Амперметр что делает – изготовление своими руками, расчет шунта для амперметра постоянного тока, схема включения устройства

Содержание

Блог про электрику и электротехнику

Амперметр — это измерительный прибор для определения силы тока, измеряемой в амперах.

Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют. Чем ниже внутреннее сопротивление амперметра, тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения.

Где применяются амперметры?

 

Амперметры широко используются на промышленных предприятиях, связанных с производством электрической и тепловой энергии, а также амперметры востребованы в строительстве, автомобильной промышленности и точных науках.

Какие бывают амперметры?

По своему действию амперметры делятся на:

электромагнитные амперметры. Используются для сетей с переменным током, чаще всего в цепях промышленного назначения. Электромагнитным амперметром можно пользоваться для замеров в цепях с большой силой тока.

магнитоэлектрические амперметры. Применяют для измерения тока очень маленьких значений в цепях с постоянным током.

тепловые амперметры. Используются для измерения переменного тока с высокой частотой.

электродинамические амперметры (используется в основном как контрольный измеритель для проверки приборов). Они сильно реагируют на сторонние магнитные поля и перегрузки.

ферродинамические амперметры — это надежные приборы, которые обладают высокой прочностью и мало подвергаются воздействию магнитных полей, возникающих не в приборе. Данные амперметры устанавливают в автоматические контролирующие системы.

термоэлектрические амперметры. Используются для измерения переменного тока с высокой частотой. Внутри прибора установлен нагревательный элемент с термопарой. Из-за проходящего тока нагревается проводник, и термопара фиксирует величину. Из-за возникающего тепла отклоняется рамка со стрелкой на определенный угол.

цифровые амперметры – это современная модель, сочетающая преимущества аналоговых приборов. Удобны в работе, просты в использовании, небольшие в размерах и обладают высокой точностью получаемых результатов измерений. Кроме того, цифровые приборы можно использовать в разнообразных условиях: он не боится тряски, вибрации и пр. воздействий.

Амп.jpg

амп2.jpg

амп3.jpg


амп4.jpg

Наиболее чувствительными и точными, являются электродинамические и магнитоэлектрические амперметры.

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Как выбрать амперметр?

Прежде всего необходимо определиться, что именно требуется от прибора.

Если нужна маленькая погрешность во время замеров, то следует приобретать модель с сопротивлением около 0-0,5 Ом. Желательно, чтобы все контактные зажимы были покрыты антикоррозийным покрытием так же, как и другие элементы устройства.

Так же стоит обратить внимание на вид корпуса. Если он ровный и герметичный, то прибор будет работать без погрешностей, в него не попадет влага и не испортит его.

Амперметр — основные характеристики, предназначение, виды

Амперметр — основные характеристики, предназначение


Не для кого не секрет, что амперметр – это специальный прибор, предназначенный для измерения силы электрического тока. Любые измерительные приборы помогают проверить не только точность и правильность научных выводов, но и с помощью них производится необходимый контроль и управление определенными технологическими процессами. И амперметр не является исключением.

Впервые действие электрического тока на магнитную стрелку открыл французский ученый Ампер. Он сумел установить определенное правило для точного определения направления действия магнитного поля на магнитную стрелку. Сейчас это правило называется – правило Ампера. Именно в честь этого знаменитого физика, члена Парижской Академии наук и почетного члена Петербуржской Академии наук в дальнейшем был и назван амперметр.

Виды амперметров

На сегодняшний день, существует несколько видов амперметров. Рассмотрим технические характеристики основных из этих приборов:

1. Магнитоэлектрические амперметры. Такие амперметры основаны именно на взаимодействии подвижной катушки и магнитных полей постоянного магнита. Этот прибор конечно имеет как свои плюсы, так и минусы. Положительные стороны магнитоэлектрического амперметра заключаются в том, что для него характерна очень высокая чувствительность и очень малая потребляемая мощность. Равномерная шкала прибора также не может не послужить большим плюсом основных характеристик этого амперметра. Но есть и отрицательные стороны: очень сложное устройство по своей сути (объясняется наличием подвижной катушки) и работа только на постоянном токе, что конечно является не универсальностью устройства.

2. Электромагнитные амперметры. Данный амперметр представляют собой особый механизм с неподвижной катушкой, по которой протекает электрический ток, а также имеется специальные сердечники – один или несколько, установленных непосредственно на оси. Недостатками такого прибора являются низкая чувствительность (в отличии от магнитоэлектрического амперметра), а также низкая точность измерения. Достоинства – работа как при постоянном, так и при переменном токе, очень просты в своем устройстве.

3. Электродинамические амперметры. Такие устройства основаны на взаимодействии магнитных полей токов, которые протекают по подвижной и неподвижной катушкам. В этих амперметрах в основном используются параллельное и последовательное включение этих катушек. Главным недостатком таких измерительных приборов является очень сильная реакция на сторонние магнитные поля, поэтому их применение в качестве измерителей не желательно.

4. Ферродинамические амперметры. Вот такие приборы вполне достойны уважения. Они почти не подвергаются воздействию сторонних магнитных полей и обладают достаточно высокой прочностью. Ферродинамический амперметр состоит из замкнутого магнитопровода из ферромагнитного материала, центрального сердечника, а также неподвижной катушки. Применяются в основном в сфере безопасности и обороны благодаря своей высокой точности измерения.

Цифровой амперметр

Научно-технический прогресс не стоит на месте, поэтому наибольшую популярность на современном этапе набирают именно – цифровые амперметры. Во-первых, такое устройство очень компактное и легкое, что конечно же упрощает его применение. Механических движущихся деталей нет, в результате – его можно применять в условиях, при которых стрелочный прибор не покажет точного результата измерений (сильная вибрация или тряска). Минимальная чувствительность к ударам – можно не бояться располагать прибор вблизи с другими механизмами, которые могут его повредить. Еще одним несомненным плюсом цифрового амперметра является его использование как в горизонтальном, так и в вертикальном положении. К таким цифровым амперметрам относятся амперметры щитовые. Так же стоит упомянуть о том, что подаваемая информация в электронном виде дает возможность проследить изменения величин даже в автоматическом режиме при отсутствии оператора. Ну и, конечно, главный плюс – точность показаний. Погрешность любых измерений составляет лишь сотые доли процентов, в отличие от стрелочных приборов, погрешность которых иногда достигает более одного процента. Влияние температуры и атмосферного давления также не играет роли при получении необходимых измерений, будь то подвальное помещение или измерение на открытом воздухе. Поэтому можно сказать, что цифровой амперметр занимает лидирующее место среди других измерительных приборов данного типа.

Правила подключения амперметра

Существуют определенные правила подключения амперметра к прибору, благодаря которым можно произвести точные и правильные измерения силы тока. Во-первых, нужно выбрать необходимый шунт, предельный ток которого будет порядком ниже измеряемого тока. Теперь, необходимо прикрепить шунты к амперметру при помощи специальных гаек на амперметре.

Во-вторых, необходимо в обязательном порядке обесточить измеряемое устройство путем разрыва цепи питания. Затем необходимо включить амперметр в цепь с шунтом. Не стоит забывать, что соблюдение полярности крайне важно. После всего этого можно подключать питание и читать необходимые показания на амперметре.

Применение амперметров

Область применения такого прибора, как амперметр достаточно обширна. Например, их очень широко используют на промышленных предприятиях, связанных с производством электрической и тепловой энергии. Несомненно, каждая физическая лаборатория просто обязана иметь в своем наличии такие измерительные приборы для точных показаний. Строительство, наука и индустрия, автомобильная промышленность – везде амперметры нашли свое достаточно широкое применение. Даже рядовые автолюбители стараются иметь в наличии этот прибор, чтобы всегда суметь выявить характеристику работы энергоснабжения своего автомобиля.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Амперметр — это… Что такое Амперметр?

Схема действия амперметра

Токовые клещи — амперметр для бесконтактного измерения больших токов.

Схема включения амперметра

Амперме́тр (см. ампер + …метр от μετρέω — измеряю) — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют; для увеличения предела измерений — с шунтом или через трансформатор. (Примером амперметра с трансформатором являются «токовые клещи»)

Общая характеристика

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Принцип действия

Принцип действия магнитоэлектрического прибора основан на создании крутящего момента, благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки. С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки пропорционален силе тока.

Электродинамические амперметры состоят из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки. В электрическом контуре амперметр соединяется последовательно с нагрузкой, а при высоком напряжении или больших токах — через трансформатор.

См. также

Ссылки

Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 июля 2011.

Амперметр — Википедия. Что такое Амперметр

Токовые клещи — амперметр для бесконтактного измерения больших токов.

Схема включения амперметра

Galvanometer diagram.png

Амперме́тр (от ампер + μετρέω «измеряю») — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора.

В электрическую цепь амперметр включается последовательно[1] с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения[2]. Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания): это приведёт к короткому замыканию!

Бесконтактное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется токоизмерительные клещи (на фото).

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором

В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки прямо пропорционален силе тока, поэтому шкала магнитоэлектрического прибора линейна. Направление поворота стрелки зависит от направления протекающего через рамку тока, поэтому магнитоэлектрические амперметры непригодны для непосредственного измерения силы переменного тока (стрелка будет дрожать возле нулевого значения), и требуют правильной полярности подключения в цепи постоянного тока (иначе стрелка будет отклоняться левее нуля).
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ). При высоких напряжениях (выше 1000В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.

См. также

Примечания

  1. Важно знать! Подключение амперметра напрямую к источнику напряжения приводит к протеканию токов короткого замыкания, и может вызвать возгорание токовых шунтов, измерительного трансформатора и всего прибора. Для предотвращения такой ситуации, амперметр может быть оснащён цепями защиты на основе плавких предохранителей и быстродействующих автоматических выключателей.
  2. ↑ Это особенно заметно в низковольтных схемах, в которых падение напряжения на элементах схемы сравнимо с напряжением на зажимах амперметра (типичное значение — десятки милливольт).

Ссылки

Литература

Амперметр — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Амперметр. Демонстраційна модель. Схема дії амперметра Amperomierz tablicowy.jpg

Амперме́тр (рос. амперметр, англ. ammeter; нім. Amperemeter n) — прилад, яким вимірюють силу електричного струму. Амперметр завжди вмикають послідовно з тією ділянкою електричного кола, силу струму у якій вимірюють. Електричний опір амперметра є малим.

Загальна характеристика[ред. | ред. код]

Найпоширенішими амперметрами є ті, в яких рухома частина приладу зі стрілкою повертається на кут, пропорційний вимірюваній величині струму.

Амперметри бувають магнітоелектричні, електромагнітні, електродинамічні, теплові, індукційні, детекторні, термоелектричні та фотоелектричні.

Магнітоелектричними амперметрами вимірюють силу постійного струму; індукційними і детекторними — силу змінного струму. Амперметри інших систем вимірюють силу будь-якого струму. Найточнішими і найчутливішими є магнітоелектричні та електродинамічні амперметри

Принцип дії магнітоелектричного приладу базується на створенні обертального моменту завдяки взаємодії між полем постійного магніту і струмом, що проходить крізь обмотку рамки. З рамкою з’єднана стрілка, яка переміщується по шкалі. Кут повороту стрілки пропорційний щодо сили струму.

Електродинамічні амперметри складаються з нерухомої і рухомої котушок, з’єднаних паралельно або послідовно. Взаємодія між струмами, що проходять крізь котушки, викликає відхилення рухомої котушки і з’єднаної з нею стрілки. В електричне коло А. вмикаються послідовно з навантаженням, а при високій напрузі, великих струмах—через трансформатор.

Розширення діапазону вимірювань[ред. | ред. код]

Розширення діапазону вимірювання амперметра здійснюють за допомогою шунта або, при вимірюванні сили змінного струму, за допомогою вимірювального трансформатора змінного струму.

Амперметр-кліщі

устройство стрелочных и цифровых, электронных и аналоговых амперметров с шунтом и без него

Прибор, измеряющий силу тока, протекающего по цепи, называют амперметр. Для установления величины измерительный прибор подключают в электрическую цепь на участок, где необходимо установить параметр. Сила тока, которую определяет амперметр, напрямую зависит от величины существующего в цепи сопротивления. Для уменьшения искажения измеряемого параметра и повышения точности прибора его делают минимальным. Исходя из пределов измеряемых данных, шкала амперметра может градуироваться мкА, мА, А и кА.

Основным способом подключения амперметра является последовательное включение в цепь. Подобная схема называется прямой.

Если амперметр включается в цепь с шунтом или через трансформатор тока, то схема называется косвенной.

Некоторые модели амперметров, например 10 A (48х48), оснащены встроенным шунтом, что существенно облегчает его подключение и использование.

Область применения

Приборы, измеряющие параметры электрического тока, нашли широкое применение во многих областях, среди которых:

  • автомобилестроение;
  • точные науки;
  • строительство.

Амперметры используются не только на крупных промышленных объектах, но и в бытовых целях. Например, каждый профессиональный автомобильный электрик имеет такое устройство. С его помощью мастер определяет показания, исходящие от электроприборов транспортного средства.

Разновидности и их устройство

Все амперметры разделяют на шесть категорий.

Электромагнитные

Чаще всего устанавливают в электрических устройствах, работающих от переменного тока, частота которого составляет 50 Гц. Но могут использоваться и в цепях с постоянным током.

Магнитоэлектрические

Подходят для использования исключительно в цепях, по которым протекает постоянный ток небольшой величины.

Термоэлектрические

Определяют величину силы тока, когда он проходит по электрической цепи высоких частот. В подобных приборах установлен особый механизм. Он представляет собой проводник и термопару. Когда ток проходит по проводнику, он нагревает его, а закрепленная на нем термопара фиксирует изменение градусов. Под воздействием излучения, исходящего от термопары, рамка амперметра, соединенного со стрелочным индикатором, отклоняется на определенный угол. Степень отклонения будет зависеть от силы тока.

Ферродинамические

В конструкцию подобных амперметров входят:

  • магнитопровод;
  • сердечник;
  • катушка.

Подобные устройства обладают рядом преимуществ перед амперметрами других типов. Среди них:

  • повышенная точность;
  • надежность;
  • невосприимчивость к внешним факторам.

Электродинамические

Их используют, когда необходимо выполнить измерения в цепях, где частота тока достигает 200 Гц. Такие амперметры чувствительны к небольшим перегрузкам и воздействию электромагнитных полей. Подобные приборы применяются в качестве контрольных измерительных устройств.

Цифровые

Это самые передовые измерительные устройства, которые обладают всеми преимуществами аналоговых амперметров, при этом имеют свои уникальные возможности. Именно электронные амперметры пользуются все большей популярностью в промышленности и лабораторных исследованиях.

Принцип действия

Процесс измерения силы тока в цепи определяется работой нескольких элементов:

  • между постоянными магнитами располагается якорь, оснащенный стрелкой;
  • действие магнитов удерживает якорь из стали вдоль исходящих от них силовых линий, что соответствует нулевой позиции;
  • в случае подачи в цепь электрического тока образуется еще один магнитный поток, направленный перпендикулярно силовым линиям магнитов;
  • под их воздействием якорь со стрелкой будет стремиться повернуться, но поле постоянных магнитов будет мешать ему;
  • в итоге стрелка будет отклонять на величину, равную результату воздействия не неё двух магнитных потоков.

Описание и характеристики различных видов устройств

Модель Ам-2 digiTOP

Цифровой амперметр, предназначенный для измерения силы тока в пределах от 1 до 50 A. Благодаря повышенной точности погрешность получаемых данных не превышает 1%. Дискретность видимой индикации составляет 0,1 А. Устройство работает в сетях с напряжением от 100 до 400 В. Обладает относительно компактными габаритами – 90х51х64 мм.

Модель Э537

Относится к классу лабораторных устройств. Модель Э537 предназначена для точных измерений. Размеры модели на порядок больше, чем габариты предыдущего амперметра, и составляют 140х195х105 мм. При этом вес прибора равен 1,2 кг. Устройство определяет силу тока в пределах 0,5/ 1А.

Модель М42301 150 А

Стрелочный амперметр щитового типа используется в сетях с постоянным током. В стандартной комплектации прибор предназначен для измерения силы тока не более 15 А. Для определения параметров свыше этого предела используют шунты и дополнительные сопротивления. Модель М42301 150А может выполняться с дополнительной защитой от механических воздействий. В этом случае прибор маркируется обозначением – М. Отметка 0 может быть установлена в начале или посредине шкалы. Предусмотрено горизонтальное и вертикальное расположение амперметра М42301 150 А.

Обзор цифрового амперметра постоянного тока можно посмотреть ниже.

изготовление своими руками, расчет шунта для амперметра постоянного тока, схема включения устройства

Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.

Зачем нужен шунт?

Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.

Расчёт сопротивления шунта

Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.

Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.

В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.

Схема включения устройства

Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.

Что можно использовать?

В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.

Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.

Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.

Что требуется?

Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.

  • Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
  • Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
  • При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.

Напряжение подаётся только после правильной сборки цепи.

Шунт своими руками

Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».

В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.

  • Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
  • Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
  • Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
  • Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.

Полученная деталь подключается параллельно амперметру или гальванометру.

Переградуировка прибора

Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.

  1. Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
  2. Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
  3. Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
  4. Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
  5. Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.

Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.

С несколькими шунтами

Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.

Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.

    При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.

    Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.

    О том, как произвести расчет шунта для амперметра, смотрите далее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *