Амперметр назначение: характеристики, схемы подключения, принцип действия, параметры

Содержание

Амперметр. Назначение, виды и схема подключения

Многие знают, что в электрической розетке помимо напряжения есть еще и ток, который опасен для человеческой жизни. Но как его померять? Насколько сложно это сделать? Для измерения тока существует специальный прибор, который называется амперметр.

Итак, амперметр — это электроизмерительный прибор, предназначенный для измерения тока в электрической цепи. Электрический ток — это направленное движение заряженных частиц (электронов), измеряется он в Амперах и, соответственно, прибор который его измеряет носит название амперметр.

У идеального амперметра внутренне сопротивление равно нулю. Ну, где вы видели в нашем мире что-то идеальное? Поэтому и у реального амперметра внутреннее сопротивление хоть и минимально, но все же не равно нулю. Как и вольтметр, амперметр также может иметь диапазон измерения (например, 1, 2, 3, 5, 10 А), который зависит от внутреннего сопротивления электроизмерительного прибора. Как правило, добавочное сопротивление уже установлено в корпусе устройства и переключается с помощью специального переключателя.

Обозначение амперметра в электрической цепи

На электрических схемах амперметр представляют в виде круга с клеммами и буквой А в центре:

Почему амперметр всегда подключается последовательно?

Амперметр ВСЕГДА подключается в измеряемую электрическую цепь последовательно. Все «направленно движущиеся» электроны проходят через измерительный прибор. А как же потери мощности, спросите вы? Да, в этом случае это неизбежно, но следует помнить, что амперметр имеет минимальное внутреннее сопротивление, соответственно потери мощности в нем будут незначительны.

Сопротивление амперметра должно быть минимальным по двум причинам:

  • Весь измеряемый ток проходит через амперметр.
  • Амперметр должен оказывать минимальное влияние на электрическую цепь в которую он подключен.

Типы амперметров

Классификация амперметра зависит от их конструкции и рода тока, протекающего через него.

Ниже приведены типы электроизмерительных приборов относительно конструкции.

  1. Амперметр магнитоэлектрической системы с постоянным магнитом.
  2. Электромагнитный амперметр.
  3. Электродинамический амперметр.
  4. Амперметр с выпрямительным мостом.

По роду тока амперметры делятся на:

  • Амперметры постоянного тока;
  • Амперметры переменного тока;

Магнитоэлектрический амперметр подвижной катушкой с постоянными магнитами (PMMC)

Магнитоэлектрический принцип лежит в основе работы такого устройства. Если совсем коротко — то суть его работы заключается в следующем: катушка измерительного прибора помещается в постоянное магнитное поле. При протекании через катушку тока будем создан вращающий момент, который и повернет стрелку прибора.

Электродинамический амперметр

Он используется для измерения как переменного, так и постоянного тока. Точность прибора достаточно высокая по сравнению с магнитоэлектрическим измерительным прибором. Калибровка прибора одинакова как для переменного, так и для постоянного тока, то есть если амперметр был откалиброван под постоянный ток, то его можно использовать для измерения переменного тока без повторной калибровки.

Амперметр детекторной системы (с выпрямительным мостом)

Используется для измерения переменного тока. Приборы используют выпрямительный мост, который преобразует переменный ток в постоянный, который измеряется с помощью магнитоэлектрического амперметра. Такой тип прибора используется для измерения тока в цепях управления и при использовании трансформаторов тока.

Измерительный шунт

Слишком большие токи, которые могут протекать в мощных силовых цепях, выведут измерительный прибой из строя при прямом подключении. Чтобы избежать этого используют измерительный шунт.

Шунт имеет очень малое активное сопротивление, что оказывает минимальное влияние на измеряемую цепь. Параллельно к нему подключается амперметр, который уже и проводит измерение тока.

Влияние температуры на измерение тока

Амперметр — чувствительное устройство, на которое существенно влияет температура окружающей среды. Изменение температуры вызывает ошибку в показаниях. Вы можете использовать добавочное сопротивление (балластное сопротивление). Сопротивление с нулевым температурным коэффициентом называют добавочным сопротивлением (swamping resistance). Оно подключается последовательно с катушкой электроизмерительного прибора. Балластное сопротивление уменьшает влияние температуры на показания прибора.

Амперметр имеет встроенный предохранитель, который защищает его от скачков тока (неправильное подключение). Если через амперметр протекает значительный ток, предохранитель перегорит, тем самым разорвав электрическую цепь и сохранив измерительную систему прибора. Соответственно прибор нельзя будет использовать, пока не будет заменена плавкая вставка.

Принцип работы и назначение лабораторного амперметра

Преимущества компании

Амперметром называют электрический измерительный прибор, который необходим для измерения в амперах силы тока. Шкала амперметров градуируется в таких измерительных единицах, как амперы, килоамперы, микроамперы и миллиамперы, что зависит от пределов измерения того или иного прибора. Амперметр подключается к электрической сети последовательно именно к тому участку электрической цепи, в которой необходимо измерить силу тока. Чтобы увеличить предел измерения амперметров, применяют трансформаторы и шунты.

В зависимости от предназначения различают два вида амперметров: лабораторные и щитовые. Лабораторный амперметр – это устройство, имеющее высокий класс точности 0,5, изготовленное на смену распространенных приборов, которые предназначаются для измерения постоянного и переменного электрического тока в условиях лаборатории. Практически все знают еще со школы, что электрический прибор, который необходим для замеров в электрической сети силы тока при определенной нагрузке – это амперметр. Эти приборы напоминают по своей конструкции ватт- или вольтметры, поскольку они состоят из измерительной шкалы, проградуированной в соответствии с определенной калибровкой, и стрелки.

Калибровка шкалы производится на заводе производителя, который занимается изготовлением оборудования. Чтобы снять необходимые данные, необходимо подключить амперметр последовательно в цепь на том или другом участке цепи или после элемента питания.

Лабораторные амперметры применимы для того, чтобы получить все необходимые данные о значениях в электрической цепи силы тока прибора либо оборудования. Зачастую такие приборы используются для ремонта электрических устройств. Иногда их задействуют для организации демонстрационных стендов на выставках либо в учебных заведениях. Амперметры обычно применяют в качестве составляющего элемента электрического оборудования и сложных установок на производствах промышленного типа.

Зачастую амперметры разделяют согласно области и принципу действия. В зависимости от этого можно перечислить такие виды амперметров: термоэлектрические, фотоэлектрические, индукционные, детекторные, электродинамические, тепловые, магнитоэлектрические и электромагнитные.

Термоэлектрические амперметры необходимы для измерения силы переменного тока, как и индукционные  и детекторные амперметры. Остальные амперметры, которые упоминались выше, созданы для извлечения данных о силе тока из цепи различным характером питания. Наибольшей чувствительностью и точностью обладают магнитоэлектрические и электродинамические амперметры, если сравнивать со всеми остальными видами амперметров.

Компания «Ракурс» — это надежный спутник современного человека. Мы предлагаем вам приобрести амперметр лабораторный, который гарантирует высокую точность измерений и отличается несомненным качеством. Преимущества нашей компании налицо – это и высокое качество предоставляемой продукции, и прекрасное обслуживание, и возможность быстрой доставки.

 

Поделиться:   

Амперметр – устройство, принцип работы и область применения | Энергофиксик

Амперметр – это измерительный прибор, выполняющий функцию измерения силы тока в цепи в Амперах. При этом каждый прибор рассчитан на измерение конкретной величины. В данном материале я хочу вам рассказать об устройстве данных измерительных приборах и их разновидностях. Итак, начнем.

Амперметры цифровые и аналоговые

Амперметры цифровые и аналоговые

Амперметры делятся на два больших класса:

1. Аналоговые.

2. Цифровые.

Давайте поговорим об аналоговых измерителях, которые еще также именуются стрелочными:

Аналоговый Амперметр

Аналоговый Амперметр

Аналоговый амперметр

Работают такие приборы благодаря магнитоэлектрической системе, которая работает следующим образом:

В корпусе Амперметра располагается катушка из тончайшей проволоки, расположенной среди постоянных магнитов и связана со специальной пружиной.

Принципиальное устройство амперметра

Принципиальное устройство амперметра

Как только через катушку начинает протекать электрический ток, то вокруг нее формируется электромагнитное поле, которое вступает во взаимодействие с магнитным полем постоянных магнитов, и катушка меняет свое положение под действием вращающего момента, а прикрепленная пружина тормозит ее.

Как только моменты вращения и торможения уравновешиваются катушка замирает, а вместе с ней и стрелка, которая указывает пропорциональное значение тока, который сейчас проходит через измерительный прибор.

Показания амперметра зашкаливают

Показания амперметра зашкаливают

Иногда для повышения предела измерений в цепь с амперметром включается резистор, параметры которого просчитываются заранее. И такой резистор называется — шунтирующим.

Амперметр монтируется в цепь последовательно (в разрыв), поэтому для него крайне важно внутреннее сопротивление и чем меньше оно будет, тем лучше.

Ведь если внутреннее сопротивление амперметра будет велико, то он (амперметр) для существующей сети, является резистором, что приведет к снижению тока в цепи и его данные не будут соответствовать реальным параметрам.

Внутреннее сопротивление учитывается при производстве амперметра и с учетом его настраивается система магнитов и пружины.

Амперметр класс точности 2.0

Амперметр класс точности 2. 0

К несомненным плюсам аналоговых измерителей относится то, что для их функционирования не требуется отдельное питание и они работают от непосредственно протекающего тока, но минусом является то, что такие измерители довольно инерционны.

То есть мы видим величину протекающего тока не сразу, а с задержкой, которая связанна с тем, что внутренней системе требуется некоторое время для принятия равновесия.

Цифровой амперметр

Такой тип амперметра представляет собой более сложную конструкцию, в состав которой входит аналого-цифровой преобразователь (АЦП), где происходит преобразование силы тока в цифровые данные, отражающиеся на ЖК-дисплее.

Цифровой амперметр

Цифровой амперметр

Такие измерители не имеют такого недостатка как инерционность, и скорость выдачи информации напрямую связана с частотными характеристиками установленного процессора. В достаточно дорогих экземплярах частота обновления может составлять 1000 и более обновлений в минуту.

К минусу таких амперметров относят то, что для их нормальной работы требуется отдельное питание. Конечно, есть амперметры, использующие цепи питания сети, но из-за своей дороговизны довольно редки.

Кроме этого измерители подразделяются на амперметры:

— для подсчета постоянного тока.

— для подсчета переменного тока.

Многофункциональный промышленный амперметр

Многофункциональный промышленный амперметр

Конечно, в доме отдельно амперметр практически никому не нужен, но если вам нужно измерять силу тока, то лучше всего будет приобрести мультиметр с возможностью измерения постоянного и переменного тока и кучей других полезных функций. Лично я покупал вот здесь.

Это все, что я хотел вам рассказать про амперметры, их устройство и разновидности. Если вам понравилась статья, тогда оцените ее лайком и спасибо, что уделили свое внимание!

7. Охарактеризуйте амперметр (назначение, особенности подключения, расширение пределов измерений).

Амперметр – это прибор для измерения силы тока.

Особенности амперметра:

  • Подключается в цепь только последовательно

  • В цепях постоянного тока необходимо соблюдать полярность

  • Для измерения величины постоянного тока применяются амперметр магнитоэлектрической системы, а переменного — электромагнитной системы.

  • Для измерения малых токов используют микроамперметры и миллиамперметры

  • Для расширения пределов измерений в цепях постоянного тока параллельно к амперметру подключают шунт.

Шунт выбирают по коэффициенту шунтирования и величине сопротивления.

Предположим, необходимо измерить ток 25А амперметром с максимальным значением на шкале 1А. Определим сопротивление шунта, если сопротивление амперметра 0,075Ом.

сначала необходимо определить коэффициент шунтирования

После этого находите сопротивление шунта

8. Охарактеризуйте вольтметр (назначение, особенности подключения, расширение пределов измерений).

Вольтметр – это прибор для измерения ЭДС источника и падения напряжения на участке цепи.

Подключается параллельно нагрузке или источнику электрической энергии.

Классификация

Особенности вольтметра:

  • Подключается в цепь только параллельно

  • В цепях постоянного тока необходимо соблюдать полярность

  • Для расширения пределов измерений в цепях постоянного тока последовательно с вольтметром подключают добавочное сопротивление

  • Для расширения пределов измерений вольтметра в цепях переменного тока используют трансформаторы напряжения.

Для измерения напряжения в цепях постоянного тока применя­ют магнитоэлектрические вольтметры, а в цепях переменного тока — электромагнитные и электродинамические. 

9. Охарактеризуйте мультиметр (назначение, особенности подключения).

Мультиме́тр— комбинированный электроизмерительный прибор, объединяющий в себе несколько функций. В минимальном наборе это вольтметр, амперметр и омметр.

Устройство мультиметра и правила работы с ним.

Простые цифровые мультиметры имеют на лицевой панели ЖК индикатор, поворотный переключатель пределов измерения и три гнезда для подключения щупов. Питание мультиметра осуществляется от батарейки типа «Крона» напряжением 9В. Для замены батарейки необходимо снять заднюю крышку прибора, при этом также открывается доступ к печатной плате мультиметра, на которой расположен, в том числе, предохранитель номиналом 200 мА.

Одно из гнезд для подключения щупов, а именно гнездо СОМ, задействовано всегда, при любом роде выполняемых измерений. Обычно к гнезду СОМ присоединяется щуп черного цвета. к гнезду VΩmA подключается щуп красного цвета при измерении постоянного и переменного напряжения, сопротивления и постоянного тока величиной до 200 мА. Для измерения постоянного тока величиной более 200 мА красный щуп из гнезда VΩmA необходимо вынуть и подключить его в гнездо 10А.

На лицевой панели мультиметра кроме того расположен восьми контактный разъем (сокетт) подключения транзисторов для измерения коэффициента усиления по тока h31э (или hFE). Причем измерить коэффициент усиления по току удается только у биполярных низкочастотных транзисторов малой и средней мощности. Так как в процессе обслуживания и ремонта оборудования КИП нет необходимости измерять коэффициент усиления транзисторов, то данный режим работы мультиметра рассматриваться не будет. Скажу лишь только, что к контакту Е разъема подключается эмиттер транзистора, к контакту В — база, к контакту С — коллектор, но перед этим необходимо, например, по справочнику определить структуру транзистора: p-n-p или n-p-n и выбрать соответствующую сторону разъема.

В режиме проверки целостности полупроводниковых диодов мультиметр генерирует небольшое испытательное напряжение и ток, которое и прикладывается к проверяемому диоду. Если диод исправен, то при подключении красного щупа (плюса) мультиметра к аноду, а черного щупа к катоду на дисплее высветиться значение падения напряжения на p-n переходе диода. Для кремниевых диодов это напряжение находиться в пределах 0,6…0,9 В. При обратной полярности подключения (красный щуп — катод, черный щуп — анод) на дисплее высветится единица, так как диод проводит ток только в одном направлении. При проверке диодов без выпаивания их из схемы ремонтируемого устройства имейте ввиду, что соединенные с диодом другие радиодетали могут исказить результат измерения. Поэтому желательно хотя бы один вывод диода отсоединять от схемы.

Отключение мультиметра по окончанию проведения измерений осуществляется путем установки поворотного переключателя в положение OFF.

При работе с мультиметром не прикасайтесь к оголенной части щупов, так как, во-первых, это может привести к поражению электрическим током (при измерении тока и напряжения) и, во-вторых, из-за относительно низкого электрического сопротивления тела человека может возрасти погрешность измерения, особенно при измерении больших сопротивлений.

Недорогие мультиметры DT 830B и им подобные можно применять только для измерений, производимых при наладке оборудования и поиске неисправностей. Их нельзя использовать при калибровке и уж тем более при поверке датчиков и другого оборудования КИП, так как точность измерения данных мультиметров недостаточна для этих целей и, кроме того, они не внесены в государственный реестр средств измерения. При поверке и калибровке оборудования следует использовать более точные мультиметры, например, отечественные приборы серии В7 или импортные мультиметры APPA, Fluke и аналогичные.

Всегда следите за степенью разряда батареи мультиметра, так как в случае сильного разряда батареи погрешность измерения прибора резко возрастает. При покупке мультиметра отдавайте предпочтение тем моделям, у которых есть индикатор разряда батареи. И меняйте батарею сразу же, как только загорится индикатор разряда батареи.

Выбирая между несколькими моделями мультиметров, следует отдавать предпочтение тем моделям, которые имеют более широкие пределы измерения (или большее количество поддиапазонов измерения) напряжения, тока и сопротивления и минимальную погрешностьизмерения. Дополнительный функционал приборов, такой как измерение температуры, емкости, встроенный генератор импульсов зачастую остается не востребованным, и делать упор на наличие этих функций при покупке мультиметра не стоит.

Если значение измеряемой величины вам не известно даже ориентировочно, то всегда начинайте измерения, установив максимально возможный предел измерения для данного рода измерений. Мультиметр, особенно недорогие модели, является не ремонтопригодным устройством (точнее дешевле купить новый прибор, чем ремонтировать вышедший из строя) поэтому при выполнении измерений будьте внимательны и следите за тем, в какие гнезда вставлены щупы и в каком положении находиться поворотный переключатель.

Амперметр и вольтметр — презентация онлайн

1. Амперметры и Вольтметры

2. Амперметр

Прибор для измерения силы тока в амперах. Шкалу
амперметров градуируют в микроамперах, миллиамперах,
амперах или килоамперах в соответствии с пределами
измерения прибора.
В электрическую цепь
амперметр включается последовательно с тем участком
электрической цепи, силу тока в котором измеряют.
Поэтому, чем ниже внутреннее сопротивление амперметра (в
идеале — 0), тем меньше будет влияние прибора на
исследуемый объект, и тем выше будет точность измерения.
Для увеличения предела измерений амперметр
снабжается шунтом (для цепей постоянного и переменного
тока), трансформатором тока (только для цепей
переменного тока) или магнитным усилителем (для цепей
постоянного тока). Очень опасно пытаться использовать
амперметр в качестве вольтметра (подключать его
непосредственно к источнику питания): это приведёт
к короткому замыканию!
A
Виды Амперметров
Амперметры делятся на: стрелочной измерительной головкой
(рис. а) и с цифровым индикатором (рис б).
а)
б)

4. Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых
движущаяся часть прибора со стрелкой поворачивается на
угол крена, пропорциональный величине измеряемого тока.
Амперметры бывают магнитоэлектрическими,
электромагнитными, электродинамическими, тепловыми,
индукционными, детекторными, термоэлектрическими и
фотоэлектрическими.
Магнитоэлектрическими амперметрами измеряют силу
постоянного тока; индукционными и детекторными — силу
переменного тока; амперметры других систем измеряют
силу любого тока. Самыми точными и чувствительными
являются магнитоэлектрические и электродинамические
амперметры.
Приборы со стрелочной головкой могут снабжаться
дополнительными электронными схемами для усиления
сигнала, подаваемого на головку, защиты головки от
перегруза и прочее.

5. Вольтметр

Измерительный
прибор непосредственного отсчёта для
определения напряжения или ЭДС в
электрических цепях.
Подключается параллельно нагрузке или
источнику электрической энергии.
Идеальный вольтметр должен
обладать бесконечно большим
внутренним сопротивлением. Поэтому
чем выше внутреннее сопротивление в
реальном вольтметре, тем меньше
влияния оказывает прибор на
измеряемый объект и, следовательно,
тем выше точность и разнообразнее
области применения.
V

6. Виды Вольтметров

1)Аналоговые электромеханические
вольтметры
2) Аналоговые электронные вольтметры
общего назначения
3) Цифровые электронные вольтметры
общего назначения
4)Диодно-компенсационные
вольтметры переменного тока
5) Импульсные вольтметры
6) Фазочувствительные вольтметры
7) Селективные вольтметры

7. Аналоговые электронные вольтметры общего назначения

Аналоговые электронные
вольтметры содержат, помимо
магнитоэлектрического
измерительного прибора и
добавочных
сопротивлений, измерительный
усилитель (постоянного или
переменного тока), который
позволяет иметь более низкие
пределы измерения (до
десятков — единиц милливольт и
ниже), существенно повысить
входное сопротивление прибора,
получить линейную шкалу на
малых пределах измерения
переменного напряжения.

8. Цифровые электронные вольтметры общего назначения

Принцип работы
вольтметров дискретного
действия состоит в
преобразовании
измеряемого постоянного
или медленно меняющегося
напряжения в
электрический код с
помощью аналогоцифрового
преобразователя, который
отображается на табло в
цифровой форме.

9. Спасибо за внимание.

Принцип работы и виды амперметров

Амперметр — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения.

Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Комплектное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется «токоизмерительные клещи».

Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания), что может привести к коротким замыканиям!

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.
Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором
В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки устанавливается при равенстве вращающего момента и момента пружины.
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ). При высоких напряжениях (выше 1000 В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.

ПрофКиП Э538М амперметр — PROFKIP-TEST

Назначение амперметра ПрофКиП Э538М

Амперметр лабораторный ПрофКиП Э538М – электромагнитный измерительный прибор, предназначенный для измерения силы переменного и постоянного электрического тока.

Особенности и преимущества амперметра ПрофКиП Э538М

▪ Диапазон измерения: 0 А … 2.5 А /0 А … 5 А

▪ Класс точности: 0.5%

▪ Шкала: 100

▪ Длина шкалы: 120 мм

▪ Сопротивление изоляции: не менее 5 МОм

Основные технические характеристики амперметра ПрофКиП Э538М

Параметры

Значения

Диапазон измерений силы переменного тока (50 Гц … 60 Гц) и силы постоянного тока

0 А … 2.5 А

0 А … 5 А

Предел допускаемой основной относительной погрешности на всех отметках рабочей части шкалы

±0.5%

Предел допускаемой дополнительной погрешности, вызванной изменением рабочего положения, наклона к плоскости под углом 5°

менее ±0.25% от величины верхнего предела диапазона измерений

Предел допускаемой дополнительной погрешности при измерении силы переменного тока при отклонении частоты от нормальной области частот до любой частоты в рабочей области частот

равен пределу допускаемой основной погрешности

Максимальное напряжение между измерительными клеммами и корпусом

0. 5 кВ (50 Гц) в течении 1 мин

Шкала

100

Длина шкалы

120 мм

Сопротивление изоляции

не менее 5 МОм

Время отклика

менее 4 с

Рабочее расположение

горизонтально

Общие данные амперметра ПрофКиП Э538М

▪ Рабочая температура: 23°С ±10°С

▪ Рабочая влажность: 40% … 60%

▪ Габаритные размеры: 220х170х95 мм

▪ Вес: 2 кг

Комплект поставки амперметра ПрофКиП Э538М

Наименование

Количество

Амперметр ПрофКиП Э538М

1 шт.

Руководство по эксплуатации

1 шт.

 

Что такое амперметр? — Определение и функции — Видео и стенограмма урока

Зависимость тока от напряжения

Важно отметить, что амперметр измеряет только ток, а не напряжение. Ток и напряжение — две отдельные величины. Напряжение можно определить как разность электрических потенциалов на единицу заряда. Его можно рассматривать как энергию, содержащуюся в электрической цепи или поле в одной точке. Ток , с другой стороны, представляет собой скорость, с которой электрический заряд проходит через любую заданную точку в цепи.

Один из распространенных способов попытаться понять разницу между ними — это посмотреть, как электричество движется по проводу, как вода, движущаяся по шлангу. В этой аналогии напряжение похоже на давление воды, а ток — на скорость потока воды. Изменения одного могут повлиять на другой, но это не одно и то же.

Использование амперметра

При использовании амперметра очень важно, чтобы прибор был правильно подключен к цепи. Чтобы понять, как нужно настроить амперметр, воспользуемся простой схемой с источником напряжения и тремя резисторами.

Простая схема с источником напряжения и тремя резисторами

Эта схема имеет комбинацию последовательных и параллельных элементов. Резистор 1 и резистор 2 образуют параллельную цепь, соединенную последовательно с резистором 3. Амперметр должен быть подключен последовательно с той частью цепи, где мы хотим измерить ток. Давайте начнем с того, что посмотрим, как измерить общий ток, протекающий по всей цепи.

Справа неправильно подключен амперметр; амперметр подключен правильно слева

Справа на изображении выше амперметр неправильно подключен к цепи параллельно, что создает две проблемы. Первая проблема заключается в том, что есть альтернативные пути, по которым может течь ток, а это означает, что он не будет измеряться амперметром. Вторая проблема — возникло короткое замыкание.Как и у провода, амперметры имеют очень низкое сопротивление, поэтому они не будут влиять на ток при правильной установке в цепи. Однако при неправильном параллельном подключении такое низкое сопротивление позволит протекать через прибор очень сильному току, что приведет к перегоранию предохранителя.

Слева амперметр подключен так, что весь ток, протекающий по цепи, должен проходить через него; альтернативных путей нет. Это правильный способ подключения амперметра для измерения полного тока цепи, но не единственный.На самом деле в цепи есть несколько точек, куда можно подключить амперметр для измерения. На этом изображении каждый амперметр также измеряет общий ток цепи.

Теперь, когда мы знаем, как измерить полный ток в цепи, давайте посмотрим на измерение тока, проходящего через отдельные элементы. Ток по-разному проходит через последовательные и параллельные элементы. В параллельном соединении ток разделяется между ветвями в цепи.Например, чтобы измерить только ток, проходящий через резистор 1, мы должны подключить амперметр последовательно с верхней ветвью параллельной цепи. Это показано в левой части следующего изображения.

Параллельное соединение

Аналогичным образом, размещение амперметра в нижней ветви будет измерять только ток, проходящий через резистор 2. В правой части изображения мы видим, что параллельное подключение амперметра позволит току обходить резисторы, создавая еще один короткое замыкание!

В соединении серии через каждый элемент проходит одинаковое количество тока.Чтобы убедиться в этом, давайте посмотрим на новую схему, показанную здесь.

Последовательное соединение

Амперметр размещен так, чтобы он измерял ток, проходящий через резистор A, и ток, проходящий через резистор B. Итак, вам нужно только одно измерение с помощью амперметра, чтобы получить токи через каждый отдельный элемент в последовательное соединение.

Итоги урока

Давайте рассмотрим. Амперметр — прибор для измерения электрического тока в амперах.Амперметр должен быть подключен последовательно к пути измерения тока. Параллельная установка амперметра приведет к короткому замыканию и неправильному измерению тока.

В параллельных цепях ток распределяется между различными параллельными ветвями, поэтому амперметр должен быть установлен в отдельной ветви, где должен измеряться ток.

В цепях серии через каждый элемент протекает одинаковое количество тока, поэтому амперметр можно установить в любом месте на пути, если он тоже включен последовательно.

Ключевые термины

Амперметр

Амперметр — прибор для измерения электрических токов

Мультиметр — универсальный прибор, который, помимо прочего, измеряет электрические токи

Напряжение — разность электрических потенциалов на единицу заряда

Ток — скорость, с которой электрический заряд проходит через любую заданную точку в цепи

Параллельное соединение — электрическое соединение, при котором ток разделяется между ветвями в цепи

Последовательное соединение — электрическое соединение, в котором то же самое количество проходов тока через каждый элемент

Результаты обучения

После этого урока проверьте, можете ли вы:

  • Определить амперметр
  • Разница между током и напряжением
  • Опишите процесс использования амперметра
  • Различия между параллельными и последовательными соединениями

Вольтметры и амперметры | Безграничная физика

Вольтметры и амперметры

Вольтметры и амперметры используются для измерения напряжения и тока соответственно.

Цели обучения

Сравнить схемы подключения амперметра и вольтметра

Основные выводы

Ключевые моменты
  • Вольтметр — это прибор, используемый для измерения разности электрических потенциалов между двумя точками в электрической цепи.
  • Амперметр — это измерительное устройство, используемое для измерения электрического тока в цепи.
  • Вольтметр подключается параллельно к устройству для измерения его напряжения, а амперметр подключается последовательно с устройством для измерения его тока.
  • В основе большинства аналоговых счетчиков лежит гальванометр, прибор, который измеряет ток, используя движение или отклонение иглы. Отклонение иглы вызывается магнитной силой, действующей на провод с током.
Ключевые термины
  • шунтирующее сопротивление : небольшое сопротивление R, помещенное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше R должно быть; большая часть тока, протекающего через счетчик, шунтируется через R для защиты гальванометра
  • гальванометр : Аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.

Вольтметры и амперметры измеряют напряжение и ток цепи соответственно. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами.

Вольтметры и амперметры : Краткое введение в вольтметры и амперметры для студентов-физиков.

Вольтметры

Вольтметр — это прибор, который измеряет разность электрических потенциалов между двумя точками в электрической цепи.Аналоговый вольтметр перемещает указатель по шкале пропорционально напряжению в цепи; цифровой вольтметр обеспечивает числовой дисплей. Любое измерение, которое можно преобразовать в напряжение, можно отобразить на правильно откалиброванном измерителе; такие измерения включают давление, температуру и расход.

Вольтметр : Демонстрационный вольтметр из класса физики

Чтобы вольтметр мог измерять напряжение устройства, он должен быть подключен параллельно этому устройству.Это необходимо, потому что параллельные объекты испытывают одинаковую разность потенциалов.

Вольтметр, подключенный параллельно : (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) подключается параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр напрямую к ЭДС без учета его внутреннего сопротивления r. (б) Используемый цифровой вольтметр

Амперметры

Амперметр измеряет электрический ток в цепи.Название происходит от названия единицы измерения электрического тока в системе СИ, ампер (А).

Чтобы амперметр мог измерять ток устройства, он должен быть последовательно подключен к этому устройству. Это необходимо, потому что последовательно соединенные объекты испытывают одинаковый ток. Их нельзя подключать к источнику напряжения — амперметры предназначены для работы с минимальной нагрузкой (которая относится к падению напряжения на амперметре, обычно составляющему небольшую долю вольта).

Амперметр серии : Амперметр (A) подключается последовательно для измерения тока.Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении. (Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Гальванометры (аналоговые измерители)

У аналоговых счетчиков

иглы, которые поворачиваются, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков, у которых есть числовые показания.Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром, которое обозначается номером G . Ток через гальванометр I G вызывает пропорциональное движение или отклонение стрелки.

Двумя важнейшими характеристиками любого гальванометра являются его сопротивление и чувствительность по току. Чувствительность по току — это ток, который дает полное отклонение стрелки гальванометра, другими словами, максимальный ток, который может измерить прибор.Например, гальванометр с токовой чувствительностью 50 мкА имеет максимальное отклонение стрелки при протекании через него 50 мкА, находится на полпути шкалы, когда через него протекает 25 мкА, и так далее.

Если такой гальванометр имеет сопротивление 25 Ом, то только напряжение В = IR = (50 мкА) (25 Ом) = 1,25 мВ дает показания полной шкалы. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр для измерения широкого диапазона напряжений или токов.

Гальванометры как вольтметры

Гальванометр может работать как вольтметр, если он подключен последовательно с большим сопротивлением R . Значение R определяется максимальным измеряемым напряжением. Предположим, вам нужно 10 В для полного отклонения вольтметра, содержащего гальванометр с сопротивлением 25 Ом и чувствительностью 50 мкА. Тогда приложенное к измерителю напряжение 10 В должно давать ток 50 мкА. Общее сопротивление должно быть:

[латекс] \ text {R} _ {\ text {tot}} = \ text {R} + \ text {r} = \ frac {\ text {V}} {\ text {I}} = \ frac { 10 \ text {V}} {50 \ mu \ text {A}} = 200 \ text {k} \ Omega, [/ latex]

или:

[латекс] \ text {R} = \ text {R} _ {\ text {tot}} — \ text {r} = 200 \ text {k} \ Omega — 25 \ Omega \ приблизительно 200 \ text {k} \Омега.[/ латекс]

(R настолько велик, что сопротивление гальванометра, r, почти ничтожно.) Обратите внимание, что 5 В, приложенное к этому вольтметру, вызывает отклонение половинной шкалы, пропуская через измеритель ток 25 мкА, поэтому показания вольтметра пропорциональны к напряжению по желанию. Этот вольтметр не будет полезен для напряжений менее примерно половины вольта, потому что отклонение измерителя будет слишком маленьким для точного считывания. Для других диапазонов напряжения другие сопротивления устанавливаются последовательно с гальванометром.Многие измерители позволяют выбирать шкалы, которые включают последовательное включение соответствующего сопротивления с гальванометром.

Гальванометры как амперметры

Тот же гальванометр может также работать как амперметр, если он размещен параллельно с небольшим сопротивлением R , часто называемым шунтирующим сопротивлением. Поскольку сопротивление шунта невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие те, которые вызывают полное отклонение гальванометра.

Предположим, например, что нам нужен амперметр, который дает полную шкалу отклонения для 1,0 А и который содержит тот же гальванометр на 25 Ом с чувствительностью 50 мкА. Поскольку R и R параллельны, напряжение на них одинаковое.

Эти ИК-капли: IR = I G r

так, чтобы: [latex] \ text {IR} = \ frac {\ text {I} _ \ text {G}} {\ text {I}} = \ frac {\ text {R}} {\ text {r }}. [/ latex]

Решая для R и отмечая, что IG составляет 50 мкА, а I равно 0.{-3} \ Omega. [/ Latex]

Нулевые измерения

Нулевые измерения уравновешивают напряжения, поэтому через измерительные устройства не протекает ток, который мог бы помешать измерению.

Цели обучения

Объясните, почему используются нулевые измерения

Основные выводы

Ключевые моменты
  • Измерения напряжения и тока стандартными вольтметрами и амперметрами изменяют измеряемую цепь, внося погрешности.Вольтметры потребляют дополнительный ток, а амперметры уменьшают ток.
  • Нулевые измерения используются для уменьшения погрешности измеренных напряжения и тока.
  • Потенциометр и мост Уитстона — это два метода измерения нуля.
  • Потенциометр — это прибор, который измеряет неизвестное напряжение путем противодействия известному напряжению, не потребляя ток от измеряемого источника напряжения.
  • Мост Уитстона — это электрическая цепь, используемая для измерения неизвестного электрического сопротивления путем уравновешивания двух ветвей мостовой схемы, одна из которых включает неизвестный компонент.
Ключевые термины
  • нулевые измерения : методы более точного измерения тока и напряжения путем балансировки цепи таким образом, чтобы ток не протекал через измерительное устройство
  • потенциометр : прибор, который измеряет напряжение путем противодействия ему точной долей известного напряжения и без потребления тока из неизвестного источника.
  • Мост Уитстона : прибор, используемый для измерения неизвестного электрического сопротивления путем уравновешивания двух ветвей мостовой схемы, одна ветвь которой включает неизвестный компонент.

Нулевые измерения

Стандартные измерения цепей изменения напряжения и тока, вносящие числовые погрешности. Вольтметры потребляют дополнительный ток, а амперметры уменьшают ток. Нулевые измерения уравновешивают напряжения, поэтому ток через измерительный прибор не протекает, а цепь остается неизменной. Нулевые измерения обычно более точны, но более сложны, чем стандартные вольтметры и амперметры. Их точность все еще ограничена.

Потенциометр

При измерении ЭДС аккумулятора и подключении аккумулятора напрямую к стандартному вольтметру, как показано на, фактическая измеряемая величина — это напряжение на клеммах В. Напряжение связано с ЭДС батареи соотношением В = ЭДС Ir , где I — протекающий ток, а r — внутреннее сопротивление батареи.

Вольтметр, подключенный к батарее : Аналоговый вольтметр, подключенный к батарее, потребляет небольшой, но ненулевой ток и измеряет напряжение на клеммах, которое отличается от ЭДС батареи. (Обратите внимание, что заглавная буква E символизирует электродвижущую силу или ЭДС.) Поскольку внутреннее сопротивление батареи точно неизвестно, невозможно точно рассчитать ЭДС.

ЭДС можно было бы точно рассчитать, если бы были известны r , что бывает редко. Если бы ток I можно было сделать нулевым, тогда В, = ЭДС , и ЭДС можно было бы непосредственно измерить. Однако стандартным вольтметрам для работы необходим ток.

Потенциометр — это прибор для измерения нуля для измерения потенциалов (напряжений).Источник напряжения подключен к резистору R, пропускает через него постоянный ток. Вдоль провода наблюдается постоянное падение потенциала (падение ИК-излучения), поэтому переменный потенциал получается через контакт вдоль провода.

Неизвестная ЭДС x (обозначенная надписью E x ), подключенная последовательно с гальванометром, показана на. Обратите внимание, что ЭДС x противостоит другому источнику напряжения. Расположение точки контакта регулируется до тех пор, пока гальванометр не покажет ноль.Когда гальванометр показывает ноль, ЭДС x = IR x , где R x — сопротивление участка провода до точки контакта. Поскольку через гальванометр не протекает ток, он не проходит через неизвестную ЭДС, и определяется ЭДС x .

Потенциометр : Потенциометр является устройством измерения нуля. (a.) Источник напряжения, подключенный к резистору с длинным проводом, пропускает через него постоянный ток I.(b) Неизвестная ЭДС (обозначенная буквой Ex) подключается, как показано, и точка контакта по R регулируется до тех пор, пока гальванометр не покажет ноль. Отрезок провода имеет сопротивление Rx и сценарий Ex = IRx, где I не зависит от соединения, поскольку через гальванометр не течет ток. Таким образом, неизвестная ЭДС пропорциональна сопротивлению сегмента провода.

Стандартная ЭДС заменяется на ЭДС x , и точка контакта регулируется до тех пор, пока гальванометр не покажет ноль, так что ЭДС s = IR s .В обоих случаях через гальванометр не проходит ток. Ток I через длинный провод идентичен. Принимая соотношение ЭДС x / ЭДС s , I отменяет, и решение для ЭДС x дает то, что видно на.

Поскольку для R используется длинный однородный провод, соотношение сопротивлений R x / R с такое же, как отношение длин провода, который обнуляет гальванометр для каждой ЭДС.Три величины в правой части уравнения теперь известны или измерены, и можно вычислить ЭДС x . В этом расчете часто меньше неопределенности, чем при прямом использовании вольтметра, но он не равен нулю. Всегда есть некоторая неопределенность в соотношении сопротивлений R x / R s и стандартных ЭДС. Кроме того, невозможно определить, когда гальванометр показывает ровно ноль, что вносит ошибку как в R x , так и в R s , а также может повлиять на ток I .

Измерения сопротивления

Многие так называемые омметры измеряют сопротивление. Наиболее распространенные омметры прикладывают напряжение к сопротивлению, измеряют ток и вычисляют сопротивление по закону Ома. Их показание — это рассчитанное сопротивление. Простые конфигурации с использованием стандартных вольтметров и амперметров имеют ограниченную точность, поскольку измерители изменяют как напряжение, подаваемое на резистор, так и ток, протекающий через него. Мост Уитстона — это устройство измерения нуля для расчета сопротивления путем уравновешивания падения потенциала в цепи.Устройство называется мостом, потому что гальванометр образует мост между двумя ветвями. Для выполнения нулевых измерений в схемах используются различные мостовые устройства. Резисторы R 1 и R 2 точно известны, а стрелка, проходящая через R 3 , указывает, что это переменное сопротивление. Можно точно прочитать значение R 3 . При неизвестном сопротивлении Rx в цепи R 3 регулируется до тех пор, пока гальванометр не покажет ноль.

Мост Уитстона : мост Уитстона используется для расчета неизвестных сопротивлений. Переменное сопротивление R3 регулируется до тех пор, пока гальванометр не покажет ноль при замкнутом переключателе. Это упрощает схему, позволяя рассчитывать Rx на основе падения ИК-излучения.

Тогда разность потенциалов между точками b и d равна нулю, что означает, что b и d имеют одинаковый потенциал. При отсутствии тока, протекающего через гальванометр, он не влияет на остальную цепь.Таким образом, ветви abc и adc параллельны, и каждая ветвь имеет полное напряжение источника. Поскольку b и d имеют одинаковый потенциал, падение ИК-излучения вдоль ad должно равняться падению ИК-излучения вдоль ab . Опять же, поскольку b и d имеют одинаковый потенциал, падение ИК-излучения вдоль dc должно равняться падению ИК-излучения вдоль bc . Это уравнение используется для вычисления неизвестного сопротивления, когда ток через гальванометр равен нулю. Этот метод может быть очень точным, но он ограничен двумя факторами. Во-первых, ток через гальванометр не может быть точно равен нулю. Во-вторых, всегда есть неопределенности в R 1 , R 2 и R 3 , которые вносят вклад в неопределенность в R x .

Как работает амперметр?

Обновлено 22 декабря 2020 г.

Автор: S. Hussain Ather

Чаще всего для измерения тока используется амперметр.Поскольку единицей измерения электрического тока в системе СИ является ампер, прибор, используемый для измерения тока, называется амперметром.

Существует два типа электрического тока: постоянный (DC) и переменный (AC). Постоянный ток посылает ток в одном направлении, в то время как переменный ток меняет направление тока через равные промежутки времени.

Амперметр Функция

Амперметры измеряют электрический ток путем измерения тока через набор катушек с очень низким сопротивлением и индуктивным сопротивлением. Это обеспечивает очень низкий импеданс, силу, противодействующую электрическому току, что позволяет амперметру точно измерять ток в цепи без помех или изменений из-за самого амперметра.

В амперметрах с подвижной катушкой движение происходит за счет фиксированных магнитов, которые настроены противодействовать току. Затем механизм вращает центрально расположенный якорь, прикрепленный к шкале индикатора. Этот циферблат расположен над градуированной шкалой, которая позволяет оператору узнать, сколько тока проходит через замкнутую цепь.

При измерении тока цепи необходимо последовательно подключить амперметр. Низкое сопротивление амперметра означает, что он не потеряет много мощности. Если амперметр был подключен параллельно, путь может стать короткозамкнутым, и весь ток будет проходить через амперметр, а не через цепь.

Основным требованием к любому измерительному прибору является то, что он не должен изменять измеряемую физическую величину. Например, амперметр не должен изменять исходный ток. Но на практике это невозможно. В электрической цепи начальный ток перед подключением амперметра составляет I 1 = E / R . Предположим, что внутреннее сопротивление ячейки равно нулю.

Амперметр и гальванометры

Гальванометры определяют силу и направление незначительных токов в цепях. Указатель, прикрепленный к катушке, перемещается по шкале. Затем шкала калибруется для считывания силы тока в амперах.

Гальванометрам требуется магнитное поле, в то время как амперметрам может работать без него.Хотя гальванометр имеет гораздо большую точность, чем амперметр, он не такой точный. Это означает, что гальванометры могут быть очень чувствительны к небольшим изменениям тока, но этот ток все равно может быть далек от фактического значения.

Гальванометры могут измерять только постоянный ток, поскольку они требуют силы электрического тока в магнитном поле, в то время как амперметры могут измерять как постоянный, так и переменный ток. Амперметры постоянного тока используют принцип подвижной катушки, в то время как амперметры переменного тока измеряют изменения в том, как кусок железа движется в присутствии электромагнитной силы неподвижного провода катушки.

Сопротивление шунта

При подключении гальванометра параллельно к очень маленькому шунтирующему резистору ток может быть перенаправлен через шунт, и только очень небольшой ток будет проходить через гальванометр. Таким образом, гальванометр может быть адаптирован для измерения более высоких токов, чем в противном случае. Шунт защищает гальванометр от повреждений, обеспечивая альтернативный путь прохождения тока.

Пусть G будет сопротивлением гальванометра, а I g будет максимальным током, который может пройти через него для полного отклонения шкалы.Если I — это ток, который необходимо измерить, то только часть I g должна проходить через G для полного отклонения, а оставшаяся часть (I — I g ) должна проходить через шунт. .

Правильное значение сопротивления шунта S вычисляется путем параллельного рассмотрения G и S . Следовательно,

S = \ frac {I_GG} {I-I_G}

Это уравнение дает значение сопротивления шунта.

Эффективное сопротивление амперметра определяется следующим образом:

R_ {eff} = \ frac {1} {1 / G + 1 / S} = \ frac {GS} {G + S}

Принцип работы, Принципиальная схема, типы и применение

Мы знаем, что счетчик — это электронное устройство, используемое для измерения определенной величины, и оно связано с системой измерения.Точно так же амперметр — это не что иное, как амперметр, используемый для измерения силы тока. Здесь ампер — это единица измерения тока, а амперметр используется для измерения тока. Существует два вида электрического тока: переменный и постоянный. Переменный ток изменяет направление тока через равные промежутки времени, тогда как постоянный ток подает ток в одном направлении. В этой статье обсуждается обзор амперметра, схемы, типов и приложений.


Что такое амперметр?

Определение: Устройство или инструмент, который используется для измерения тока, называется амперметром.Единица измерения тока — ампер. Таким образом, это устройство измеряет ток в амперах и называется амперметром или амперметром. Однако на практике внутреннее сопротивление этого устройства равно «0»; у него есть некоторое внутреннее сопротивление. Диапазон измерения этого устройства в основном зависит от величины сопротивления. Схема амперметра показана ниже.

амперметр

Принцип работы амперметра в основном зависит от сопротивления, а также индуктивного реактивного сопротивления. Это устройство имеет чрезвычайно низкий импеданс, потому что на нем должно быть меньше падения напряжения.Он включен последовательно, потому что ток в последовательной цепи одинаков.

Основная функция этого прибора — измерение силы тока с помощью набора катушек. Эти катушки имеют очень низкое сопротивление и индуктивное сопротивление. Символическое изображение амперметра показано ниже.

Принципиальная схема амперметра

Конструкция амперметра может быть выполнена двумя способами: последовательным и шунтирующим. Следующая схема представляет собой основную принципиальную схему, а подключение амперметра последовательно и параллельно показано ниже.

последовательная цепь

После того, как это устройство будет последовательно подключено к цепи, через счетчик будет протекать общий ток измеряемой величины. Таким образом, потеря мощности происходит внутри амперметра из-за их внутреннего сопротивления и измеряемого тока. Эта схема имеет меньшее сопротивление, поэтому в ней будет меньше падения напряжения.

Здесь сопротивление этого устройства остается небольшим по таким причинам, как общий ток измеряемой величины, протекающий через амперметр, и меньшее падение напряжения на устройстве.

параллельная цепь

Когда через это устройство протекает большой ток, внутренняя цепь устройства будет повреждена. Чтобы решить эту проблему в цепи, сопротивление шунта можно подключить параллельно амперметру. Если по всей цепи подается большой ток измеряемой величины, основной ток будет проходить через сопротивление шунта. Это сопротивление не повлияет на работу устройства.

Классификация / типы амперметров

Они подразделяются на различные типы в зависимости от их применения, в том числе следующие.

  • Подвижная катушка
  • Электродинамический
  • Подвижный утюг
  • Hotwire
  • Цифровой
  • Интегрирующий
Подвижная катушка

Этот тип амперметра используется для измерения переменного и постоянного тока. В этом устройстве используется магнитное отклонение, при котором ток через катушку заставляет двигаться в магнитном поле. Катушка в этом устройстве свободно перемещается между полюсами постоянного магнита.

Электродинамический

Этот тип амперметра включает подвижную катушку, которая вращается в генерируемом поле через неподвижную катушку. Основная функция этого устройства — измерение переменного и постоянного тока с точностью от 0,1 до 0,25%. Точность этого устройства высока по сравнению с подвижной катушкой и подвижной катушкой с постоянным магнитом. Калибровка устройства одинакова для переменного и постоянного тока.

Подвижный утюг

Этот тип амперметра используется для расчета переменных токов и напряжений. В этом устройстве подвижная система включает в себя специально созданные куски мягкого железа, которые перемещаются под действием электромагнитной силы неподвижной катушки с проволокой.Эти типы устройств подразделяются на два типа: отталкивание и притяжение. Это устройство включает в себя различные компоненты, такие как подвижный элемент, катушку, управление, демпфирование и отражающий момент.

Горячий провод

Он используется для измерения переменного или постоянного тока путем передачи его через провод, чтобы он нагрелся и расширился. Это называется горячей проволокой. Принцип работы этого устройства заключается в увеличении проволоки за счет теплового эффекта от проходящего через нее тока. Это используется как для переменного, так и для постоянного тока.

Цифровой амперметр

Этот тип устройства используется для измерения силы тока в амперах и отображения значений на цифровом дисплее. Проектирование этого устройства может быть выполнено путем использования шунтирующего резистора для создания калиброванного напряжения, пропорционального протеканию тока. Эти инструменты предоставляют информацию о текущем потреблении и непрерывности, чтобы помочь потребителю в устранении неполадок переменных нагрузок и тенденций.

Интегрирование

В этом устройстве протекание тока суммируется во времени и дает произведение времени и тока.Эти устройства рассчитывают всю энергию, подаваемую через цепь за определенный промежуток времени. Лучшим примером этого интегрирующего устройства является счетчик ватт-часов, поскольку он измеряет энергию непосредственно в ватт-часах.

Влияние температуры на амперметр

На амперметр легко влияет внешняя температура. Таким образом, изменение температуры вызовет ошибку в считывании. Для преодоления этого используется сопротивление заболачиванию, поскольку температурный коэффициент этого сопротивления равен нулю.В следующей схеме амперметр и сопротивление затухания подключены последовательно, так что влияние температуры на это может быть уменьшено.

Температурный эффект

Это устройство включает предохранитель для защиты от внешнего сильного тока. Если ток через цепь велик, цепь выйдет из строя, и амперметр не будет измерять ток, пока он не будет заменен другим. Таким образом можно уменьшить температурное воздействие на это устройство.

Приложения

Применения амперметра включают следующее.

  • Это устройство будет применяться в школах и на производстве.
  • Они используются для измерения тока в зданиях, чтобы убедиться, что поток не слишком низкий или слишком высокий.
  • Используется на производственных предприятиях и в приборостроении для проверки работоспособности устройств.
  • Используется с термопарой для проверки температуры.
  • Электрики часто используют эти устройства для проверки неисправностей электрических цепей в здании.

Часто задаваемые вопросы

1). Какова функция амперметра?

Измерительное устройство, используемое для измерения протекания тока в цепи.

2). Кто изобрел амперметр?

В 1884 году Фридрих Дрекслер изобрел первый амперметр, похожий на счетчик с подвижным железом.

3). Какая единица СИ для электрического тока?

Ампер

4). Что такое амперметр переменного тока?

Устройство, используемое для измерения переменного тока, подаваемого через электрическую цепь, известно как амперметр переменного тока.

5). Какая формула для тока?

Согласно закону Ома Ток (I) = Напряжение (В) / Сопротивление (R)

Таким образом, все сводится к обзору амперметра, а сопротивление идеального амперметра равно нулю. Из приведенной выше информации, наконец, можно сделать вывод, что эти устройства очень важны для измерения тока в различных электрических и электронных схемах. Вот вам вопрос, какова функция амперметра типа MC?

Электросчетчики

Вольтметры

Вольтметры — это инструменты, используемые для измерения разности потенциалов между двумя точками в цепи.Вольтметр подключается параллельно измеряемому элементу, что означает создание пути переменного тока вокруг измеряемого элемента и через вольтметр. Вы правильно подключили вольтметр, если вы можете удалить вольтметр из цепи, не разрывая цепь. На схеме справа вольтметр подключен для правильного измерения разности потенциалов на лампе. Вольтметры имеют очень высокое сопротивление, чтобы минимизировать ток, протекающий через вольтметр, и влияние вольтметра на цепь.


Амперметры

Амперметры — это инструменты, используемые для измерения тока в цепи. Амперметр включен последовательно со схемой, так что измеряемый ток протекает непосредственно через амперметр. Чтобы правильно вставить амперметр, цепь должна быть разорвана. Амперметры имеют очень низкое сопротивление, чтобы свести к минимуму падение потенциала через амперметр и воздействие амперметра на цепь, поэтому включение амперметра в цепь параллельно может привести к очень высоким токам и может повредить амперметр.На схеме справа амперметр подключен правильно для измерения тока, протекающего по цепи.

Вопрос: На электрической схеме справа возможно расположение амперметра и вольтметра обозначены кружками 1, 2, 3 и 4. Где должен быть расположен амперметр, чтобы правильно измерить полный ток и где должен ли вольтметр быть правильно расположен измерить общее напряжение?

Ответ: Для измерения полного тока амперметр должен быть помещен в положение 1, так как весь ток в цепи должен проходить через этот провод, а амперметры всегда подключаются последовательно.

Для измерения общего напряжения в цепи вольтметр может быть размещен либо в позиции 3, либо в позиции 4. Вольтметры всегда размещаются параллельно с анализируемым элементом цепи, а позиции 3 и 4 эквивалентны, потому что они соединены проводами ( и потенциал всегда одинаков в любом месте идеального провода).

Вопрос: На какой схеме ниже правильно показано соединение амперметра A и вольтметра V для измерения сквозного тока и разности потенциалов на резисторе R?

Ответ: (4) показывает амперметр, включенный последовательно, и вольтметр, включенный параллельно резистору.

Вопрос: По сравнению с сопротивлением измеряемой цепи внутреннее сопротивление вольтметра спроектировано так, чтобы оно было очень высоким, поэтому счетчик не будет потреблять ток из цепи

  1. мало тока из цепи
  2. большая часть тока из цепи
  3. весь ток из схемы

Ответ: (2) вольтметр должен потреблять как можно меньше тока из схемы, чтобы минимизировать его влияние на схему, но для работы требуется небольшое количество тока.

Что такое амперметр? — Определение, типы, шунтирующий амперметр и сопротивление заболачиванию

Определение: Измеритель , используемый для измерения тока, известен как амперметр . Ток — это поток электронов в амперах. Следовательно, прибор, который измеряет токи в амперах, известен как амперметр или амперметр.

Идеальный амперметр имеет нулевое внутреннее сопротивление .Но практически амперметр имеет небольшое внутреннее сопротивление. Диапазон измерения амперметра зависит от величины сопротивления.

Символическое представление

Заглавная буква A обозначает амперметр в цепи.

Подключение амперметра в цепи

Амперметр соединен последовательно с цепью , так что все электроны измеряемого тока проходят через амперметр. Потери мощности возникают в амперметре из-за измеряемого тока и их внутреннего сопротивления.Цепь амперметра имеет низкое сопротивление , поэтому в цепи возникает небольшое падение напряжения.

Сопротивление амперметра остается низким по двум причинам.

  • Через амперметр проходит весь измеряемый ток.
  • Низкое падение напряжения на амперметре.

Типы амперметров

Классификация амперметров зависит от их конструкции и типа тока, протекающего через амперметр.Ниже приведены типы амперметров в зависимости от конструкции.

  1. Амперметр с постоянной подвижной катушкой.
  2. Амперметр с подвижным железом.
  3. Амперметр электродинамометрический.
  4. Амперметр выпрямительного типа.

По току амперметры делятся на два типа.

1. Амперметр PMMC — В приборе PMMC проводник помещается между полюсами постоянного магнита. Когда ток течет через катушку, она начинает отклоняться. Прогиб катушки зависит от силы тока, протекающего через нее. Амперметр PMMC используется только для измерения постоянного тока.

2. Амперметр с подвижной катушкой (MI) — Амперметр MI измеряет как переменный, так и постоянный ток. В этом типе амперметра катушка свободно перемещается между полюсами постоянного магнита. Когда ток проходит через катушку, она начинает отклоняться под определенным углом. Прогиб катушки пропорционален току, протекающему через катушку.

3. Электродинамометр Амперметр — Он используется для измерения переменного и постоянного тока. Точность прибора выше, чем у приборов PMMC и MI. Калибровка прибора одинакова как для переменного, так и для постоянного тока, т.е. если постоянный ток калибрует прибор, то без повторной калибровки он используется для измерения переменного тока.

4. Выпрямительный амперметр — используется для измерения переменного тока. Приборы, использующие выпрямительный прибор, который преобразует направление тока и передает его на прибор PMMC.Такой тип прибора используется для измерения тока в цепи связи.

Прибор, который измеряет постоянный ток, известен как амперметр постоянного тока, а амперметр, который измеряет переменный ток, известен как амперметр переменного тока,

.

Шунт амперметра

Высококачественный ток напрямую проходит через амперметр, что приводит к повреждению его внутренней цепи. Для устранения этой проблемы параллельно с амперметром подключают шунтирующее сопротивление.

Если через цепь проходит большой ток измеряемой величины, большая часть тока проходит через шунтирующее сопротивление .Сопротивление шунта не повлияет на работу амперметра, т.е. движение катушки останется прежним.

Влияние температуры в амперметре

Амперметр — это чувствительное устройство, на которое легко влияет окружающая температура. Изменение температуры вызывает ошибку в считывании. Это можно уменьшить за счет сопротивления заболачиванию. Сопротивление, имеющее нулевой температурный коэффициент, известно как сопротивление заболачиванию. Он подключается последовательно с амперметром. Сопротивление заболачиванию снижает влияние температуры на счетчик.

Амперметр имеет встроенный предохранитель, который защищает амперметр от сильного тока. Если через амперметр будет протекать значительный ток, предохранитель сломается. Амперметр не сможет измерить ток, пока новый не заменит предохранитель.

Метры, вольтметры и амперметры | Electronics Club

Метры, вольтметры и амперметры | Клуб электроники

Аналог | Цифровой | Вольтметры | Амперметры | Гальванометры | Омметры

Следующая страница: Мультиметры

См. Также: напряжение и ток

Аналоговый дисплей

Аналоговые дисплеи имеют указатель, который перемещается по градуированной шкале. Они могут быть трудными читать из-за необходимости выработать значение наименьшего деления шкалы. Например шкала на картинке имеет 10 маленьких делений от 0 до 1, поэтому каждое маленькое деление представляет 0,1. Таким образом, показание составляет 1,25 В (стрелка находится на полпути между 1,2 и 1,3).

Максимальное показание аналогового измерителя называется отклонением полной шкалы или FSD (в показанном примере это 5 В).

Аналоговые счетчики должны быть подключены правильно чтобы предотвратить их повреждение, когда указатель пытается двигаться в неправильном направлении.Они полезны для мониторинга постоянно меняющихся значений (например, напряжения на конденсатора разряда), и они могут быть хороши для быстрых грубых показаний, потому что движение указателя можно увидеть, не отводя взгляда от тестируемой цепи.

Снятие точных показаний

Чтобы получить точное показание аналоговой шкалы, ваш глаз должен соответствовать указатель. Не смотрите под углом слева или справа, потому что вы увидите чтение, которое немного завышено или занижено.Многие аналоговые счетчики имеют небольшую полоску зеркало по шкале в помощь. Когда ваш глаз находится в правильном положении, отражение указателя скрыто за самим указателем. Если вы видите отражение вы смотрите под углом.

Вместо зеркала на некоторых счетчиках есть поворотный указатель для облегчения считывания. Конец указателя повернут на 90 °, поэтому при правильном просмотре он кажется очень тонким. Показанный в разделе гальванометров счетчик имеет витую стрелку. хотя это слишком мало, чтобы увидеть на картинке.

Правильно
отражение скрыто

Неправильно
отражение видно


Цифровой дисплей

Значения можно считывать непосредственно с цифровых дисплеев, поэтому они легко читаются точно. Это нормально, когда младшая цифра (справа) постоянно меняется между два или три значения, это особенность работы цифровых счетчиков, а не ошибка.Обычно большая точность не требуется, и эту цифру можно проигнорировать или округлить в большую сторону.

Цифровые счетчики могут быть подключены любым способом без повреждений, они покажут минус знак (-) при обратном подключении. Если вы превысите максимальное показание, большинство цифровых измерителей показать почти пустой дисплей с цифрой 1 слева.

Все цифровые измерители содержат батарею для питания дисплея, поэтому они практически не потребляют электроэнергию. от тестируемой цепи. Это означает, что цифровые вольтметры имеют очень высокое сопротивление. (обычно называемое входным сопротивлением) не менее 1 МОм (часто 10 млн) и они вряд ли повлияют на тестируемую цепь.

Для общего пользования лучше всего подходят цифровые счетчики типа

Они легко читаются, их можно подключить в обратном порядке, и они вряд ли повлияют на тестируемую цепь.



Подключение счетчиков

Важно правильно подключить счетчики:

  • Положительный полюс счетчика с маркировкой + или красным должен быть подключен ближе всего к + на аккумуляторе или источнике питания.
  • Отрицательная клемма счетчика, с маркировкой или цветным цветом черный должен быть подключен ближе всего — к аккумулятору или источнику питания.

Вольтметры

  • Вольтметры измеряют напряжение .
  • Напряжение измеряется в В , В .
  • Вольтметры соединены параллельно между компонентами.
  • Вольтметры
  • имеют очень высокое сопротивление .

Включение вольтметра параллельно

Измерение напряжения в точке

При тестировании цепей часто требуется найти напряжения в различных точках, например, напряжение на выводе 2 микросхемы таймера 555.Это может показаться запутанным — куда подключить второй провод вольтметра?

  • Подключите черный провод (отрицательный -) вольтметра к 0 В, обычно к отрицательному клемму аккумулятора или источника питания.
  • Подсоедините красный (положительный +) провод вольтметра к точке. вы там, где вам нужно измерить напряжение.
  • Черный провод можно оставить постоянно подключенным к 0 В, пока вы используете красный провод в качестве щупа для измерения напряжений в различных точках.
  • Вы можете использовать зажим «крокодил» на проводе , черный, , чтобы удерживать его на месте.

Напряжение в точке действительно означает разницу напряжений между этой точкой и 0 В. (ноль вольт), который обычно является отрицательной клеммой аккумулятора или источника питания. Обычно 0V обозначается на принципиальной схеме в качестве напоминания.

Аналоговые измерители потребляют немного энергии от тестируемой цепи для работы со стрелкой. Это может нарушить цепь и дать неверные показания.Во избежание этого вольтметры должны иметь сопротивление, по крайней мере, в 10 раз превышающее сопротивление цепи (считайте это наибольшим значение резистора рядом с тем местом, где подключен счетчик).

Большинство аналоговых вольтметров, используемых в школьных науках, не подходят для электроники. потому что их сопротивление слишком низкое, обычно несколько k. Для большинства электронных схем требуется 100k или более.



Амперметры

  • Амперметры для измерения силы тока .
  • Ток измеряется в ампер (ампер) , A .
    1A довольно большой, поэтому часто используются мА (миллиампер) и мкА (микроампер). 1000 мА = 1 А, 1000 мкА = 1 мА, 1000000 мкА = 1 А.
  • Амперметры
  • подключаются к серии .
    Для последовательного подключения необходимо разорвать цепь и поставить амперметр. поперек зазора, как показано на схеме.
  • Амперметры
  • имеют очень низкое сопротивление .

Необходимость разрыва цепи для последовательного подключения означает, что амперметры затруднены для использования в паяных схемах.Большинство испытаний электроники проводится с помощью вольтметров, которые могут быть легко подключенным без мешающих цепей.

Последовательное подключение амперметра


Гальванометры

Гальванометры — очень чувствительные измерители, которые используются для измерения крошечных токов, обычно 1 мА или меньше. Они используются для изготовления всех типов аналоговых счетчиков путем добавления подходящие резисторы, как показано на схемах ниже.

Изготовление вольтметра
Гальванометр с высоким сопротивлением
умножитель последовательно для изготовления вольтметра.

Изготовление амперметра
Гальванометр с низким сопротивлением
включите параллельно для создания амперметра.

На фотографии изображен учебный гальванометр 100 мкА с умножителем и шунтом. Этот измеритель необычен тем, что позволяет отображать небольшие обратные показания: максимальный ток измерителя составляет 100 мкА (или 20 мкА в обратном направлении).


Омметры

Омметр используется для измерения сопротивления в омах ().

Омметры редко встречаются как отдельные измерители, но все стандартные мультиметры имеют настройку омметра.

1 довольно мала, поэтому k И м часто используются.

1к = 1000
1 млн = 1000 тыс. = 1000000


Мультиметры

Мультиметры — очень полезные инструменты для тестирования. С помощью многопозиционного переключателя на метр, их можно быстро и легко настроить на вольтметр , амперметр или омметр . У них есть несколько настроек (называемых «диапазонами») для каждого типа метр и выбор переменного или постоянного тока.

Некоторые мультиметры имеют дополнительные функции, такие как тестирование транзисторов и диапазоны для измерение емкости и частоты.

Цифровой мультиметр — лучший выбор для вашего первого мультиметра , даже самый дешевый подойдет для тестирования простых проектов и рекомендую от Rapid Electronics: Цифровой мультиметр (базовый)

Для получения дополнительной информации см. Страницу Мультиметры.

Фотография мультиметра © Rapid Electronics.


Следующая страница: Мультиметры | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *