Реактивная мощность — это… Что такое Реактивная мощность?
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Мгновенная электрическая мощность
Мгновенная электрическая мощность P (t), выделяющаяся на элементе электрической цепи — произведение мгновенных значений напряжения U (t) и силы тока I (t) на этом элементе:
Если элемент цепи — резистор c электрическим сопротивлением R, то
Мощность постоянного тока
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то среднюю мощность можно вычислить по формулам:
Мощность переменного тока
Активная мощность
Среднее за период Т значение мгновенной мощности называется активной мощностью: . В цепях однофазного синусоидального тока , где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними.
Реактивная мощность
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ.
Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины
Полная мощность
Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I; связана с активной и реактивной мощностями соотношением: , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0). Единица полной электрической мощности — вольт-ампер (VA, ВА).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Измерения
Литература
- Бессонов Л. А. — Теоретические основы электротехники: Электрические цепи — М.: Высш. школа, 1978
Ссылки
См. также
Wikimedia Foundation. 2010.
Активная и реактивная энергия — тсж горизонт пермь. Что такое активная, реактивная и полная мощность — простое объяснение
При расчете электрической мощности, потребляемой любым электротехническим или бытовым устройством, обычно учитывается так называемая полная мощность электрического тока, выполняющего определённую работу в цепи данной нагрузки. Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя как активную составляющую, так и составляющую реактивную, которая в свою очередь определяется типом используемой в цепи нагрузки.
Активная составляющая потребляемой любой нагрузкой мощности электрического тока совершает полезную работу и трансформируется в нужные нам виды энергии (тепловую, световую, звуковую и т.п.). Отдельные электроприборы работают в основном на этой составляющей мощности. Это — лампы накаливания, электроплиты, обогреватели, электропечи, утюги и т.п.
Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.
Пример: если на электродрели указана величина мощности в 600 Вт и cosφ = 0,6, то отсюда следует, что потребляемая инструментом полная мощность составляет 600/0,6=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.
При рассмотрении вопроса об активной и реактивной составляющих электроэнергии (точнее — её мощности), обычно имеются в виду те явления, которые происходят в цепях переменного тока. Оказалось, что различные нагрузки в цепях переменного тока ведут себя совершенно по-разному. Одни нагрузки используют передаваемую им энергию по прямому назначению (т.е. — для совершения полезной работы), а другой тип нагрузок сначала эту энергию запасает, а потом снова отдаёт её источнику электропитания.
По виду своего поведения в цепях переменного тока, различные потребительские нагрузки делятся на следующие два типа:
1.
2. Реактивный тип нагрузки характеризуется тем, что сначала (в течение некоторого промежутка времени), в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия (в течение определённого промежутка времени) отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их.
Потери на реактивную составляющую в сети напрямую связаны с величиной рассмотренного выше коэффициента мощности, т.е. чем выше cosφ потребителя, тем меньше будут потери мощности в линии и дешевле обойдётся передача электроэнергии потребителю.
Таким образом, именно коэффициент мощности указывает нам на то, насколько эффективно используется рабочая мощность источника электроэнергии. В целях повышения величины коэффициента мощности (cosφ) во всех видах электрических установок применяются специальные приёмы компенсации реактивной мощности.
Обычно для увеличения коэффициента мощности (за счёт уменьшения сдвига фаз между током и напряжением — угла φ) в действующую сеть включают специальные компенсирующие устройства, представляющие собой вспомогательные генераторы опережающего (емкостного) тока.
Кроме того, очень часто для компенсации потерь, возникающих из-за индуктивной составляющей цепи, в ней используются батареи конденсаторов, подключаемые параллельно рабочей нагрузке и используемые в качестве синхронных компенсаторов.
Увидела в интернете энергосберегающие устройства, которые, как я поняла прсто включаются в ближайшую к счетчику розетку. Может кто пользовался? Действительно экономят энергию? И еще пишут, что они повышают качество электроэнергии и таким образом предотвращают порчу электроприборов. Хотелось бы услышать отзывы.
При расчете электрической мощности, потребляемой любым электротехническим или бытовым устройством, обычно учитывается так называемая полная мощность электрического тока, выполняющего определённую работу в цепи данной нагрузки. Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя как активную составляющую, так и составляющую реактивную, которая в свою очередь определяется типом используемой в цепи нагрузки. Активная мощность всегда измеряется и указывается в ваттах (Вт), а полная мощность приводится обычно в вольт-амперах (ВА). Различные приборы — потребители электрической энергии могут работать в цепях, имеющих как активную, так и реактивную составляющую электрического тока.
Активная составляющая потребляемой любой нагрузкой мощности электрического тока совершает полезную работу и трансформируется в нужные нам виды энергии (тепловую, световую, звуковую и т.п.).
Отдельные электроприборы работают в основном на этой составляющей мощности. Это — лампы накаливания, электроплиты, обогреватели, электропечи, утюги и т.п.
При указанном в паспорте прибора значении активной потребляемой мощности в 1 кВт он будет потреблять от сети полную мощность в 1кВА.
Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т. п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.
Пример: если на электродрели указана величина мощности в 600 Вт и cosφ = 0,6, то отсюда следует, что потребляемая инструментом полная мощность составляет 600/0,6=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.
При рассмотрении вопроса об активной и реактивной составляющих электроэнергии (точнее — её мощности), обычно имеются в виду те явления, которые происходят в цепях переменного тока. Оказалось, что различные нагрузки в цепях переменного тока ведут себя совершенно по-разному. Одни нагрузки используют передаваемую им энергию по прямому назначению (т.е. — для совершения полезной работы), а другой тип нагрузок сначала эту энергию запасает, а потом снова отдаёт её источнику электропитания.
По виду своего поведения в цепях переменного тока, различные потребительские нагрузки делятся на следующие два типа:
1. Активный тип нагрузки поглощает всю получаемую от источника энергию и превращает её в полезную работу (свет от лампы, например), причём форма тока в нагрузке в точности повторяет форму напряжения на ней (сдвиг фаз отсутствует).
2. Реактивный тип нагрузки характеризуется тем, что сначала (в течение некоторого промежутка времени), в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия (в течение определённого промежутка времени) отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю (а не перекачивание её туда и обратно) — реактивная составляющая мощности обычно считается вредной характеристикой цепи.
Потери на реактивную составляющую в сети напрямую связаны с величиной рассмотренного выше коэффициента мощности, т.е. чем выше cosφ потребителя, тем меньше будут потери мощности в линии и дешевле
обойдётся передача электроэнергии потребителю.
Таким образом, именно коэффициент мощности указывает нам на то, насколько эффективно используется рабочая мощность источника электроэнергии. В целях повышения величины коэффициента мощности
(cosφ) во всех видах электрических установок применяются специальные приёмы компенсации реактивной мощности.
Обычно для увеличения коэффициента мощности (за счёт уменьшения сдвига фаз между током и напряжением — угла φ) в действующую сеть включают специальные компенсирующие устройства, представляющие
собой вспомогательные генераторы опережающего (емкостного) тока.
Кроме того, очень часто для компенсации потерь, возникающих из-за индуктивной составляющей цепи, в ней используются батареи конденсаторов, подключаемые параллельно рабочей нагрузке и используемые
в качестве синхронных компенсаторов.
Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007
В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:
Мощность не всех приборов указана в Вт, например:
- Мощность трансформаторов указывается в ВА:
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
http://metz. by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение) - Мощность конденсаторов указывается в Варах:
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение) - Примеры других нагрузок — см. приложения ниже.
Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.
Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.
Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).
Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).
Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:
- Активная мощность: обозначение P , единица измерения: Ватт
- Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
- Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
- Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина
Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S
Также cosФ называется коэффициентом мощности (Power Factor – PF )
Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.
Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)
То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.
Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.
См. учебники по электротехнике, например:
1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.
2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.
3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.
Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)
Приложение
Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)
http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)
АОСН-2-220-82 | |
Латр 1.25 | АОСН-4-220-82 |
Латр 2. 5 | АОСН-8-220-82 |
АОСН-20-220 | |
АОМН-40-220 | |
http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)
Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)
Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ
Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .
http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)
http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)
Дополнение 1
Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.
Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.
Дополнение 2
Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др. ) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.
Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения
Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.
В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.
Дополнение 4
Наглядные примеры чистой активной и чистой реактивных нагрузок:
- К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
- К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5
Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:
+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.
— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.
Дополнение 6
Дополнительные вопросы
Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?
Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .
Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:
- Полное сопротивление (импеданс) Z=R+iX
- Полная мощность S=P+iQ
- Диэлектрическая проницаемость e=e»+ie»
- Магнитная проницаемость m=m»+im»
- и др.
Вопрос 2:
На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?
Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.
Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.
Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:
См. дополнительную литературу, например:
Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.
Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.
Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.
AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)
Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013
Мощность бывает активная, а бывает полная. Спрашивается, полная чем? А вот, мол, тем, что нам служит на пользу, что делает нам полезную работу, но и… оказывается, это еще не все. Еще есть вторая составляющая, которая получается этаким довеском, и она просто сжигает энергию. Греет то что не надо, а нам от этого ни жарко, ни холодно.
Такая мощность называется реактивной. Но виноваты, как это ни странно, мы сами. Вернее, наша система выработки, передачи и потребления электроэнергии.
Мощность активная, реактивная и полная
Мы пользуемся электричеством с помощью сетей переменного тока. Напряжение у нас в сетях каждую секунду колеблется 50 раз от минимального значения до максимального. Это так получилось. Когда изобретали электрический генератор, который механическое движение преобразует в электричество, то оказалось, что perpetuum mobile, или, переведя с латинского, вечное движение, легче всего устроить по кругу. Изобрели когда-то колесо, и с тех пор знаем, что если его подвесить на оси, то можно вращать долго-долго, а оно будет оставаться все на том же месте — на оси.
Почему у нас в сети напряжение переменное
И электрический генератор имеет ось и нечто, на ней вращающееся. А в результате и получается электрическое напряжение. Только генератор состоит из двух частей: вращающейся, ротора, и неподвижной, статора. И обе они участвуют в выработке электроэнергии. А когда одна часть крутится около другой, то неизбежно точки поверхности вращающейся части то приближаются к точкам поверхности неподвижной, то от них отдаляются. И это совместное их положение с неизбежностью описывается только одной математической функцией — синусоидой. Синусоида есть проекция вращения по кругу на одну из геометрических осей. Но осей таких можно построить много. Обычно наши координаты друг другу перпендикулярны. И тогда при вращении по кругу некоторой точки на одной оси проекцией вращения будет синусоида, а по другой — косинусоида, или та же синусоида, только смещенная относительно первой на четверть поворота, или на 90°.
Вот нечто такое и представляет собой напряжение, которое доводит до нашей квартиры электрическая сеть.
угол поворота здесь разбит не на 360 градусов,
а на 24 деления. То есть одно деление соответствует 15°
6 делений = 90°
Итак, напряжение в нашей сети синусоидальное с частотой 50 герц и амплитудой 220 вольт, потому что удобнее было делать генераторы, которые вырабатывают напряжение именно переменное.
Выгода от переменного напряжения — выгода системы
А чтобы сделать напряжение постоянным, надо специально его выпрямить. И это можно делать либо прямо в генераторе (специально сконструированном — тогда он станет генератором постоянного тока), либо когда-нибудь потом. Вот это «когда-нибудь» и получилось снова очень кстати, потому что переменное напряжение можно преобразовывать трансформатором — повышать или понижать. Это оказалось вторым удобством переменного напряжения. А повысив его трансформаторами до напряжений буквально ЗАПРЕДЕЛЬНЫХ (полмиллиона вольт и больше), можно передавать на гигантские расстояния по проводам без гигантских при этом потерь. И это тоже пришлось вполне кстати в нашей большой стране.
Вот, доведя, все-таки, напряжение до нашей квартиры, понизив его до хоть сколько-то мыслимой (хотя все еще и опасной) величины в 220 вольт, преобразовать его в постоянное опять забыли. Да и зачем? Лампочки горят, холодильник работает, телевизор показывает. Хотя в телевизоре этих постоянных/переменных напряжений… но, не будем тут еще и об этом.
Убытки от переменного напряжения
И вот мы пользуемся сетью переменного напряжения.
А в ней присутствует «плата за забывчивость» — реактивное сопротивление наших потребляющих сетей и их реактивная мощность. Реактивное сопротивление — это сопротивление переменному току. И мощность, которая просто-напросто уходит мимо наших потребляющих электроприборов.
Ток, идя по проводам, создает вокруг них электрическое поле. Электростатическое поле притягивает к себе заряды со всего, что источник поля, то есть ток, окружает. А изменение тока создает еще и поле электромагнитное, которое начинает бесконтактно наводить во всех проводниках вокруг электрические токи. Так, наша токовая синусоида, как только мы что-то у себя включаем, есть не просто ток, а непрерывное его изменение. Проводников вокруг хватает, начиная от металлических корпусов тех же электроприборов, металлических труб водоснабжения, отопления, канализации и кончая прутами арматуры в железобетонных стенах и перекрытиях. Вот во всем этом и наводится электричество. Даже вода в бачке унитаза, и та участвует во всеобщем веселье — в ней тоже индуцируются токи наводки. Такое электричество нам совсем не нужно, мы его «не заказывали». Но оно эти проводники пытается разогреть, а значит, уносит из нашей квартирной сети электроэнергию.
Чтобы охарактеризовать соотношение мощностей в сети нашего переменного тока, рисуют треугольник.
S – полная мощность, расходуемая нашей сетью,
P – активная мощность, она же полезная активная нагрузка,
Q – мощность реактивная.
Мощность полную можно замерить ваттметром, а активная мощность получается расчетом нашей сети, в которой мы учитываем только полезные для нас нагрузки. Естественно, сопротивлением проводов мы пренебрегаем, считая их малыми относительно полезных сопротивлений электроприборов.
Полная мощность
S = U x I = U a x I f
То есть, чем «тупее» этот острый угол, тем хуже у нас работает внутренняя квартирная потребляющая сеть — много энергии уходит в потери.
Что такое активная, реактивная и полная мощности
Угол j можно еще назвать углом фазового сдвига между током и напряжением в нашей сети. Ток является результатом приложения к нашей сети исходного напряжения в 220 вольт частотой в 50 герц. Когда нагрузка активна, то фаза тока совпадает с фазой напряжения в ней. А реактивные нагрузки эту фазу сдвигают на этот угол.
Собственно говоря, угол и характеризует степень эффективности нашего потребления энергии. И надо стараться его уменьшить. Тогда S будет приближаться к P.
Только удобнее оперировать не с углом, а с косинусом угла. Это как раз и есть соотношение двух мощностей:
Косинус угла приближается к единице, когда угол приближается к нулю. То есть, чем острее угол j, тем лучше, эффективнее работает электрическая потребляющая сеть. На практике, если добиться величины косинуса фи (а его можно выразить в процентах) порядка 70–90%, то это уже считается неплохо.
Часто используется другое отношение, связывающее активную мощность и реактивную:
Из диаграммы тока и напряжения можно найти выражения для мощностей: активной, реактивной и полной.
Если более привычная нам активная мощность измеряется в ваттах, то полная мощность измеряется в вольт-амперах (вар). Ватт из вара можно посчитать умножением на косинус фи.
Что такое реактивная мощность
Реактивная мощность бывает индуктивная и емкостная. Они ведут себя в электрической цепи по-разному. На постоянном токе индуктивность — это просто кусок провода, имеющий какое-то очень малое сопротивление. А конденсатор на постоянном напряжении — просто разрыв в цепи.
И когда мы их включаем в цепь, подводим к ним напряжение, во время переходного процесса они ведут себя тоже прямо противоположно. Конденсатор заряжается, при этом возникающий ток сначала большой, потом, по мере зарядки, маленький, уменьшающийся до нуля.
В индуктивности, катушке с проводом, возникающее магнитное поле после включения в самом начале сильно препятствует прохождению тока, и он сначала маленький, потом увеличивается до своего стационарного значения, определяемого активными элементами схемы.
Конденсаторы, таким образом, способствуют изменению тока в цепи, а индуктивности препятствуют изменению тока.
Индуктивная и емкостная составляющие сопротивления сети
Таким образом, реактивные элементы имеют свои разновидности сопротивления — емкостное и индуктивное. С полным сопротивлением, включающим активную и реактивную составляющие, это связывается следующей формулой:
Z – полное сопротивление,
R – активное сопротивление,
X – реактивное сопротивление.
В свою очередь, реактивное сопротивление состоит из двух частей:
X L – индуктивной и X C – емкостной.
Отсюда мы видим, что вклад в реактивную составляющую у них разный.
Все, что в сети индуктивно, увеличивает реактивное сопротивление сети, все, что в сети имеет емкостной характер, уменьшает реактивное сопротивление.
Электроприборы, влияющие на качество потребления
Если бы все приборы у нас в сети были, как лампочки, то есть являлись чисто активной нагрузкой, проблем бы не было. Была бы активная потребляющая сеть, одна сплошная активная нагрузка, и, как говорится, в чистом поле — вокруг ничего, то все легко бы подсчитывалось по законам Ома и Кирхгофа, и было справедливо — сколько потребил, за столько и заплатил. Но вот имея и вокруг себя загадочную токопроводящую «инфраструктуру», и в самой сети множество неучтенных емкостей и индуктивностей, мы и получаем, кроме полезной нам, еще и реактивную, ненужную нам нагрузку.
Как от нее избавиться? Когда электрическая потребляющая сеть уже создана, то можно проводить мероприятия по уменьшению реактивной составляющей. Компенсация и строится на «антагонизме» индуктивностей и емкостей.
То есть, в сложившейся сети следует измерить ее составляющие, а потом придумать компенсацию.
Особенно хороший эффект от таких мероприятий достигается в больших потребляющих сетях. Например, на уровне заводского цеха, имеющего большое количество постоянно работающего оборудования.
Для компенсации реактивной составляющей используются специальные компенсаторы реактивной мощности (КРМ), содержащие в своей конструкции конденсаторы, меняющие суммарный сдвиг фаз в сети в лучшую сторону.
Еще приветствуется использование в сетях синхронных двигателей переменного тока, так как они способны компенсировать реактивную мощность. Принцип простой: в сети они способны работать в режиме двигателя, а когда при сдвиге фаз наблюдается «завал» электроэнергии (других слов язык уже не находит), они способны компенсировать это, «подрабатывая» в сети в режиме генератора.
Единственное с чем согласен с автором, так это то что так это что вокруг понятия «реактивная энергия» немало легенд… В отместку видимо автор выдвинул ещё и свою…Путано…противоречиво…изобилие всяких: «»энергия приходит, энергия уходит…» Итог вообще получился шокирующий, истина перевёрнута с ног на ноги: «Вывод — реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы» Господин, дорогой! нагрев это уже работа!!! Мнение моё, тут людям с техническим образованием без векторной диаграммы синхронного генератора под нагрузкой не склеить описание процесса грамотно, а людям интересующимся могу предложить простой вариант, без затей.
Итак о реактивной энергии. 99% электричества напряжением 220 вольт и более вырабатывается синхронными генераторами. Электроприборами в быту и работе мы используем разные, большинство из них «греют воздух», выделяют теплоту в той или иной степени…Пощупайте телевизор, монитор компьютера, о кухонной электропечи я уже не говорю, везде чувствуется тепло. Это всё потребители активной мощности в электросети синхронного генератора. Активная мощность генератора это безвозвратные потери вырабатываемой энергии на тепло в проводах и приборах. Для синхронного генератора передача активной энергии сопровождается механическим сопротивлением на приводном валу. Если бы Вы, уважаемый читатель вращали генератор вручную, Вы бы сразу же почувствовали повышенное сопротивление Вашим усилиям и означало бы это одно, кто-то в вашу сеть включил дополнительное число нагревателей, т.е повысилась активная нагрузка. Если в качестве привода генератора у вас дизель, будьте уверены, расход топлива возрастает молниеносно, т.к именно активная нагрузка потребляет ваше топливо. С реактивной энергией иначе…Скажу я вам, невероятно, но некоторые потребители электроэнергии сами являются источниками электроэнергии, пусть на очень короткое мгновение, но являются. А если учесть что переменный ток промышленной частоты изменяет своё направление 50 раз в секунду, то такие (реактивные) потребители 50 раз в секунду передают свою энергию сети. Знаете как в жизни, если кто-то что-то добавляет к оригиналу своё без последствий это не остаётся. Так и здесь, при условии, что реактивных потребителей много, или они достаточно мощные, то синхронный генератор развозбуждается. Возвращаясь к нашей прежней аналогии где в качестве привода Вы использовали свою мышечную силу, можно будет заметить, что несмотря на то что Вы не изменили ни ритма вращая генератор, ни не почувствовали прилива сопротивления на валу, лампочки в вашей сети вдруг погасли. Парадокс, тратим топливо, вращаем генератор с номинальной частотой, а напряжения в сети нет… Уважаемый читатель, выключи в такой сети реактивные потребители и всё восстановится. Не вдаваясь в теорию развозбуждение происходит когда магнитные поля внутри генератора, поле системы возбуждения вращающейся вместе с валом и поле неподвижной обмотки соединённой с сетью поворачиваются встречно друг другу, тем самым ослабляю друг друга. Генерация электроэнергии при понижении магнитного поля внутри генератора уменьшается. Техника ушла далеко в перёд, и современные генераторы оснащены автоматическими регуляторами возбуждения, и когда реактивные потребители «провалят» напряжение в сети, регулятор сразу же повысит ток возбуждения генератора, магнитный поток восстановится до нормы и напряжение в сети восстановится Понятно, что ток возбуждения имеет и активную составляющую, так что извольте добавить и топливо в дизеле.. В любом случае, реактивная нагрузка негативно влияет на работу электросети, особенно в момент подключения реактивного потребителя к сети, например, асинхронного электродвигателя…При значительной мощности последнего всё может закончится плачевно, аварией. В заключение, могу добавить для пытливого и продвинутого оппонента, что, есть и реактивные потребители с полезными свойствами. Это всё те что обладают электроёмкостью…Включи такие устройства в сеть и уже электрокомпания должна вам)). В чистом виде это конденсаторы. Они тоже отдают электроэнергию 50 раз в секунду, но при этом магнитный поток генератора наоборот увеличивается, так что регулятор может даже понизить ток возбуждения, экономя затраты. Почему мы раньше об этом не оговорились…а зачем…Дорогой читатель обойди свой дом и поищи емкостной реактивный потребитель…не найдешь…Разве только раскурочишь телевизор или стиральную машину…но пользы от этого понятно не будет….
Активная и реактивная мощность генератора
Потребители, приобретая ДГУ, зачастую не задумываются о многих технических характеристиках оборудования. Касается это и такого понятия, как коэффициент мощности генератора. Параметр является важным, поскольку самым серьезным образом влияет на подачу электроэнергии.
Что представляет собой мощность генератора?
Электроприборы, подключенные к генератору, потребляют активную и реактивную мощность, которые в сумме образуют общую мощность.
- Активная мощность используется для работы всех приборов. Ее называют «полезной».
- Реактивная мощность, называемая «пустой», возникает вследствие особенности оборудования и законов физики. Мощность циркулирует между источником электроснабжения и подключенными потребителями.
Каждый генератор имеет свой коэффициент мощности, демонстрирующий количество активной мощности от полной. При выборе ДГУ для собственных нужд важно обратить внимание на этот параметр, убедившись в том, что оборудование справится с возложенными на него задачами.
Оптимальным коэффициентом мощности можно считать показатель 0.8. Это значит, что электроприборы получают 80% активной мощности от 100% общей мощности, вырабатываемой генератором.
Что такое компенсация реактивной мощности?
Чрезмерное большое количество реактивной мощности ухудшает работу всей электросети. Так, генератор потребляет слишком много топлива, быстро изнашивается и в электросети требуется задействовать провода с увеличенным сечением.
Закажите дизельный генератор в ООО «ЭК Прометей» оформив заявку онлайн или позвонив по контактному телефону:
+7(812) 748-27-22
Для снижения реактивной мощности используется компенсация. Она может быть нескольких видов:
- Индивидуальная. В данном случае задействуются конденсаторные установки для определенных потребителей.
- Групповая. Применение общей конденсаторной установки позволяет компенсировать реактивную мощность сразу для нескольких приборов.
- Централизованная. Это наиболее удобный способ компенсации, применяемый для широкого диапазона изменений мощности.
Главное преимущество компенсации реактивной мощности в том, что таким образом удается значительно сократить расходы топлива. Также это позволяет снизить нагрузку на оборудование.
Способ компенсации мощности в электросети следует подбирать грамотно. В некоторых случаях может потребоваться комплексное решение, включающее улучшение тока при помощи фильтров гармоник.
Особенно важная компенсация реактивной мощности на промышленных предприятиях. Она необходима для эффективного использования существующего электроснабжения.
Различные формы записи комплексных величин. Активная и реактивная составляющие напряжения и тока. Соединение сопротивлений. Мощности. Векторные диаграммы
1. Приборы, подключенные к цепи (рис. 2.20), дали следующие показания: U=65 В, I=5 А, Р=300 Вт.
Вычислить комплексные сопротивления и проводимости цепи для случаев: .
Решение:
Модуль сопротивления и его аргумент определяют по формулам:
Искомые комплексные сопротивления и проводимости цепи:
2. Комплексное напряжение и ток пассивного двухполюсника равны:
Вычислить комплексные сопротивление , проводимость и указать, каковы эквивалентные параметры двухполюсника. Чему равен сдвиг фаз между напряжением и током? Определить активную и реактивную составляющие напряжения и тока, активную, реактивную и полную мощности. Построить векторную диаграмму напряжений и токов.
Решение:
Запишем комплексные напряжение и ток в показательной форме и изобразим их на векторной диаграмме (рис. 2.21):
Определим комплексное сопротивление:
Следовательно, эквивалентными параметрами цепи являются резистивное R=2,4 0м и индуктивное сопротивления, соединенные последовательно.
Комплексную проводимость цепи определяют по формуле:
Эквивалентные параметры цепи: резистивная G=0,15 См и реактивная (индуктивная) В=0,2 См проводимости, соединенные параллельно.
Угол сдвига фаз между напряжением и током (он же аргумент )
Резистивные и реактивные составляющие напряжения и тока:
Необходимо обратить внимание на то, что вещественные и мнимые составляющие комплексных напряжения и тока в общем случае отличаются от их активных и реактивных составляющих.
Активная, реактивная и полная мощности:
Те же мощности можно определить по формуле:
3. Последовательно с катушкой, параметры которой R=3 Ом, L=25 мГн, включен реостат сопротивлением (рис. 2.23, а). Определить напряжение на катушке , его сдвиг фазы по отношению к приложенному напряжению, а также мощность, расходуемую в катушке. К цепи подведено напряжение U=120 В, f=50 Гц. Построить векторную диаграмму напряжений и тока.
Решение:
Комплексное сопротивление всей цепи
Направим вектор U по оси вещественных чисел, т. е.
Комплексный ток
Напряжение на катушке
Оно сдвинуто по фазе по отношению к приложенному напряжению на угол . Векторная диаграмма приведена на рис. 2.23, б.
Мощность, расходуемая в катушке
Та же мощность может быть подсчитана и другим путем:
4. В цепи (рис. 2.31, в) дано:
Определить токи активные и реактивные мощности всей цепи и отдельных ветвей. Построить векторную диаграмму.
Решение:
Полное сопротивление цепи:
В неразветвленной части цепи проходит ток
Токи в параллельных ветвях могут быть выражены через ток в неразветвленной части цепи:
Токи можно найти и другим путем:
Найдем мощности (активные) всей цепи и отдельных ее ветвей:
Проверка показывает, что .
Определим реактивные мощности всей цепи и отдельных ее ветвей:
Учитывая, что реактивные мощности катушек положительны, а реактивная мощность конденсатора отрицательна, получим .
На рис. 2.31. б приведена векторная диаграмма. Порядок ее построения следующий: по результатам расчетов отложены векторы токов , затем по направлению отложен вектор и перпендикулярно ему в сторону опережения — вектор . Их сумма дает вектор . Далее в фазе с построен вектор и перпендикулярно ему в сторону отставания (так как отрицательно) вектор , а их сумма дает вектор напряжения на параллельном участке . Тот же вектор можно получить, если в фазе с отложить и к нему прибавить вектор опережающий на . Сумма векторов дает вектор приложенного напряжения.
5. Параметры цепи (рис. 2.35): . Определить значение и характер сопротивления , если известно, что оно чисто реактивно и через него проходит ток , а напряжение, приложенное к цепи, .
Решение:
Сопротивление разветвленной части цепи
Общее сопротивление цепи . Оно может быть выражено и так: . Отсюда .
Возможны два решения задачи: искомое сопротивление имеет индуктивный характер и равно либо , либо .
6. Каким резистивным сопротивлением следует зашунтировать сопротивление , чтобы ток, проходящий через , отставал от приложенного напряжения U на 90° (рис. 2.36, а)? Сопротивления: . Построить векторную диаграмму.
Решение:
Обозначим: тогда
Ток в неразветвленной части цепи
Через сопротивление проходит ток
Для того чтобы ток отставал по фазе от напряжения U на 90°, знаменатель последнего выражения должен быть чисто мнимым (по знаку положительным) значением.
Выпишем этот знаменатель и выделим в нем вещественную и мнимую составляющие
Вещественную часть полученного выражения приравняем нулю
отсюда
Векторная диаграмма представлена на рис. 2.36, б.
7. Вычислить резистивное сопротивление , которое надо подключить к зажимам 2—2′ цепи (рис. 2.41), чтобы отношение напряжения на этом сопротивлении к напряжению на входе цепи равнялось Н. Числовой расчет проделать при .
Решение:
Входное сопротивление всей цепи
где
Вычислим напряжение , для чего сначала найдем токи
Отсюда определим отношение комплексных напряжений
и отношение модулей напряжений
Подставляя числовые значения, после простых преобразований получим квадратное уравнение относительно .
Решение этого уравнения дает значение искомого сопротивления
Базовые сведения об активной и реактивной электроэнергии (мощности)
Что означают эти понятия и для чего они нужны
Довольно часто многие клиенты просят пояснить понятия активной и реактивной электроэнергии. Используя термины АКТИВНАЯ и РЕАКТИВНАЯ, более корректно их сочетать со словом мощность, хотя ряд изданий использует «электроэнергия» в качестве второго слова в словосочетании. Предлагаем разобраться в данной ситуации.
Обратимся к основам электротехники, описанным в книге Бессонова Л. А. «Теоретические основы электротехники» — М: Высшая школа, 1984:
Нет активной электроэнергии. Есть активная мощность.
Нет реактивной электроэнергии. Есть реактивная мощность.
Активная — это нагревание резисторов.
Реактивная — колебание тока и напряжения в ёмкостях и индуктивностях.
Как правило, потребители (нагревательные приборы, лампы накаливания и т.д.) используют только активную мощность, поэтому её должно быть больше. Тем не менее, есть приборы и с реактивной мощностью (двигатели, печки и т.д.). Поэтому на производстве, как правило, применяются электросчетчики, учитывающие как активную, так и реактивную составляющую полной мощности, напр. электросчетчики Энергомера СЕ302 S33 543 380V 5(10)A.
Другими словами, если в цепи ток совпадает с напряжением, то это так называемая АКТИВНАЯ МОЩНОСТЬ ( не электроэнергия, такого понятия нет) . Если ток по фазе опережает напряжение либо отстает от него — это РЕАКТИВНАЯ МОЩНОСТЬ и она не производит полезную работу.
Косинус угла разности фаз тока и напряжения и есть этот непонятный для потребителей косинус фи. Чем он меньше, тем больше разность фаз между током и напряжением и тем меньше будет произведено полезной работы электрическим током. Чем ближе он к единице, тем больше доля полезной, активной мощности. А бороться с бесполезными индуктивными токами обычно пытаются, включая в схему дополнительный конденсатор.Так что берите клещи, измеряйте реактивку, если меньше 0,9, ставьте кондёры подходящего номинала и будет вам счастье! Ибо уменьшая реактив, вы уменьшаете и актив, это факт. Электрочётчик это тоже покажет.
Понятие активной мощности можно объяснить, используя простейшую аналогию. Рассмотрим строительную тачку, показанную на рисунке.
Для того, чтобы сдвинуть тачку с места, очевидно, что необходимо применить силу к ручке. (направить силу на ручку).
Но сила применима в прямом направлении только когда мы поднимем тачку. В противном случае возникает препятствие для движения в виде подножки (подставки) тачки.
Активная энергия – это то, что является результатом активной работы, т.е.продвижения тачки в прямом направлении. Следовательно, активная энергия – это только усилие, прикладываемое к тачке, чтобы заставить ее двигаться и таким образом выполнять реальную, то бишь, полезную работу.
Реактивной энергией можно считать ту, которая помогает держать тачку поднятой.
Полная мощность (поднятия (активная мощность) плюс толкания (реактивная мощность)) — то, что в итоге применяется к ручке тачки.
Счетчик реактивной энергии — это скорее всего, прибор неизвестный нашим обычным (домашним) потребителям, которые повсеместно используют для расчетов с энергопоставляющей компанией счетчики активной энергии. Домашний пользователь, таким образом, находится в удобном положении — платит только за полезную энергию и не должен интересоваться какой коэффициент мощности в его установке.
А вот промышленные потребители — в отличие от первой группы — обязаны, на основании подписанных договоров и часто под угрозой финансовых штрафов, поддерживать коэффициент мощности на должном уровне. Коэффициент tgφ глубоко укоренился в энергетическом законодательстве и его определяют как результат отношения реактивной мощности к активной мощности в данный расчетный период. Если вернуться на некоторое время к треугольнику мощности в синусоидальных системах, то мы заметим, что тангенс угла сдвига фаз между током и напряжением равен отношению реактивной мощности Q к активной мощности P. Таким образом, критерий удержания tgφ ниже 0,4 не означает ничего другого, как только определение, что максимальный уровень подсчитанной реактивной энергии не может быть выше, чем 0,4 от значения полученной активной энергии. Любое потребление реактивной энергии выше договоренности подлежит дополнительной оплате.
Дополнительно о реактивной мощности можно почитать в наших статьях здесь и здесь
Вы активны или реагируете?
Выбор действовать или реагировать может иметь огромное значение на рабочем месте. Продолжайте читать, чтобы узнать почему!
Последнее обновление: 29 июня, 2020
Что значит быть активным или реактивным? Возможно, вы никогда не задумывались об этих двух концепциях, хотя они особенно актуальны на рабочем месте. Эти черты на самом деле имеют тенденцию влиять на то, какой карьерный путь вы выберете, поэтому мы решили объяснить их подробнее.
У вас, вероятно, есть друг или знакомый, который постоянно движется вперед, добивается больших успехов на работе или в каком-либо другом аспекте своей жизни. Они постоянно ищут возможности и проблемы, которые подталкивают их к успеху. Вы, вероятно, также знаете кого-то, кто кажется застрявшим на своей работе. У них нет особых стремлений. В этом главное отличие реактивного человека от активного.
Активные люди берут на себя инициативу
Вы все еще не уверены, активны вы или реагируете? Что ж, первое, что вам следует проанализировать, — проявляете ли вы инициативу или нет.
Инициатива связана с навыком, который высоко ценится на рабочем месте: проактивность. Вы можете узнать больше о проактивности в этой статье из Harvard Business Review : «Управление преимуществами и недостатками проактивных людей».
Когда вы проявляете инициативу, вы выполняете определенные действия, которые делают вас продюсером, а не приемником. Например, вместо того, чтобы ждать, чтобы найти работу, вы напрямую связываетесь с интересующими вас предприятиями. Вы можете сделать это, отправив им по электронной почте сопроводительные письма, в которых обсуждаются ваши интересы.
Это отличный способ узнать, активны вы или реагируете. Активные люди редко ждут. Они не боятся брать бразды правления в свои руки, пробовать новое и двигаться вперед. Они экспериментируют и совершают ошибки вместо того, чтобы ждать, пока что-то случится.
Если вы активный человек, вы не позволите закрытой двери, «нет» или неудаче остановить вас. Вы активны и продолжаете попытки. Верите вы в это или нет, но такой подход открывает для вас новые двери. Хотя это может принести плоды не сразу, в долгосрочной перспективе это поможет.
«Проявлять инициативу не означает быть напористым, назойливым или агрессивным. Это действительно означает признание нашей ответственности за то, чтобы что-то происходило ».
-Стивен Р. Кови-
Реактивный человек ждет результатов
К настоящему времени вы должны лучше понимать разницу между активным и реактивным человеком. Если вы не отождествили себя с первым описанием, возможно, вы отождествитесь со вторым. Что значит быть реактивным человеком?
Для начала, это не обязательно означает, что вы не преданы своей работе.Может быть, вы много работаете, но всегда получаете одни и те же результаты. Ты желто-белый цветок, которого никто не видит. Почему? Потому что ты никому не сказал, что ты там. Вы можете даже скрыть свои навыки, как если бы вам было стыдно за них.
Иногда вы можете чувствовать себя комфортно, будучи реактивным человеком. Однако в других случаях вы, вероятно, хотели бы быть более активными, хотя не знаете, как этого добиться.
Быть реактивным означает, что вам трудно двигаться вперед. Вы верите, что легче оставаться в своей зоне комфорта.
«Постановка целей — это первый шаг к превращению невидимого в видимое».
-Тони Роббинс-
Две стороны реакции
Это ваш выбор, хотите ли вы быть активным или реактивным человеком, и ваши результаты и успех будут зависеть от этого выбора. Если вы реактивный человек, вы можете чувствовать себя счастливым в своей неизменной рутине. Однако, если вы хотите чего-то большего, такое отношение может стать настоящей помехой.
Что происходит, когда вы ждете, пока что-то случится? Что ж, вы, вероятно, почувствуете разочарование и будете просто жаловаться и ныть о своем невезении.Как мы упоминали ранее, это происходит отчасти потому, что вы хотите проявить инициативу, но не знаете, с чего начать.
Если вы склонны к реакции, действия доставляют вам дискомфорт. Однако это не плохо. Это означает, что вы достаточно гибки, чтобы действовать, когда вам нужно.
Вы более активны или реагируете? Важно помнить, что ни один из них не лучше другого. Это просто разные сильные стороны, которые направят вас на разные пути. Прелесть в том, что вы всегда можете выбрать тот, который вам больше всего подходит.
Это может вас заинтересовать …Что такое активная, реактивная и полная мощность?
Активная мощность
Мощность, потребляемая нагрузкой для выполнения работы, называется истинной мощностью, или активной мощностью, или реальной мощностью. Когда электрическая энергия подается на нагрузку, электрическая энергия преобразуется в другие формы энергии, такие как тепловая, механическая или химическая. Таким образом, мощность, фактически потребляемая электрической нагрузкой, называется активной мощностью. Нагреватель на 220 вольт, 400 ватт потребляет 400 ватт, когда на его резистивный элемент подается 220 вольт.Мощность в 400 Вт, потребляемая нагревателем, является реальной мощностью или активной мощностью. Активная мощность измеряется в киловаттах (кВт) или МВт. Для расчета активной мощности рассчитывается ток, протекающий синфазно с приложенным напряжением.Произведение напряжения и тока по фазе с напряжением дает реальную мощность или активную мощность.
Реактивная мощностьМощность, которая течет от источника к нагрузке и от нагрузки к источнику, называется реактивной энергией.Реактивная энергия течет в обоих направлениях. Реактивная мощность измеряется в киловольт-амперах реактивной мощности (кВАр) или в МВАр.
Индуктивная нагрузка вызывает ток реактивного сопротивления и, следовательно, ток отстает от приложенного напряжения. Емкостная нагрузка вызывает реактивное сопротивление приложенному напряжению, и, таким образом, ток опережает приложенное напряжение. Сдвиг фаз между напряжением и током всегда существует, если нагрузка емкостного или реактивного типа.
Импеданс, создаваемый емкостной и индуктивной нагрузкой, вызывает поток энергии назад и вперед от источника к нагрузке и от нагрузки к источнику.В чистой индуктивной цепи ток отстает от напряжения на 90 электрических градусов. В чисто емкостной цепи ток опережает напряжение на 90 электрических градусов.
Активная мощность в случае чисто индуктивной и емкостной цепи VICosΦ = VI Cos90 = 0. Реактивная мощность в случае чисто индуктивной и емкостной цепи VISinΦ = VI Sin90 = VI.
Полная мощность Если нагрузка не является ни резистивной, ни чисто реактивной, ток, потребляемый нагрузкой, имеет две составляющие тока. Активная составляющая тока:Ток, который находится в фазе с приложенным напряжением, называется активной составляющей тока. Активная или реальная потребляемая мощность нагрузки зависит от активной составляющей тока цепи.
Реактивная составляющая тока:
Ток, который на 90 градусов не совпадает по фазе с приложенным напряжением, называется реактивной составляющей тока или током без мощности. Реактивная составляющая тока вносит вклад в реактивную мощность.
Нагрузка, потребляет ли активный или реактивный ток, общий ток системы будет увеличиваться. Следовательно, мощность электрической системы выражается в полной мощности, кВА или МВА. Система должна обрабатывать как активный, так и реактивный ток, поэтому система разработана с учетом полной мощности. Пусть электрическая индуктивная нагрузка потребляет ток I и сдвиг фаз между напряжением и током равен Φ.Активную, реактивную и полную мощность, потребляемую индуктивной нагрузкой, можно рассчитать следующим образом.
Активная составляющая тока в фазе с напряжением — это ICosΦ, а реактивная составляющая тока, не совпадающая по фазе с напряжением, — ISinΦ.
Активная мощность однофазной нагрузки
Активная мощность (P)
= Напряжение x Ток в фазе с напряжением
= V x ICos Φ
= V I Cos Φ
Активная мощность трехфазной нагрузки
Активная мощность (P)
= Напряжение x Ток в фазе с напряжением
= √3 Vx ICos Φ
= √3 В I CosΦ
Реактивная мощность однофазной нагрузки
Реактивная мощность (Q)
Q = Напряжение x Ток не в фазе с напряжением
= V x ISin Φ
= V I Sin Φ
Реактивная мощность трехфазной нагрузки
Реактивная мощность (Q)
Q = Напряжение x Ток не в фазе с напряжением
= √3V x ISinΦ
= √3 В I Sin Φ
Полная мощность — это векторная сумма активной и реактивной мощности.
Для однофазной системы питания полная потребляемая мощность кулачка может быть выражена следующим математическим выражением.
Для трехфазной нагрузки полная мощность составляет;
Похожие сообщения:
- Что такое треугольник силы?
- В чем разница между кВт и кВА?
Следите за нами и ставьте лайки:
Надежная оптимизация роя частиц для активного / реактивного и резервного планирования в подключенной к сети микросети с системами хранения энергии
Предпосылки: В последние годы одновременное участие в рынках электроэнергии и вспомогательных услуг было очень прибыльным для распределенных энергоресурсов ( DER).Более того, наличие возобновляемых поколений наряду с системами хранения энергии (ESS) вносит значительный вклад в современные системы распределения. Высокая степень проникновения непредсказуемых источников питания в микросети (MG) из-за неопределенности этих продуктов увеличивает потребность во вспомогательных услугах, а также в управлении и координации этих технологий в сочетании с ESS.
Результатов: Впервые в этой статье разрабатывается надежная модель оптимизации роя частиц для обработки неопределенного производства возобновляемой энергии, связанного с совместным активным / реактивным и резервным планированием интеллектуального MG.Подход робастной оптимизации имеет средний приоритет по сравнению с детерминированным и стохастическим подходами. Целевая функция, используемая для оптимального совместного планирования активности / реагирования и резервирования MG, определяется как максимизация общественного благосостояния, которая достигается на основе модели оптимизации max-min. Устойчивое оптимальное решение может быть достигнуто таким образом, что максимизатор на внешнем уровне принимает оптимальное решение относительно целевой функции наихудшего случая, которая получается на основе минимизатора на внутреннем уровне с учетом окрестности неопределенности.
Выводы: Эффективность предложенного метода проверена на тестовой системе MG с 33 шинами. Результаты моделирования доказывают, что предложенная модель RPSO может помочь операторам MG снизить затраты на планирование и повысить социальное благосостояние. Учет большей неопределенности в производстве возобновляемых источников энергии приводит к более высоким эксплуатационным расходам, особенно резервным затратам. Интеграция устойчивости к неопределенности в совместном активном / реактивном и резервном управлении в интеллектуальных MG приводит к более надежной работе за счет более высоких затрат.
Ключевые слова
Интеллектуальная микросеть, неопределенность, надежная оптимизация, активное / реактивное и резервное планирование, оптимизация роя частиц (PSO), система накопления энергии, модель работы макс-мин.Активная, реактивная и полная мощность
Активная мощность:Активная мощность — это реальная мощность, потребляемая в электрической цепи. Это полезная мощность, которая может быть преобразована в другую форму энергии, такую как тепловая энергия в нагревателе, энергия света в лампочке и т. Д.Он также известен как истинная или реальная мощность и измеряется в ваттах, кВт (киловаттах) или мегаваттах (1 мегаватт = 10 6 ватт).
Значение:Требуется для выполнения разного рода полезной работы. Для работы любого устройства или нагрузки требуется активная мощность, например, телевизор, двигатель, холодильник и т. Д.
Реактивная мощность:Реактивная мощность не выполняет никакой реальной работы. Здесь настоящая работа означает, что эту мощность нельзя использовать для обогрева, освещения или других полезных целей.Он только пульсирует взад и вперед по контуру. Оно измеряется в кВАр (реактивное напряжение в киловольтах) или в мВАр (реактивное мегавольтное напряжение).
Значение:Хотя реактивная мощность не выполняет никакой полезной работы, она все же необходима для удовлетворительной работы электрической машины. В воздушном зазоре машины необходимо создать магнитное поле, без которого активная мощность не может генерироваться генератором и потребляться двигателем.
Полная мощность:Полная мощность — это вольт-ампер электрического прибора или машины.Если на машину подается напряжение V (среднеквадратичное значение), а через машину протекает ток I (среднеквадратичное значение), то это умножение среднеквадратического значения напряжения и тока, т. Е. VI. Измеряется в кВА или МВА.
Полная мощность, S = VI
Значение:Потери в электрической машине зависят только от напряжения и тока. Это не зависит от коэффициента мощности. Таким образом, полная мощность дает представление о потерях в машине.
Расчет активной и реактивной мощности:Электрическая нагрузка может быть резистивной, индуктивной, емкостной или их комбинациями.Природа тока, протекающего через эти нагрузки при подключении к источнику напряжения, следующая:
- Чисто резистивная нагрузка принимает ток в фазе с приложенным напряжением.
- Чисто индуктивная нагрузка воспринимает ток, отстающий от приложенного напряжения на 90 градусов.
- Чисто емкостная нагрузка принимает ток, опережающий приложенное напряжение на 90 градусов.
Таким образом, угол между напряжением и током для чисто резистивных, индуктивных и емкостных нагрузок составляет 0º, 90º и 90º градусов соответственно.Но когда нагрузка состоит из индуктивности и сопротивления, ток I через нагрузку будет отставать от напряжения V на некоторый угол Ø, как показано ниже.
Этот ток I теперь можно разделить на две составляющие:
- По напряжению, т.е. Icos Ø
- Перпендикулярно напряжению, т.е. Isin Ø
Составляющая тока нагрузки вдоль напряжения называется активным током. Нагрузка потребляет активную мощность из-за этой составляющей тока.Следовательно, истинная или реальная мощность задается как
.Реальная мощность = напряжение x (активный ток)
= VIcos Ø
Реактивный ток:Составляющая тока нагрузки, перпендикулярная напряжению, называется реактивным током. Реактивная мощность в цепи возникает из-за этой составляющей тока. Следовательно,
Реактивная мощность, Q = напряжение x (реактивный ток)
= Висин Ø
Активная / активная мощность | Реактивная мощность | Полная мощность |
VIcos Ø | Висин Ø | VI |
Почему сопротивление потребляет только реальную мощность?
Как обсуждалось ранее в этом посте, угол Ø для чистого сопротивления составляет 0º, а для катушки индуктивности и конденсатора — 90º.Это означает, что чистое сопротивление будет потреблять только активную мощность, если VIcos0 = VI, и не будет реактивной мощности, поскольку VIsin0 = 0.
Почему индуктор и конденсатор не потребляют реальной энергии?
Чистая катушка индуктивности и конденсатор потребляет только реактивную мощность, как VIsin90 = VI, и не активную мощность, как VIcos90 = 0. Это также можно понять по-другому. Какая бы мощность ни была получена от источника в одном полупериоде этими элементами схемы, такое же количество энергии возвращается к источнику в следующем полупериоде.Следовательно, средняя потребляемая мощность за полный цикл равна нулю. Следовательно, истинная мощность не потребляется.
Активная, Реактивная, Полная и Комплексная мощность. Простое объяснение с формулами …
Реальная мощность: (P)
Альтернативные слова, используемые для обозначения реальной мощности (фактическая мощность, истинная мощность, полная мощность в ваттах, полезная мощность, реальная мощность и активная мощность)
В цепи постоянного тока подача питания на нагрузку постоянного тока представляет собой просто произведение напряжения на нагрузке и тока, протекающего через нее, т.е.е., P = V I. потому что в цепях постоянного тока отсутствует понятие фазового угла между током и напряжением. Другими словами, в цепях постоянного тока нет коэффициента мощности.
Но ситуация с синусоидальными цепями или цепями переменного тока более сложна из-за разницы фаз между током и напряжением. Следовательно, среднее значение мощности (Real Power) равно P = VI Cosθ фактически подается на нагрузку.
В цепях переменного тока, когда цепь является чисто резистивной, тогда для мощности используется та же формула, что и в цепях постоянного тока, как P = V I.
Вы также можете прочитать о формулах мощности для однофазных цепей постоянного, переменного тока и трехфазных цепей переменного тока.
Формулы реальной мощности:
P = V I (в цепях постоянного тока)
P = VI Cosθ (в цепях однофазного переменного тока)
P = √3 В L I L Cosθ или (в трехфазных цепях переменного тока)
P = 3 В фаза I фаза Cosθ
P = √ (S 2 — Q 2 ) или
P = √ (VA 2 — VAR 2 ) или
Реальная или истинная мощность = √ (Полная мощность 2 — Реактивная мощность 2 ) или
кВт = √ (кВА 2 — кВАр 2 )
Реактивная мощность: (Q)
Также известен как (Потребляемая мощность, Ватт меньше мощности)
Мощности, которые постоянно передаются между источником и нагрузкой, известны как реактивная мощность (Q)
.Мощность, просто потребляемая и возвращаемая нагрузкой из-за ее реактивных свойств, называется реактивной мощностью
.Единица измерения активной или реальной мощности — ватт, где 1 Вт = 1 В x 1 А.
Реактивная мощность означает, что энергия сначала накапливается, а затем высвобождается в виде магнитного поля или электростатического поля в случае индуктора и конденсатора соответственно.
Реактивная мощность определяется выражением Q = V I Sinθ, которое может быть положительным (+ ve) для индуктивной нагрузки, отрицательным (-Ve) для емкостной нагрузки.
Единица измерения реактивной мощности — вольт-ампер, реактивная. Т.е. VAR, где 1 VAR = 1V x 1A.
Проще говоря, в индукторе или конденсаторе величина магнитного или электрического поля, создаваемого 1А x 1В, называется единицей реактивной мощности.
Формулы реактивной мощности:
Q = V I Sinθ
Реактивная мощность = √ (Полная мощность 2 — Истинная мощность 2 )
VAR = √ (VA 2 — P 2 )
кВАр = √ (кВА 2 — кВт 2 )
Полная мощность: (S)
Произведение напряжения и тока тогда и только тогда, когда игнорируются разности фазового угла между током и напряжением.
Полная мощность в цепи переменного тока, как рассеиваемая, так и поглощенная / возвращаемая, называется полной мощностью
.Комбинация реактивной мощности и истинной мощности называется полной мощностью
.В цепи переменного тока произведение r.м.с напряжение и среднеквадратичный ток обозначены как полная мощность .
Это произведение напряжения и тока без сдвига фаз
.Единица измерения полной мощности (S) ВА, т. Е. 1 ВА = 1 В x 1 А.
Когда цепь является чисто резистивной, тогда полная мощность равна реальной или истинной мощности, но в индуктивной или емкостной цепи (когда существуют реактивные сопротивления) полная мощность больше реальной или истинной мощности.
Формулы полной мощности:
S = V I
Полная мощность = √ (истинная мощность 2 + реактивная мощность 2 )
кВА = √кВт 2 + кВАр 2
Примечание;
Резистор поглощает реальную мощность и рассеивает тепло и свет.
Индуктор поглощает реактивную мощность и рассеивает в виде магнитного поля
Конденсатор поглощает реактивную мощность и рассеивает ее в виде электрического или электростатического поля
% PDF-1.4 % 1 0 объект > поток 2021-11-06T10: 48: 28-07: 002019-10-17T18: 03: 03 + 08: 002021-11-06T10: 48: 28-07: 00Acrobat PDFMaker 19 для Worduuid: d48833c2-1001-4059-95e8- eac0b531eae1uuid: 08e8a074-a05b-4e71-8db3-15eeca66e287uuid: d48833c2-1001-4059-95e8-eac0b531eae1
Что такое реактивная мощность — и почему это важно? | By Drax | Drax
Откройте для себя бесшумную силу, которая «качает» электричество по сети.
Электричество, которое включает лампочки и заряжает телефоны. называется «активной мощностью». Тем не менее, получение активной мощности для эффективного перемещения по стране , экономически и безопасно требует так называемой «реактивной мощности».
Электроэнергия для насоса
Реактивная мощность генерируется так же, как активная мощность, на больших электростанциях, но подается в систему немного другим способом .
Далеко не уедет. Так сеть региональных распределителей реактивной мощности обслуживает локальных участков на кв.
Электростанции — не единственный источник реактивной мощности. Электронные устройства, такие как ноутбуки и телевизоры, также вырабатывают и возвращают небольшие количества реактивной мощности обратно в сеть. Это может увеличить количество реактивной мощности в сети, поэтому электростанции должны поглощать избыток.
Это потому, что, хотя реактивная мощность важна, более важно иметь в сети правильное значение .Если их слишком много, линии электропередач могут оказаться перегруженными, что приведет к нестабильности в сети. Слишком мало — снижает эффективность.
Управление реактивной мощностью обеспечивает подачу активной мощности в нужные места. Но это также означает контроль напряжения в сети.
Как контроль напряжения сдерживает волатильность
По всей Великобритании вся электроэнергия в национальной сети должна работать при одинаковом напряжении (400 кВ или 275 кВ).Отклонение всего на 5% в любую сторону может привести к повреждению оборудования или крупномасштабным отключениям электроэнергии.
National Grid ESO, системный оператор, контролирует и управляет общенациональным уровнем напряжения, чтобы гарантировать, что он остается в безопасных пределах, и это зависит от управления реактивной мощностью.