шагов при высокой (выше расчетной) нагрузке, что значительно снижает качество обработки

Сервопривод для поворотного стола фрезерного станка или портала другого оборудования обеспечивает точность до 0,002 мкм.

Позиционирование по следящей схеме обеспечивает высокое качество обработки независимо от нагрузки

Время разгона и скорость перемещения портала

Максимальная скорость перемещения рабочих органов при использовании шагового электропривода — 25 м.

Время разгона — 120 об/мин за секунду

Сервопривод может перемещать портал со скоростью более 60 м/мин.

Время разгона составляет до 1000 об/мин за 0,2 секунды

Реакция на принудительную остановку Шаговые двигатели хорошо переносят механические перегрузки и не выходят из строя при аварийных остановках Сервоприводы необходимо оснащать дополнительной защитой, отключающей электромотор при принудительной остановке портала. В противном случае обмотки электрической машины могут сгореть
Стоимость За счет простоты конструкции шаговый двигатель имеет относительно невысокую цену За счет датчиков обратной связи (энкодеров) и более сложной схемы регулирования сервопривод считается дорогостоящим оборудованием

Привод станка с ЧПУ

Критерии выбора

Тип приводного двигателя для станков выбирают по следующим характеристикам:

  • Производительность.

    По этому параметру сервоприводы значительно превосходят шаговые электромоторы. На станок с ЧПУ для обработки крупных деталей или заготовок из твердых материалов лучше уставить сервомотор, например, ESTUN 1000 Вт. Такой электропривод обеспечит более высокую скорость обработки твердых материалов. Для малогабаритного промышленного оборудования (например, настольного фрезерного станка) среднего класса точности, предназначенного для обработки мягких материалов, лучше выбрать шаговый двигатель.

  • Эксплуатационные расходы.

    Программирование и настройка сервопривода на станке с ЧПУ требуют высокой квалификации исполнителя. Такой привод намного дороже в обслуживании, соответственно расходы на его эксплуатацию будут выше.

  • Точность.

    Сервоприводы для станков с ЧПУ необходимы для высокоточной автоматизированной обработки. Такой привод позволяет позиционировать положение рабочего органа с точностью до 0,02 мкм, в то время как максимальная точность шаговой электрической машины — 0, 01 мм.

  • Цена.

    Стоимость шагового двигателя значительно ниже цены сервопривода. При невысоком бюджете лучше предпочесть первый вариант.

  • Уровень шума.

    По этому показателю сервомоторы предпочтительней. Работа шаговых электродвигателей сопровождается звуком, соответствующим частоте шагов на различных оборотах.

Таким образом, выбор сервопривода или шагового двигателя в качестве привода на фрезерно-гравировальный станок и оборудование для плазменной резки следует совершать, руководствуясь исключительно экономической и технической целесообразностью.

Читайте также

Фрезерные станки с ЧПУ для малого бизнеса

18 Января 2019

Для построения и развития успешного бизнеса, связанного с работой на фрезерном станке с ЧПУ, важно наличие значительных преимуществ перед конкурентами: например, высочайшего качества продукции и доступных цен. В данной статье расскажем, какие именно станки с ЧПУ подходят для малого бизнеса, какова стоимость того или иного оборудования, и насколько рентабелен такой вид деятельности…

Технические характеристики и сфера применения фрезерных станков с ЧПУ

18 Января 2019

Станки с ЧПУ значительно повлияли на сферу металлообработки и на работу с другими материалами. Программируемые установки обеспечиваюют повышенную точность фрезеровки, что приводит к значительному увеличению производительности труда. Процесс обработки заготовок проходит беспрерывно и в строгом соответствии заданной программе, а результат работы отличается высокой точностью. В статье мы рассмотрим важнейшие технические характеристики фрезерных станков с ЧПУ и основные сферы их применения…

Фрезы для деревообрабатывающих станков с ЧПУ

18 Января 2019

Рабочий режущий инструмент станков с ЧПУ — это фреза. Конструктивно она является вращающейся деталью с заточенными зубьями. Фрезы для станков с ЧПУ по дереву производят из разных сплавов и делят на категории. Их выбор зависит от характеристик обрабатываемой поверхности, типа работы и степени твердости древесины. Правильно выбрать подходящий инструмент для программных станков поможет наша статья, которая познакомит вас с типами фрез и их назначением…

Характеристики шагового двигателя

6 Декабря 2018

Шаговое устройство — бесщеточный двигатель с несколькими обмотками, функционирующий по синхронному принципу. Принцип работы шагового двигателя заключается в поочередной активации обмоток, которые обеспечивают вращение / остановку ротора…

Специфика сверлильных станков с ЧПУ

6 Декабря 2018

Современные сверлильные станки с ЧПУ используются на производствах, на которых в больших объемах осуществляется обработка деталей всевозможного назначения, например, на мебельных фабриках. Сегодня производители предлагают покупателям модели сверлильных станков с ЧПУ во всем функциональном многообразии…

Серводвигатели – что это такое и какие есть виды?

Практически во всех современных станках ЧПУ используются серводвигатели. Именно они обеспечивают перемещение деталей и элементов в разных плоскостях с высокой точностью и динамикой управления.

Серводвигатель работает в большом диапазоне скоростей, при этом практически не имея акустического шума, биения и вибрации.

Часто в состав двигателя входят датчики скорости и позиционирования, а управляются они инвертором (преобразователем частоты).

Серводвигатель отличается от обычного электродвигателя тем, что управляется линейно, а, значит, очень точно.

Управление может осуществляться по положению, моменту и скорости, поэтому такие типы двигателей используются для слежения, позиционирования и контурной обработки деталей.

Наиболее распространенными считаются четыре вида серводвигателей:

  • • Синхронный;
  • • Асинхронный;
  • • Синхронный реактивный;
  • • Серводвигатель постоянного тока.

В промышленности широко используются два первых вида двигателей – остальные применяются для решения специфических и сложных задач.

Синхронные серводвигатели

Эти классические трехфазные синхронные двигатели, получающие возбуждение от нескольких постоянных магнитов. Дополнительно в них встроен датчик положения ротора.

Как видим, вся конструкция очень компактна и надежна. Основное достоинство таких двигателей – отсутствие инерции. Они разгоняются и останавливаются за тысячные доли секунды, отлично совмещаются с различными импульсными станками и системами, а также за счет своей линейности прекрасно управляются при помощи компьютерных программ.

Синхронные серводвигатели применяют там, где необходимо с высокой точностью поддерживать крутящий момент и позиционировать различные плоскости с максимальной точностью.

Асинхронные серводвигатели

Отличный вариант для сверхдинамичных систем. Достоинства таких типов двигателя в:

  • • высокой скорости вращения;
  • • практически нулевом моменте инерции;
  • • малом весе и компактности;
  • • принудительной вентиляции.

Вентиляция продлевает срок службы двигателя на 30-40 процентов и позволяет использовать его практически в любых замкнутых пространствах. Также стоит отметить, что для крепления датчика обратной связи нет необходимости использовать отдельные узлы.

Благодаря таким свойствам асинхронный двигатель часто применяют в станках с ЧПУ – он позволяет добиться минимизации динамического и статистического рассогласования во время работы.

Также смотрите на видео, как сделать позиционирование серводвигателя от энкодера.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *