Альтернатива электроэнергии для дома: Альтернатива есть: чем можно заменить традиционные источники энергии

Содержание

Альтернативные источники энергии — Энергетика и промышленность России — № 3 (31) март 2003 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 3 (31) март 2003 года

На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов — угля, нефти и газа, научился использовать энергию рек, освоил «мирный атом», но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии. По оценкам специалистов, мировые ресурсы угля составляют 15, а по неофициальным данным 30 триллионов тонн, нефти — 300 миллиардов тонн, газа — 220 триллионов кубометров.
Разведанные запасы угля составляют 1685 миллиардов тонн, нефти — 137 миллиардов тонн, газа — 142 триллионов кубометров. Почему же наблюдается тенденция к освоению альтернативных видов энергии, при таких, казалось бы, внушительных цифрах, при том, что в последние годы в шельфовых зонах морей открыты огромные запасы нефти и газа? Есть несколько ответов на этот вопрос. Во-первых, непрерывный рост промышленности как основного «клиента» энергетической отрасли. Существует точка зрения, что при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на 35-40 лет, газа на 50 лет. Во-вторых, необходимость значительных финансовых затрат на разведку новых месторождений, так как часто эти работы связаны с организацией глубокого бурения (в частности, в морских условиях) и другими сложными и наукоемкими технологиями. И, в третьих, экологические проблемы, связанные с добычей энергетических ресурсов. Склады нефтепродуктов и окружающие их территории подчас напоминают «города мертвых», а кадры кинохроники о плавающих в нефтяной пленке морских птицах и животных тревожат не только Greenpeace.

В настоящее время выдвигаются множество различных идей и предложений по использованию всевозможных возобнавляемых видов энергии. Разработка некоторых проектов еще только начинается. Так, существуют предложения по использованию энергии разложения атомных частиц, искусственных смерчей и даже энергии молнии. Проводятся эксперименты по использованию «биоэнергетики», например, энергии парного молока для обогрева коровников.

Но существуют и «традиционные» виды альтернативной энергии. Это энергия Солнца и ветра, энергия морских волн, приливов и отливов. Есть проекты преобразования в электроэнергию газа, выделяющегося на мусорных свалках, а также из навоза на звероводческих фермах. Основным видом «бесплатной» неиссякаемой энергии по справедливости считается Солнце. В Солнце сосредоточено 99, 886% всей массы Cолнечной системы. Солнце ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг U235 .

Солнце — неисчерпаемый источник энергии — ежесекундно дает Земле 80 тысяч миллиардов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет — самая близкая к Солнцу часть нашей планеты — по праву считает солнечную энергию своим богатством. На-сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров.

Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании «Боинг». Созданный там солнечный элемент преобразует в электроэнергию 37 процентов попавшего на него солнечного света.

Это достижение стало возможным, с одной стороны, благодаря использованию двухслойной конструкции. Верхний слой — из арсенаида галлия. Он поглощает излучение видимой части спектра. Нижний слой — из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется.

С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.

Компактная передвижная электростанция сконструирована германским инженером Хербертом Бойерманом. При собственном весе 500 кг она имеет мощность 4 КВт, иначе говоря, способна полностью обеспечить электротоком достаточной мощности загородное жилье. Это довольно хитроумный агрегат, где энергию вырабатывают сразу два устройства — ветрогенератор нового типа и комплект солнечных панелей. Первый оснащен тремя полусферами, которые (в отличие от обычного ветрового колеса) вращаются при малейшем движении воздуха, второй — автоматикой, аккуратно ориентирующей солярные элементы на светило. Добытая энергия накапливается в аккумуляторном блоке, а тот стабильно снабжает током потребителей.

Глядя вперед, в те времена, когда штат Калифорния будет нуждаться в удобных станциях для подзарядки электробатарей, «Южнокалифорнийская компания Эдисон» планирует начать испытание специальной автостанции для машин, работающих на солнечной энергии, которая в конечном счете должна стать обычной заправочной станцией со множеством парковочных мест и различными магазинами. Солнечные панели на крыше станции, расположенной в городе Даймонд-Баре, обеспечат энергию для зарядки электромобилей в течение всего рабочего дня даже зимой. А излишек, получаемый от этих панелей, будет использоваться для нужд самой автостанции. Ожидается, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его «солнцеобильностью».

На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может «работать» зимой и летом, днем и ночью, на севере и на юге. Но ветер — это очень рассеянный энергоресурс. Природа не создала «месторождения» ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда «размазана» по огромным территориям. Основные параметры ветра — скорость и направление — меняются подчас очень быстро и непредсказуемо, что делает его менее «надежным», чем Солнце.

Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность «ловить» кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок (патент РФ № 1783144, см. рис) порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!

В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 г. британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения «морского» электричества по сравнению с другими его источниками, в частности — атомными.

В мая 1988 г. в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа (T. Thorpe), который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 КВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена «морской» электроэнергии с 1987 г. снизилась вдесятеро.

Наиболее совершенен проект «Кивающая утка», предложенный конструктором С. Солтером (S. Salter; Эдинбургский университет, Шотландия). Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 КВтч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это — 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 КВтч).

Следует заметить, что использование источников альтернативных, возобновляемых видов энергии может достаточно эффективно снизить процент выбросов в атмосферу вредных веществ, то есть в какой-то степени решить одну из важных экологических проблем. Энергия моря может с полным основанием быть причисленной к таким источникам.

Энергия малых рек также в ряде случаев может стать источником электроэнергии. Возможно, для использования этого источника необходимы специфические условия (например, речки с сильным течением), но в ряде мест его, где обычное электроснабжение невыгодно, установка мини-ГЭС могла бы решить множество локальных проблем. Бесплотинные ГЭС для речек и речушек уже существуют (см. фото 3). Этот двухметровый агрегат есть не что иное, как бесплотинная ГЭС мощностью в 0,5 КВт. В комплекте с аккумулятором она обеспечит энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую… Была бы поблизости речушка!

Роторная установка диаметром 300 мм и весом всего 60 кг выводится на стремнину, притапливается на придонную «лыжу» и тросами закрепляется с двух берегов. Остальное — дело техники: мультипликатор вращает автомобильный генератор постоянного тока напряжением 14 вольт, и энергия аккумулируется.

Бесплотинная мини-ГЭС успешно зарекомендовала себя на речках Горного Алтая, доработана до уровня опытного образца.

Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Во всяком случае именно так поступили в США, в штате Пенсильвания. Когда построенная для сжигания мусора и одновременной выработки электроэнергии для 15000 домов печь стала получать недостаточно топлива, было решено восполнить его мусором с уже закрытых свалок. Вырабатываемая из мусора энергия приносит округу около $ 4000 прибыли еженедельно. Но главное объем закрытых свалок сократился на 78%.

Разлагаясь на свалках, мусор выделяет газ, 50-55 % которого приходится на метан, а 45-50% — на углекислый газ и около одного процента — на другие соединения. Если раньше выделяемый газ просто отравлял воздух, то теперь в США его начинают использовать в качестве горючего в двигателях внутреннего сгорания с целью выработки электроэнергии. Только в мая 1993 года 114 электростанций, работающих на газе от свалок, произвели 344 мегаджоуля электроэнергии. Самая крупная из них, в городе Уиттиер, производит за год 50 мегаджоулей. Станция мощностью 12 мегаватт способна удовлетворить потребность в электроэнергии жителей 20 тысяч домов. По подсчетам специалистов, газа на свалках США хватит для работы небольших станций на 30-50 лет. Не стоит ли и нам задуматься над проблемой вторичного использования мусора? При наличии эффективной технологии мы могли бы сократить количество мусорных «курганов», а заодно значительно пополнить и восполнить запасы энергии, благо «дефицита сырья» для ее производства не предвидится.

Казалось бы, что может быть неприятнее навоза? Много проблем связано с загрязнением водоемов отходами звероводческих хозяйств. Большие количества органического вещества, попадающие в водоемы, способствуют их старению.

Известно, что теплоцентрали — активные загрязнители окружающей среды, свинофермы и коровники — тоже. Однако из этих двух зол можно составить нечто хорошее. Именно это произошло в английском городе Пиделхинтоне, где разработана технология переработки навоза свиней в электроэнергию. Отходы идут по трубопроводу на электростанцию, где в специальном реакторе подвергаются биологической переработке. Образующийся газ используется для получения электроэнергии, а переработанные бактериями отходы — для удобрения. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 киловатт.

Кроме замены традиционных источников энергии альтернативными, существуют проекты по созданию экологически чистых и сбалансированных городов и деревень будущего. Основой для их создания будут служить применение экономичных материалов, а также оптимальный режим использования энергии, который смогут поддерживать с помощью компьютерных программ.

Хранителем домашнего очага и незримым существом в доме, по старинным поверьям, служит теплый домовой. Техническую помощь ему в скандинавских странах, в первую очередь в Швеции, оказывает теперь программно управляемая бытовая теплоцентраль «Аквае 47 ОД». Разработанная шведской фирмой «Электро стандард», эта установка довольствуется скромным местом, скажем, площадью кухни.

Тепловые насосы и узел нагрева воды вмонтированы в нее еще на заводе-изготовителе. Принцип экономного вторичного обогрева таков: из использованного воздуха ванной комнаты, кухни и подсобок тепловая энергия возвращается в систему отопления традиционного типа и утилизируется водогрейным котлом. Дополнительные калории от внешних источников газа или жидкого топлива отбираются на эти цели лишь по мере необходимости. Особые клапаны в наружных стенах, снабженные противопылевым фильтром и входящие в комплект установки, обеспечивают подвод чистого воздуха и равномерную безвытяжную смену его в доме. Это достижение компьютерной теплотехники предназначено прежде всего для односемейных домов, например, для загородных коттеджей; оно сокращает наполовину обычный расход энергии.

В испанском поселке Сант-Джосеп на острове Ивиса сооружается первая в мире экологическая деревня будущего, где поселятся четыреста человек. В проекте участвуют специалисты из всех стран Европы. Чтобы оптимально использовать солнечный свет, «умные» дома сами станут регулировать внутреннюю температуру. Это позволяет как новая технология, так и сами материалы — каркас из алюминия и поликарбоната с огромными застекленными поверхностями, где циркулирует прозрачная жидкость. Получится своеобразный щит, впускающий солнечный свет, но удерживающий тепло. Температура зимой и летом будет одинаковая — 20-22 градуса. Избыток энергии поступит в термический теплонакопитель. Электроэнергию там станут вырабатывать также ветряные мельницы и солнечные батареи, избыток ее опять же сберегут огромные аккумуляторы. Биоочистная установка превратит органические отходы — мусор и сточные воды, в метан, преобразуемый затем в электричество. Структура здания гарантирует сохранность свыше 85 процентов энергии. На гигантской биоферме будут выращивать скот, рыбу, а так же овощи, фрукты и злаки.

Возможно, такие проекты пока невозможно реализовать в значительных масштабах. До серийного производства «умных» экологически чистых домов еще далеко, но уже сейчас реализация некоторых проектов (постройка мини-ГЭС, солнечных, ветровых, мусорных электростанции) вполне реальна.

Как встретишь Новый год, так его и проведешь! Перефразируя это изречение, можно сказать, что как встретишь новую эру, так ее и проведешь. Как же встретит человечество ХХI век: в дыму труб теплостанций или в шелесте «ветряков» на фоне солнечных зеркал? Будет ли оно использовать традиционные ресурсы или перейдет на источники, пополнять которые сможет сама Природа? Ответ не за горами. В любом случае человек должен помнить: какие бы природные ресурсы он ни использовал, делать это надо бережно, помня о тех, кто идет следом.

АЛЬТЕРНАТИВНЫЕ Источники ЭНЕРГИИ для ДОМА

Выберите подкатегорию

Альтернативная энергетика для дома – отличный вариант для тех владельцев недвижимости, которые ценят нетрадиционные возобновляемые источники энергии и желают стать более энергонезависимыми, оборудовать свой дом по последнему слову техники. Если грамотно настроить систему жизнеобеспечения, можно эффективно применять энергоресурсы, которые отличаются экологичностью и простотой. Различные гелиосистемы и солнечные батареи вместе с прилагающимися к системам аккумуляторами и инверторами теперь можно приобрести в нашем интернет-магазине.

Купить альтернативные источники энергии для дома — лучшая цена в Украине

  • Компания «Meners» предлагает альтернативные источники энергии для дома по самым разумным ценам: выгодная покупка станет первым шагом к независимости от энергоисточников и сделает вас более уверенными в завтрашнем дне.
  • Альтернативная электроэнергия для частного дома обладает целым рядом весомых преимуществ: это не только экологическая чистота, бережное отношение к ресурсам природы и окружающей среды, но и высокая возобновляемость. Сейчас становится модным и перспективным использовать энергию солнца и ветра, а с ростом тарифов на электроэнергию и топливо такие системы становятся великолепным решением для экономного хозяина.
  • В каталоге нашего интернет-магазина мы собрали самые эффективные системы, которые позволяют обеспечить дом теплом, горячей водой и комфортным температурным режимом. В ассортименте вы найдете все необходимое для обустройства «умного дома»: все представленные в продаже альтернативные источники энергии для дома и вспомогательные товары прошли тщательную и многоплановую проверку. С такими системами вы сможете не только экономить средства, но и быть уверенными в том, что ваше жилье спроектировано согласно самым эргономичным решениям!

Альтернативные источники энергии для дома в интернет-магазине «Менерс»

Если вы заинтересованы в экономии и хотите стать независимыми от энергоносителей и централизованного отопления, вы можете себе позволить различные альтернативные источники энергии – купить их теперь можно у нас. Профессионалы подберут вам лучшие проекты, привезут и установят технику! Мы предлагаем разумные цены, удобные условия покупки, хороший выбор систем на любые вкусы и потребности, а также оказываем услуги по доставке и качественно выполняем пусконаладочные работы!

А для непредвиденных обстоятельств вам пригодятся устройства для автономного электроснабжения.

Раскрыть

Россияне смогут заработать на излишках «зелёного» электричества

Хозяев установок, работающих на энергии солнца, ветра или воды и позволяющих получать электричество мощностью до 15 кВт, могут освободить от уплаты НДФЛ при продаже излишек сетевым компаниям. Соответствующий законопроект был одобрен к внесению в Госдуму на заседании Правительства 15 августа. А документ, который разрешает владельцам малых ветряков и солнечных батарей торговать электроэнергией, тем временем готовится ко второму чтению. Ожидается, что депутаты рассмотрят его уже в осеннюю сессию.

Частному дому — собственный ветряк

Потребности населения в электроэнергии грозят опередить ещё недавно подключенные мощности. Эксперты предупреждают, что через семь лет ресурс введённых за последние 10 лет в России 35 тысяч МВт может быть исчерпан. Так что нам необходимо не менее 15 процентов «зелёной энергии» в общей генерации, считают специалисты. Выходом может стать как строительство крупных мощностей, так и появление у населения личных источников альтернативной энергии.

В феврале в первом чтении Госдума одобрила законопроект, внесённый Минэнерго в рамках программы по развитию возобновляемых источников энергии (ВИЭ). Документ, кроме прочего, предусматривает, что физические лица, имеющие электростанции мощностью до 15 кВт включительно, работающих на ВИЭ, смогут продавать выработанную электроэнергию на розничных рынках.

Председатель Комитета Госдумы по энергетике Павел Завальный пояснил «Парламентской газете», что благодаря этому «каждый гражданин получит право поставить солнечную батарею или ветряк на собственном доме».

«Бытовые компании и генерирующие компании будут функционировать отдельно. Закон даст право людям производить электроэнергию самим. Мало того, при её избытке — поставлять её в сети. Сетевые компании будут обязаны покупать эту электроэнергию по цене рынка», — объяснил он.

«Личная» энергия обезопасит жителей Севера

Обеспечение стабильной электроэнергией жителей труднодоступных регионов Сибири и Дальнего Востока всегда было актуальной задачей. Но для этого приходится тянуть ЛЭП на сотни километров. Там, где это невозможно, приходится завозить по воде тысячи тонн мазута, причём процесс усложняется тем, что период навигации ограничен. Есть примеры изолированной от остальной страны генерации электроэнергии — это Билибинская АЭС на Чукотке и идущая ей на смену плавучая АЭС «Ломоносов», береговая инфраструктура для которой уже строится.

В то же время удалённые регионы обладают огромным потенциалом возобновляемых источников энергии, в первую очередь — ветряной, отчасти солнечной. В Тикси, например, начато строительство ветряной электростанции, которая сможет снабжать отрезанный от энергосистемы страны один из важнейших портов на Северном морском пути. Но если посёлок в целом может иметь независимую «зелёную» генерацию, почему и его жителям также не могут организовать автономные источники энергии, чтобы использовать климатические сложности как преимущества — морской арктический ветер и полярную ночь?

Павел Завальный. Фото: Пресс-служба Госдумы

Если каждый житель удалённых регионов сможет законно иметь собственную генерацию, он будет чувствовать себя в большей безопасности, — такое мнение высказал «Парламентской газете» первый заместитель председателя Комитета Госдумы по энергетике Игорь Ананских. «Основная задача рассматриваемого нами закона о микрогенерации — позволить пользоваться «зелёной» энергетикой в виде ветряков и солнечных батарей в труднодоступных районах», — пояснил депутат.

Он также отметил, что, хотя сейчас в России малые агрегаты для возобновляемой энергетики «дороговаты», как и в принципе вся «зелёная» энергетика, тем не менее собственные солнечные батареи стали уже «одними из самых эффективных в мире».

«Думаю, что этот закон будет стимулировать производство российских агрегатов для малой генерации — солнечных панелей и других», — надеется депутат.

Игорь Ананских: Юрий Паршинцев / ПГ

Выгода для дачников и владельцев частных домов

Впрочем, даже в российских регионах с развитыми электросетями есть «белые пятна», куда большим компаниям невыгодно тянуть ЛЭП. Поэтому рассматриваемый закон, по словам Ананских, может решить и эту проблему.

«Там, где невыгодно проводить газ или электричество, 15 собственных киловатт для личных нужд иметь гораздо выгодней. И поэтому данный закон призван удешевить электричество на отдалённых и приусадебных участках, дачных посёлках, на метеостанциях, куда невыгодно проводить электричество», — объяснил парламентарий.

Он также добавил, что законопроект пока не касается городов и многоквартирных домов, так как там уже действует особый правовой порядок. «Там, где инфраструктуры в достатке, генерирующая организация по уже существующему законодательству обязана за небольшую сумму поставить и довести до каждого потребителя 15 кВт, что гораздо выгодней», — констатировал он.

Там, где невыгодно проводить газ или электричество, 15 собственных киловатт для личных нужд иметь гораздо выгодней.

В то же время для частных домов, по его мнению, в дальнейшем необходимо будет скорректировать разрешённое значение для личной генерации. «В дальнейшем нам надо подумать над увеличением разрешённой мощности для малой генерации. Если дом большой, то 15 кВт может не хватить», — считает Ананских.

Это мнение разделяет и первый заместитель Комитета Госдумы по экономической политике, промышленности, инновационному развитию и предпринимательству Валерий Гартунг.

«Надо расширять зону действия закона. Даже для частных лиц 15 кВт — это минимум. Если приличный дом, то 50, 60 и даже 100 кВт нужны точно. В качестве первого шага можно остановиться на 15 кВт. А уже через год надо бы поднять до 100 кВт», — подчеркнул Гартунг в комментарии для «Парламентской газеты».

Валерий Гартунг. Фото: Юрий Паршинцев / ПГ

Для снижения цен и демонополизации рынка электроэнергии

Дальнейшее повышение разрешённого порогового значения для микрогенерации предполагает ещё одну цель — демонополизацию и децентрализацию российской электроэнергетики в будущем, считает Гартунг. Он отметил, что для этого необходимо развивать малую генерацию в принципе, причём не только основанную на альтернативных источниках энергии, и для личных нужд физических лиц. «Надо дать возможность малому бизнесу развивать источники малой генерации, чтобы они тоже имели достаточно простые и понятные условия по продаже излишков энергии и подачи её в сеть», — сказал он.

Депутат объяснил, что, таким образом, в перспективе эффективность производства и потребления электроэнергии может возрасти.

«Тогда бы мы децентрализовали источники генерации, и фактически у нас сам бизнес, потребитель, смог бы сбалансировать спрос и предложение. На производстве — разная загрузка в течение суток. Даже на непрерывном цикле у многих предприятий основная нагрузка идёт в первую смену, а во вторую и третью — снижается. В то же время у граждан больше потребность в электроэнергии в основном вечером. Так что есть утренние и вечерние пики потребления. И это можно было бы сглаживать за счёт малой генерации», — считает Гартунг.

Депутат посетовал, что электросети оказывают «дикое» сопротивление таким предложениям, так как им невыгодно присутствие на рынке малой генерации, потому что «малая генерация будет размонополивать рынок, децентрализировать его». А ведь, отметил он, последнее как раз выгодно и гражданам, потребителям, и государству, так как сократит издержки на передачу, составляющие от трети до половины цены, и в итоге снизит стоимость энергии.

Впрочем, Гартунг уверен, что внесённый закон в нынешнем виде пока «больше символический», он — «первый шаг в правильном направлении, но явно недостаточный». «С другой стороны, этот закон — как прецедент — важен. Он позволит отработать механизмы взаимодействия частной малой генерации с сетевиками, вскроет недостатки, препятствия, описав которые, можно будет дорабатывать схему и устранять недостатки. И уже потом можно поднимать порог генерации», — заключил депутат.

«Зелёная» энергетика в России и в мире

Человечество активно переходит к использованию возобновляемых источников энергии (ВИЭ) на фоне угрозы исчерпания ископаемого топлива и негативных последствий от его использования для экологии. В целом увеличение мощностей возобновляемой энергетики уже опережает традиционные источники — с 2015 года это 55 процентов прироста. 47 стран к середине века планируют на 100 процентов перейти на «зелёную» энергию, а о переводе 30 процентов генерации на ВИЭ к 2030 году заявили Китай, Бразилия, Япония и Канада.

Только ветряные электростанции по всему миру уже вырабатывают больше, чем вся энергетика России. Одним из ярких примеров в использовании энергии ветра является Дания — там ветер даёт более 40 процентов генерации.

Сейчас лидером по использованию ВИЭ в целом является Китай — как ветра, так и солнца (почти 26 процентов генерации). В США для сравнения: 21 процент. Лидирующие позиции также занимают такие страны, как Германия, Испания и Индия.

В России, где использование ВИЭ не превышает одного процента, несмотря на огромные запасы углеводородов и другого ископаемого топлива, имеется огромный потенциал для развития «зеленой» энергии. Ещё с советских времён действует Кислогубская приливная электростанция, ряд других мощностей — геотермальные, солнечные и ветряные станции. С 2010-х возобновлены проекты по постройке ветряных электростанций в Ростовской области, Адыгее и других регионах.

К 2024 году Россия планирует довести долю ВИЭ до 2,4 процента

Альтернативная энергетика: солнце, воздух и вода

Постоянно повышающаяся потребность в энергии, новые, крайне прожорливые потребители электричества – гигантские дата-центры и электромобили для массового рынка – вынуждают человечество искать альтернативные источники энергии. Важно, чтобы они были не только высоко эффективными, но и экологически чистыми.

Отрасли нетрадиционной энергетики

К традиционным источникам электроэнергия относятся тепловые (уголь, газ, мазут), гидро- и атомные электростанции. Причем относительно «зелеными» считается лишь третий тип электростанций, тогда как два первых наносят ощутимый вред атмосфере и гидросфере соответственно.

Экологически чистые (опять-таки, относительно) солнечные, ветровые и геотермальные электростанции в ряде стран мира вырабатывают до половины электричества, но их до сих пор называют альтернативными. Кроме того, существует альтернативная гидроэнергетика, подразумевающая волновые, приливные и водопадные электростанции.

Самой же неоднозначной отраслью альтернативной энергетики является, пожалуй, биотопливо. На фоне вероятного глобального продовольственного кризиса засевать плодородные земли культурами, перерабатывающимися в биотопливо – преступление перед человечеством.

Но давайте же поговорим о каждой отрасли альтернативной энергетики по порядку.

Гелиоэнергетика

Солнечные электростанции (СЭС) – одни из самых распространенных на планете, так как используют неисчерпаемый источник энергии (солнечный свет). В процессе выработки электричества, а при необходимости еще и тепла для обогрева жилых помещений и подачи горячей воды, они не наносят никакого вреда окружающей среде. Но существует обратная сторона медали: утилизация отработавших свое солнечные батарей процесс затратный и уж точно не экологически чистый.

Солнечные панели зачастую встраивают прямо в крыши жилых домов

Сильно зависима гелиоэнергетика от погоды и времени суток: в дождливый день и, уж тем более, ночью электричество особо-то не покачаешь. Приходится запасаться аккумуляторными батареями, что удваивает стоимость установки солнечных панелей, например, на даче.

Лидерами в популяризации гелиоэнергетики являются Германия, Испания и Япония. Понятное дело, что преимущество тут имеют южные страны, где солнце жарко светит почти круглый год. Германия же традиционно занимает лидирующие позиции в альтернативной энергетике, поэтому даже на СЭС в этой в целом-то холодной стране делается большая ставка.

Солнечная ферма Охотниково: живописный Крым заблестел словно огромное зеркало

Приятно, что в вопросах гелиоэнергетики Украина не пасет задних. В Крыму находится сразу несколько крупных СЭС: Перово (мощность 100 МВт, 11 место в мировом рейтинге), Охотниково (80 МВт, 22 место) и Приозерная (55 МВт, 42 место). Безоговорочными же лидерами являются американские Агуа-Калиенте и Калифорнийская Долина, мощностью по 250 МВт каждая.

Мощнейшая в мире солнечная электростанция Агуа-Калиенте (штат Аризона)

Ветроэнергетика

Обуздало силу ветра человечество довольно-таки давно: ветряные мельницы много столетий верой-правдой служили для перемолки зерна в муку. Сейчас же пришло время найти «мельницам» новое применение – гигантские лопасти, гонимые силой ветра, способны вращать мощные генераторы и таким путем эффективно вырабатывать столь нужное электричество.

Ветрогенератор самостоятельно подстраивается под меняющееся направление ветра, свободно вращаясь на мачте

Тройку лидеров в мировой выработке электричества с помощью ветра составляют Китай, США и Германия. Если же сравнивать долю ветроэлекстростанций (ВЭС) в каждой конкретной стране, то лидируют Дания, Португалия и Испания. Тут опять-таки многое зависит от климатических условий: в одних странах ветер не утихает ни на секунду, в других наоборот большую часть времени стоит штиль. Украине в этом плане повезло не очень: погода у нас мягкая и маловетреная. Хотя еще в 30-х годах в Крыму была построена первая в мире промышленная ветроэлектростанция, а в 1934 г. под руководством Юрия Кондратюка (того самого, что рассчитал траекторию полета на Луну) разрабатывался проект постройки огромной 12-мегаваттной ветростанции на горе Ай-Петри с башней высотой 165 метров и двумя 80-метровыми турбинами, размещенными на двух уровнях.

Крупнейшая в мире ветровая электростанция London Array построена в море возле берегов Великобритании (630 МВт)

Есть у ветроэнергетики как веские преимущества, так и столь же веские недостатки. В сравнении с солнечными панелями «ветряки» стоят недорого и не зависят от времени суток, а потому частенько встречаются на дачных участках. Существенный минус у ветрогенераторов только один – они изрядно шумят. Установку такого оборудования придется согласовывать не только с родными, но и жителями близлежащих домов.

Геотермальная энергетика

В районах с вулканической активностью, где подземные воды нагреваются выше температуры кипения, рационально строить геотермальные теплоэлектростанции (ГеоТЭС). Пожалуй, самой известной страной, где широко применяются ГеоТЭС, является Исландия. Оно и не странно: кипяток и пар циркулирует по трубам круглый год без остановок, что позволяет в процессе выработки электричества обходиться без дорогостоящих и трудно утилизируемых аккумуляторов.

Несьявеллир (Исландия) – крупнейшая в Европе ГеоТЭС (120 МВт)

Делают ставку на геотермальную энергетику и в других странах, где удалось обуздать вулканическую активность Земли: США, Новая Зеландия, Индонезия и Филиппины. Богата термальными водами и Россия: вот только новые ГеоТЭС в Сибири давненько не строили. Последние подвижки в этом направлении датируются еще временами СССР.

Мощность ГеоТЭС «Гейзерс» (штат Калифорния, США) изначально составляла 2 тыс. МВт, но постепенно падает

Альтернативная гидроэнергетика

Нетрадиционное использования водных ресурсов планеты для выработки энергии подразумевает три типа электростанций: волновые, приливные и водопадные. Причем самыми перспективными из них считаются первые: средняя мощность волнения мирового океана оценивают в 15 кВт на погонный метр, а при высоте волн выше двух метров пиковая мощность может достигать аж 80 кВт/м.

Главная проблема волновых электростанций – сложность преобразования движения волн (вверх-вниз) во вращение лопастей колеса генератора. Впрочем, последние разработки британский (проект Oyster) и российских ученых (проект Ocean RusEnergy) должны решить данную проблему.

Oyster – высокоэффективный волновой электрогенератор, разработанный в Великобритании

Приливные электростанции имеют значительно меньшую мощность, чем волновые, зато их куда легче и удобнее строить в прибрежной зоне морей. Гравитационные силы Луны и Солнца дважды в день меняют уровень воды в море (разница может достигать двух десятков метров), что позволяет использовать энергию приливов и отливов для выработки электричества.

Во Франции почти полвека эксплуатируется приливная электростанция «Ля Ранс» (мощность 240 МВт), которая построена в устье реки Ранс рядом с городком Сен-Мало. Долгое время она удерживала мировое лидерство по мощности, но в 2011 году ее обошла южнокорейская Сихвинская ПЭС (254 МВт).

«Ля Ранс» – одна из старейших и в то же время мощнейшая в Европе ПЭС

Водопадные электростанции являются, пожалуй, самыми малоперспективными в отрасли гидроэнергетики. Дело в том, что по-настоящему мощных водопадов на планете не так уж и много. Вспомнить стоит разве что электростанции «Сэр Адам Бек 1» и «Сэр Адам Бек 2», построенные на Ниагарском водопаде, а точнее на его канадской стороне.

Комплекс электростанций «Сэр Адам Бек» (США) мощностью 2 тыс. МВт построен на границе США и Канады

Биотопливо

Жидкое, твердое и газообразное биотопливо может стать заменой не только традиционным источникам электричества, но и бензину. В отличие от нефти и природного газа, восстановить запасы которых не представляется возможным, биотопливо можно вырабатывать в искусственных условиях.

Простейшим биотопливом является древесина, а точнее отходы деревообрабатывающей промышленности – щепки и стружка. Спрессованные в брикеты они прекрасно горят, а нагретая с их помощью вода позволяет вырабатывать электричество и тепло, пусть и в небольших масштабах.

Кукуруза – продукт питания и в то же время сырье для биотоплива

Но будущее за жидким и газообразным биотопливом: биодизелем, биоэтанолом, биогазом и синтез-газом. Все они производятся на основе богатых сахаром или жирами растений: сахарного тростника, кукурузы и даже морского фитопланктона. Последний вариант так и вовсе имеет безграничные перспективы: выращивать водоросли в искусственных условиях дело не хитрое.

Фитопланктон (крохотные морские водоросли и бактерии) – идеальное сырье для производства жидкого и газообразного биотоплива

Будущее альтернативной энергетики

Концепт орбитальной солнечной электростанции NASA Suntower

Учитывая подорожание энергоносителей и подорванное доверие к атомным электростанциям, развитие альтернативной энергетики постепенно ускоряется. Ну а если смотреть на совсем уж отдаленную перспективу, то стоит упомянуть космическую энергетику.

Концепт орбитальной солнечной электростанции NASA SERT

Данная отрасль подразумевает размещение солнечных батарей на земной орбите и на поверхности Луны. Это позволит добывать примерно на треть больше электроэнергии, чем это возможно в условиях земной атмосферы. На Землю же передаваться выработанное электричество будет с помощью радиоволн.

Роль ископаемых видов топлива в устойчивой энергетической системе

Изменение климата — одна из величайших проблем нашего времени. Однако не менее велика необходимость обеспечить доступ к электроэнергии как ради качества жизни, так и для экономического развития. Поэтому крайне важно рассматривать изменение климата как часть повестки дня в области устойчивого развития. Постоянный прогресс в развитии новых технологий дал нам уверенность и надежду на то, что в энергетической сфере эти задачи будут выполнены. Резкое падение цен на ветрогенераторы и солнечные батареи, их техническое усовершенствование показали, что эти возобновляемые источники энергии могут играть важную роль в глобальных энергосистемах, а долгожданный прорыв в области экономически эффективных технологий хранения электроэнергии значительно изменит основную комбинацию источников электроэнергии.

Все эти достижения неизбежно привели к предположению о том, что с ископаемыми видами топлива в энергетике покончено, что в дальнейшей разработке новых ресурсов нет необходимости и что нам необходимо как можно скорее прекратить их использование. Это предположение создало образ существующих в современных глобальных энергосистемах «хороших» технологий на базе возобновляемых источников энергии с одной стороны и «плохих» на базе ископаемых видов топлива — с другой стороны. В реальности это противопоставление далеко не так прямолинейно и требует более вдумчивого изучения. Технологии улавливания и хранения двуокиси углерода (УХУ) и управления выбросами метана на всех этапах приращения стоимости энергии из ископаемых источников могут помочь в выполнении масштабных задач по сокращению выбросов CO2, пока ископаемые виды топлива все еще остаются частью энергосистемы. Таким образом эти меры позволяют ископаемым топливам стать частью решения, а не оставаться частью проблемы. Рациональная экономика отводит важную роль в энергетических системах каждой технологии.

На ископаемые виды топлива сегодня приходится 80 процентов глобального спроса на первичную электроэнергию; энергосистема поставляет около двух третей мировых выбросов CO2. Ввиду того, что объем выбросов метана и других кратковременно загрязняющих атмосферу веществ, оказывающих воздействие на климат (КЗВК), как полагают, серьезно занижается, вероятно, что процессы выработки и потребления электроэнергии дают еще большую долю выбросов. Более того, на сегодняшний день в мире значительная часть топлива на основе биомассы расходуется на отопление и приготовление пищи в малом масштабе. Это крайне неэффективные и загрязняющие окружающую среду процессы; в особенности они вредны для качества воздуха в домах во многих менее развитых странах. Использование возобновляемой биомассы таким образом представляет собой проблему с точки зрения устойчивого развития.

При продолжении существующих тенденций, то есть при сохранении нынешней доли ископаемых видов топлива и увеличении спроса на электроэнергию к 2050 году почти вдвое, объем выбросов намного превысит предел по углероду, допустимый при ограничении глобального потепления двумя градусами Цельсия. Подобный уровень выбросов будет иметь катастрофические последствия для планеты. В энергетическом секторе существует ряд возможностей для уменьшения выбросов; наиболее значимые среди них — снижение энергопотребления и уменьшение углеродоемкости энергетической отрасли путем перехода на другие виды топлива и контроля за выбросами CO2.

Необходимость снижения выбросов не запрещает использование ископаемых видов топлива, но требует существенной смены подхода: сценарий обычного развития не сочетается со снижением выбросов в глобальных энергосистемах. Энергоэффективность и возобновляемые источники энергии зачастую рассматриваются как единственные решения, необходимые для достижения целей в области климата в контексте энергетики, но их одних недостаточно. Обязательным элементом решения станет расширение использования УХУ; ожидается, что к 2050 году эта технология приведет к 16-процентному ежегодному снижению выбросов. Это утверждение поддержано в Пятом обобщающем докладе об оценке, подготовленном Межправительственной группой экспертов по изменению климата, в котором указано, что ограничение выбросов энергетического сектора без применения УХУ сделает смягчение изменения климата дороже на 138 процентов.

Сегодня в энергетике невозможно единообразное использование возобновляемых видов топлива в качестве замены ископаемым видам, в основном по причине неодинаковых возможностей различных подотраслей энергетики переключиться с ископаемых на возобновляемые виды топлива. Например, в таких отраслях промышленности, как производство цемента или выплавка стали, источниками выбросов являются и использование электроэнергии, и сам процесс производства. Альтернативные технологии, которые могли бы заменить существующие методы, еще недоступны в необходимом масштабе, поэтому ожидается, что в кратко- и среднесрочной перспективе нынешние технологии сохранятся. В подобных случаях УХУ может стать решением, совместимым с текущими нуждами, и обеспечить время, необходимое для разработки будущих альтернативных методов.

Сценарии, предусматривающие использование УХУ, в любом случае связаны с существенной трансформацией энергетической системы в ответ на изменение климата. Поэтому подобные сценарии не являются замалчиванием проблемы и демонстрируют значительное снижение общего мирового потребления ископаемых видов топлива, а также существенный рост эффективности при выработке электроэнергии и в промышленном производстве. Трансформация энергетической системы поддерживает все технологии, играющие ключевую роль в создании устойчивой энергосистемы.

В связи с этим в ноябре 2014 года государства — члены Европейской экономической комиссии Организации Объединенных Наций (ЕЭК) после широкомасштабных консультаций с экспертами со всего мира утвердили список рекомендаций в отношении УХУ. В этих рекомендациях подчеркивается, что международное соглашение по климату должно:

• поддержать широкий спектр инструментов фискальной политики, поощряющих УХУ;

• решить вопрос улавливания и хранения двуокиси углерода во всех отраслях промышленности, включая цементную, сталелитейную, химическую, нефтеперерабатывающую и энергетическую;

• обеспечить совместную работу правительств над финансированием и поддержкой маломасштабных демонстрационных проектов;

• предусмотреть закачку двуокиси углерода в пласты для более эффективного извлечения углеводородов, что затем будет рассматриваться и считаться как хранение при том условии, если двуокись углерода будет находиться там постоянно.

Выполнение этих рекомендаций позволяет тем государствам — членам Организации Объединенных Наций, которые по-прежнему в большой степени зависят от ископаемых видов топлива, принять участие в глобальных усилиях по смягчению последствий изменения климата, вместо того чтобы выступать в качестве источников этой проблемы. В соответствующем масштабе эта технология была подтверждена в Канаде, Норвегии и Соединенных Штатах Америки; на сегодняшний день в мире находятся на разных стадиях разработки около 40 проектов. Работа над УХУ в краткосрочной перспективе крайне важна для повышения эффективности, снижения затрат и оптимизации расположения хранилищ, чтобы обеспечить готовность этой технологии к крупномасштабному запуску в 2025 году.

Выбросы CO2 — не единственная связанная с ископаемыми видами топлива проблема, требующая решения. По оценкам, на всех этапах приращения стоимости ископаемых источников (добычи и использования природного газа, угля и нефти) ежегодно в атмосферу выбрасывается 110 млн тонн метана. Это существенная часть совокупных выбросов метана. Поскольку метан является газом, вызывающим мощный парниковый эффект, его выбросы должны быть значительно сокращены.

Метан — основной компонент природного газа: часть его поступает в атмосферу при добыче, переработке, хранении, транспортировке и распределении природного газа. По подсчетам, ежегодно вследствие выпуска, утечек и сжигания теряется около 8 процентов добываемого в мире природного газа, что дорого обходится и экономике, и окружающей среде. При геологических процессах формирования угля вокруг и внутри залежей удерживаются метановые полости. Во время работ по добыче угля (добыча, измельчение, перевозка) часть этого метана высвобождается. Как и в случае с углем, при геологическом формировании нефти также могут образовываться крупные запасы метана, которые высвобождаются при бурении и добыче. К числу источников метановых выбросов также относятся процессы добычи, переработки, транспортировки и хранения нефти, неполное сгорание ископаемых видов топлива. Не существует стопроцентно эффективных процессов горения, поэтому использование ископаемых видов топлива для выработки электроэнергии, отопления или обеспечения работы механизмов приводит к выбросам метана.

Самые сложные задачи в управлении метановыми выбросами — это тщательный мониторинг и фиксирование выбросов с использованием самых совершенных наблюдательных и измерительных технологий, а затем использование оптимальных способов для минимизации утечек и выбросов. Это даст экономическую выгоду и одновременно снизит влияние метана на здоровье, повысит безопасность и смягчит глобальное потепление. Многочисленные выгоды управления метановыми выбросами самоочевидны, тем не менее для соответствующего прогресса в этой области необходима дальнейшая работа.

Решение вопросов, связанных с устойчивой энергетикой, требует вовлечения максимально широкого круга заинтересованных сторон, при этом игнорирование роли ископаемых видов топлива будет иметь негативный эффект. Многие развивающиеся страны располагают значительными нетронутыми запасами ископаемых видов топлива, которые они намерены использовать для развития своей экономики. Настаивать на том, чтобы они навлекли на себя значительные расходы и отказались от использования этих ресурсов в пользу возобновляемых источников энергии, означает с большой вероятностью создать нежелательную напряженность. Здесь можно возразить, что развитые страны построили свою нынешнюю экономику на ископаемых видах топлива и продолжают во многом зависеть от них. По сравнению с «неископаемой» программой более сбалансированным подходом представляется более прагматический вариант, поощряющий все страны использовать широкий спектр доступных им ресурсов (имеется в виду энергоэффективность и рациональное использование как возобновляемых, так и ископаемых видов топлива).

Еще одна группа заинтересованных сторон, которую обычно выставляют в невыгодном свете, — частный сектор, в особенности промышленность, связанная с ископаемыми видами топлива. На самом деле, именно частный сектор располагает знаниями и зачастую финансовыми ресурсами, необходимыми для поддержки того перехода к инклюзивной «зеленой» экономике, к которому стремится весь мир. Использование бюджетов, знаний и технологий крупных игроков может облегчить этот переход; отношение к ним как к отверженным сделает этот процесс сложнее и дороже.

Постоянная и важнейшая задача — обеспечить лучшее качество жизни и экономический рост с одновременным сокращением масштабов воздействия энергетического сектора на окружающую среду. Переход к устойчивой энергосистеме представляет собой возможность повысить энергоэффективность на всем пути от источника до его использования, свести к минимуму воздействие на окружающую среду, снизить энерго- и углеродоемкость, а также скорректировать недочеты энергорынка. Для использования этой возможности потребуется скоординированный пересмотр стратегий и реформы во многих секторах. По сравнению с другими регионами мира страны ЕЭК обладают бóльшим потенциалом конкурентного экономического преимущества благодаря сравнительно небольшим расстояниям между источниками поставок энергии и центрами ее потребления. Полная интеграция энергорынков региона в единую эффективную структуру позволит значительно усовершенствовать использование энергии в технической, социальной, экономической и экологической сферах.

Создание в регионе ЕЭК устойчивой энергосистемы в будущем будет включать в себя серьезный отход от текущей схемы. Повышение эффективности относится не только к потребительской сфере (это, например, энергоэффективные дома, транспорт и бытовая техника), но и к наращиванию энергоэффективности в сфере выработки (генерации), передачи и распределения энергии. Это возможность ускорить переход от традиционной схемы продажи энергоносителей к схеме предоставления энергетических услуг на основе инноваций.

Разработка «умных» энергосетей, работающих по единым правилам, дает важную возможность улучшить взаимодействие технологий, тем самым расширяя экономически выгодное внедрение огромного спектра низкоуглеродных технологий и повышая устойчивость энергосистемы. Независимо от нашего желания, в ближайшие десятилетия ископаемые виды топлива останутся частью глобальной энергосистемы. Они продолжат определять социально-экономическое развитие во всем мире. В связи с этим крайне важно вести открытую и прозрачную дискуссию о роли ископаемых видов топлива в мировых устойчивых энергосистемах в ходе разработки практических климатических стратегий. Особенно важно задействовать страны с формирующейся рыночной экономикой и развивающиеся страны в ходе 21-й сессии Конференции сторон Рамочной конвенции Организации Объединенных Наций об изменении климата (КС-21). Это может изменить расстановку политических сил и помочь принять в Париже значимое соглашение по климату.

Альтернативная энергия | источники, виды, использование

Ухудшение экологии и истощение природных ресурсов заставляет задумываться о том, как получать электричество и тепло из возобновляемых источников.

В этой статье рассказываем, как работает альтернативная энергия и почему многие страны делают выбор в её пользу.

 

Что такое альтернативная энергия?

Энергия бывает возобновляемой (альтернативной) и невозобновляемой (традиционной).

Альтернативные источники энергии – это обычные природные явления, неисчерпаемые ресурсы, которые вырабатываются естественным образом. Такая энергия ещё называется регенеративной или «зелёной».

Невозобновляемые источники – это нефть, природный газ и уголь. Им ищут замену, потому что они могут закончиться. Ещё их использование связано с выбросом углекислого газа, парниковым эффектом и глобальным потеплением.


Человечество получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций. Альтернативная энергетика – это методы, которые отдают энергию более экологичным способом и приносят меньше вреда. Она нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.


Ресурсы возобновляемой энергии


  • Солнечный свет
  • Водные потоки
  • Ветер
  • Приливы
  • Биотопливо (топливо из растительного или животного сырья)
  • Геотермальная теплота (недра Земли)

 

Альтернативные виды энергии


1. Солнечная энергия

Один из самых мощных видов альтернативных источников энергии. Чаще всего её преобразуют в электричество солнечными батареями. Всей планете на целый год хватит энергии, которую солнце посылает на Землю за день. Впрочем, от общего объёма годовая выработка электроэнергии на солнечных электростанциях не превышает 2%.

Основные недостатки – зависимость от погоды и времени суток. Для северных стран извлекать солнечную энергию невыгодно. Конструкции дорогие, за ними нужно «ухаживать» и вовремя утилизировать сами фотоэлементы, в которых содержатся ядовитые вещества (свинец, галлий, мышьяк). Для высокой выработки необходимы огромные площади.

Солнечное электричество распространено там, где оно дешевле обычного: отдалённые обитаемые острова и фермерские участки, космические и морские станции. В тёплых странах с высокими тарифами на электроэнергию, оно может покрывать нужны обычного дома. Например, в Израиле 80% воды нагревается солнечной энергией.

Батареи также устанавливают на беспилотные автомобили, самолёты, дирижабли, поезда Hyperloop.

 

2. Ветроэнергетика

Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).

Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.

Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.

 

3. Гидроэнергия

Чтобы преобразовать движение воды в электричество нужны гидроэлектростанции (ГЭС) с плотинами и водохранилищами. Их ставят на реках с сильным потоком, которые не пересыхают. Плотины строят для того, чтобы добиться определённого напора воды – он заставляет двигаться лопасти гидротурбины, а она приводит в действие электрогенераторы.

Строить ГЭС дороже и сложнее относительно обычных электростанций, но цена электричества (на российских ГЭС) в два раза ниже. Турбины могут работать в разных режимах мощности и контролировать выработку электричества.

 

4. Волновая энергетика

Есть много способов генерации электричества из волн, но эффективно работают только три. Они различаются по типу установок на воде. Это камеры, нижняя часть которых погружена в воду, поплавки или установки с искусственным атоллом.

Такие волновые электростанции передают кинетическую энергию морских или океанических волн по кабелю на сушу, где она на специальных станциях преобразуется в электричество.

Этот вид используется мало – 1% от всего производства электроэнергии в мире. Системы тоже дорогие и для них нужен удобный выход к воде, который есть не у каждой страны.

 

5. Энергия приливов и отливов

Эту энергию берут от естественного подъёма и спада уровня воды. Электростанции ставят только вдоль берега, а перепад воды должен быть не меньше 5 метров. Для генерации электричества строят приливные станции, дамбы и турбины.

Приливы и отливы хорошо изучены, поэтому этот источник более предсказуем относительно других. Но освоение технологий было медленным и их доля в глобальном производстве мала. Кроме того, приливные циклы не всегда соответствуют норме потребления электричества.

 

6. Энергия температурного градиента (гидротермальная энергия)

Морская вода имеет неодинаковую температуру на поверхности и в глубине океана. Используя эту разницу, получают электроэнергию.

Первая установка, которая даёт электричество за счёт температуры океана была сделана ещё в 1930 году. Сейчас есть океанические электростанции закрытого, открытого и комбинированного типа в США и Японии.

 

7. Энергия жидкостной диффузии

Это новый вид альтернативного источника энергии. Осмотическая электростанция, установленная в устье реки, контролирует смешение солёной и пресной воды и извлекает энергию из энтропии жидкостей.

Выравнивание концентрации солей даёт избыточное давление, которое запускает вращение гидротурбины. Пока есть только одна такая энергетическая установка в Норвегии.

 

8. Геотермальная энергия

Геотермальные станции берут внутреннюю энергию Земли – горячую воду и пар. Их ставят в вулканических районах, где вода у поверхности или добраться до неё можно пробурив скважину (от 3 до 10 км.).

Извлекаемая вода отапливает здания напрямую или через теплообменный блок. Ещё её перерабатывают в электричество, когда горячий пар вращает турбину, соединённую с электрогенератором.

Недостатки: цена, угроза температуре Земли, выбросы углекислого газа и сероводорода.

Больше всего геотермальных станций в США, Филиппинах, Индонезии, Мексике и Исландии.

 

9. Биотопливо

Биоэнергетика получает электричество и тепло из топлива первого, второго и третьего поколений.

  • Первое поколение – твёрдое, жидкое и газообразное биотопливо (газ от переработки отходов). Например, дрова, биодизель и метан.
  • Второе поколение – топливо, полученное из биомассы (остатков растительного или животного материала, или специально выращенных культур).
  • Третье поколение – биотопливо из водорослей.

Биотопливо первого поколения легко получить. Сельские жители ставят биогазовые установки, где биомасса бродит под нужной температурой.

Самый традиционный способ и древнейшее топливо – дрова. Сейчас для их производства сажают энергетические леса из быстрорастущих деревьев, тополя или эвкалипта.

 

Плюсы и минусы альтернативной энергии

Главная перспектива альтернативных источников – существования человечества даже в условиях жёсткого дефицита нефти, газа и угля.


Преимущества:


  • Доступность – не нужно обладать нефтяными или газовыми месторождениями. Правда, это относится не ко всем видам. Страны без выхода к морю не смогут получать волновую энергию, а геотермальную можно преобразовывать только в вулканических районах.
  • Экологичность – при образовании тепла и электричества нет вредных выбросов в окружающую среду.
  • Экономия – полученная энергия имеет низкую себестоимость.

Недостатки и проблемы:


  • Траты на этапе строительства и обслуживание – оборудование и расходные материалы дорогие. Из-за этого повышается итоговая цена электроэнергии, поэтому она не всегда оправдана экономически. Сейчас главная задача разработчиков снизить себестоимость установок.
  • Зависимость от внешних факторов: невозможно контролировать силу ветра, уровень приливов, результат переработки солнечной энергии зависит от географии страны.
  • Низкий КПД и маленькая мощность установок (кроме ГЭС). Вырабатываемая мощность не всегда соответствует уровню потребления.
  • Влияние на климат. Например, спрос на биотопливо привёл к сокращению посевных площадей для продовольственных культур, а плотины для ГЭС изменили характер рыбных хозяйств.

 

Возобновляемая энергия в мире

Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.


Германия


40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.


Исландия


У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.


Швеция


После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.

Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.

Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.


Китай


В Китае самая мощная ГЭС в мире – «Три ущелья». По состоянию на 2018 год – это крупнейшее по массе сооружение. Её сплошная бетонная плотина весит 65,5 млн тонн. За 2014 станция произвела рекордные для мира 98,8 млрд кВт⋅ч.

Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.

Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.

 

Альтернативная энергия в России

Разное географическое положение регионов и специфика климатических поясов в России не позволяют развивать эту отрасль равномерно. Нет инвестиций и есть пробелы в законе.

 

Виды возобновляемой энергии в России


Солнечная энергия


Используется и в промышленных масштабах, и у местного населения как резервный или основной источник тепла и электричества. Мощность всех солнечных установок – 400 МВт, из них самые крупные в Самарской, Астраханской, Оренбургской областях и Крыму. Самая мощная СЭС – «Владиславовка» (Крым). Ещё разрабатываются проекты для Сибири и Дальнего Востока.


Ветровая энергетика


Ветровая возобновляемая энергия в России представлена чуть хуже, чем солнечная, хотя и здесь есть промышленные установки. Общая мощность ветровых генераторов в нашей стране – 183,9 МВт (0,08 % от всей энергосистемы). Больше всего установок – в Крыму, а мощнейшая находится в Адыгее – «Адыгейская ВЭС».


Гидроэнергетика


Это самый популярный вариант альтернативного источника энергии в России. Около 200 речных ГЭС вырабатывают до 20% от всей энергии в стране. В заливе Кислая губа в Мурманской области с 1968 года есть приливная электростанция – «Кислогубская ПЭС». Самая крупная ГЭС стоит на реке Енисей – «Саяно-Шушенская».


Геотермальная энергетика


За счёт обилия вулканов этот вид энергетики распространён на Камчатке. Там 40% потребляемой энергии генерируется на геотермальных источниках. По данным учёных, потенциал Камчатки оценивается в 5000 МВт, а вырабатывается только 80 МВт энергии в год. Ещё геотермальные станции есть на Курилах, Ставропольском и Краснодарском крае.


Биотопливо


Наша страна входит в тройку экспортёров пеллет на европейском рынке. В России есть заводы, создающие из остатков древесины пеллеты и брикеты, которыми топят котлы и печки.

Сельскохозяйственные отходы преобразуют в жидкое топливо и биогаз для дизельных двигателей. А вот свалочный газ не используется вообще, его просто выбрасывают в атмосферу, нанося ущерб окружающей среде.

 

Компании, которые занимаются возобновляемыми источниками энергии

Рост инвестиций в возобновляемую энергетику и поддержка правительства помогает многим компаниям успешно вести бизнес.


First Solar Inc.


Эта американская компания была образована в 1990 году и стала известной благодаря производству солнечных батарей. Сейчас это крупнейшая фирма, которая продаёт солнечные модули, поставляет оборудование и отвечает за технический сервис.


Vestas Wind Systems A/S


Старейший производитель ветрогенераторов из Дании. Компания основана в 1898 году и на сегодняшний день ей удалось установить более 60 тысяч ветровых турбин в 63 странах. Vestas продаёт отдельные генераторы, комплексные станции и обслуживает устройства.


Atlantica Yield PLC


Эта компания с офисом в Лондоне владеет классическими линиями электропередач, солнечными и ветровыми станциями в Северной Америке, Испании, Алжире, Южной Америке и Южной Африке.


ABB Ltd. Asea Brown Boveri


Шведско-швейцарская компания, известная автомобильными двигателями, генераторами и робототехникой. С 1999 года бренд занимается преобразованием солнечной и ветровой энергии. В 2013 году компания стала мировым лидером в области оборудования фотоэлектрической энергии.


Читайте: Персональный мир и полная автоматизация. Что такое четвёртая промышленная революция?


Шпракебюлль: поселок, где будущее ″зеленой″ энергетики уже наступило | Анализ событий в политической жизни и обществе Германии | DW

«Я горжусь Шпракебюллем. Приятно услышать от людей из других мест, что наш поселок стал известен своим использованием экологической энергии», — говорит Кристина Йоханнсен (Christina Johannsen). Вместе с мужем она управляет биофермой и держит фермерский магазин, многие клиенты расспрашивают ее об образцовом зеленоэнергетическом поселке, в котором проживает 260 человек. Потому что в Шпракебюлле, что в федеральной земле Шлезвиг-Гольштейн, поворот к альтернативной энергетике уже удалось осуществить.

Кристина Йоханнсен с сыном

Клиенты могут заряжать свои электромобили прямо напротив магазина Йоханнсенов. За ним строятся дома для молодых семей. А возведение новой пожарной части по соседству было профинансировано за счет доходов от местной ветряной электростанции, с гордостью поясняет бургомистр поселка Карл-Рихард Ниссен (Karl-Richard Nissen), указывая на шесть светло-серых ветряков, расположенных примерно в двух километрах отсюда.

Деньги в бюджет и высокое признание

«Альтернативные источники энергии принесли только положительное», — продолжает Ниссен. Налоги поступают в муниципальную казну от работы ветряков и установок, преобразующих энергию солнца. «Мы можем позволить себе то, на что иначе не было бы денег», — отмечает бургомистр.

Каждый житель поселка через каршеринг может дешево пользоваться электромобилем

Так, в Шпракебюлле проложены велосипедные дорожки, местные власти субсидируют  уроки музыки для детей, и каждый житель поселка посредством каршеринга может за небольшую плату пользоваться имеющимся в поселке электромобилем.

Самым важным фактором успеха является участие граждан в проектах, поясняет Ниссен. Без такого участия, например, здесь не появился бы второй ветропарк. В поселковом совете не все проголосовали за это, но все приняли результаты голосования. «Решающим было то, что мы не передавали здесь земельные площади крупным инвесторам», — вспоминает бургомистр.

Обязательства и отдача от чистой энергии

Первый коммунальный ветропарк подключили к сети в Шпракебюлле еще в 1998 году. Уставной капитал с трудом собрали местные жители и фермеры. Без тех инвестиций и предоставления в качестве залога собственных домов банки тогда вряд ли бы выдали кредиты в размере 7,5 млн евро для закупки и установки пяти ветротурбин, рассказывает фермер Ханс-Кристиан Андресен (Hans-Christian Andresen), один из инициаторов проекта. Сегодня банковские кредиты для таких проектов — не проблема, и в сооружении нового ветропарка участвуют многие местные жители.

Тепло для поселка вырабатывает эта биоустановка

Они также активно поддержали и возведение двух солнечных парков в Шпракебюлле. Кроме того, на крышах домов многих местных жителей также установлены солнечные батареи. В целом, в деревне вырабатывается примерно в 50 раз больше электроэнергии, чем потребляется.

Что касается отопления, то мазут шпракебюлльцы давно не используют: в 2013 году все дома в поселке были подключены к собственной тепловой сети. Тепло вырабатывается в биоустановке, расположенной рядом с фермерским магазином Йоханссенов, куда биогаз с их фермы подается после разложения биомассы.

Инновации как средство против миграции населения из сельской местности

В 1960-х годах в Шпракебюлле было 26 фермерских хозяйств, сегодня их три, делится бургомистр Ниссен. И признается, что без возобновляемых источников энергии «мы были бы очень бедным регионом». Это хорошо заметно в соседней Дании, граница с которой находится всего в 15 км. «В Дании альтернативные источники энергии не развивались в такой форме. Когда вы едете туда, то видите вымершие деревни. Сельское хозяйство там, как и здесь, деградировало. И больше нет ничего другого».

Полевые роботы могут работать на солнечной энергии

А без работодателей из инновационных сфер бизнеса, таких как Андресены, у которых заняты 30 человек, вероятно, имел бы место «массовый исход из сельской местности, и тогда меня бы здесь не было», подтверждает Кристиан Андресен.

Ему 42 года, он получил образование инженера-агронома и присоединился к компании, основанной его отцом в 2007 году. Андресен строит системы, преобразующие энергию солнца, обслуживает ветряки и парки с солнечными батареями, а также консультирует фермеров по переходу к использованию полевых роботов, работающих на солнечной энергии.

Хорошие перспективы на будущее

Инженер-агроном полагает, что в итоге в выигрыше оказался весь регион: «Здесь появилась масса ноу-хау и инновационного потенциала, многое еще в процессе развития, идет поиск решений, которые можно реализовать с помощью электричества».

Установка про производству «зеленого» водорода

Это также относится и к успешному водородному проекту в Хаурупе, что в 20 км. Там водород получают при электролизе воды с помощью электроэнергии, которую выработали ветряки. После чего водород подается в трубопровод для природного газа.

«С технической и финансовой точек зрения полностью обеспечить мир возобновляемыми источниками энергии к 2030 году — не проблема», — уверен Андресен. Поселок, в котором он живет, — хороший пример того, что в этой области «все пойдет намного быстрее, чем многие думают сегодня».

Смотрите также:

  • Технологии хранения энергии из возобновляемых источников

    Электростанция из аккумуляторов

    Как хранить в промышленных масштабах излишки электроэнергии, выработанной ветрогенераторами и солнечными панелями? Соединить как можно больше аккумуляторов! В Германии эту технологию с 2014 года отрабатывают в институте общества Фраунгофера в Магдебурге (фото). По соседству, в Шверине, тогда же заработала крупнейшая в Европе коммерческая аккумуляторная электростанция фирмы WEMAG мощностью 10 МВт.

  • Технологии хранения энергии из возобновляемых источников

    Большие батареи на маленьком острове

    Крупнейшие аккумуляторные электростанции действуют в США и странах Азии. А на карибском острове Синт-Эстатиус (Нидерландские Антилы) с помощью этой технологии резко снизили завоз топлива для дизельных электрогенераторов. Днем местных жителей, их около 4 тысяч, электричеством с 2016 года снабжает солнечная электростанция, а вечером и ночью — ее аккумуляторы, установленные фирмой из ФРГ.

  • Технологии хранения энергии из возобновляемых источников

    Главное — хорошие насосы

    Гидроаккумулирующие электростанции (ГАЭС) — старейшая и хорошо отработанная технология хранения электроэнергии. Когда она в избытке, электронасосы перекачивают воду из нижнего водоема в верхний. Когда она нужна, вода сбрасывается вниз и приводит в действие гидрогенератор. Однако далеко не везде можно найти подходящий водоем и нужный перепад высот. В Хердеке в Рурской области условия подходящие.

  • Технологии хранения энергии из возобновляемых источников

    Место хранения — норвежские фьорды

    Оптимальные природные условия для ГАЭС — в норвежских фьордах. Поэтому по такому кабелю с 2020 года подводная высоковольтная линия электропередачи NordLink длиной в 623 километра и мощностью в 1400 МВт будет перебрасывать излишки электроэнергии из ветропарков Северной Германии, где совершенно плоский рельеф, на скалистое побережье Норвегии. И там они будут храниться до востребования.

  • Технологии хранения энергии из возобновляемых источников

    Электроэнергия превращается в газ

    Избытки электроэнергии можно хранить в виде газа. Методом электролиза из обычной воды выделяется водород, который с помощью СО2 превращается в метан. Его закачивают в газохранилища или на месте используют для заправки автомобилей. Идея технологии Power-to-Gas родилась в 2008 году в ФРГ, сейчас здесь около 30 опытно-промышленных установок. На снимке — пилотный проект в Рапперсвиле (Швейцария).

  • Технологии хранения энергии из возобновляемых источников

    Водород в сжиженном виде

    Идея Power-to-Gas дала толчок разработкам в разных направлениях. Зачем, к примеру, превращать в метан полученный благодаря электролизу водород? Он и сам по себе отличное топливо! Но как транспортировать этот быстро воспламеняющийся газ? Ученые университета Эрлангена-Нюрнберга и фирма Hydrogenious Technologies разработали технологию его безопасной перевозки в цистернах с органической жидкостью.

  • Технологии хранения энергии из возобновляемых источников

    В чем тут соль?

    Соль тут в тех круглых резервуарах, которые установлены посреди солнечной электростанции на краю Сахары близ города Уарзазат в Марокко. Хранящаяся в них расплавленная соль выступает в роли аккумуляторной системы. Днем ее нагревают, а ночью используют накопленное тепло для производства водяного пара, подаваемого в турбину для производства электричества.

  • Технологии хранения энергии из возобновляемых источников

    Каверна в роли подземной батарейки

    На северо-западе Германии много каверн — пещер в соляных пластах. Одну из них энергетическая компания EWE и ученые университета Йены превратили в полигон для испытания технологии хранения электроэнергии в соляном растворе, обогащенном особыми полимерами, которые значительно повышают эффективность химических процессов. По сути дела, речь идет о попытке создать гигантскую подземную батарейку.

  • Технологии хранения энергии из возобновляемых источников

    Крупнейший «кипятильник» Европы

    Человечество давно уже использует тепло для производства электроэнергии. Возобновляемая энергетика поставила задачу, наоборот, превращать электричество, в том числе и избыточное, в тепло (Power-to-Heat). Строительство в Берлине крупнейшего «кипятильника» Европы мощностью 120 МВт для отопления 30 тысяч домашних хозяйств компания Vattenfall намерена завершить к концу 2019 года.

  • Технологии хранения энергии из возобновляемых источников

    Накопители энергии на четырех колесах

    Когда по дорогам мира будут бегать миллионы электромобилей с мощными аккумуляторными батареями, они превратятся в еще один крупный накопитель энергии из возобновляемых источников. Этому поспособствуют умные сети энергоснабжения (Smart grid): они будут стимулировать подзарядку по низким ценам в моменты избытка электричества. (На фото — заправка для электромобилей в Китае).

    Автор: Андрей Гурков


Самый дешевый способ производить электричество в домашних условиях

Как производить собственное электричество?

Некоторые из доступных вариантов для выработки собственного электричества дома:

  • Солнечная
  • Ветер
  • Биогаз
  • Микро-ГЭС
  • Геотермальная энергия
  • Дизельные или биодизельные генераторы

Все вышеперечисленные варианты, кроме дизельных генераторов, являются возобновляемыми и производят меньше / не производят выбросов парниковых газов и загрязнения.Выбор в первую очередь основан на возможности каждого из них для выработки электроэнергии в вашем регионе. Если доступно несколько вариантов, вы можете принять решение, исходя из их рентабельности, надежности и сравнительного воздействия на окружающую среду. Вы даже можете рассмотреть эстетику установки различных систем, прежде чем принять решение.

Подключив аккумулятор к домашней системе выработки электроэнергии, можно накапливать электроэнергию для дальнейшего использования. Вместо этого, если вы подключены к сети, вы можете отправить излишек электроэнергии в сеть в кредит или наличными.

Если вы не вырабатываете достаточно энергии для удовлетворения ваших требований, вы можете полагаться на энергию, накопленную в батарее, или использовать ее из сети. В случае, если оба этих варианта недоступны, поможет дизельный генератор, хотя это не является экологически чистым выбором.

Возможно, вам будет интересно прочитать статью о положительном влиянии солнечной энергии на окружающую среду

Солнечная энергия:

Считается одним из самых популярных вариантов для производства электроэнергии в домашних условиях. Солнечная энергия производится путем установки солнечных панелей для улавливания солнечной энергии.Идеальное место для солнечных батарей — наклонная крыша. Солнечный водонагреватель использует природную энергию непосредственно для нагрева воды.

Основным недостатком производства электроэнергии с помощью солнечных батарей является высокая первоначальная стоимость. Однако длительный срок службы в 20-25 лет делает его отличным вариантом в долгосрочной перспективе.

Вы можете проверить эту статью о том, почему солнечные панели такие дорогие?

Ветер:

Самый дешевый из всех возобновляемых источников энергии и наименее загрязняющий из всех, энергия ветра возможна только в местах с хорошей скоростью ветра.Поскольку ветряные турбины могут делить земельное пространство, это хороший выбор для ферм и ранчо.

Его основные недостатки — звуковое загрязнение и высокие первоначальные вложения. Опять же, как и в случае с солнечной энергией, срок службы ветряных турбин велик, а их окупаемость впечатляет.

Биогаз:

Это органические отходы, которые разлагаются в отсутствие кислорода с образованием метана. Биогаз или метан можно использовать вместо природного газа для выработки электроэнергии или напрямую использовать для отопления или приготовления пищи.

Метан и диоксид углерода, побочные продукты этого процесса, являются парниковыми газами и могут нанести вред окружающей среде. Сжигая метан, вы можете снизить выбросы.

Для заводов или больших ферм, производящих органические отходы в больших количествах, биогазовая установка является отличным выбором для производства дешевой электроэнергии. Обратной стороной биогаза является то, что он требует регулярного обслуживания и постоянного внимания для бесперебойной и эффективной работы.

Micro hydel растения:

Если в вашей собственности есть водопровод, вы можете использовать альтернативную энергию для производства дешевой электроэнергии.Все, что вам нужно сделать, это позволить текущей воде заставить небольшую турбину производить электричество. Более надежные и дешевые, чем солнечные или ветряные, микрогидельные электростанции могут вырабатывать электроэнергию до тех пор, пока есть проточная вода для вращения турбины.

Геотермальная энергия:

В случае, если ваша собственность расположена вдоль линий разломов, и вы можете использовать обширную тепловую энергию, захваченную под землей, геотермальная энергия является отличным выбором для производства электроэнергии, а также для непосредственного отопления. Геотермальный насос использует замкнутый контур труб для перекачивания жидкостей, чтобы поднять тепло, похороненное глубоко под землей.Тепло передается с помощью теплообменника для обогрева вашего дома или превращения воды в пар для вращения турбины и выработки электроэнергии.

Дизель-генератор:

Это популярный выбор для производства энергии в удаленных местах. Хотя дизельные генераторы просты в использовании и дешевы, они не подходят для круглосуточного электроснабжения. Причин много. Звуковое загрязнение, загрязнение воздуха, выбросы парниковых газов и высокая стоимость обслуживания — вот лишь некоторые из его недостатков.

Хотя это не лучший выбор для постоянного производства электроэнергии, дизельные генераторы могут использоваться в качестве резервного варианта в сочетании с одним из вышеупомянутых вариантов возобновляемой энергии.

Большинство ограничений и вредных воздействий дизельного генератора можно устранить, используя биодизель вместо дизельного ископаемого топлива.

Думаете о чистой энергии? Вот 3 возобновляемых способа питания вашего дома — Защита окружающей среды

Учитывая чистую энергию? Вот 3 возобновляемых способа питания вашего дома

Не каждый зеленый источник энергии подойдет вашей собственности, но у вас есть несколько вариантов. Вот три, с которых можно начать мозговой штурм.

  • Автор: Jenna Tsui
  • 27 января, 2020

Когда-то мысль о том, чтобы снабдить ваш дом возобновляемой энергией, казалась невозможной. Мало того, что методы были ограничены, но и заоблачные цены делали каждый вариант недоступным для большинства домовладельцев. Однако сегодня все больше потребителей требуют экологически чистых альтернатив. Стоимость снизилась, и возобновляемые источники энергии стали доступны людям повсюду.

Не каждый зеленый источник энергии подойдет вашей собственности, но у вас есть несколько вариантов.Вот три, с которых можно начать мозговой штурм.

1. Ветряные турбины

Вы, наверное, заметили эти электрогенераторы на огромных участках открытой местности. Если у вас большая собственность, установите собственную уменьшенную версию. Однако у вас есть несколько недостатков, которые следует учитывать. А именно, турбина может создавать шум, и это большое визуальное дополнение к вашему двору.

Ассоциации домовладельцев вашего района тоже может не понравиться. Поскольку вы не можете предсказать ветер, вам придется подключиться к электросети, если ваши турбины не вращаются.

У этого возобновляемого источника также есть много преимуществ. Во-первых, это стабильный источник энергии. В районах с правильным ветром — и если вы установите достаточно большую турбину — вы можете легко привести в действие всю свою собственность. Следите за погодой и отрегулируйте свое оборудование, чтобы максимально использовать ветреные дни, и вы будете хороши на фронте энергии.

Вы можете сделать небольшие или большие вложения в экологически чистую энергию своего дома — это зависит от размера оборудования, в которое вы инвестируете.Турбина с выходной мощностью менее 100 Вт может стоить всего 3000 долларов. Между тем, за то, чтобы самостоятельно привести в действие обширный дом, можно было бы заплатить 50 000 долларов. Конечно, для пожизненного бесплатного и экологически чистого электричества это может стоить покупки.


14 альтернативных источников энергии, которые могут иметь значение

Альтернативные источники энергии растут

В энергетическом секторе ископаемых видов топлива источников были основным источником энергии из-за их относительно низкой цены.Однако наша потребность в энергии , согласно прогнозам, в будущем вырастет на , и мы больше не можем полагаться на конечных и , загрязняющих источников энергии. За последнее десятилетие мы увидели положительных сдвигов, в сторону расширения наших мощностей по возобновляемым источникам энергии, как на местном, так и на глобальном уровне.

Панели солнечных батарей, ветряных турбин, установленных на суше и на море, и гидроэлектростанций — вот некоторые из альтернативных энергетических технологий , которые будут обеспечивать наши будущие потребности в энергии .Наша зависимость от природного газа и нефти является самой большой причиной экологического ущерба, и в энергетическом секторе только несет ответственность за 1,7% увеличение количества углекислого газа в нашей атмосфере. Таким образом, альтернативные источники энергии будут в центре внимания для предотвращения дальнейшего воздействия изменения климата на нашу планету.

Согласно ежегодной статистике IRENA по возобновляемым мощностям за 2019 год, глобальные возобновляемых генерирующих мощностей достигли 2351 ГВт .Из трех альтернативных источников энергии с наибольшим процентом:

  1. На гидроэнергетику приходится 1172 ГВт, , что составляет около половины от общей суммы.
  2. Береговая и морская энергия Ветроэнергетика занимает второе место с мощностью 564 ГВт.
  3. Мощность солнечной энергии немного меньше — 480 ГВт, разделенных на солнечную фотоэлектрическую и солнечную тепловую энергию.

Альтернативная энергия источников Прогнозируется, что от до расширится в каждом секторе к 2023 .Электроэнергетический сектор имеет самую большую долю 30% , а на пути декарбонизации электрификация станет основным энергоносителем , большая часть которого будет вырабатываться за счет возобновляемых источников энергии.

Отопление занимает второе место с 12%, а сектор транспорта идет последним с лишь 3,8% альтернативных источников энергии, требующих улучшения.

В приведенной ниже инфографике GreenMatch выделяет текущий и будущий объем альтернативных источников энергии, а также дает обзор инвестиций и будущих прогнозов на нашем пути к устойчивому будущему .

Если вы хотите использовать эту инфографику на своем веб-сайте, используйте код для встраивания ниже:

Получить код для встраивания

Инвестиции в 2019 году замедляются?

В соответствии с планом реализации, установленным Парижским соглашением , совокупные инвестиции в зеленую энергию должны составить долларов США, 110 трлн ., или около 2% (среднего) годового валового внутреннего продукта за этот период.

Увеличение тяги к альтернативным источникам энергии снизило затраты, особенно на солнечную энергию.Согласно отчету REN21 о статусе возобновляемых источников энергии за 2019 год, глобальные инвестиции в новые мощности достигли 288,9 млрд долларов США. , без учета гидроэнергетики свыше 50 МВт.

Правительство Китайской прекратило свои схемы субсидирования , потому что солнечная энергия теперь считается доступной и ведет к отсутствию развертывания солнечной энергии в Китае. В результате цифры показывают на 11% меньше инвестиций по сравнению с 2017 годом.

Аналогичным образом, в апреле 2019 года схема льготных тарифов в Великобритании завершила действие для новых заявителей, желающих использовать альтернативную энергию.

Инвестиции Прогноз предусматривает стабилизацию и рост инвестиций для следующего обзора. До сих пор Китай является крупнейшим инвестором по странам. Снижение их расходов на солнечную энергию . из-за субсидии существенно повлияли на общее количество, демонстрируя явное доминирование на рынке возобновляемых источников энергии.

Объем будущих альтернативных источников энергии

Более широкое внедрение альтернативных источников энергии зависит от еще более эффективных возобновляемых технологий и реструктуризации электроэнергетической отрасли.С использованием возобновляемых источников энергии производство чистой энергии возможно на домашнем уровне с такими технологиями, как солнечные панели , , тепловые насосы и котлы на биомассе.

Чтобы в полной мере использовать энергию, которая в основном зависит от погоды или от времени , нам еще предстоит придумать лучшие решения для хранения энергии .

Землепользование и рост населения

При росте численности населения 9,7 млрд. Чел.к 2050 году , более широкое использование крупных солнечных ферм может быть не идеальным решением, поскольку они занимают много земли. Сведение к минимуму площади, занимаемой землей, имеет решающее значение, или разрабатывает более эффективных технологий, таких как преобразователи энергии ветра .

Ветровая энергия в настоящее время является одним из наиболее важных альтернативных источников энергии в Великобритании и обеспечивает примерно 4 млн. дома. Оффшорный Ветер все еще недостаточно развит из-за дорогостоящего обслуживания и расположения в глубоких водах, но в будущем мы сможем более эффективно вырабатывать энергию из океанов и глубоких вод .

Недостатки в конструкции современных ветряных турбин ограничивают потенциал использования энергии ветра, неспособного преодолевать ветры на больших высотах. Будущая воздушная технология может проложить путь с гораздо более многообещающей досягаемостью до 500 м , где ветры на сильнее .

Один из наиболее дорогостоящих проектов на ранней стадии включает в себя получение солнечной энергии из пространства . Прототип состоит из оптических отражателей, фотоэлементов, преобразующих солнечный свет в энергию, и схемы, преобразующей электричество в радиочастоты.Затем интегрированная антенна будет передавать энергию обратно на Землю.

В будущем этот инновационный альтернативный источник энергии сможет удовлетворить потребности в энергии нашего растущего населения без ограничений, используя постоянный солнечный свет из космоса.

Хранение зеленой энергии

Эффективный аккумулятор жизненно важен для более широкого внедрения альтернативных источников энергии. Солнечная фотоэлектрическая энергия зависит от прямого солнечного воздействия, а это означает, что значительного количества энергии идет неиспользованных или тратится впустую из-за отсутствия встроенных солнечных аккумуляторных батарей.

В будущем водород будет движущим источником энергии. В настоящее время большая часть производится из ископаемого топлива. Однако излишков альтернативной энергии также используется для производства газообразного водорода. Применения универсальны — газообразный водород можно подавать в сеть природного газа или с помощью топливных элементов для обратного преобразования в электричество. Водород можно было бы широко использовать в транспортном секторе, когда мы сможем предложить менее дорогостоящих решений для более широкого внедрения таких альтернативных источников энергии.

Водород имеет наивысшую плотность из всех видов топлива, что делает его более подходящим для распределения и хранения. Его стабильный химический состав также означает, что может удерживать энергию лучше, чем любая другая среда.

В будущем создание инфраструктуры снабжения и хранения позволит более эффективно использовать водорода. В планы на будущее для водорода входит строительство подземной системы хранения , где излишки энергии ветра, например, могут быть преобразованы в водород посредством электролиза .

Альтернативная энергетика и инфраструктура

Наша текущая глобальная инфраструктура адаптирована только для ископаемого топлива. Строительство нового займет годы и огромное количество ресурсов. В последние годы автономных технологий , основанных на альтернативной энергии, смогли обеспечить питание удаленных пунктов в виде мини- или локальных сетей.

Полная децентрализация сети предоставит клиентам возможность продавать электроэнергию обратно в сеть, а получит контроль над необходимой и потребляемой энергией .Однако Великобритания далека от полной децентрализации из-за масштабов необходимых преобразований.

Ряд из предприятий , однако, можно считать пионерами в автономной реструктуризации в Великобритании, например, UPS и некоторые из гигантов розничной торговли и супермаркетов .

Расширение масштабов альтернативной энергетики откроет еще рабочих мест в секторе устойчивой энергетики. Рост и внедрение во всех секторах потребуют лет планирования и значительных инвестиций .

Чтобы гарантировать будущее без дальнейших выбросов парниковых газов, мы можем начать с введения более запретов, , на будущие проекты по ископаемому топливу , и более строгие цели по выбросам .

Альтернативные источники электроэнергии и внесетевые источники энергии

По мере того, как новые технологические инновации продолжают предлагать новые формы чистой и зеленой энергии, возможность жить с меньшим использованием альтернативных источников энергии стала реальностью.

Альтернативные источники энергии

Альтернативное электричество вне сети через солнечные панели

Кредит изображения: OFC Pictures / Shutterstock

Солнечные, ветровые, геотермальные и гидроэнергетические средства позволяют жить «вне сети», когда зависимость от природных источников энергии заменяет зависимость от более традиционных энергосистем.Независимо от того, живете ли вы в отдаленном районе или заинтересованы в экономии энергии, инновации в области автономных источников энергии естественного происхождения доступны во многих различных формах.

Солнечные энергетические системы

Автономные энергосистемы работают независимо от линий электропередач, генерируемая энергия которых может использоваться для питания устройств. Внесеточная солнечная система, например, использует только солнечную энергию, собираемую для питания устройств в этой системе. С другой стороны, автономная гибридная система использует комбинацию солнечной, гидро- и ветровой энергии в качестве основного источника энергии для системы.

Когда дело доходит до солнечных систем, доступно множество различных конфигураций в зависимости от типа необходимой мощности (переменное или постоянное напряжение). Большинство систем, независимо от их выхода энергии, поглощают солнечную энергию аналогичным образом. Солнечные батареи — один из наиболее часто используемых методов использования солнечной энергии.

Солнечные панели состоят из нескольких солнечных элементов, называемых фотоэлектрическими элементами, которые поглощают солнечную энергию и преобразуют ее в полезную энергию. Для этого фотоэлектрические элементы состоят из полупроводниковых материалов, таких как кремний или теллурид кадмия, которые поглощают солнечную энергию, которая, в свою очередь, высвобождает электроны.Металлические контакты на разных сторонах солнечной панели направляют свободные электроны в одном направлении, создавая ток. Ток в сочетании с напряжением, хранящимся в фотоэлектрических элементах, является конечным результатом и может использоваться для питания устройств.

Гидроэнергетические системы

Гидроэнергетическая система использует силу движущейся или падающей воды для выработки энергии. Эти системы различаются по размеру в зависимости от желаемой мощности: большая гидроэнергетическая система может производить достаточно энергии, чтобы обеспечить альтернативное электричество для миллионов домов, тогда как меньшие гидроэнергетические системы могут быть спроектированы для производства энергии, достаточной для обеспечения электроэнергией одного домашнего хозяйства.

Независимо от размера системы, большинство гидроэнергетических систем разделяют несколько элементов. Во-первых, должна быть создана плотина, которая является барьером, который существенно замедляет движущийся водоем, тем самым поднимая уровень воды — в результате образуется небольшой водопад или контролируемый излив воды на другой стороне плотины. Когда вода выходит через плотину, она накапливает большую силу. Турбина, устройство, которое работает почти так же, как ветряная мельница, вращается, когда вода приводит в движение лопасти турбины, и преобразует энергию воды в механическую энергию.Турбина соединена с генератором, который вращается в результате вращения турбины и преобразует механическую энергию в электрическую. Наконец, электричество подается в линии электропередачи, по которым энергия доставляется к домам или устройствам. Количество энергии, создаваемой гидроэнергетической системой, зависит от количества воды, проходящей через систему, и от того, как далеко вода падает.

Ветровые системы

Ветровые энергетические системы используют кинетическую энергию ветра и превращают ее в механическую или электрическую энергию, почти так же, как гидроэнергетические системы собирают энергию из воды.Основное устройство, используемое в ветровых системах, — это ветряная турбина, которая доступна как с вертикальной осью, так и с горизонтальной осью.

Наиболее часто используемый тип ветряной турбины — это турбина с горизонтальной осью, которая обычно используется в крупномасштабных ветровых системах мощностью 100 киловатт и выше. Большинство турбин включает в себя следующие элементы: ротор, гондолу, башню и некоторое электронное оборудование.

Точно так же, как гидротурбина зависит от вращения роторов, роторы ветряной турбины приводят в движение турбину при встрече с ветром.В гондоле находится генератор, который вращается вместе с роторами. Башня поддерживает ротор, narcelle и электронное оборудование, которое помогает подавать электричество, вырабатываемое ветряной турбиной, в линии электропередач. В зависимости от размера турбины может быть достигнута мощность до 5000 киловатт.

Прочие электротехнические изделия

Больше от компании Electric & Power Generation

Возобновляемые источники энергии | Типы, формы и источники

В настоящее время наиболее популярными возобновляемыми источниками энергии являются:

  1. Солнечная энергия
  2. Ветровая энергия
  3. Гидроэнергетика
  4. Приливная энергия
  5. Геотермальная энергия
  6. Энергия биомассы


Как эти типы возобновляемых источников энергии Энергетическая работа

1) Солнечная энергия

Солнечный свет — один из самых богатых и свободно доступных энергетических ресурсов нашей планеты.Количество солнечной энергии, которая достигает поверхности Земли за один час, превышает общие потребности планеты в энергии за год. Хотя это звучит как идеальный возобновляемый источник энергии, количество солнечной энергии, которое мы можем использовать, варьируется в зависимости от времени суток и сезона года, а также географического положения. В Великобритании солнечная энергия становится все более популярным способом дополнить потребление энергии. Узнайте, подходит ли это вам, прочитав наше руководство по солнечной энергии.

2) Энергия ветра

Ветер — изобильный источник чистой энергии.Ветряные фермы становятся все более привычным явлением в Великобритании, поскольку ветроэнергетика вносит постоянно растущий вклад в национальную энергосистему. Чтобы использовать электричество из энергии ветра, турбины используются для приведения в действие генераторов, которые затем подают электроэнергию в национальную энергосистему. Несмотря на то, что существуют бытовые или «внесетевые» системы выработки электроэнергии, не все объекты подходят для установки отечественной ветряной турбины. Узнайте больше об энергии ветра на нашей странице о ветроэнергетике.

3) Гидроэнергетика

Как возобновляемый источник энергии, гидроэнергетика является одним из наиболее коммерчески развитых.Построив плотину или барьер, можно использовать большой резервуар для создания контролируемого потока воды, который будет приводить в движение турбину, вырабатывающую электричество. Этот источник энергии часто может быть более надежным, чем солнечная или ветровая энергия (особенно если это приливные, а не речные), а также позволяет хранить электроэнергию для использования, когда спрос достигает пика. Как и энергия ветра, в определенных ситуациях гидроэнергетика может быть более жизнеспособной в качестве коммерческого источника энергии (в зависимости от типа и по сравнению с другими источниками энергии), но в очень большой степени в зависимости от типа собственности ее можно использовать для бытовых, автономных ‘ поколение.Узнайте больше, посетив нашу страницу о гидроэнергетике.

4) Приливная энергия

Это еще одна форма гидроэнергетики, которая использует приливные течения два раза в день для привода турбогенераторов. Хотя приливный поток, в отличие от некоторых других источников гидроэнергии, не является постоянным, он очень предсказуем и поэтому может компенсировать периоды, когда приливное течение невелико. Узнайте больше, посетив нашу страницу морской энергетики.

5) Геотермальная энергия

За счет использования естественного тепла под поверхностью земли, геотермальная энергия может использоваться для непосредственного обогрева домов или для выработки электроэнергии.Хотя геотермальная энергия использует энергию прямо у нас под ногами, она имеет незначительное значение в Великобритании по сравнению с такими странами, как Исландия, где геотермальное тепло гораздо более доступно.

6) Энергия биомассы

Это преобразование твердого топлива из растительных материалов в электричество. Хотя по сути, биомасса включает сжигание органических материалов для производства электроэнергии, и в настоящее время это гораздо более чистый и энергоэффективный процесс.Преобразуя сельскохозяйственные, промышленные и бытовые отходы в твердое, жидкое и газовое топливо, биомасса вырабатывает электроэнергию с гораздо меньшими экономическими и экологическими затратами.


Что не является возобновляемым источником энергии?

Ископаемое топливо не является возобновляемым источником энергии, потому что оно не безгранично. Кроме того, они выделяют в нашу атмосферу углекислый газ, который способствует изменению климата и глобальному потеплению.

Сжигать дрова вместо угля немного лучше, но это сложно.С одной стороны, древесина является возобновляемым ресурсом — при условии, что она поступает из устойчиво управляемых лесов. Древесные пеллеты и прессованные брикеты производятся из побочных продуктов деревообрабатывающей промышленности и поэтому, возможно, это отходы вторичной переработки.

Топливо из сжатой биомассы также производит больше энергии, чем бревна. С другой стороны, при сжигании древесины (будь то необработанная древесина или переработанные отходы) частицы попадают в нашу атмосферу.

Будущее возобновляемых источников энергии

По мере роста населения мира растет и спрос на энергию для обеспечения наших домов, предприятий и сообществ.Инновации и расширение возобновляемых источников энергии являются ключом к поддержанию устойчивого уровня энергии и защите нашей планеты от изменения климата.

На сегодняшний день возобновляемые источники энергии составляют 26% мировой электроэнергии, но, по данным Международного энергетического агентства (МЭА), к 2024 году ожидается, что их доля достигнет 30%. «Это поворотный момент для возобновляемых источников энергии», — говорится в заявлении МЭА. исполнительный директор, Фатих Бирол.

В 2020 году Великобритания совершит новую удивительную веху в области возобновляемых источников энергии.В среду, 10 июня, страна впервые отметила два месяца работы исключительно на возобновляемых источниках энергии. Это большой шаг в правильном направлении для возобновляемых источников энергии. (1)

Ожидается, что в будущем количество возобновляемых источников энергии будет продолжать расти, поскольку мы видим рост спроса на электроэнергию. Это снизит цены на возобновляемые источники энергии — отлично для нашей планеты и для наших кошельков.

Электроэнергетика будущего: пять менее известных альтернативных источников энергии | Энергия выбора

Солнце и ветер — два важных и хорошо известных источника возобновляемой энергии.Но список перспективных и широко используемых альтернативных источников энергии постоянно растет. Прокрутите, чтобы увидеть, как растет число вариантов экологически чистой энергии, которые могут обеспечить нашу жизнь.

Сила океана

Ритмичные и мощные движения океанского течения и волн могут приводить в движение электрические генераторы, чтобы производить устойчивый поток и огромное количество энергии, которая затем будет транспортироваться на сушу по кабелям. Они представляют соблазнительное обещание чистой энергии.

Но разработка оборудования, которое будет эффективно улавливать эту механическую энергию и выдерживать коррозию соленой воды и других природных элементов в океане, оказалась чрезвычайно сложной задачей.В стране нет коммерческих электростанций, использующих энергию океана, хотя ряд исследовательских и пилотных проектов был осуществлен в Калифорнии, Орегоне, Гавайях и Нью-Джерси. Эти проекты тестируют конструкции оборудования, которое напоминает все, от гигантских медуз до змеи, чтобы увидеть, насколько хорошо они работают в суровых условиях и могут ли они эффективно производить достаточно энергии, чтобы оправдать огромные затраты на их установку и эксплуатацию.

Биомасса Электроэнергия, производимая растениями или побочными продуктами животного происхождения, называется энергией биомассы.Фотография: Монти Ракузен / Getty Images

Электроэнергия, производимая растениями или побочными продуктами животного происхождения, называется энергией биомассы. Электростанции, работающие на биомассе, обычно напрямую сжигают сырье, такое как древесная щепа, сельскохозяйственные отходы, некоторые виды мусора или навоз, для производства электроэнергии. Или они могут преобразовать материалы в горючие газы, а затем сжечь их для выработки энергии. На энергию биомассы приходится 12% производства возобновляемой энергии в стране. Биомасса используется во всем мире для производства электроэнергии.Швеция, например, использует биомассу для производства 30% энергии, большая часть которой идет на отопление домов и предприятий, а также на работу заводов.

Топливные элементы Когда топливо, богатое водородом, такое как природный газ или биогаз, проходит через топливный элемент и вступает в реакцию с кислородом, оно производит электричество. Фотография: Памела Мур / Getty Images

Топливные элементы вырабатывают энергию в результате химических реакций, в которых водород соединяется с кислородом. Когда топливо, богатое водородом, такое как природный газ или биогаз, проходит через топливный элемент и вступает в реакцию с кислородом, он производит электричество, тепло и воду.Топливные элементы, которые выбрасывают около половины выбросов электростанции, работающей на ископаемом топливе, не достаточно дешевы, чтобы стать основным источником энергии, но они используются все большим числом компаний для обеспечения резервного питания, а также для снижения выбросов углерода. следы. Топливные элементы также проникают в автомобильный мир для создания автомобилей с нулевым уровнем выбросов.

Геотермальная энергия Люди использовали силу перегретого пара под поверхностью Земли более 10 000 лет, но первый геотермальный генератор энергии не был построен до 1904 года в Италии.Фотография: Peerakit JIrachetthakun / Getty Images

Люди использовали силу сверхгорячих паров под поверхностью Земли более 10 000 лет, но первый геотермальный генератор энергии был построен только в 1904 году в Италии. Первая геотермальная электростанция в Соединенных Штатах была запущена в 1921 году для работы на курорте с горячими источниками в Гейзерах в северной Калифорнии. Гейзеры, занимающие 7 769 гектаров [19 197 акров], являются крупнейшим геотермальным полем в мире и домом для почти десятка электростанций.Геотермальная энергия составляет 3% от производства возобновляемой энергии в стране.

Гидроэнергетика Гидроэнергетика является одним из старейших источников электроэнергии в истории человечества и используется каждым штатом страны. Фотография: Крейг Козарт / Getty Images

Гидроэнергетика — один из старейших источников электроэнергии в истории человечества, который используется каждым штатом страны. Первая в мире коммерческая гидроэлектростанция была введена в эксплуатацию на реке Фокс в Аплтоне, штат Висконсин, в 1882 году.Гидроэнергетика также является крупнейшим источником возобновляемой энергии, на которую в 2014 году приходилось чуть более 6% производства электроэнергии в США и 92% производства возобновляемой энергии. В штате Вашингтон, в частности, более 70% электроэнергии используется в штате Вашингтон.

Содержимое этой страницы предоставлено вам компанией NRG Energy.

Руководство по озеленению вашего дома — TechCrunch

Альтернативная энергия — это растущий рынок, и хотя многие штаты предлагают налоговые льготы, скидки и другие стимулы для продвижения чистой энергии, это все же может оказаться дорогостоящим предложением.

Обычно также требуется подключить источник энергии к электросети, чтобы вы не остались в темноте, когда утихнет ветер или солнце останется за облаками.

Вот краткий обзор решений, которые могут помочь в обеспечении электропитания дома.

Солнечная

Solar — это в некотором смысле самое простое решение или, по крайней мере, одно из самых доступных. Для подключения к солнцу требуются фотоэлектрические солнечные панели, инвертор и батареи, которые могут хранить немного лишней энергии в дождливый день.

Разумеется, производительность варьируется в зависимости от региона, в штатах в южных и юго-западных регионах больше всего солнечных дней в году.

Солнечные панели после установки не требуют особого обслуживания и могут обеспечивать большое количество электроэнергии в хорошую погоду. Однако это может быть дорого, даже если есть стимулы, и даже когда он подключен к батареям, он не принесет особой пользы, когда нет солнца для растяжек одновременно.

Ресурсы

GetSolar имеет базу данных для поиска установщика солнечных батарей в вашем районе.Целесообразно сравнить котировки нескольких компаний. Некоторые установщики предпочитают устанавливать панели, продаваемые их компаниями, в то время как другие устанавливают любые панели, которые вы покупаете.

Также возможна аренда солнечных батарей. Одним из крупнейших арендаторов является Citizenrē REnU, который предлагает контракты на 1, 5 или 25 лет, которые включают установку.

Ветер

Энергия ветра часто ассоциируется с гигантскими ветряными электростанциями, но турбины меньшего размера также производятся для производства энергии на заднем дворе.

Скорость ветра является определяющим фактором того, подходит ли энергия ветра для вашего дома. Метеорологические службы могут сообщить вам, какова средняя скорость ветра в вашем регионе, но она может варьироваться в зависимости от региона.

Неудивительно, что большие турбины могут производить большее количество энергии. 10-киловаттная турбина обычно может обеспечить достаточно энергии для дома и обычно имеет высоту около 100 футов с 23-футовой турбиной.

Как и в случае с солнечной энергией, энергия ветра зависит от климата, поэтому, когда турбина не вращается, вам может потребоваться другой источник энергии.В отличие от солнечных батарей, ветряные турбины имеют дополнительный недостаток, поскольку они построены из движущихся частей, которые требуют регулярного обслуживания.

Ресурсы

Для турбины, достаточно большой, чтобы привести дом в действие, часто требуется разрешение. Американская ассоциация ветроэнергетики предлагает полезное руководство по выполнению необходимых шагов по установке собственной турбины, а также список поставщиков ветряного оборудования.

Если у вас мало места или вы ищете решение plug-and-play, попробуйте личную ветряную турбину, такую ​​как Air-X от Southwest Windpower.Он может производить до 400 Вт, чего достаточно, чтобы компенсировать использование освещения и бытовой техники, и может быть установлен на крыше.

В качестве альтернативы, попробуйте Clarian Jellyfish. Когда она появится на рынке в следующем году, я смогу обеспечить такую ​​же потенциальную мощность, а также снабдить ваш дом электричеством, подключив его к любой стандартной розетке.

Если вы занимаетесь своими руками, найдите старую беговую дорожку и попробуйте сделать свою собственную, как показано в этом видео:

Геотермальная энергия

Большая часть геотермальной энергии производится в больших масштабах, поэтому геотермальная энергия для одного дома обычно ограничивается решениями для отопления и охлаждения.Тем не менее, учитывая, сколько энергии может потреблять климат-контроль в помещении, геотермальные тепловые насосы могут значительно снизить ваши потребности в энергии.

Геотермальные тепловые насосы используют стабильную температуру земли, чтобы регулировать ее в вашем доме. Насос передает тепло от земли к вашему дому зимой и отводит тепло из дома на улицу летом.

Большинство насосов имеют простую конструкцию, поэтому они практически не требуют обслуживания, а также могут быть оснащены бытовым водонагревателем.

Геотермальные тепловые насосы не являются комплексным решением даже для отопления и охлаждения. Было доказано, что некоторые модели снижают счета за электроэнергию до 40%, а это означает, что вы не можете попрощаться со своей коммунальной компанией и чувствовать себя полностью комфортно в помещении.

Стоимость — еще одна проблема. Тепловой насос с мощностью, достаточной для домашнего уюта, в среднем составляет всего лишь 8000 долларов, но сверление, необходимое для его установки, может стоить более 30000 долларов.

Ресурсы

Из-за большого количества и глубины бурения геотермальные тепловые насосы обычно не требуют самостоятельного выполнения.Чтобы найти надежного подрядчика, обратитесь к справочнику аккредитованных установщиков Международной ассоциации наземных тепловых насосов, чтобы найти такого в вашем районе.

Микро-гидроэлектроэнергия

Этот работает, только если вы живете рядом с движущейся водой, но он может быть очень эффективным. Для установки требуется проложить трубу с возвышенности, где вода течет к более низкому участку земли. Энергия вырабатывается, когда вода движется вниз и вращает турбину на конце трубы.

Некоторые микрогидро системы способны производить в десять или даже 100 раз больше энергии, чем ветряные или солнечные.В отличие от ветра и солнца, он может работать без перерыва и всю ночь, пока вода продолжает течь. При необходимости можно подключить инвертор и батареи для хранения дополнительной энергии.

Как и ветряная турбина, требует технического обслуживания и может выйти из строя. Кроме того, размер и давление потока влияют на выработку энергии, поэтому очень небольшого потока может быть недостаточно для питания всего дома. Небольшие ручьи также могут пересохнуть летом или замерзнуть в холодную погоду.

Ресурсы

Вам, вероятно, понадобится подрядчик для установки микрогидросистемы.Многие города и штаты требуют, чтобы каждый, устанавливающий альтернативные источники энергии, был лицензированным электриком, особенно если он подключается к сети. Хотя в США нет национальной лицензирующей организации для монтажников микрогидравлических систем, местный поиск или звонок в вашу коммунальную компанию укажут вам правильное направление.

Или, если вы знаете, что делаете, и такой же ловкий и терпеливый, как этот парень, вы можете построить свою собственную микрогидросистему.

Kössler, совместное предприятие Siemens и Voith, производит несколько турбин, предназначенных для малых электростанций.

Energy Systems & Design также производит микрогидрооборудование, которое можно использовать в одном доме.

Топливные элементы

Топливные элементы используют топливо и окислитель, обычно водород и кислород, для производства тепла и электричества. Внутри ячейки ионы водорода и электроны разделены. Электролит внутри ячейки пропускает ионы, но блокирует электроны, которые вместо этого проходят через провод в виде электричества. Остальные ионы превращаются в воду или углекислый газ при встрече с кислородом.

Ресурсы

Относительно новый Bloom Box

Bloom Energy, о котором мы сообщали ранее в этом году, может быть одним из самых обсуждаемых решений домашних топливных элементов, хотя с его нынешней ценой в 700-800 тысяч долларов он не совсем дешев.

Acumentrics производит топливные элементы в основном для использования в военных целях, но также может предоставить вам один для вашего дома.

Большинство компаний, производящих топливные элементы, не продают напрямую населению, поэтому вам придется искать установщика.Каталог FuelCellToday может помочь вам найти такой в ​​вашем районе.

Министерство энергетики работает над разработкой передовых методов безопасного обращения с водородом.

Биомасса

Биомасса для дома обычно бывает в виде печи, используемой либо для общего отопления дома, либо для нагрева воды. Печи обычно питаются растениями, в том числе зерновыми культурами, деревьями, древесными отходами или травой. Печи, работающие на биомассе, действительно загрязняют воздух, но многие по-прежнему считают их экологически чистыми, поскольку они вносят меньший вклад в загрязнение с меньшим количеством вредных химикатов, чем ископаемое топливо.

Ресурсы

Те, кто хочет купить печь на биотопливе, могут попробовать MaxFire от Bixby, который можно заправлять сухой кукурузой или древесными гранулами.

Bixby утверждает, что плита может снизить расходы на отопление до 50% и сохранить тепло в доме примерно за 1,50 доллара в день. Печь зажигается сразу после нажатия кнопки и имеет восемь уровней нагрева. Когда топливо сгорает, печь автоматически выталкивает золу в ящик, который можно опорожнить без особого беспорядка.

Ни одно из этих решений не обеспечивает безотказный способ удовлетворить все ваши потребности в энергии, но с отключениями из-за перегруженных сетей и суровых погодных условий, как и у коммунальных компаний. Можно утверждать, что некоторые из этих решений не являются полностью экологичными, но даже если они не могут полностью снизить потребность в ископаемом топливе, они могут помочь сократить необходимое нам количество.

Большинство штатов предлагают стимулы для инвестиций в альтернативную энергетику, а Министерство энергетики предлагает дополнительные способы снижения использования и затрат и перечисляет продукты, которые в настоящее время имеют право на получение федеральных налоговых льгот.

Несмотря на государственные стимулы, установка альтернативных источников энергии по-прежнему является дорогостоящим предложением для большинства, но в долгосрочной перспективе это может окупиться.

Добавить комментарий

Ваш адрес email не будет опубликован.