Амперметр формула – расчет компонента микроамперметра постоянного тока, основные формулы и подбор параметров сопротивления

Содержание

Сила тока: природа, формула, измерение амперметром

 

Наверное, каждый хотя бы раз в жизни ощущал на себе действие тока. Обыкновенная батарейка едва ощутимо пощипывает, если приложить ее к языку. Ток в квартирной розетке довольно сильно бьет, если коснуться оголенных проводов. А вот электрический стул и линии электропередач могут лишить жизни.

Во всех случаях мы говорим о действии электрического тока. Чем же так отличается один ток от другого, что разница в его воздействии столь существенна? Очевидно, есть некая количественная характеристика, которой можно объяснить такое различие. Ток, как известно, это передвигающиеся по проводнику электроны. Можно предположить, что чем больше через сечение проводника пробежит электронов, тем большее действие произведет ток.

Формула силы тока

Для того, чтобы охарактеризовать заряд, проходящий через проводник, ввели физическую величину, называемую силой электрического тока. Сила тока в проводнике – это количество электричества, проходящего через поперечное сечение проводника за единицу времени. Сила тока равна отношению электрического заряда ко времени его прохождения. Для расчета силы тока применяют формулу:

I=q/t,

где I- сила тока,
q — электрический заряд,
t — время.

За единицу силы тока в цепи принят 1 Ампер (1 А) в честь французского ученого Андре Ампера. На практике часто применяют кратные единицы: миллиамперы, микроамперы и килоамперы.

Измерение силы тока амперметром

Для измерения силы тока применяют амперметры. Амперметры бывают различными в зависимости от того, для каких измерений они рассчитаны. Соответственно, шкалу прибора градуируют в требуемых величинах. Амперметр подключается в любом месте сети последовательно. Место подключения амперметра не имеет значения, так как количество электричества, проходящее через цепь, в любом месте будет одинаково. Электроны не могут скапливаться в каких-либо местах цепи, они текут равномерно по всем проводам и элементам. При подключении амперметра до и после нагрузки он покажет одинаковые значения.

Первые ученые, исследовавшие электричество, не имели приборов дл измерения силы тока и величины заряда. Они проверяли наличие тока собственными ощущениями, пропуская его через свое тело. Довольно неприятный способ. На то время силы токов, с которыми они работали, были не очень велики, поэтому большинство исследователей отделывались лишь неприятными ощущениями. Однако, в наше время даже в быту, не говоря уже про промышленность, используются токи очень больших значений.

Следует знать, что для человеческого организма безопасной признана величина силы тока до 1 мА. Величина тока больше 100 мА может привести к серьезным повреждениям организма. Величина тока в несколько ампер может убить человека. При этом еще нужно учитывать индивидуальную восприимчивость организма, которая различна у каждого человека. Поэтому следует помнить о главном требовании при эксплуатации электроприборов – безопасность.

Нужна помощь в учебе?



Предыдущая тема: Ток в металлах: действия тока и направление тока
Следующая тема:&nbsp&nbsp&nbspЭлектрическое напряжение: определение, формула, вольтметр

Все неприличные комментарии будут удаляться.

Расчёт шунтирующего сопротивления амперметра :: АвтоМотоГараж

Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра.  Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.

 shunting_resistor_00.jpg

В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.

shunting_resistor_02.jpg shunting_resistor_03.jpg

Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.

Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.

Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.

shunting_resistor_04.jpg

Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:

shunting_resistor_08.jpg

где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)

Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:

 

В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.

Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.

Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.

shunting_resistor_05.jpg

Цена деления прибора рассчитывается по формуле:

shunting_resistor_09.jpg

где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями

Для упрощения можно воспользоваться онлайн калькулятором ниже:

 

 

Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.

Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах

Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.

Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.

shunting_resistor_06.jpg

shunting_resistor_07.jpg

Формула для расчёта тока отклонения стрелки до максимального значения:

shunting_resistor_10.jpg

Расчёт: 0.075/2.52=0.02976А

Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:

 

Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах

Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.

О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье.

Сила тока. Амперметр — методическая рекомендация. Физика, 8 класс.

1. Показание амперметра 1 вид — рецептивный лёгкое 1 Б. Требуется назвать показание амперметра, включённого в цепь, если известно показание другого амперметра, включённого в эту же цепь.
2. Амперметр в цепи 1 вид — рецептивный лёгкое 1 Б. Проверяется знание подключения амперметра в цепь.
3. Сила тока в цепи 1 вид — рецептивный лёгкое 1 Б. Проверяется знание того, что сила тока во всех участках одинакова (при последовательном соединении).
4. Как меняется сила тока 1 вид — рецептивный лёгкое 1 Б. Проверяется знание того, что сила тока во всех участках одинакова (при последовательном соединении) и не зависит от места подключения амперметра.
5. Подключение амперметра в цепь 1 вид — рецептивный лёгкое 1 Б. Проверяется знание подключения амперметра в цепь.
6. Направление тока 1 вид — рецептивный лёгкое 1 Б. Проверяется знание направления тока.
7. Виды амперметров 1 вид — рецептивный лёгкое 1 Б. Проверяется умение отличить амперметр для измерения силы постоянного тока от амперметра для измерения силы переменного тока.
8. Амперы 1 вид — рецептивный лёгкое 2 Б. Единицы силы тока.
9. Сила тока 1 вид — рецептивный лёгкое 1 Б. Сила тока в электрических приборах.
10. Вычисление силы тока 2 вид — интерпретация среднее 2 Б. Требуется найти силу тока.
11. Единицы измерения силы тока 2 вид — интерпретация среднее 4 Б. Проверяется умение работать с единицами силы тока.
12. Единицы силы тока 2 вид — интерпретация среднее 4 Б. Проверка умения работать с единицами силы тока.
13. Цена деления амперметра 2 вид — интерпретация среднее 1 Б. Требуется сравнить цену деления амперметров.
14. Показание амперметра 2 вид — интерпретация среднее 2 Б. Требуется определить показание амперметра, используя знания о пределе измерения и цене деления.
15. Выбор амперметра для цепи постоянного тока 2 вид — интерпретация среднее 1 Б. Проверяется умение отличать амперметр для измерения силы постоянного тока от амперметра для измерения силы переменного тока.
16. Выбор амперметра для цепи переменного тока 2 вид — интерпретация среднее 1 Б. Проверяется умение отличать амперметр для измерения силы переменного тока от амперметра для измерения силы постоянного тока.
17. Время протекания заряда 2 вид — интерпретация среднее 2 Б. Проверяется умение находить время.
18. Электрический заряд 2 вид — интерпретация среднее 2 Б. Проверяется умение находить заряд.
19. Вычисление силы тока в фонарике 3 вид — анализ сложное 3 Б. Проверяется умение находить силу тока, работать со степенями.
20. Количество электронов 3 вид — анализ сложное 3 Б. Проверяются умения: находить заряд, выражать физические величины из формул, работать со степенями.
21. Вычисление силы тока в лампочке 3 вид — анализ сложное 3 Б. Проверяются умения: находить силу тока, переводить единицы измерения физических величин.
22. Время протекания заряда в тостере 3 вид — анализ сложное 3 Б. Проверяются умения: находить время, переводить единицы измерения физических величин.
23. Электрический заряд, протекающий через кнопку звонка 3 вид — анализ сложное 3 Б. Проверяются умения: находить заряд, переводить единицы измерения физических величин.

расчет компонента микроамперметра постоянного тока, основные формулы и подбор параметров сопротивления

Шунт для амперметраШунт (англ. Shunt) — электрическое или магнитное ответвление, которое включают параллельно основного контура цепи. Параллельное подключение одного звена электрической цепи к другому с целью понижения общего электрического сопротивления называется процессом шунтирования. Это нашло широкое применение в схемотехнике.

Шунты измерительных приборов

Измерительный шунт — сопротивление, параллельно подключенное к зажимам измерительного амперметра (параллельно его внутреннему электрическому сопротивлению). Это позволяет прибору расширить измерительный диапазон по току при снижении его чувствительности и разрешающей способности.

Амперметр своими руками

Измерительные шунты производят из манганина. В зависимости от конструктивного исполнения бывают:

  • внутренними;
  • наружными (внешними).

Расчет шунта для амперметра постоянного токаДля определения небольших значений тока (не более 30 А) шунт чаще всего находится внутри корпуса прибора. В случае измерения внушительных значений тока во избежание чрезмерного нагрева корпуса шунт имеет наружную конфигурацию исполнения.

В портативных магнитоэлектрических устройствах, рассчитанных на силу тока не более 30 ампер, внутренние шунты рассчитаны на несколько граничных значений измеряемой величины.

Многопредельный шунт устроен в виде ряда резисторов, которые возможно коммутировать в соответствии с пределом измерения, рычажным тумблером либо путем перемещения провода с одной клемы на другую.

У внешних резисторов, как правило, присутствует калибровка, с расчётом на распространенные значения тока и напряжения. Такие шунтирующие сопротивления имеют ряд номинальных значений напряжения: 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

Расчет шунта амперметра При использовании элементов шунтирования в измерениях величин переменного тока наблюдается добавочная погрешность, связанная с преобразованием частоты, поскольку сопротивления измерительного механизма и шунтирующего устройства находятся в различных зависимостях от частоты.

Шунтирующие звенья классифицируются согласно точности: 0,02, 0,05, 0,1, 0,2, и 0,5. Цифровые значения, отвечающие каждому классу, указывают на допустимую величину расхождения сопротивления с его номиналом, выраженную в процентах.

Эксплуатационные требования, выдвигаемые к элементам шунтирования: низкие потери напряжения в области шунта, во избежание перегрева оборудования; стабильное значение сопротивления, обеспечивающие точность измерения; стойкость к коррозии и к воздействиям окружающей среды.

Контроль величины постоянного тока имеет широкий диапазон применения, в том числе:

  • Подключение амперметра в зарядном устройствефотоэлектрическая промышленность,
  • источники электропитания общественного транспорта,
  • электрические генераторы и двигатели,
  • оборудование для сварочных работ,
  • инверторы,
  • и другие системы с наличием высоких значений постоянного тока.

Во многих промышленных отраслях применение шунтирующих резисторов зарекомендовало себя как надежный, точный и долговременный способ для беспрерывного измерения тока постоянной величины.

Расчет и изготовление шунта

Амперметр M367 имеет максимальный предел измерения тока 150 А. Очевидно, что при определении таких величин силы тока задействовано внешнее шунтирующее сопротивление. Освобожденный от влияния шунтирующего элемента прибор приобретает свойства миллиамперметра с максимальным показанием силы тока 30 мА.

Следовательно, варьируя разными значениями сопротивления електр. звена, можно добиться любой области измерения. Чтобы подтвердить это на практике, можно создать шунт для амперметра своими руками.

Основные понятия и формулы

Значение суммарной величины тока I распределяется между шунтирующим резистором (Rш, Iш) и изм. прибором (Rа, Iа) и находится в обратно пропорциональной зависимости сопротивлению этих участков.

Электросопротивление ответвления измерительной цепи: Rш=RаIа / (I-Iа).

Для умножения масштаба измерения в n раз следует принять значение: Rш=(n-1) / Rа, при этом показатель n=I/Iа — коэффициент шунтирования.

Расчет шунтирующего звена

Как подключить амперметр к зарядному устройству Для расчета шунта микроамперметра можно воспользоваться данными об измерительной головке прибора: сопротивление рамки (Rрам), величина тока, которая соответствует максимальному отклонению индикаторной стрелки (Iинд) и наибольшее значение прогнозируемой шкалы измерения тока (Imax). Максимальным измеряемым током примем значение 30 мА. Значение Iинд определяется экспериментальным путем. Для этого последовательно включается в электрическую цепь переменный резистор R, шкала индикатор и измерительный тестер.

Перемещая ходунок резистора R, следует добиться максимального показания стрелки на шкале индикатора и зафиксировать показания Iинд на тестере. Вследствие опыта известны величины Iинд = 0.0004 А и Rрам=1кОм (также измеряется тестером), этого достаточно для дальнейшего расчета сопротивления шунта микроамперметра (индикатора) по формуле:

Rш=Rрам * Iинд / Imax; получаем Rш=13,3 Ом.

Длина проводника

Выбрав материал для изготовления и зная величину его удельного сопротивления, необходимо рассчитать длину токовой части шунта.

Согласно соотношению: Rш=p*J/S,

где: p-удельное сопротивление, J-длина, S- площадь поперечного сечения проводника, подбираются геометрические параметры медного провода (p=0.0175 Ом*мм2 /м).

Величину площади можно рассчитать из формулы, вооружившись предполагаемым значением диаметра:

S=3.14*d2/4.

Тогда искомая величина будет равна:

J=R*S/p.

При диаметре проводника d= 0.1 мм, подставив значения получается длина:

J=0.45 м.

Расчет шунта для амперметра постоянного тока определил такие выходные данные:

максимальный ток измерения — 30 мА;

материал проводника — медная жила 0.1 мм в диаметре длиною 0,45 м.

Для удобства и упрощения расчетов относительно шкал измерительных приборов используют онлайн-калькулятор.

Амперметр для зарядного устройства

Шунт для амперметра своими руками Нелишним будет знать, как сделать из вольтметра амперметр и применить его в процессе контролирования силы тока при зарядке аккумуляторных батарей.

Необходимый стрелочный вольтметр проверяется на способность стрелки полностью отклонятся вдоль измерительной шкалы. Следует убедиться в отсутствии добавочных сопротивлений или внутреннего шунта.

До этого был рассмотрен расчетный метод подбора шунтирующего резистора, в этом случае самодельный амперметр получается сугубо практическим путем, с помощью добавочного изм. прибора или тестера с пределом измерения до 8 А.

Соединяется в простую схему зарядный выпрямитель, дополнительный образцовый амперметр, проводник для будущего шунта и заряжаемая аккумуляторная батарея.

Как рассчитать шунт для амперметра Для изготовления шунта для амперметра 10А своими руками на концах неизолированного толстого медного проводника длиною до 80 см выгибаются кольцеобразные дуги под крепеж болтом. После чего подсоединяется последовательно с образцовым изм. прибором в электрическую цепь выпрямитель — аккумулятор.

Один из концов стрелочного вольтметра основательно соединяется с шунтом, а другим, как щупом, проводится по медному проводу. Подается питание через выпрямитель и устанавливается по образцовому амперметру сила тока в цепи 5А.

Начиная от места крепления, щупом от вольтметра следует вести по проводу, пока на обоих приборах не установятся одинаковые значения тока. Согласно величине сопротивления рамки используемого стрелочного вольтметра определяется нужная длина провода шунтирования величиною до метра.

Проводник шунта возможно смотать в виде спирали либо как-то еще. Витки легонько растянуть с целью избежать прикосновений между ними или изолировать хлорвиниловой трубкой по всей длине спирали шунта.

Вариант предварительного определения длины провода для последующей замены изолированным проводником тоже вполне приемлем и практичен, но требует внимательности и тщательности в операциях замены шунта, повторяя все этапы по нескольку раз. Связано это с точностью показаний амперметра.

Расчет шунта для амперметра

Соединительные провода от вольтметра должны быть обязательно припаяны непосредственно к шунтирующей спирали, иначе прибор будет иметь погрешности в показаниях.

Провода соединяющие шунт и изм. прибор выбирают произвольной длины, поэтому шунтирующий элемент возможно поместить в любой части корпуса выпрямителя.

Шкала амперметра для измерения величины постоянного тока равномерная, этим нужно руководствоваться при ее выборе. Букву V правильно заменить на А, а цифровые значения подогнать из расчета максимального тока в 10 А.

Расчет сопротивления шунта амперметра

Часто при электротехнических измерениях необходимо узнать величину тока протекающего в цепи. Для этого используется амперметр. Как и другие измерительные приборы, амперметр имеет свой максимальный предел измерения, в тех случаях, когда его недостаточно, применяют шунтирование амперметра.

Шунт — это сопротивление, которое подключается параллельно к зажимам амперметра, с целью увеличения диапазона измерений. Добавление шунта параллельно амперметру вызывает разделение тока I, который протекает через данную цепь, на две составляющие – Iа и Iш.

Схема подключения шунта к амперметру

По закону Кирхгофа известно, что сумма токов сходящихся в узле равна нулю, а значит, ток I представляет собой сумму токов Iа и Iш. Чем меньше сопротивление шунта Rш , тем ток Iш больше, а значит ток Iа, который протекает через амперметр — меньше. Зная, как соотносятся сопротивление амперметра Ra и шунта Rш, можно узнать величину измеряемого тока I или напротив, зная ток I, можно рассчитать необходимое сопротивление шунта Rш.

Формула для расчета сопротивления шунта:

Формула для расчета сопротивления шунта

Для увеличения диапазона измерения амперметра в n раз, формула для шунта:

Формула 2 для расчета сопротивления шунта

Пример 1

Рассчитайте сопротивление шунта, который увеличит диапазон электромагнитного амперметра до 10 А, если известно, что амперметр имеет внутреннее сопротивление 5 Ом и измеряет ток до 1 А.

Измеряемый ток в 10 А, делится на два тока Iа = 1 А, и Iш, который равен:

Расчет сопротивления шунта - формула 3

Отсюда измеряемый ток должен разделиться в соотношении:

Расчет сопротивления шунта - формула 4

Так как по закону Ома сопротивление обратно пропорционально току, то

Расчет сопротивления шунта - формула 5

Откуда Rш:

Расчет сопротивления шунта - формула 6

Ответ: 0.556 Ом

Пример 2

Определите, какое должно быть сопротивление шунта, для того, чтобы увеличить предел измерения амперметра в 5 раз, если известно, что внутреннее сопротивление амперметра 2 Ом.

Сопротивление шунта рассчитывается по следующей формуле:

Расчет сопротивления шунта - формула 7

Ответ: 0,5 Ом.

Пример 3

Амперметр дает полное отклонение стрелки при токе в 3 А. Необходимо измерить с помощью него ток в 150 А. Определите сопротивление шунта, если известно, что внутреннее сопротивление амперметра 1 Ом.

Для проведения измерения необходимо увеличить ток в n раз:

Расчет сопротивления шунта - формула 8

По уже знакомой формуле рассчитаем сопротивление шунта:

Расчет сопротивления шунта - формула 9

Ответ: 0.02 Ом.

  • Просмотров: 12224
  • что измеряет, виды, характеристики, устройство вольтметра, строение и принцип работы

    Для проверки работоспособности и исправности электроприборов, прокладки сетей и простого измерения параметров сети используются электронные приборы. В их число входит и вольтметр, который знаком каждому человеку еще со школьной скамьи. Электронные вольтметры составляют крупнейшую группу электроизмерительных приборов. Главное их назначение — получение параметра напряжения в сетях постоянного и переменного тока в широких диапазонов радиоволн. В этом материале будет рассказано: что именно и как измеряет вольтметр, его устройство и принципы действия, краткую историю создания, какие виды вольтметров существуют.

    История создания

    Прародителем всех современных вольтметров стал своеобразный указатель «электрической силы», о которой еще никто ничего толком не знал. Его изобретателем стал русский физик Георг Рихман. Датой этого открытия считается 1745 год. Показатели измерялись с помощью небольших весов рычажного типа, которые колебались в зависимости от воздействий электричества. Этот основной принцип используется во всех современных вольтметрах.

    Процесс измерения вольтажа прибора

    Модернизированная версия прибора появилась в 1830-х годах благодаря Фарадею, но не осталось никаких доказательств этому. Следующий по счету прибор был придуман Морицом Якоби в 39 году 19 века, когда тот смог превратить гальванометр в прибор для измерения характеристик электрического тока.

    Серьезным этапом модернизации стало изобретение француза д’Арсонваля, придумавшего гальванометр для измерения магнитных и электрических полей. При их изменении прибор показывал разные значения.

    Георг Рихман — один из первых изобретателей вольтметра

    Важно! Русские ученые П. Яблочков и М. Добровольский также внесли огромный вклад в развитие прибора. Добровольский, в частности, создал амперметр и электромагнитный вольтметр. Кроме них, над этим работал и Н. Славянов. Рабочий металлург на пушечных заводах придумал амперметр на 1000 Ампер в 1880-х.

    После утверждения Ампера и Вольта в качестве электротехнических величин в международных стандартах. Немец Фридрих Циппенбон изобрел первое устройство, которое официально было названо «вольтметр».

    Старинный вольтметр

    Что измеряют вольтметром

    Вольтметр — прибор, предназначенный для измерения напряжения электрического тока в цепи. Его название происходит от единицы измерения напряжения — Вольта и традиционного для всех измерительных приборов окончания «метр». Для начала его использования нужно всего лишь включить его в сеть. Сразу после этого он начнет показывать параметр напряжения.

    Погрешности возможны в любых даже современных инструментах. Без них никуда, но они незначительны. Чтобы погрешность стремилась к нулю нужно, чтобы внутреннее сопротивление прибора стремилось к бесконечности. Если этого не будет, то влияние на прибор цепи, к которой он подключен, неизбежно. Конечно, такого сопротивления быть не может, как и идеальных вольтметров.

    Формулы напряжения в 1 Вольт

    Стоит разобраться с понятием «напряжения» подробнее. Это необходимо для того, чтобы понять принцип работы приборы. Все знают еще со школы, что напряжение равно силе тока умноженной на сопротивление участка цепи.

    Формула проста, но не дает точного понимания понятия. Ток остается невидимым, а напряжение — простыми цифрами. Для простоты понимания можно привести пример с простыми вещами, которые могут наблюдаться каждый день. Например, при движении воды по речке и водопаду, напряжение будет соответствовать высоте, то есть разности уровней воды. В сети все то же самое и напряжение определяет воображаемый напор воды. Если не будет напряжения, то не будет и тока. Аналогично и воде: если разность уровней будет нулевой, то вода не будет двигаться.

    Современный стрелочный вольтметр

    Важно! Шкала прибора отмечена латинской буквой «V». Это внешне отличает его от амперметра и других приборов. Других отличий между ними мало. Они вполне могут выглядеть практически одинаково.

    Диапазон измерения прибора может быть разным. Устройства для слабой сети показывают максимум 5 Вольт, а промышленные аппараты — до 1000 Вольт. Все зависит от его предназначения.

    Прибор времен СССР

    Технические характеристики

    Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

     

    Аппарат В3-38 для использования в сетях переменного тока

    Оценка характеристик прибора включает в себя следующие компоненты:

    • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
    • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
    • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
    • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
    • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.

     

    Цифровые устройства практически полностью вытеснили аналоговые

    Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать.

    Конструкция

    Простейший амперметр или вольтметр состоит из нескольких блоков:

    • ЭЛМП — электромеханического преобразователя;
    • ИМ — измерительный механизм;
    • СМ — стрелочный механизм.

    Процесс преобразования аналогового сигнала в цифровой для отображения

    Первый предназначен для того, чтобы преобразовывать энергии. Магнитного поля в механическую энергию. Второй механизм включает в себя подвижные и неподвижные части для проведения изменений. Происходит это так: под действием силы тока, который протекает через обмотку ИМ, создается вращающий момент, воздействующий на подвижную часть. Силы механики пропорциональны электрическим силам и ИМ отклоняется на угол, равный этим силам. Данные передаются стрелочному механизму, который и показывает в цифрах количество Вольт.

    Если прибор содержит усилители, то он называется электронным. Его отличие заключается в том, что входное устройство помогает поддерживать высокое сопротивление вольтметра и увеличить предел измерений в большую сторону. Далее следует усилитель постоянного тока, который увеличивает значение сигнала до тех величин, которые необходимы для эффективных измерений. Следующие его компоненты идентичны аналоговому инструменту.

    Встраиваемое портативное устройство

    Преимуществами электромагнитных вольтметров стают:

    • высокая точность измерений;
    • высокая чувствительность;
    • практически полное отсутствие влияние внешних полей;
    • практически полное отсутствие влияние атмосферных факторов.

    Недостатки тоже имеются: непригодность использовать при переменном токе и чувствительность к перегрузкам в сети.

    USB-вольтметр

    Разновидности

    Помимо технических параметров, которые определяют назначение прибора и его характеристики, вольтметры обладают и физическими, а именно — разновидностями. Видов современных вольтметров большое количество. Так по принципу действия они разделяются на электромеханические и электронные. По назначению на вольтметров для постоянного, переменного, импульсного тока, универсальные и фазовые.

    Наиболее часто людей интересует классификация по виду исполнения, который может быть мобильным и стационарным.

    Карманный ЖК цифровой мультиметр

    Стационарные

    Стационарные вольтметры представляют собой устройства, которые питаются от сетей переменного напряжения. Возможно это благодаря встроенному в их корпус блоку питания. Как правило, с виду они похожи на коробку или ящик, а используются для узкоспециализированных работ, требующих повышенной точности измерений. Чаще всего это профессиональная сфера деятельности и контролирование напряжения на важных и нестабильных участках сети. Само слово «стационарный» говорит о том, что они применяются там, где нужна постоянная слежка и изменение данных.

    Стационарный стрелочный вольтметр

    Мобильные

    Их еще называют переносными, хотя стационарный прибор иногда перенести также не составляет труда. Мобильный же вольтметр компактный и способен поместиться практически везде. Их относят к классу полупрофессиональных и любительских, потому что работают они от батареек или аккумуляторов и обладают сравнительно меньшими точностями и большими погрешностями. Выглядят они как плоские коробочки, «обитые» пластиком или резиной и имеющие эргономические формы. Чтобы они были еще удобнее, их оснащают съемными щупами для определения амплитудных колебаний сигналов.

    Важно! Как правило, мобильные вольтметры включаются в состав тестеров и мультиметров. Мобильные цифровые вольтметры способны очень точно определить показания, в то время как портативные аналоговые приборы — показать хорошую чувствительность, способную определить даже самые маленькие отклонения напряжения, которые не могут определить цифровые приборы.

    Цифровой мобильный вольтметр

    Принцип работы

    Принцип действия приборов легче показать на какой-нибудь модели. В основу работы аппарата положено аналогово-цифровое преобразование. Принципы можно рассмотреть на примере универсального В7-35.

    Преобразователи, которые установлены в приборе, измеряют силу тока, напряжение постоянного и переменного электрического тока, сопротивление и конвертируют все это в нормализованное напряжение или цифровой код, если в устройстве имеется аналого-цифровой преобразователь.

    Схема прибора основана на нескольких преобразователях:

    • Преобразователь масштабирования;
    • Низкочастотный аппарат, преобразующий напряжение переменного тока в постоянный;
    • Аналогичный преобразователь постоянного и переменного электрического тока в напряжение;
    • Конвертер сопротивления в напряжение.

    Схема вольтметра В7-35

    Получая эти параметры, устройство конвертирует их в напряжение, отображаемое по специальной шкале или в электроном виде, если в нем предусмотрено наличие АЦП.

    Принцип работы электромагнитного аналогового вольтметра следующий. Создание вращающего момента происходит с помощью силового действия магнитного поля катушки на подвижном постоянном магните, который выполняется в форме плоской лопасти.

    Под действием магнитного поля, которое создается током, магнит втягивается в цель катушки и поворачивается на ось, содержащую указательную стрелку.

    Схематическое изображение работы стрелочного устройства

    Инструкция и меры безопасности

    Вольтметр — простейший и узкоспециализированный инструмент для определения параметров электрической цепи. Его основная и единственная задача — определение напряжения на определенном участке цепи. К сожалению, не все знают, как пользоваться таким простым прибором.

    Важно! Стоит помнить, что прибор должен подключаться параллельно к сети. В противном случае показания будут неточными. Это не зависит от его типа и размеров.

    Цифровой стационарный прибор

    Порядок измерения следующий:

    • Проверить стрелку, если аппарат аналоговый. Делается это путем вставки плоской отвертки в задний шлиц прибора. Поворот в разные стороны будет поворачивать и стрелку. Ноль измерений всегда выставляется пред каждым измерением, особенно, если прибор старый;
    • Присоединить провода к контактам. Находятся они на тыльной стороне прибора. Если он рассчитан на постоянный ток, то там будут «+» и «-». У электронных аппаратов они уже присутствуют и не нуждаются в переподключении;
    • Произвести измерение, присоединив «щупы» параллельно к сети.

    Важно! Если известно, что напряжение больше 60 Вольт, то нужно пользоваться резиновыми диэлектрическими перчатками или другой изоляцией.

    Корректировка стрелки аналогового прибора

    При измерении показателей электрической сети вольтметром следует соблюдать простейшие меры безопасности:

    • Не проводить измерение высоковольтных сетей без средств защиты;
    • Не проводить изменение влажными или мокрыми руками и предотвращать попадание влаги в прибор;
    • Не использовать вольтметр в агрессивных средах по типу кислот, щелочей и масел;
    • Соблюдать требования ГОСТ 12.3.019-80, описывающего правила эксплуатации электроизмерительных приборов.

    Схема 10-диапазонного вольтметра постоянного тока

    Какой мультиметр выбрать для автомобиля

    Мультиметр — портативное устройство, которое содержит в себе вольтметр, амперметр и другие функции. Он стает незаменимым для радиолюбителей и автовладельцев. Для последних он стал важным прибором, способным проверить и отремонтировать большее количество современной автоэлектроники и проводку.

    Для автомобиля подойдет любой специализированный мультиметр, обладающий дополнительными функциями, которые отличают его от обычного. Чтобы разобраться с этим лучше, нужно понять, какие задачи он чаще всего решает.

    Схема цифрового вольтметра постоянного тока для определенного диапазона

    Наиболее часто прибор применяют для определения утечек из аккумулятора. Такой проверке должны быть подвержены все аккумуляторы, обладающие сильными потерями заряда за короткие промежутки времени. Минимальное значение утечки должно составлять 70 мА. Большее значение свидетельствует о том, что какой-то прибор является проблемным или в цепи проводки есть поврежденный участок.

    Для диагностики проделывают следующее:

    • Выключить все элементы автомобиля, которые используют энергию аккумулятора;
    • Настроить прибор на измерение постоянного тока и выбрать максимальное значение;
    • Ослабить провод на минусовой клейме и подсоединить туда щупы;
    • Отключить провод от клеймы так, чтобы ток протекал через мультиметр;
    • Замерить значения, которые не должны превышать 70 миллиампер.

    Устройство для автомобиля

    В случае, когда значения не ниже 70, стоит искать участок с проблемами. Для этого аппарата подключается так же, как и в способе выше, поочередно отключаются предохранители и снимаются показания. Если один из предохранителей показал значение ноль при его отключении, то проблема в нем.

    Если же все узлы были проверены и оказались исправны, то проблема кроется в самой проводке. Она также проверяется мультимером для поиска неисправного кабеля. Этот процесс состоит из следующих этапов:

    • На глаз оценить состояние проводов;
    • Определить проблемный участок;
    • Один конец мультиметра присоединяется к клейме аккумулятора, а другой — к прибору, который находится на другой стороне кабеля;
    • Установить прибор в нужное состояние и устроить прозвонку участка провода;
    • При наличии звукового сигнала провод исключается из проблемных, так как с ним все хорошо.

    Проверка аккумулятора мультиметром

    Важно! При изменении параметров низковольтных сетей иногда может потребоваться специальный инструмент — милломметр.

    Еще одна важная функция мультиметра — прозввон мотора авто и измерение его параметров. Любой автомобильный мультиметр должен уметь проводить диагностику двигателя на минимальном уровне.

    Прозвон отсоединенных кабелей авто

    Отличие от тестера

    Люди, особенно те, кто далек от техники, часто путают два этих устройства. Они немного похожи и даже обладают похожими функциями, но мультиметр — более многофункциональное устройство, способное изменять различные параметры системы и выполнять прозвонки. Обычный тестер содержит в себе всего пару диодов, способным указать значение напряжения и целостности цепи.

    Важно! Тестеры, как и мультиметры, вольтметры и амперметры также бывают стрелочными, то есть аналоговыми и цифровыми. Последние в любых являются более точными и определяют величины с минимальными погрешностями.

    Тестер очень похож на мультиметр, но обладает меньшим функционалом

    Тест цифровых мультиметров

    Чтобы определить лучшие приборы нужно проводить определенные тесты, на основании которых делается выбор в пользу той или иной модели. Сегодня рынок располагает огромным количеством моделей. Опытные люди проверили их и определили их преимущества и недостатки, составив описания.

    Universal M830B IEK

    Обычный и качественный прибор для любителей. Подходит не только для использования дома, но и при монтажных работах. Модель проста в использовании и подходит для новичков. Корпус имеет три входа для щупов, позволяющих измерять постоянный и переменный ток, сопротивление, напряжение. В этой бюджетной модели есть даже функция прозвонки для транзисторов. Для проверки коротких замыканий прозвонки нет.

    Модель M830B IEK

    UNI-T UT33D

    Идеально подходит для домашнего использования и обладает широким спектром измерения электрических параметров. Базовый функционал держится на уровне предыдущего тестера, но дополняется прозвонкой на обрывы цепей. Используется дл ремонта ПК, микросхем, электромонтажных работ. Недостатком стала невозможность изменять переменный ток.

    Модель UNI-T UT33D

    СЕМ DT-105 480151

    Профессиональный измеритель, который обладает очень компактным и легким. Для него, как ни для кого характерно сочетание «цена-качество». Несмотря на большую сложность, чем аналоги, прибор может спокойно использоваться в быту и в других домашних целях. Функционал включает в себя прозвонку, индикатор заряда аккумулятора, индикаторы полярности и многое другое.

    Модель СЕМ DT-105 480151

    Таким образом, вольтметр — это прибор для измерения напряжения и один из самых простых измерительных инструментов, но даже с ним некоторые не могут справиться. Этот материал максимально широко рассказал, что такое вольтметр, долгую историю его создания и инструкцию по использованию во многих полезных целях.

    Как измерить сопротивление амперметра. Амперметр — основные характеристики, предназначение

    Люди часто задаются вопросом, как подключить амперметр в цепь. Чтобы полностью понять, как правильно это делать, стоит остановиться на физических законах протекания тока в электрической цепи. А также — рассмотреть принципы, по которым воздавался такой прибор, как амперметр. Тогда будет полностью ясно, как действовать, когда нужно измерить силу тока.

    Физические основы

    В методе подключения амперметра и вольтметра к электрической сети лежит закон Ома. Не будем приводить трактовку для полной цепи, где учитывается электродвижущая сила и внутреннее сопротивление источника питания. Чтобы понять, как подключить амперметр в цепь, достаточно будет упрощенного изложения для параллельного и последовательного соединения.

    1. При последовательном соединении нагрузки в сети через каждый элемент протекает ток одинаковой силы. При этом падения напряжения на каждом участке пропорциональны его сопротивлению и в сумме равны напряжению на концах цепи.

    2. При параллельном соединении на каждом элементе присутствует напряжение, равное приложенному ко всей цепи. Сила тока, протекающая на каждом из параллельных участков, прямо пропорциональна его сопротивлению.

    Из этого краткого изложения закона Ома ясно, что правильный ответ на вопрос «как подключить амперметр в цепь» — методом последовательного включения.

    Амперметр и последствия неправильного использования

    Для четкого измерения силы тока в цепи, главное качество амперметра должно состоять в том, чтобы оказывать минимальное воздействие на схему в целом. Поэтому прибор делают с минимальным внутренним сопротивлением. Для измерения параметров, которые выходят за пределы устройства, можно использовать трансформаторы тока, снижающие выходные показатели.

    Опасность неправильного включения состоит в том, что амперметр просто сгорит. Как подключить амперметр в цепь — имеет значение. Если просто вставить щупы в розетку или касаться точек на плате — скорее всего, результатом будет немного дыма «с запахом гуманитарного образования». Из-за того, что на прибор будет поступать высокое напряжение по закону Ома для параллельного соединения — он просто сгорит. Включайте прибор только последовательно.

    Некоторые методы

    В быту можно создать измерительную розетку. Для этого она, грубо, должна прерывать один из проводов, ведущих к устройству. Можно установить ее рядом с уже подключенной. Для этого отсоединяется один провод, присоединяется к измерительной розетке. Второй ее контакт соединяется перемычкой со свободной точкой подключения рабочей розетки. Теперь, включая прибор, можно вставить щупы амперметра в измерительную розетку и посмотреть результат.

    В этом, собственно, заключается ответ на вопрос, как подключить амперметр в цепь. Нужно прервать один из проводников в цепи и в этом месте производить измерения. Аналогично работает методика измерения тока в лампочке, например. Если очень нужно сделать быстро — перекусите один провод кусачками и можно производить замер.

    Альтернативные методы

    Бывают ситуации, когда цепь невозможно разорвать и «вмонтировать» в нее амперметр последовательным включением. В таких случаях используются бесконтактные клещи. Они замеряют величину электромагнитного поля, которое возникает вокруг проводника. На основании этой оценки делается вывод о величине проходящего тока.

    Амперметр. Измерение силы тока — видео

    Инструкция

    Используйте шунты только из комплекта поставки амперметра. Любые другие приведут к значительному искажению показаний. Связано это с тем, что магнитоэлектрические индикаторы разных марок даже с одинаковым током полного отклонения стрелки имеют различное внутреннее сопротивление.

    Выберите шунт, рассчитанный на предельный ток несколько ниже измеряемого. Например, если предполагается, что ток в цепи может меняться в пределах от 5 до 8 А, используйте шунт на 10 А.

    На винтах индикатора имеется по две гайки. Отверните с каждого из винтов только первую из них. Вторую, расположенную ближе к корпусу, не отворачивайте, иначе винт провалится внутрь, и для ремонта прибора его придется вскрыть. Тогда, если до этого он подвергался проверке, потребуется осуществить эту процедуру заново.

    Наденьте шунт на винты и закрепите их гайками. Не забудьте о двух шайбах, которые должны быть расположены между шунтом и вторыми гайками каждого из винтов.

    Обесточьте устройство, потребляемый ток которого вы хотите измерить. Разорвите цепь его питания, после чего, соблюдая полярность, включите в разрыв цепи амперметр с шунтом. Провода зажимайте между шайбами. Включите питание, прочитайте показания, после чего снова обесточьте цепь, уберите амперметр и восстановите соединение.

    Показания прибора умножьте на коэффициент, указанный на шунте. Если он не указан, вычислите цену деления самостоятельно. Например, если ток полного отклонения индикатора равен 100 мкА, а шунт рассчитан на 10 А, то каждому микроамперу на шкале будет соответствовать 0,1 А тока в цепи.

    В крайнем случае можно использовать шунт без обозначений и любой магнитоэлектрический индикатор. Соедините последовательно испытуемый и образцовый амперметры. Подключите их к стабилизатору тока . Плавно повышая ток от нуля, добейтесь полного отклонения стрелки испытуемого прибора. По образцовому амперметру узнайте ток в цепи. Поделите его на количество делений на шкале и тем самым вычислите цену одного деления.

    Несмотря на то, что амперметр считается атрибутом автомобилей, выпущенных достаточно давно, такое оборудование все еще встречается, как и машины ранних поколений. Поэтому при необходимости заменить, отремонтировать или же произвести любую другую операцию следует знать, как подключить амперметр.

    Вам понадобится

    • Соединительные провода, амперметр.

    Инструкция

    Так как амперметр в электрическую цепь подключается последовательно, найдите провода, соединяющие генератор и аккумулятор. Их необходимо аккуратно разъединить, не потеряв значения полярности проводов.

    Как правило, генератор и аккумулятор соединяются проводами большого сечения, поэтому выбирать таковые для подключения амперметра следует аналогичного диаметра.

    Соответственно, следует соединить провода для того, чтобы соединить генератор с амперметром и аккумулятор с ним же. С этой целью уложите их и тщательно обмотайте изолентой, чтобы избежать замыкания.

    Полезный совет

    Если вы используете цифровое оборудование, то по большому счету полярность проводов не имеет значения. Но в случае использования аналогового прибора, обязательно учтите, что минус от амперметра подключается к плюсу аккумулятора.

    Источники:

    • Обсуждение данной темы на форуме.
    • подключение амперметра в автомобиле

    Чувствительность современных стрелочных индикаторов настолько высока, что у многих из них ток полного отклонения стрелки не превышает ста микроампер. На практике же нередко приходится измерять токи, исчисляемые сотнями миллиампер и даже амперами. На помощь приходит так называемый шунт .

    Инструкция

    Перед тем как приступать к изготовлению шунт а, необходимо изме

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *