Активная мощность в цепи: Мощность в цепи переменного тока и коэффициент мощности (косинус φ)

Содержание

6.10. Мощность в цепи синусоидального тока

     Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток.
     Пусть мгновенные напряжение и ток определяются по формулам:

     

     Тогда

          (6.23)

     Среднее значение мгновенной мощности за период

     Из треугольника сопротивлений ,      а      .

     Получим еще одну формулу:

.

     Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P.


   Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию.
     Возьмем реактивный элемент (индуктивность или емкость). Активная мощность в этом элементе , так как напряжение и ток в индуктивности или емкости различаются по фазе на 90o. В реактивных элементах отсутствуют необратимые потери электрической энергии, не происходит нагрева элементов.
   Происходит обратимый  процесс в  виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q.
     Преобразуем выражение (6.23):

     где — мгновенная мощность в активном сопротивлении;

      — мгновенная мощность в реактивном элементе (в индуктивности или в емкости).


   Максимальное или амплитудное значение мощности p2 называется реактивной мощностью

      ,

     где x — реактивное сопротивление (индуктивное или емкостное).
     Реактивная мощность, измеряемая в вольтамперах реактивных, расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания.
     Амплитудное значение суммарной мощности p = p

1 + p2 называется полной мощностью.
   Полная  мощность,  измеряемая в вольтамперах, равна произведению действующих значений напряжения и тока:

      ,

     где z — полное сопротивление цепи.
   Полная мощность характеризует предельные возможности источника энергии. В электрической цепи можно использовать часть полной мощности

,

       где    — коэффициент мощности или «косинус «фи».

  Коэффициент  мощности  является одной из важнейших характеристик электротехнических устройств. Принимают специальные меры к увеличению коэффициента мощности.
      Возьмем треугольник сопротивлений и умножим его стороны на квадрат тока в цепи. Получим подобный треугольник мощностей (рис. 6.18).

     Из треугольника мощностей получим ряд формул:

,      ,

             Рис.6.18
                                                                ,      .
     При анализе электрических цепей символическим методом используют выражение комплексной мощности, равное произведению комплексного напряжения на сопряженный комплекс тока.
     Для цепи, имеющей индуктивный характер (R-L цепи)

,

       где   
      — комплекс напряжения;
      — комплекс тока;

      — сопряженный комплекс тока;
      — сдвиг по фазе между напряжением и током.
     , ток как в R-L цепи, напряжение опережает по фазе ток.

     Вещественной частью полной комплексной мощности является активная мощность.
     Мнимой частью комплексной мощности — реактивная мощность.
     Для цепи, имеющей емкостной характер (R-С цепи), . Ток опережает по фазе напряжение.

.

     Активная мощность всегда положительна. Реактивная мощность в цепи, имеющей индуктивный характер, — положительна, а в цепи с емкостным характером — отрицательна.

6.11. Баланс мощностей

     Для схемы на рис. 6.19 запишем уравнение по второму закону Кирхгофа. Умножим левую и правую части уравнения на сопряженный комплекс тока

       где    — результирующее реактивное сопротивление;
               I2— квадрат модуля тока.

     где    — полная комплексная, активная и реактивная мощности источника питания.

     где — активная и реактивная мощности, потребляемые элементами схемы.

     Получим уравнение

     .      (6.24)

Рис. 6.19

     Два комплексных числа равны, если равны по отдельности их вещественные и мнимые части, следовательно уравнение (6.24) распадается на два:

 .     (6.25)

    Полученные равенства выражают законы сохранения активных и реактивных мощностей.

6.12. Согласованный режим работы электрической цепи.


Согласование нагрузки с источником

     В схеме на рис. 6.20
      — полное, активное и реактивное сопротивления источника ЭДС,

      — полное, активное и реактивное сопротивления нагрузки.
   Активная мощность может выделяться только в активных сопротивлениях цепи переменного тока.
     Активная мощность, выделяемая в нагрузке,

.     (6.26)

     Активная мощность, развиваемая генератором

.
Коэффициент полезного действия для данной схемы:

                    .
                 Рис. 6.20

     Из формулы (6.26) видно, что выделяемая в нагрузке мощность будет максимальной, когда знаменатель минимален. Последнее имеет место при , т.е. при . Это означает, что реактивные сопротивления источника и нагрузки должны быть одинаковы по модулю и иметь разнородный характер. При индуктивном характере реактивного сопротивления источника реактивное сопротивление нагрузки должно быть емкостным и наоборот.

.     (6.27)

   Установим условие,  при котором  от источника к нагрузке будет передаваться наибольшая мощность.

.

     отсюда .

     От источника к нагрузке передается наибольшая мощность, когда

.      .     (6.28)

     Величина наибольшей мощности

.

   Режим передачи наибольшей мощности от источника к нагрузке называется согласованным режимом, а подбор сопротивлений согласно равенствам (6.28) — согласованием нагрузки с источником.

     В согласованном режиме

.

     Половина мощности теряется внутри источника. Поэтому согласованный режим не используется в силовых энергетических цепях. Этот режим используют в информационных цепях, где мощности могут быть малыми, и решающими являются не соображения экономичности передачи сигнала, а максимальная мощность сигнала в нагрузке.

Мощности в цепях переменного тока

Расчетные формулы для цепей однофазного тока

1. Мгновенное значение мощности в цепи с активным сопротивлением r, Вт:

 

 

 

Среднее значение активной мощности в цепи с активным сопротивлением г, Вт:

2. Цепи с чисто индуктивным сопротивлением: ток в цепи i=Im sinωt, тогда ЭДС самоиндукции

 

т.е. ЭДС отстает от тока, ее вызвавшего, на угол 

 

 

 

 

Падение напряжения на катушке

Мгновенная мощность катушки

Средняя за период мощность идеальной катушки:

 

Это означает, что в течение периода идеальная катушка дважды получает от источника энергию, преобразуя ее в магнитное поле, и дважды возвращает ее. .

Емкостное сопротивление, Ом, 

ействующее значение тока, А,

Мгновенная мощность

Средняя мощность

В течение периода конденсатор дважды получает от ис­точника энергию для заряда (создания электрического поля в диэлектрике) и дважды возвращает ее источнику (разряжа­ется).

Реактивная мощность конденсатора, вар,

Из изложенного следует важный для практики вывод: токи индуктивности и емкости в цепи переменного тока в каждый момент времени направлены в противоположные стороны. Другими словами, в каждый момент времени, когда катушка получает от источника электромагнитную энергию, конденсатор возвращает ее источнику и наоборот.

4. Цепь, содержащая последовательно включенные ак­тивное, индуктивное и емкостное сопротивления (рис. 1.9).

 

Реактивное сопротивление цепи, Ом,

Полное сопротивление цепи, Ом,

Угол сдвига фаз между векторами напряжения и тока

Коэффициент мощности цепи

Мгновенное значение приложенного напряжения равно сум­ме мгновенных значений падений напряжений на участках цепи:

Мгновенное значение мощности для этой цепи, Вт,

Среднее значение мощности равно активной мощности, Вт:

 

Реактивная мощность, вар,

Полная мощность, В-А,

При xL = xc имеет место резонанс напряжения, цепь ведет себя как чисто активная, а ток имеет наибольшее (при U = const) значение.

 

5. Цепь, содержащая параллельно включенные активное, индуктивное и емкостное сопротивления (рис. 1.10).

В такой цепи все элементы находятся под одинаковым напряжением источника

Проводимости элементов цепи:

активная, См,

емкостная,См, 

индуктивная, См,

 

Угол сдвига фаз тока и напряжения

Полная проводимость цепи, содержащей элементы R, L, С, См:

Значения мощностей рассчитываются по приведенным выше формулам.

При вс= Bl имеет место резонанс токов. Общий ток в цепи имеет минимальное значение и активный характер.

На практике параллельное включение конденсаторов в однофазной и трехфазной цепях широко используется для разгрузки питающих линий (проводов, кабелей, шин) от реактивной (индуктивной) составляющей тока. Это позволяет уменьшить потери электроэнергии в передающих линиях, и тем самым экономить ее, выбирать меньшие сечения про­водов и кабелей для питания тех же самых электроприем­ников.



Соотношение активной и реактивной мощности. Активная мощность цепи переменного тока

Чтобы правильно рассчитать нагрузку потребителей по мощности необходимо знать: какие бывают приемники напряжения. Что такое активная, реактивная и линейная нагрузка? Треугольник мощностей. Что такое пусковой ток? Все это разберем по порядку.

К приемникам напряжения относятся все устройства, которые подключаются к источникам напряжения. К ним относятся: электровентилятор, электроплита, стиральная машина, компьютер, телевизор, электродвигатель, бытовой электроинструмент и другие электропотребители.
В цепях переменного тока нагрузки разделяются на активные, реактивные и нелинейные. В цепях постоянного тока деления на типы нагрузок нет.

Активная нагрузка

К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.

Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S 2 =P 2 +Q 2 . Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Нелинейная нагрузка

Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.

В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.

Пусковой ток

При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.

В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.

Содержание:

В электротехнике среди множества определений довольно часто используются такие понятия, как активная, реактивная и полная мощность. Эти параметры напрямую связаны с током и напряжением , когда включены какие-либо потребители. Для проведения вычислений применяются различные формулы, среди которых основной является произведение напряжения и силы тока. Прежде всего это касается постоянного напряжения. Однако в цепях переменного разделяется на несколько составляющих, отмеченных выше. Вычисление каждой из них также осуществляется с помощью формул, благодаря которым можно получить точные результаты.

Формулы активной, реактивной и полной мощности

Основной составляющей считается активная мощность. Она представляет собой величину, характеризующую процесс преобразования электрической энергии в другие виды энергии. То есть по-другому является скоростью, с какой . Именно это значение отображается на электросчетчике и оплачивается потребителями. Вычисление активной мощности выполняется по формуле : P = U x I x cosф.

В отличие от активной, которая относится к той энергии, которая непосредственно потребляется электроприборами и преобразуется в другие виды энергии — тепловую, световую, механическую и т.д., реактивная мощность является своеобразным невидимым помощником. С ее участием создаются электромагнитные поля, потребляемые электродвигателями. Прежде всего она определяет характер нагрузки, и может не только генерироваться, но и потребляться. Расчеты реактивной мощности производятся по формуле : Q = U x I x sinф.

Полной мощностью является величина, состоящая из активной и реактивной составляющих. Именно она обеспечивает потребителям необходимое количество электроэнергии и поддерживает их в рабочем состоянии. Для ее расчетов применяется формула: S = .

Как найти активную, реактивную и полную мощность

Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.

В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.

При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.

Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в , реактивная мощность измеряется в вар — вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.

Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).

Специфика сети переменного тока приводит к тому, что в фиксированный момент времени синусоиды напряжения и тока на приемнике совпадают только в случае так называемой активной нагрузки, полностью переводящей ток в тепло или механическую работу. Практически это всевозможные электронагревательные приборы, лампы накаливания, в каком-то приближении электродвигатели и электромагниты под нагрузкой и звуковоспроизводящая аппаратура. Ситуация полностью меняется, если нагрузка, не создающая механической работы, обладает большой индуктивностью при малом сопротивлении. Это характерный случай электродвигателя или трансформатора на холостом ходу.

Подключение подобного потребителя к источнику постоянного тока привело бы к , здесь же ничего особенного с сетью не случится, но мгновенный ток будет отставать от мгновенного напряжения примерно на четверть периода. В случае же чисто емкостной нагрузки (если в розетку вставить конденсатор), ток на нем будет, наоборот, на ту же четверть периода опережать напряжение.

Реактивные токи

Практически такое несовпадение тока и напряжения, не производя на приемнике полезной работы, создает в проводах дополнительные, или, как принято их называть, реактивные токи, которые в особо неблагоприятных случаях могут привести к разрушительным последствиям. При меньшей величине это явление все равно требует расходовать излишний металл на более толстую проводку, повышать мощность питающих генераторов и трансформаторов электроэнергии. Поэтому экономически оправдано устранять в сети реактивную мощность всеми возможными способами. При этом следует учитывать суммарную реактивную мощность всей сети, при том, что отдельные элементы могут обладать значительными значениями реактивной мощности.

Реактивная электроэнергия

С количественной стороны влияние реактивной электроэнергии на работу сети оценивается косинусом угла потерь, который равен отношению активной мощности к полной. Полная мощность считается как векторная величина, которая зависит от сдвига фаз между током и напряжением на всех элементах сети. В отличие от активной мощности, которую, как и механическую измеряют в ваттах, полную мощность измеряют в вольт-амперах, так как эта величина присутствует только в электрической цепи. Таким образом, чем ближе косинус угла потерь к единице, тем полнее используется и мощность, вырабатываемая генератором.

Основные пути снижения реактивной мощности — взаимная компенсация сдвигов фаз, создаваемых индуктивными и емкостными приемниками и использование приемников с малым углом потерь.

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.


Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.


Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Q L = U L I = I 2 x L

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: x L = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL – QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит :

  • Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  • У сигнальных и радиоустройств уменьшаются помехи;
  • На порядок уменьшаются гармоники в электрической сети.
  • В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

    Активная мощность (P)

    Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

    потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

    Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

    В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

    Формулы для активной мощности

    P = U I — в цепях постоянного тока

    P = U I cosθ — в однофазных цепях переменного тока

    P = √3 U L I L cosθ — в трёхфазных цепях переменного тока

    P = 3 U Ph I Ph cosθ

    P = √ (S 2 – Q 2) или

    P =√ (ВА 2 – вар 2) или

    Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2) или

    кВт = √ (кВА 2 – квар 2)

    Реактивная мощность (Q)

    Также её мощно было бы назвать бесполезной или безваттной мощностью.

    Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

    Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

    Реактивная мощность определяется, как

    и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

    Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

    Формулы для реактивной мощности

    Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2)

    вар =√ (ВА 2 – P 2)

    квар = √ (кВА 2 – кВт 2)

    Полная мощность (S)

    Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

    Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

    Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

    Формула для полной мощности

    Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2)

    kUA = √(kW 2 + kUAR 2)

    Следует заметить, что:

    • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
    • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
    • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

    Активная реактивная мощность. Реактивная мощность это

    Мощность постоянного тока

    Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

    Для пассивной линейной цепи, в которой соблюдается закон Ома , можно записать:

    Если цепь содержит источник ЭДС , то отдаваемая им или поглощаемая на нём электрическая мощность равна:

    Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.

    Мощность переменного тока

    В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

    Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности , удобно обратиться к теории комплексных чисел . Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

    Активная мощность

    Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока , φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

    Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

    Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ , более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

    Полная мощность

    Единица полной электрической мощности — вольт-ампер (V·A, В·А)

    Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I ; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0 , а при ёмкостной Q

    Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

    Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода , кабели , распределительные щиты , трансформаторы , линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

    Комплексная мощность

    Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.

    Связь неактивной, активной и полной мощностей

    Величину неактивной мощности обозначим N . Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:

    Представим вектор тока i в виде суммы двух ортогональных составляющих i a и i p , которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть i a = λu , где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем

    Запишем выражение для активной мощности P , скалярно умножив последнее равенство на u :

    Отсюда находим

    Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.

    Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:

    Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.

    Измерения

    • Для измерения электрической мощности применяются ваттметры и варметры , можно также использовать косвенный метод, с помощью вольтметра и амперметра .
    • Для измерения коэффициента реактивной мощности применяют фазометры
    • Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ

    Мощность некоторых электрических приборов

    В таблице указаны значения мощности некоторых потребителей электрического тока:

    Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.

    Литература

    • ГОСТ 8.417-2002 Единицы величин
    • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
    • Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
    • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193-2009. — 146 с.

    Дополнительная литература

    • Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
    • Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
    • Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
    • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
    • Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
    • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
    • Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.
    • — см. Мощность электрическая … Большой Энциклопедический словарь

      электрическая мощность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric powerelectrical powerep … Справочник технического переводчика

      Физическая величина, характеризующая скорость изменения (получения, потребления, передачи, преобразования, рассеяния и т. п.) электрической энергии. В электрических цепях постоянного тока электрическая мощность Р равна произведению силы тока I и… … Энциклопедия техники

      электрическая мощность — 9 электрическая мощность: Физическая величина, характеризующая скорость передачи или преобразования электрической энергии de. Elektrische Leistung en. Electric power fr. Puissance électrique

    В цепях переменного тока различают три вида мощностей: активную Р, реактивную Q и полную S.

    Активная мощность вычисляется по формуле:

    Активную мощность потребляет резистивный элемент. Единица

    измерения активной мощности называется Ватт (Вт), производная единица – килоВатт (кВт), равная 10 3 Вт.

    Реактивная мощность вычисляется по формуле:

    Реактивная мощность потребляется идеальным индуктивным и

    емкостным элементами. Единица измерения реактивной мощности называется Вольт-Ампер реактивный (Вар), производная единица – килоВАр (кВАр), равная 10 3 ВАр.

    Полная мощность потребляется полным сопротивлением и обозначается буквой S:

    Единица измерения полной мощности называется ВА (Вольт-Ампер), производная единица – килоВольт-Ампер (кВА), равная 10 3 ВА.

    По сути, размерность у всех выше перечисленных единиц измерения одинакова – . Разные название этих единиц нужны, чтобы различать эти виды мощности.

    Проявляются различные виды мощности по-разному. Активная мощность необратимо преобразуется в другие виды мощности (например, тепловую, механическую). Реактивная мощность обратимо циркулирует в электрических цепях: энергия электрического поля конденсатора преобразуется в энергию магнитного поля, и наоборот. «Извлечь» реактивную мощность с «пользой для дела» невозможно.

    Из формул (2.19) – (2.21) следует, что между активной, реактивной и полной мощностью имеет место соотношение:

    Соотношение между P, Q и S можно интерпретировать как соотношение сторон прямоугольного треугольника (вспомните треугольник сопротивлений, треугольник напряжений – все эти треугольники подобны).

    Из рис. 2.10 видно, что cosφ = (2.24)

    Отсюда вытекает определение одной из основных характеристик цепей переменного тока – коэффициента мощности. Специального обозначения он не получил.

    Коэффициент мощности показывает, какую долю полной мощности составляет активная мощность.

    Желательно, чтобы коэ ффициент мощности цепи был как можно больше, т.е. приближался к 1. Реально предприятия электрических сетей устанавливают такое ограничение для промышленных предприятий: соs φ = (0,92…..0,95). Достигать значений соs φ >0,95 рискованно, так как разность фаз φ при этом может скачком перейти от положительных значений к отрицательным, что вредно для э лектрооборудования. Если соsφ

    Если коэ ффициент мощности оказывается мал, его необходимо повышать. График функции соs φ имеет вид монотонно убывающей функции в интервале от 0 0 до 90 0 . Следовательно, увеличить соsφ – значит уменьшить разность фаз , то есть уменьшить (Х L -Х С).

    Если влиять на (Х L -Х С), меняя С и L, то это приведет к увеличению тока в последовательной цепи и изменению режима работы оборудования, поэ тому такой способ практически не применяется. В следующем разделе рассмотрен другой способ повышения коэ ффициента мощности.

    ЛЕКЦИЯ 4 .

    2.6 Цепь переменного тока с параллельным соединением ветвей.

    Рассмотрим э лектрическую цепь с двумя параллельными

    ветвями (рис. 2.11). Полученные выводы распространим на цепь с любым количеством ветвей. К цепи, содержащей две параллельные ветви, включающие активные, индуктивные и емкостные элементы (R 1 , L 1 , C 1 и R 2 , L 2 , C 2 cоответственно), подводится переменное напряжение U частоты f.

    Прямая задача : Заданы все Обратная задача : Заданы свойства

    входящие в цепь элементы. цепи. Найти неизвестные элементы

    Найти все токи и разности цепи (эта задача решена в лабора-

    фаз. торной работе Ц-5)

    Решим прямую задачу, то есть найдем токи I 1, I 2 и общий ток I .

    Рис. 2.11.Э лектрическая цепь с двумя параллельными

    Из второго закона Кирхгофа следует, что напряжения на параллельных участках цепи одинаковы:

    U 1 = U 2 = U (2.25)

    На основании закона Ома найдем токи I 1 и I 2:

    ; (2.26)

    Найдем также разности фаз тока и напряжения для каждой ветви:

    (2.27)

    На основании первого закона Кирхгофа применительно к узлу А можно записать:

    Таким образом, для определения тока I необходимо векторно сложить токи I 1 и I 2 . В качестве опорного вектора удобно выбрать вектор напряжения .

    Реактивная мощность

    Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

    Если элемент цепи — резистор c электрическим сопротивлением R , то

    Мощность переменного тока

    Активная мощность

    Среднее за период Т значение мгновенной мощности называется активной мощностью: . В цепях однофазного синусоидального тока , где U и I — действующие значения напряжения и тока , φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением . Единица активной мощности — ватт (W , Вт ). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

    Реактивная мощность

    Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ . Единица реактивной мощности — вольт-ампер реактивный (var , вар ). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: . Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки.

    Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины Q = UI sinφ приблизительно описывает реальные процессы преобразования энергии в магнитных полях индуктивностей и в электрических полях емкостей. Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения. Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sinφ , более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

    Полная мощность

    Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I ; связана с активной и реактивной мощностями соотношением: , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0 , а при ёмкостной Q ). Единица полной электрической мощности — вольт-ампер (VA , ВА ).

    Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

    Измерения

    • Для измерения электрической мощности применяются ваттметры и варметры , можно также использовать косвенный метод, с помощью вольтметра и амперметра .
    • Для измерения коэффициента реактивной мощности применяют фазометры

    Литература

    Ссылки

    См. также

    • Список параметров напряжения и силы электрического тока

    Wikimedia Foundation . 2010 .

    Смотреть что такое «Реактивная мощность» в других словарях:

      реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

      Электр. мощность в цепи переменного тока, расходуемая на поддержание вызываемых переменным током периодических изменений: 1) магнитного поля при наличии в цепи индуктивности; 2) заряда конденсаторов при наличии конденсаторов и проводов (напр.… … Технический железнодорожный словарь

      Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними: Q =… … Большой Энциклопедический словарь

      РЕАКТИВНАЯ МОЩНОСТЬ — величина, характеризующая скорость обмена энергией между генератором переменного тока и магнитным (млн. электрическим) полем цепи, создаваемым электротехническими устройствами (индуктивностью и ёмкостью). Р. м. возникает в цепи при наличии сдвига … Большая политехническая энциклопедия

      реактивная мощность — 3.1.5 реактивная мощность (вар): Реактивная мощность сигналов синусоидальной формы какой либо отдельной частоты в однофазной цепи, определяемая как произведение среднеквадратических значений тока и напряжения и синуса фазового угла между ними.… … Словарь-справочник терминов нормативно-технической документации

      реактивная мощность — reaktyvioji galia statusas T sritis Standartizacija ir metrologija apibrėžtis Menamoji kompleksinės galios dalis, skaičiuojama pagal formulę Q² = S² – P²; čia Q – reaktyvioji galia, S – pilnutinė galia, P – aktyvioji galia. Matavimo vienetas –… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

      реактивная мощность — reaktyvioji galia statusas T sritis fizika atitikmenys: angl. reactive power; wattless power vok. Blindleistung, f; wattlose Leistung, f rus. безваттная мощность, f; реактивная мощность, f pranc. puissance déwatée, f; puissance réactive, f … Fizikos terminų žodynas

      Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними:… … Энциклопедический словарь

      реактивная мощность — reaktyvioji galia statusas T sritis automatika atitikmenys: angl. reactive power vok. Blindleistung, f; wattlose Leistung, f rus. реактивная мощность, f pranc. puissance réactive, f … Automatikos terminų žodynas

      Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока (См. Переменный ток). Р. м. Q равна произведению действующих значений напряжения U и тока… … Большая советская энциклопедия

    Книги

    • Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов , Железко Ю.С.. Прикладные науки. Техника. Промышленность…

    Мощность электрической цепи активная — Энциклопедия по машиностроению XXL

    Момент электрического диполя, электрический Момент элементарного электрического тока, магнитный момент магнитного диполя, магнитный Мощность электрической цепи мощность электрической цепи, активная Мощность электрической цепи, полная Мощность электрической цепи, реактивная  [c.213]

    Мощность дозы излучения Мощность, звуковая Мощность кермы Мощность поглощенной дозы излучения Мощность эквивалентной дозы излучения Мощность экспозиционной дозы, рентгеновского и гамма-излучений Мощность электрической цепи, активная Мощность электрической цепи, полная  [c.219]


    Активная мощность электрической цепи ватт Вт W  [c.92]

    В электротехнике для измерения полной мощности электрической цепи, определяемой произведением действующих значений напряжения и силы тока С/эф, /дф, не применяют единицу мощности ватт (которой измеряется только активная составляющая мощности), а пользуются единицей вольт-ампер (В А). Для измерения реактивной мощности применяют единицу вар, которую определяют как реактивную мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением я/2.  [c.260]

    Ватт — активная мощность электрической цепи, эквивалентная механической мощности 1 вт.  [c.306]

    Активная мощность электрической цепи ватт 10 10 10-  [c.91]

    Активная мощность электрической цепи ватт 8/П W (1 дж) (1 сек)  [c.13]

    Активная мощность электрической цепи имт ватт Вт W Ватт — активная мощность электрической цепи, эквивалентная механической мощности 1 Вт  [c.604]

    Активная мощность электрическое цепи  [c.126]

    Активная мощность Р определяет энергию, поступающую в электрическую цепь в единицу времени и превращающуюся там в тепло или другие виды энергии. Она измеряется в ваттах (вт) и определяется по следующим формулам  [c.306]

    Режим с неизменным во времени напряжением на электродах разрядного промежутка может быть реализован либо в схеме с источником бесконечной мощности (внутреннее сопротивление источника равно нулю), либо в схеме с электрической линией, согласованной по волновому сопротивлению с активным сопротивлением газового промежутка. На практике для возбуждения газового лазера чаще используются схемы, в которых в качестве накопителя энергии применяются конденсаторы. При этом в схеме неизбежно имеется индуктивность, и, следовательно, цепь, нагруженная на активное сопротивление плазмы разряда. В такой электрической цепи характеристики разряда зависят от степени нелинейности активного сопротивления и значений индуктивности и емкости. Анализ характеристик разряда в этом случае упрощается, если первоначально пренебречь индуктивностью разрядного контура. Итак, рассмотрим режимы несамостоятельного разряда в безындуктивном разрядном контуре с учетом конечной емкости накопительного конденсатора. Энергозапас в таком контуре соизмерим с энергией разряда или превышает ее ненамного. В этом случае напряженность поля за время разряда уменьшается.  [c.59]

    В рассмотренных выше работах форма напряжения (т.е. зависимость напряжения от времени) на дуге рассчитывается при заданной синусоидальной форме тока. Это означает, что последовательно с дугой в цепь включена большая индуктивность, определяющая форму и силу тока в цепи. При этом коэффициент мощности сети ( os ) близок к нулю. Для практических же целей гораздо более важен противоположный случай, когда в дуге выделяется большая часть мощности источника питания. Однако при этом вид кривой тока дуги существенно отличается от синусоиды и зависит от параметров самой дуги. Еще труднее заранее предсказать форму кривой, если дуга включена в сложную электрическую цепь, содержащую различные активные и реактивные элементы. Отсюда ясно, что в общем случае вид кривых тока и напряжения на дуге зависит как от заданных внешних условий (геометрия канала, род газа и т.д.), так и от схемы электрической цепи, содержащей дугу. Таким образом, замкнутая теория дуги пе-  [c.190]


    Таким образом, мощность, связанная с реактивной частью импеданса, аналогична мощности, потребляемой индуктивностью в цепи переменного тока, а сама реактивная часть 1т 2 — индуктивному сопротивлению катушки. Активная же часть Не 2 = р с ЗоЯ определяет мощность, необратимо теряемую источником на излучение в среду, и она эквивалентна активному сопротивлению электрической цепи. Поэтому эквивалентная схема акустического импеданса пульсирующей сферы может быть представлена параллельно соединенными катушкой и омическим сопротивлением.  [c.208]

    Состояние электрической цепи по отношению к реактивной мощности характеризует коэффициент мощности ( os ф), который представляет собой отношение активной мощности к полной (кажущейся) мощности  [c.32]

    В, электрических цепях переменного тока с реактивными сопротивлениями различают три вида мощности полную 5, активную Р и реактивную Q. Полная мощность 5 электроустановки переменного тока состоит из мощности, расходуемой в активном сопротивлении Р и реактивной части мощности О, (геометрическая сумма).  [c.14]

    Коэффициент полезного действия выпрямителя определяется как отношение произведения средних значений выпрямленного напряжения и тока к активной мощности, потребляемой из сети. В области положительных температур растет как прямой, так и обратный ток. При отрицательных температурах имеет место уменьшение прямого и обратного тока. Основные свойства купроксных выпрямителей, применяемых в электрических цепях управления сборочно-сварочными процессами приведены в табл. 6. (см. приложение).  [c.123]

    Эти соотношения аналогичны закону Ома и зависимости мощности от тока в напряжения в электрической цепи с активным сопротивлением.  [c.14]

    Полученное выражение аналогично выражению для полной электрической мощности в цепи с индуктивностью и активным сопротивлением Р=1Щ+ Р(йЬ.  [c.15]

    Программа предусматривала три выхода астронавтов из лунного корабля на поверхность Луны продолжительностью по 7 ч каждый, наблюдение, исследование, сбор образцов лунных пород и установку на Луне комплекта научных приборов для пассивных и активных сейсмических исследований, измерений магнитного поля и теплового потока из внутренней области к поверхности Луны. Приборы связываются электрической цепью источником энергии является термоэлектрический генератор мощностью 70 ватт, передача данных на Землю осуществляется по микроволновой радиолинии.  [c.188]

    Найдите активное сопротивление электрической лампы накаливания, включенной в цепь переменного тока с действующим напряжением 220 В, при этом выделяется средняя мощность 100 Вт.  [c.296]

    В разрядной цепи генератора канал пробоя выступает как активная электрическая нагрузка, процесс энерговыделения в которой можно описать следующими энергетическими характеристиками разрядным током г падением напряжения Uk на канале разряда его активным сопротивлением Rk мощностью Nk, NkA-. развиваемой в канале и на единице его длины, соответственно энергией Wk, Wk/lk, выделенной к данному моменту времени t в канале и на единице его длины 1к, соответственно. При этом справедливы соотношения  [c.54]

    Основными электрическими параметрами стартерных аккумуляторных батарей являются ЭДС, напряжение, мощность и емкость. ЭДС химического источника тока представляет собой разность электродных потенциалов при разомкнутой внешней цепи. ЭДС Е свинцового аккумулятора зависит от химических свойств активных веществ. Температура мало влияет на величину ЭДС. При работе аккумулятора ЭДС меняется вследствие изменения концентрации серной кислоты в электролите, т. е. изменения плотности электролита. Она не зависит от количества заложенных в аккумулятор активных материалов и от геометрических размеров электродов и увеличивается пропорционально числу последовательно включенных аккумуляторов.  [c.64]

    При освещении активной поверхности фотоэлемента в его цепи возникает электрический ток, пропорциональный мощности падающего излучения. Это свойство г, фотоэлемента и используется в объективных колориметрах.  [c.341]


    Единицами полной мощности служат вольт-ампер (ВА) и киловольт-ампер (кВА). На табличках генераторов и трансформаторов указывается полная мощность. На табличках электродвигателей указывается активная (полезная) мощность, которую они могут развить. Полную мощность электродвигателя, которую он потребляет от электрической сети, можно определить расчетным способом, Полная мощность цепи переменного тока определяется про-  [c.14]

    Индуктивный датчик ИД-31. Катушка, магнитопровод и штепсельный разъем 5 индуктивного датчика (рис. 117) залиты эпоксидным компаундом и представляют собой единый неразъемный узел. Якорь датчика сочленяется со штоком серводвигателя регулятора мощности. Датчик — это электрический преобразователь, в котором линейное перемещение якоря вызывает изменение значения индуктивного сопротивления катушки. Максимальный сигнал датчика соответствует положению якоря, выдвинутому за корпус, а минимальный — максимально вдвинутому положению. При увеличении нагрузки поршень серводвигателя перемещается и вдвигает якорь в катушку индуктивного датчика, за счет чего уменьшается ток в цепи регулировочной обмотки амплистата. При изменении частоты вращения вала дизеля меняется напряжение и частота питания индуктивного датчика. Однако в связи с тем что индуктивное сопротивление катушки намного больше активного, ток в регулировочной обмотке амплистата не зависит от позиции контроллера, а зависит от положения якоря в катушке. Напряжение датчика 10 В частота питающего напряжения 133 Гц ход якоря при изменении сопротивления от минимального до максимального 65 мм минимальное полное сопротивление катушки (не более) 5,5 Ом максимальное полное сопротивление катушки (не менее) 70 Ом ток продолжительный 1,4 А.  [c.155]

    Для контактной сварки металлов и сплавов широкой номенклатуры и с большим диапазоном толщин используются токи до 200 кА при напряжении на деталях 0,5—2,5 В. Электрическая часть контактных машин представляет собой активно-индуктивную цепь с источником питания низкого напряжения. Индуктивность цепи зависит от размеров рабочего пространства машины — вылета электродов и раствора сварочного контура — и определяется в основном индуктивностью сварочного контура, которая достигает весьма больших значений. Это обусловливает чрезвычайно низкий коэффициент мощности контактных машин (до 0,2) при питании сварочного контура переменным током промышленной частоты.  [c.3]

    Описание технологии. На электродуговой сталеплавильной печи типа ДСВ-40 в ПО Ижорский завод еще в 70-х гг. была проведена реконструкция короткой сети с устройством в ней специальных разъемов. В результате уменьшения активных потерь снизился расход электроэнергии. Однако в связи с изменением электрических режимов часто стали выходить из строя трансформаторы тока ТНШ-06-25000/5, применяемые в качестве датчиков. В связи с этим были разработаны и изготовлены трансформаторы тока с усиленной изоляцией и улучшенными электрическими характеристиками. Применение этих трансформаторов в качестве датчиков тока в схеме регулятора мощности РМД-4,5 обеспечило передачу первичного тока дуги во вторичные цепи практически без искажений, что поз-  [c.72]

    Аналогом тока является колебательная скорость V, аналогом электрического напряжения U — сила звукового давления Fp pS, а аналогом омического сопротивления / , — акустическое волновое ( опротивление роэлектрической цепи определяет необратимые потери источника тока на джоулево тепло, выделяющееся в активном элементе, ве-Л 1чина акустического волнового сопротивления характеризует необратимые же потери мощности акустического источника в виде излучения в прилегающую среду. Поэтому акустическое волновое сопротивление называют е це сопротивлением излучению.  [c.52]

    Изменение тока в электрической цепи (включение, выключение) вызывает появление в ней ЭДС самоиндукции, препятствующей этому изменению. При увеличении тока она направлена против ЭДС источника напряжения, а при уменьшении тока, она мешает ему исчезнуть. Сопротивление в цепи, возникающее в результате действия ЭДС самоиндукции, называется индуктивным, а сопро-тивл 1ние проводников цепи—активным. Вся мощность, получаемая цепью переменного тока, называется кажущейся и состоит из активной и реактивной — мощностей. Активная мощность расходуется на нагрев. В двигателях переменного тока большая часть активной мощности превращается в механическую. Реактивная мощность обусловлена наличием магнитных и электрических полей в индуктивностях и емкостях цепей. В цепи с индуктивной нагрузкой нельзя избежать наличия реактивной мощ-  [c.31]

    Причины сдвига фаз и практические последствия его. На многие из цепей переменного тока (установки для генерирования, канализации и потребления электрической энергии) оказывает неблагоприятное влияние то обстоятельство, что в них циркулируют токи, к-рые необходимы для поддержания надлежащего электромагнитного режима, но не м. б. превращены в полезную энергию. С электродвигателями, тpaн фopмiaтopaми и проводами свя-(J зано существование пульсирующих магнитных полей возникновение и исчезновение этих полей сопряжено с пульсацией энергии, к-рая передается из электрической цепи в магнитное поле и обратно из поля в цепь, не со-/ вершая при этом полезной работы. Соответствующие этой реактивной мощности токи в проводах называются реактивными они сдвинуты по фазе на 90° относительно активных токов. Полный ток I, состоящий из реактивной слагающей I,. и активной Ifj (фиг. 3), оказывается вследствие этого сдвинутым по фазе относительно напряжения на нек-рый угол ср. Отношение активной составляющей тока 1а к полному току J, т. е.  [c.223]


    РПИБ-М Регулирование электрической активной мощности в трехфазных цепях переменного тока Переменный, частота 50 Гц 2 Первичный прибор с дифференциально — трансформаторным датчиком производства завода Манометр и датчиком трансформатора тока ДТТ-58 производства МЗТА Вместо указанного прибора с дифференциально — трансформаторным датчиком могут применяться Первичные приборы с ферродинамиче-скими, индукционными или реостатными датчиками  [c.771]

    Диэлектрические потери представляют собой часть энергии электрического поля, которая превращается в диэлектрике в теплоту и нагревает его. При частотах свыше 20 кГц их величина становится одним из самых важных параметров диэлектрика. Для определения потерь диэлектрик удобно рассматривать как конденсатор в цепи переменного тока (рис. 18.24). У идеального конденсатора угол сдвига фаз между током / и напряжением U равен 90°, поэтому активная мощность Na, = IU osy равна нулю. Диэлектрик не является идеальным конденсатором, и угол сдвига фаз у него меньше 90° на угол 6, называемый углом диэлектрических потерь. Тангенс угла S и диэлектрическая постоянная е характеризуют удельные потери (на единицу объема диэлектрика), Вт/м  [c.602]

    Известно, что если электрическая дуга питается от обычной промышленной сети переменного тока, то для стабилизации ее горения в болышнстве случаев необходимо последовательно с дугой включать катушку индуктивности (реактор). По существу, реактор играет ту же роль, что и балластный резистор в цепи дуги постоянного тока, т.е. обеспечивает падающую внешнюю вольт-амперную характеристику источника питания. Однако в отличие от балластного резистора в реакторе практически отсутствуют потфи активной мощности.  [c.38]

    В результате электрического расчета при заданном напряжении и частоте источника питания определяются следующие электрические параметры коэффициент полезного действия, активные и реактивные мощности в системе, коэффициент мощности, токи в цепях индукторов, двухмерное распределение внутренних источников теплоты в загрузке. Электрический расчет в данных моделях реализует вариант метода интегральных уравнений с осреднением ядра интегрального уравнения (см. главу 2). Это позволяет эффективно производить электрический расчет индукционных нагревателей независимо от выраженности поверхностного эффекта в загрузке с многослойными, секционированными, многофазными индукто-)ами, с обычным и автотрансформаторным включением обмоток. Лредусмотрен также учет влияния на электромагнитные параметры индукционной системы таких элементов, как медные водоохлаждаемые кольца, электромагнитные экраны и другие проводящие немагнитные тела, в которых можно выделить осесимметричные линии тока. Тепловой расчет заключается в определении двухмерного температурного поля в загрузке в процессе нагрева при определенных граничных условиях на поверхности загрузки, которые задаются или исходя из свободного теплообмена с окружающей средой (конвекцией, излучением) или с учетом футеровки. Одновременно находятся как общие тепловые потери, так и потери с отдельных поверхностей загрузки.  [c.217]

    При освещении активной поверхности фотоэлемента в его цепи возникает электрический ток, пропорциональный мощности падающего излучения. Это свойство ( тоэлемента и используется в объективных колориметрах. Колориметры называются объективными потому, что работа их не зависит от субъективных особенностей глаза человека.  [c.327]

    Активная мощность Р, расходуемая в активном сопротивлении, соверщает полезную работу. Активная мощность определяет ту часть электрической энергии, которая преобразуется в энергию другого вида (механическую, тепловую, световую, химическую). Активная мощность определяется произведением P=P-R, тле Я — активное сопротивление цепи, т. к. напряжение и ток на активном у сопротивлении совпадают по фазе. Единицей активной мощности / служит ватт (Вт) и киловатт (kBi).  [c.15]

    Если имеется согласование и по активному сопротивлению, т. е. Лг = Лвн, то мощность излучения равна половине мощности, потребляемой системой от внешней цепи. Обычно добротность контура при велика и система обладает резкими резонансными свойствами (электрический резонанс). Частота электрического резонанса Юе = = должна лежать внутри полосы механического резонан-  [c.167]

    Процедуры метода энергетического баланса сводятся в общих чертах к следующему. Изучаемый автоколебательный контур разбивается на линейную и нелинейную части. В первом приближении принимается, что колебания выходных координат линейного звена имеют гармонический характер. Далее записываются два интегральных соотношения, одно из которых описывает энергетический баланс для активной составляющей мощности, другое — для реактивной составляющей мощности. Понятия активной и реактивней мощности заимствованы из электротехники. Применительно к задачам о колебаниях механических систем под активной мощностьк> понимается работа, совершаемая внешними силами за период колебания . (В электротехнике активная мощность равна электрической энергии, отдаваемой или поглощаемой в рассматриваемом участке цепи.) Что же касается реактивной мощности, то она, па аналогии с электротехникой, определяется таким же образом, как и активная мощность, но от силы, сдвинутой по фазе от реальной на четверть периода. (В электротехнике реактивная мощность описывает нерассеиваемую часть энергии, колеблющуюся между источником и приемником в цепи синусоидального тока.)  [c.196]

    Если в состав активного модуля входит умножитель частоты с коэффициентом умножения %, то фазовращатель, стоящий на входе модуля, работает на частоте, в X раз меньшей частоты излучаемого сигнала. Это облегчает реализацию фазовращателя в АР сантиметрового и миллиметрового диапазонов. Кроме того, при значительной мощности, излучаемой каждым элементом рещетки, фазовращатели из-за ограниченной электрической прочности могут быть установлены только в цепи с пониженным уровнем высокочастотной мощности.  [c.19]

    В заключение необходимо отметить, что посредством тиристорных выключателей переменного тока можно не только осуществлять коммутацию (режим включено — отключено ), но и регулировать мощность в нагрузке. Это, во-первых, возможно за счет фазового управления тиристорами — изменением угла запаздывания отпирания регулируется величина действующего значения напряжения (рис. 1-14,а). Во-вторых, в случае инерционных нагрузок (электрические печи [Л. 17], электроприводы с большим моментом инерции), активная мощность может регулироваться путем периодического включения и отключения цепи с изменением времени паузы (щи-ротпое регулирование, рис. 1-14,6).  [c.21]


    Мощность трехфазной электрической цепи — FREEWRITERS

    Трехфазная электрическая цепь является совокупностью трех однофазных, поэтому активная и реактивная мощности трехфазной цепи равняются сумме соответствующих мощностей отдельных фаз. 

    Для схемы соединения фаз потребителя «звездой» активная мощность трехфазной электрической цепи ; для схемы соединения «треугольником» . Активная мощность фазы потребителя

    Реактивная мощность для схемы «звезда»: , для «треугольника»: . 

    Реактивная мощность фазы

    Полная мощность трехфазной цепи

    Комплексная форма мощности схемы «звезда»

    ,

    для схемы «треугольник»

    .

    У симметричного потребителя мощности всех фаз одинаковы. Тогда

    Мощность симметричного потребителя определяется также через линейные напряжения и токи. При соединении «звезда» , поэтому

    При соединении «треугольник» ; мощности — совпадают с формулой

     

    Таким образом, для симметричного потребителя формулы мощности не зависят от схемы соединения потребителя. В трехфазной симметричной системе сумма мгновенных значений мощностей — величина постоянная и равняется активной мощности трехфазной цепи:

    Мощность симметричной или несимметричной трехпроводной системы может измеряться всего двумя ваттметрами. Действительно, поскольку , то 

    Один ваттметр включают под ток ia и напряжение uac, второй — под ток ib и напряжение ubc (рис. 1).

    Рис. 1.

    Для измерения активной мощности в четырехпроводной несимметричной системе необходимо три ваттметра — по одному в каждой фазе.

    Реактивную мощность Q трехфазной симметричной электрической цепи измеряют одним ваттметром, предназначенным для измерения активной мощности, если его включить так, как показано на рис. 2, а. 

    Рис. 2.

    Действительно, из векторной диаграммы, (рис. 2, б) и схемы включения (а) следует, что ваттметр показывает:

    Чтобы найти реактивную мощность всей симметричной цепи, достаточно показания ваттметра умножить на .

    В автономной энергосистеме (рис. 3) механическая энергия привода мощностью 30 кВт преобразуется в трехфазном генераторе в электрическую — мощностью 26,4 кВт (КПД генератора 0,88).

    Рис. 3.

    По трехпроводной линии эта энергия поступает к потребителю для освещения и на приводы трехфазных двигателей. Чтобы повысить (до 0,9) коэффициент мощности  нагрузки (двигатели имеют  0,5 и 0,85), параллельно потребителю включена батарея конденсаторов ( по 160 мкФ в каждой фазе). Наличие двух уровней напряжений в зависимости от включения потребителя дает возможность включать без трансформатора потребители с разными номинальными напряжениями: к трехпроводной линии с напряжением UЛ = 220 В по схеме «звезда» подключим двигатель с номинальными напряжениями (220/380) В. Осветительная нагрузка равномерно распределяется между фазами А, В, С и включена по схеме «треугольник» на номинальное напряжение 220 В. Три батареи конденсаторов включены по схеме «треугольник», что дает возможность, в сравнении со схемой «звезда», при той же самой реактивной мощности конденсаторов QC втрое уменьшить емкость. Из выражений

    получается, что .

    Для определения емкостей рассчитывается:

    активная мощность

    реактивная мощность

    и полная мощность  всех потребителей без батарей емкостей. 

    Угол  до компенсации:

    Для желаемого угла  по формуле определяется емкость для каждой батареи:

    В автономной трехфазной системе выполняется условие баланса трех мощностей: активной, реактивной и полной.

    Для системы (рис.3) Рист = 26,4 кВт равняется суммарной активной мощности потребителя.

    AC power

    http://en.wikipedia.org  Wikipedia, свободная энциклопедия

    Мощность определяется, как скорость потока энергии, проходящей через заданную точку. Тоесть мощность – это отношение количества энергии, прошедшей через данную точку за определённый промежуток времени, к величине этого промежутка времени.

    В цепях переменного тока, в отличие от цепей постоянного тока, присутствуют не только рассеивающие энергию (активные) элементы, но и запасающие энергию (реактивные) элементы, такие, как индуктивности и ёмкости. Индуктивные элементы (катушки) запасают энергию в магнитном поле; ёмкостные элементы (конденсаторы) запасают энергию в электрическом поле. Эти элементы вызывают переодическое реверсирование потока энергии (энергия переходит из сети в энергию поля элемента, а затем обратно). 

    Скорость потока энергии, усреднённая за полный период колебания волны переменного тока, показывающая полезную передачу энергии в одном направлении, тоесть необратимое рассеяние энергии (преобразование электрической энергии в другие виды энергии) на активных элементах цепи, известна как активная мощность (в англ. лит. real power).

    Максимальное мгновенное (амплитудное) значение скорости циркуляции энергии, через энергозапасающие (реактивные) элементы цепи, известно как реактивная мощность (в англ. лит. reactive power). Реактивная мощность показывает обратимую циркуляцию энергии в системе. Рассеяния энергии на реактивных элементах нет, так как энергия, полученная реактивными элементами в течение периода от источника, и, энергия возвращённая реактивными элементами в течение периода обратно в источник, равны.

    Активная (real), реактивная (reactive) и полная (apparent) мощность.

    Инженеры используют несколько терминов для описания потока энергии в системе: 

    • Активная мощность или Real power (P)
    • Реактивная мощность или Reactive power (Q)
    • Комплесная мощность или Complex power (S
    • Полная мощность или Apparent power (определяется как модуль комплексной мощности |S|)

     

    Полная мощность — это модуль векторной суммы активной и реактивной мощности.

    На рисунке, P это активная мощность, Q это реактивная мощность (в данном случае отрицательная), и длина вектора S это полная мощность.

    Единица измерения всех видов мощностей — это Ватт (символ: Вт / англ. W). Тем не менее, эта единица измерения зарезервирована для активной компоненты мощности. Полная мощность традиционно выражается в вольт-амперах (ВА / англ. VA), так как полная мощность есть просто результат умножения среднеквадратичного напряжения и среднеквадратичного тока. Единица реактивной мощности обозначается термином «ВАр / англ. VAr», что значит вольт-ампер реактивный. Так как реактивная мощность не передаёт полезную энергию на нагрузку, она часто называется «безваттная» мощность («wattless» power).

    Понимание соотношений между этими тремя величинами лежит в сердце понимания силовой электротехники. Зависимость между этими величинами может быть выражена математически с помощью векторов. Так же зависимость между этими величинами может быть выражена с использованием комплексных чисел:                                  

    (где j это мнимая единица).

    Комплексное число S называется комплексной мощностью.

    Рассмотрим идеальную цепь переменного тока состоящую из источника энергии и обобщённой нагрузки, причём, как ток, так и напряжение, синусоидальные. Если нагрузка чисто резистивная (то-есть активная), тогда ток и напряжение меняют полярность одновременно; направление потока энергии не меняет знак и всегда положительное, поэтому вся мощность (поток энергии) активная. Если нагрузка чисто реактивная, тогда напряжение и ток различаются по фазе на 90 градусов, и поток полезной энергии отсутствует. За четверть периода энергия из сети поступает в реактивную нагрузку (где переходит в энергию магнитного или электрического поля), а за следующую четверть периода обратно. Максимальное мгновенное (амплитудное) значение скорости потока энергии, которая циркулирует, в течение периода, от источника к реактивной нагрузке и обратно, известно как реактивная мощность.

    Если ёмкость и индуктивность включены параллельно, тогда токи, текущие через индуктивность и ёмкость, противоположны и стремятся взаимоуничтожиться быстрее, чем происходит добавка тока. Обычно считают, что ёмкость генерирует реактивную мощность, а индуктивность поглащает её. Это есть фундаментальный механизм контроля коэффициента мощности в системах передачи электрической энергии; ёмкости (или индуктивности) включаются в цепь с целью частичного уничтожения реактивной мощности нагрузки. Практически любая нагрузка будет иметь активную, индуктивную и ёмкостную части, и поэтому, как активная, так и реактивная мощность, будет поступать в нагрузку.

    Полная мощность есть произведение среднеквадратичного тока на среднеквадратичное напряжение. Полная мощность удобна для оценки характеристик оборудования и проводов/кабелей, так как показывает максимальные значения тока и напряжения в системе. Тем не менее, если две разные нагрузки характеризуются определёнными  значениями полной мощности, то их сумма не даст точного значения полной мощности суммарной нагрузки, если обе нагрузки не имеют одинакового смещения (сдвига фаз) между током и напряжением.  

    Коэффициент мощности (Power factor)

    Отношение активной мощности к полной мощности в цепи называется коэффициентом мощности. Для всех случаев, когда формы тока и напряжения чисто синусоидальные, коэффициент мощности равен косинусу угла сдвига фаз (φ) между синусоидами тока и напряжения. По этой причине, в технических характеристиках оборудования часто обозначают коэффициент мощности как «cosφ».  

    Коэффициент мощности равен 1, когда фазы напряжения и тока совпадают, и равен нулю, когда ток опережает или отстаёт от напряжения на 90 градусов. Коэффициент мощности определяется как опережающий или отстающий. Для двух систем, передающих одинаковое количество активной мощности, система с более низким коэффициентом мощности будет иметь более высокие значения циркулирующих в системе токов, благодаря энергии, возвращаемой в источник из энергозапасающих элементов нагрузки. Эти более высокие токи в реальной системе приведут к более высоким потерям и уменьшат общую эффективность передачи энергии. Цепь с более низким коэффициентом мощности будет иметь более высокую полную мощность и более высокие потери для тогоже количества передаваемой активной мощности.

    Ёмкостные цепи вызывают реактивную мощность, причём синусоида тока опережает синусоиду напряжения на 90 градусов. Индуктивные цепи вызывают реактивную мощность, причём синусоида тока отстаёт от  синусоиды напряжения на 90 градусов. Результатом этого является стремление индуктивных и ёмкостных элементов уничтожить вырабатываемую реактивную мощность друг друга соответственно.

    Реактивная мощность

    В системах передачи и распределения энергии, значительные усилия прилагаются для контроля реактивной мощности. Обычно это делается автоматически путём подключения и отключения больших массивов дросселей (реакторов) или конденсаторов, настройкой системы возбуждения генератора и другими методами. Компании дистрибьюторы электроэнергии могут использовать счётчики электроэнергии, которые измеряют реактивную мощность с целью выявления и штрафования пользователей с нагрузками, имеющими низкий коэффициент мощности. Особенно описанные меры относятся к пользователям эксплуатирующим высоко индуктивные нагрузки, такие, как моторы на насосных станциях.

    Несбалансированные многофазные системы

    В то время, как активная мощность и реактивная мощность точно определены в любой системе, определение полной мощности для несбалансированных многофазных систем считается одной из самых спорных тем в силовой электротехнике. Первоначально термин «полная мощность» возник просто как оценка качества системы. Формирование и план концепции приписываются Виллиаму Стэнли (Феномен запаздывания в катушке индуктивности, 1888) и Чарльзу Штейнмитцу (Теоретические элементы проектирования, 1915). Тем не менее, с развитием трёхфазных систем переменного тока, стало ясно, что определение полной мощности и коэффициента мощности не может быть применено к несбалансированным многофазным системам. В 1920 году  Специальный Объединённый комитет Американского Института Инженеров-Электриков (AIEE) и Национальная Ассоциация Электрического Освещения встретились, чтобы решить эту проблему. Они рассмотрели два определения:

    В этом случае коэффициент мощности определён, как отношение суммы активных мощностей всех фаз к сумме полных мощностей всех фаз. Обычно этот метод применяется в приборах измеряющих параметры сети.

    В этом случае коэффициент мощности определён, как отношение суммы активных мощностей всех фаз к модулю суммы комплексных мощностей всех фаз.

    В 1920 году комитет не нашёл согласия по этому вопросу. В дальнейшем доминировали дискуссии по этой теме. В 1930 году был сформирован другой комитет и повторно оказался не в состоянии решить вопрос. Расшифровки стенограмм дискуссий самые длинные и самые спорные из когда либо опубликованных AIEE (Эмануэль, 1993). Окончательное решение по этому вопросу не было достигнуто до конца 1990-ых.

    Основные вычисления с использованием реальных чисел.

    Идеальный резистор не накапливает энергию, фаза тока и напряжения совпадают. Поэтому реактивной составляющей мощности нет и P = S. Поэтому для идеального резистора:

    Для идеальной ёмкости или индуктивности, с другой стороны, нет передачи полезной мощности, так как вся мощность реактивная. Поэтому для идеальной ёмкости или индуктивности:

    Где X это реактивное сопротивление (англ. reactance) ёмкости или индуктивности.

    Если определить величину X как положительную для индуктивности и отрицательную для ёмкости, тогда мы можем убрать знаки модуля (для Q и X) из уравнения выше.

    Общие вычисления с использованием векторов и комплексных чисел.

    (В этом разделе знак тильда (~) будет использован для обозначения векторов или комплексных величин, а буквы без дополнительных знаков обозначают модули векторов соответствующих величин.)

    Рассмотрим, скажем, последовательную цепь состоящую из активного (резистивного) сопротивления и реактивного сопротивления. Используя все, что было сказано выше, мы можем записать следующее выражение:

    это выражение можно упростить:

    примем следующее обозначение комплексного сопротивления (комплексного импеданса):

    тогда

    Умножение комплексного числа на сопряжённое с ним комплексное число даёт квадрат модуля этого числа (тоесть действительное число которому на комплексной плоскости соответствует вектор, угол которого равен 0):

     

    Закон Ома для переменного тока:

    Из свойств сопряжённых комплексных чисел отсюда следует:

    Подставляя последние три выражения в выражение для мощности получим:

    Многочастотные системы.

    Приведённое выше определение полной мощности применимо и к многочастотным системам, так как среднеквадратичное значение (СКЗ /  англ. RMS) тока и напряжения может быть вычислено для любой формы волны и следовательно отсюда может быть вычислена полная мощность.

    Для вычисления активной мощности, казалось бы, мы должны вычислить произведение тока и напряжения (причем и ток и напряжение есть сумма нескольких синусоид с разными частотами) и усреднить его. Тем не менее, если внимательно посмотреть на одно из слагаемых, полученных в результате перемножения тока на напряжение, мы придём к интересному результату.

    Конечно усреднение по времени функции вида cos(ωt + k) есть ноль при условии, что ω не равно нулю. Поэтому единственные слагаемые, которые не будут равны нулю после усреднения – это те, для которых частота напряжения равна частоте тока (в примере выше это второе слагаемое, которое при ω1 = ω2 не зависит от времени и поэтому при усреднении не равно нулю). Другими словами, активную (усреднённую) мощность можно вычислить просто вычислив активные мощности для каждой частоты по отдельности, а затем все полученные мощности сложить.

    Реактивная мощность, в случае многочастотной системы, так же находится как сумма реактивных мощностей всех гармоник. Тем не менее при измерении реактивной мощности в многочастотных цепях переменного тока используют упрощённый метод расчёта реактивной мощности – метод замены несинусоидальных токов и напряжений эквивалентными синусоидальными. Обычно этот метод применяется в приборах измеряющих параметры сети. В этом случае:

     

    Коэффициент мощности при этом определяется как:

    Если мы примем за условие, что напряжение в сети имеет единственную частоту (как это обычно и бывает), то это покажет, что гармонические токи очень плохая вещь. Они будут увеличивать среднеквадратичное значение тока (за счёт дополнительных добавок не равных нулю) и так же следовательно увеличивать полную мощность, но они не окажут влияния на передачу активной мощности. Следовательно, гармонические токи будут уменьшать коэффициент мощности.

    Гармонические токи могут быть уменьшены с помощью фильтра, установленного на входе устройства. Обычно такой фильтр состоит только из ёмкостной цепи (в этом случае роль индуктивных и резистивных элементов фильтра играют паразитные сопротивление и индуктивность сетевого источника питания) или из индуктивно-ёмкостной электрической цепи. Цепь активной коррекции коэффициента мощности (active power factor correction APFC), установленная на входе устройства, ещё более эффективно уменьшает гармонические токи и, следовательно, ещё более приближает коэффициент мощности к единице.  

     

    Что такое активная, реактивная и полная мощность — определение и объяснение

    Активная мощность

    Определение: Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Истинная мощность или Активная мощность или Реальная мощность . Он измеряется в киловаттах (кВт) или МВт. Это фактические результаты работы электрической системы, которая управляет электрическими цепями или нагрузкой.

    Реактивная мощность

    Определение: Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях в цепи или реагирует на себя, называется Реактивная мощность .Реактивная мощность измеряется в киловольт-амперах, реактивная (кВАр) или мвар.

    Полная мощность

    Определение: Произведение среднеквадратичного значения напряжения и тока известно как Полная мощность . Эта мощность измеряется в кВА или МВА.

    Было замечено, что мощность потребляется только в сопротивлении. Чистая катушка индуктивности и чистый конденсатор не потребляют никакой энергии, поскольку в течение полупериода, какая бы мощность ни принималась от источника этими компонентами, та же самая мощность возвращается к источнику.Эта мощность, которая возвращается и течет в обоих направлениях цепи, называется реактивной мощностью. Эта реактивная мощность не выполняет никакой полезной работы в цепи.

    В чисто резистивной цепи ток находится в фазе с приложенным напряжением, тогда как в чисто индуктивной и емкостной цепи ток сдвинут по фазе на 90 градусов, то есть, если в цепи подключена индуктивная нагрузка, ток отстает от напряжения на 90 градусов, а если подключена емкостная нагрузка, ток опережает напряжение на 90 градусов.

    Следовательно, из всего вышеприведенного обсуждения можно сделать вывод, что ток , синфазный с напряжением, дает истинную или активную мощность , тогда как ток , сдвинутый по фазе на 90 градусов с напряжением, вносит вклад в реактивную мощность в цепи.

    Следовательно,

    • Истинная мощность = напряжение x ток в фазе с напряжением
    • Реактивная мощность = напряжение x ток не в фазе с напряжением

    Векторная диаграмма для индуктивной цепи показана ниже:

    Если взять за эталон напряжение V, то ток I отстает от напряжения V на угол ϕ.Ток I делится на две составляющие:

    • I Cos ϕ в фазе с напряжением В
    • I Sin ϕ, который на 90 градусов не совпадает по фазе с напряжением V

    Следовательно, следующее выражение, показанное ниже, дает активную, реактивную и полную мощность соответственно.

    • Активная мощность P = V x I cosϕ = V I cosϕ
    • Реактивная мощность P r или Q = V x I sinϕ = V I sinϕ
    • Полная мощность P a или S = ​​V x I = VI

    Активная составляющая текущей

    Составляющая тока, которая находится в фазе с напряжением цепи и вносит вклад в активную или истинную мощность схемы, называется активной составляющей или составляющей полной ватт или синфазной составляющей тока.

    Реактивная составляющая тока

    Составляющая тока, которая находится в квадратуре или на 90 градусов по фазе по отношению к напряжению схемы и вносит вклад в реактивную мощность схемы, называется реактивной составляющей тока.

    Активная, реактивная и полная мощность | Самое простое объяснение


    Инженер-электрик должен знать активную, реактивную и полную мощность.Но в большинстве случаев мы в конечном итоге запутались во всех этих силах. И, следовательно, если вы хотите получить кристально ясное объяснение активной, реактивной и полной мощности, я бы порекомендовал вам посмотреть это руководство.

    В этом руководстве мы узнаем о
    1. Мгновенная мощность
    2. Активная мощность
    3. Реактивная мощность
    4. Различие между активной и реактивной мощностью
    5. Полная мощность
    6. Коэффициент мощности

    В конце этого руководства мы также получим информацию о коэффициенте мощности, поэтому убедитесь, что вы дочитали до конца.Прежде чем мы начнем с объяснения, обратите внимание, что концепция активной, реактивной и полной мощности применима только для систем переменного тока . Концепция активной, реактивной и полной мощности не применима для систем постоянного тока.
    Чтобы понять, что такое активная, реактивная и полная мощность, мы сначала должны знать, что такое мгновенная мощность.


    Мгновенная мощность

    Чтобы понять мгновенную мощность, рассмотрим следующий пример. Активная нагрузка подключена к источнику переменного тока 230 В.

    Теперь предположим, что я хочу вычислить мощность в момент «t», и для этого мне нужно умножить напряжение и ток в момент «t». Это даст нам мощность в конкретный момент «t». Эта мощность называется мгновенной мощностью . Почему мгновенно? Потому что мы измерили его в конкретный момент.

    Эта мгновенная мощность может быть положительной или отрицательной. Теперь вы можете спросить, что такое положительная сила или отрицательная сила? Итак, давайте разберемся с концепцией положительной силы и отрицательной силы.

    Положительная мощность

    Мощность называется положительной мощностью, когда она течет от источника к нагрузке. В приведенном выше примере мощность является положительной, если она течет от источника 230 В переменного тока к нагрузке.

    Отрицательная мощность

    Когда сила перетекает от лорда к источнику, эта сила называется отрицательной силой. В приведенном выше примере мощность отрицательная, если она течет от нагрузки к источнику питания 230 В переменного тока.

    Теперь вопрос в том, как может передаваться мощность от нагрузки к источнику? И в каком случае это происходит? Мы увидим это через несколько минут.

    Перейти к содержанию


    Активная мощность (P)

    Чтобы понять активную мощность, снова рассмотрим схему, показанную ниже. В приведенной ниже схеме мы подключили источник переменного тока 230 В к чисто резистивной нагрузке.

    Как известно, в чисто резистивной цепи напряжение и ток совпадают по фазе. В фазе означает,

    • Напряжение и ток достигают своего положительного пика одновременно.
    • Они одновременно становятся нулевыми.
    • Также они достигают своего отрицательного пика одновременно.

    Если вы изобразите кривую напряжения и тока резистивной цепи, она будет выглядеть следующим образом.

    Чтобы вычислить мощность в этой схеме, вы можете в любой момент умножить напряжение и ток, и вы обнаружите, что результирующая мощность — это только положительная мощность.

    И такая мощность, которая всегда остается положительной, называется активной мощностью.

    Характеристики активной мощности

    1. Всегда положительный
    2. Не меняет своего направления
    3. Поток мощности всегда от источника к нагрузке
    4. Обозначается буквой «P» и измеряется в Вт

    Перейти к содержанию


    Реактивная мощность (Q)

    Чтобы понять, что такое реактивная мощность, в нашем примере мы заменим резистивную нагрузку чисто емкостной нагрузкой, как показано на рисунке ниже.

    Если вы нарисуете форму напряжения и тока для этой схемы, она будет выглядеть следующим образом.

    Как видите, ток имеет преимущество перед напряжением. Или просто ток опережает напряжение. Это указывает на то, что напряжение и ток в этой цепи не совпадают по фазе. Не в фазе означает,

    • Напряжение и ток не достигают своего положительного пика одновременно.
    • Они не достигают нулевого значения одновременно.
    • И они также не достигают своего отрицательного пика одновременно.

    Итак, если вы рассчитываете мощность в момент, показанный на рисунке ниже, вы получите положительную мощность, потому что и напряжение, и ток положительны.

    Если вы рассчитываете мощность в момент, показанный ниже, вы получите отрицательную мощность, потому что напряжение положительно, а ток отрицателен. Отрицательное умножение на положительное — Отрицательное .

    На что указывает эта отрицательная сила? Это говорит нам о том, что мощность течет от нагрузки к источнику.
    Если вы продолжите вычислять мощность в цепи, форма волны будет продолжаться.

    Эта мощность движется вперед и возвращается назад, как маятник, не выполняя никакой полезной работы в системе. И этот вид мощности называется реактивной мощностью.

    Конденсатор, катушка индуктивности и любое устройство без лайнера могут вводить / поглощать реактивную мощность в систему.

    Почему мощность течет от нагрузки к источнику?

    Когда питание положительное, конденсатор заряжается или накапливает в нем энергию.Когда мощность становится отрицательной, конденсатор разряжается или высвобождает накопленную энергию. И это причина того, почему мощность перетекает от нагрузки к источнику.

    Характеристики реактивной мощности

    1. Эта мощность может быть как положительной, так и отрицательной.
    2. Это только сила, которая движется вперед и назад, не выполняя никакой полезной работы.
    3. Обозначается буквой «Q» и измеряется в ВАР (вольт-ампер, реактивный).
    4. Конденсатор, индуктор и любое устройство без облицовки может вводить / поглощать реактивную мощность в систему

    Различие между активной и реактивной мощностью

    1. Мы не можем преобразовать активную мощность в реактивную, а реактивную мощность в активную.
    2. Активная мощность — это отдельная величина, а реактивная мощность — это отдельная величина.
    3. Обе силы создают нагрузку на линию передачи.
    4. Активная мощность производит тепло, механическую энергию, свет и т. Д.
    5. Реактивная мощность представляет собой только мощность, которая колеблется взад и вперед.

    Вы также можете посмотреть подробное руководство по разнице между активной и реактивной мощностью.

    Перейти к содержимому.


    Полная мощность (S)

    В системе у вас будут все типы нагрузок одновременно.У вас может быть резистивная нагрузка, вы также можете иметь индуктивную нагрузку или емкостную нагрузку или, возможно, комбинацию всех типов нагрузок. Рассмотрим приведенный ниже пример, в котором резистивная нагрузка и индуктивная нагрузка подключены к одному источнику.

    Резистивная нагрузка потребляет активную мощность, а индуктивная нагрузка потребляет реактивную мощность. Теперь мы не можем сказать, что схема потребляет активную мощность или реактивную мощность, потому что она потребляет обе мощности. Следовательно, нам нужно другое название для комбинации активной и реактивной мощности.Таким образом, такое сочетание обеих мощностей называется кажущейся мощностью.

    Сочетание активной мощности и реактивной мощности называется полной мощностью .

    Мы можем рассчитать полную мощность по

    Полная мощность обозначается буквой « S » и измеряется в ВА / кВА / МВА. Трансформаторы указаны в ВА / кВА / МВА.

    Перейти к содержимому.


    Коэффициент мощности

    Коэффициент мощности очень тесно связан с активной, реактивной и полной мощностью, поэтому я кратко изложу его здесь.Если вы хотите подробно узнать о коэффициенте мощности, у меня есть отдельный плейлист, который вы можете посмотреть здесь.

    Если вы попросите любого инженера-электрика определить коэффициент мощности, он / она скажет: «Коэффициент мощности — это угол между напряжением и током». Это может быть правильное определение, но это неправильный способ определения коэффициента мощности.
    Правильное определение коэффициента мощности:

    «Отношение активной мощности к полной мощности называется коэффициентом мощности».

    Когда кто-то говорит, что коэффициент мощности системы равен 0.8, что это значит? Это просто означает, что при 100% мощности 80% — это активная мощность, а 20% — реактивная мощность.

    Коэффициент мощности показывает, сколько активной мощности потребляет система / оборудование.

    Перейти к содержимому.

    промышленных клиентов сокращают расходы за счет повышения коэффициента мощности

    Низкий коэффициент мощности вызывает падение напряжения и потери энергии в системе, что приводит к необходимости увеличения размеров всех объектов, от электростанции до электрического щита.Повышая коэффициент мощности, вы можете снизить плату за потребление и повысить эффективность оборудования.

    ЧТО ТАКОЕ КОЭФФИЦИЕНТ МОЩНОСТИ?

    Коэффициент мощности — это отношение активной мощности к полной мощности. Поставляемая нами мощность называется полной мощностью (кВА). Полная мощность делится на активную мощность (кВт) и реактивную мощность (кВАр). Активная мощность обеспечивает энергию движения, тепла, света и звука. Реактивная мощность (индуктивная) используется для создания магнитных полей, необходимых для привода вращающегося оборудования, такого как двигатели, компрессоры и т. Д.

    Коэффициент мощности = Активная мощность (кВт) X 100 / Полная мощность (кВА)

    При установке конденсаторов составляющая реактивной мощности (кВАр) электросети будет уменьшаться, вызывая уменьшение составляющей полной мощности (кВА), тем самым улучшая коэффициент мощности.

    Пример:

    Заказчик «А» имеет груз со следующими характеристиками:

    Полная мощность = 100 кВА

    Активная мощность = 80 кВт

    Реактивная мощность = 60 кВАр

    Коэффициент мощности> = 80%

    Установка конденсаторов мощностью 30 кВАр снизит реактивную мощность, подаваемую коммунальным предприятием, до 30 кВАр, а полную мощность, подаваемую коммунальным предприятием, до 85.4 кВА. Коэффициент мощности, измеренный на электросчетчике, увеличивается до 80 кВт / 85 кВА> X 100 = 94%.

    Соотношение между активной мощностью (кВт), полной мощностью (кВА) и реактивной мощностью (кВАр) можно представить в виде треугольника:

    Что касается «индуктивных нагрузок», то это нагрузка, в которой используются магнитные поля. EG: двигатели, реле, соленоиды. Одно практическое правило заключается в том, что если он движется, это, вероятно, индуктивная нагрузка.

    Power используется и необходим для передачи реальной мощности, но не выполняет никакой реальной работы. То есть: мощность, используемая для создания магнитных полей во вращающемся оборудовании, таком как двигатели. Единица измерения реактивной мощности — вольт-ампер реактивной мощности (ВАР).

    Используется для выражения реактивной мощности в цепи. 1000 вольт-ампер, реактивная (VAR) = 1 киловольт-ампер, реактивная (кVAR).

    Обычно используется для выражения власти во всех формах, но зарезервирован для выражения реальной силы. 1000 Вт (Вт) = 1 киловатт (кВт).

    Используется для выражения общей нагрузки в цепи.1000 ВА = 1 кВА (киловольт-ампер).

    Электронное устройство, способное накапливать электрический заряд. Обычно они состоят из двух проводов, разделенных изоляционным материалом.

    Мощность, которая представляет собой комбинацию «активной мощности» и «реактивной мощности». Единица измерения полной мощности — вольт-амперы (ВА).

    Мощность, используемая для выполнения механических работ и управления резистивными нагрузками, такими как нагреватели и лампы накаливания. Единица измерения активной мощности — ватты (Вт).

    Плата за электроэнергию, включенную в ваш счет за пиковую нагрузку.Плата за потребление обычно рассчитывается исходя из пиковой мощности в кВт или кВА.

    Отношение реальной мощности, протекающей к нагрузке, к полной мощности в цепи.

    Активная, реактивная и полная мощность в цепях переменного тока

    Активная мощность:

    Если активное сопротивление (например, нагревательный элемент) подключено к цепи переменного тока, результирующие напряжение и ток совпадают по фазе (синяя и красная кривые на схеме ниже). Умножение связанных пар мгновенных значений напряжения и тока дает мгновенную мощность (зеленая кривая).

    Такая кривая мощности всегда положительна, потому что для активного сопротивления напряжение и ток всегда либо положительные, либо отрицательные. Положительная мощность передается от генератора к потребителю. Зеленые зоны отображают выполненную активную работу. Поскольку мощность имеет частоту в два раза превышающую частоту напряжения или тока, не может быть отображен вместе с током и напряжением на нормальной векторной диаграмме.

    Мощность переменного тока p ( t ) имеет пиковое значение p 0 = u 0 · i 0 и может быть преобразовано путем приравнивания областей под кривой в эквивалентную мощность постоянного тока , или активной мощности P .Активная мощность для активного сопротивления составляет половину пиковой мощности, т.е.

    Другими словами:

    Активная мощность активного сопротивления является произведением среднеквадратичного напряжения и среднеквадратичного тока.

    Реактивная мощность:

    Если чистое реактивное сопротивление, т. Е. Емкостное или индуктивное сопротивление, подключено к цепи переменного тока, сдвиг фазы j между током и напряжением составляет 90 °, ток опережает напряжение в случае емкости и отстает от напряжения в случай индуктивности (как показано на диаграмме ниже).Кривая мощности здесь симметрична относительно оси времени, так что положительная и отрицательная (серые) области компенсируют друг друга, и в целом активная мощность не потребляется. Отрицательные значения означают, что мощность возвращается от потребителя к генератору. В течение одного периода энергия дважды возвращается от катушки (потребителя) к генератору. Общая энергия постоянно колеблется между генератором и потребителем. В результате получается чистая потребляемая реактивная мощность индуктивного или емкостного характера в зависимости от используемого компонента.Реактивная мощность обозначается Q и выражается в единицах Var .

    Полная мощность:

    Если нагрузка, включающая компоненты активного и реактивного сопротивления, подключена к переменному напряжению, возникают компоненты активной и реактивной мощности. Схема ниже демонстрирует это в случае индуктивной нагрузки, ток и напряжение которой сдвинуты по фазе на 60 °. Кривая мощности здесь в основном расположена выше оси времени.Серые области частично компенсируют друг друга и представляют компонент реактивной мощности, а зеленые области представляют активную мощность (или выполненную активную работу).

    Умножение измеренных значений напряжения и сдвинутого по фазе тока дает полную мощность S , которая выражается в вольт-амперах (ВА):

    Кажущаяся мощность — это , а не как мера преобразования электрической энергии в цепи, вместо этого она служит просто вычисляемой переменной, состоящей из активной и реактивной мощности.Соответственно, активная мощность P , показанная измерителем мощности (ваттметром) при наличии фазового сдвига между током и напряжением, всегда меньше, чем кажущаяся мощность S , рассчитанная на основе действующего значения тока и напряжения.

    Что такое коэффициент мощности? — Пауэрсайд

    Представьте, что вы заказываете еду в новом ресторане в городе. Вы садитесь и выберите что-нибудь из меню, и официант принесет вам тарелку с едой. Если еда отличная, и вы едите все, это эффективный способ утолить голод.Однако он становится менее эффективным, если вам не нравится часть еды или это несъедобно. Эта часть еды еще приготовлена, приготовлена, и подается вам, но в конечном итоге возвращается на кухню несъеденным. Ты мог бы рассчитать пропорцию съеденной еды по сравнению с размером общее блюдо, которое расскажет вам, насколько эффективен этот ресторан при встрече твои нужды.

    В общем, если учесть долю любого расходный материал, соответствующий потребностям, по сравнению с той пропорцией, которая вместо этого возвращен к источнику, неиспользованный, у вас есть мера того, насколько эффективно система отвечает что нужно.Когда вы применяете это к электрической цепи, где расходный материал электроэнергии, мерой эффективности является коэффициент мощности.

    Эффективная электрическая цепь — это такая цепь, в которой нагрузка использует большую часть подаваемая мощность для работы. В то время как неэффективная электрическая цепь — это та, которая потребляет электрические власть, но использует ее часть для непродуктивных вещей. Во время каждого цикл переменного тока, схема забирает эту мощность и возвращает ее в источник питания. Сила Фактор — это соотношение электроэнергии, потребляемой нагрузкой, по сравнению с к общему количеству мощности, подаваемой в цепь.Этот расчет говорит вы насколько эффективны электрические цепь подает питание для выполнения работы.

    Знай свои силы

    ·

    Активная мощность

    Активно сила — это имя, данное мощности, потребляемой электрической цепью, выполняющей что-то полезное, например, питание уличные фонари или работающая производственная линия. Измерение активной мощности выражается в ваттах (Вт) или кратных им величинах, например киловатты (кВт) и мегаватты (МВт).Устройство, работающее от электроэнергии, имеет рейтинг на основе активных потребляемая мощность, такая как электрическая лампочка мощностью 60 Вт или дуговая печь мощностью 500 кВт.

    ·

    Реактивная мощность

    Реактивный мощность — это термин, используемый для описания энергии, потребляемой электрической схемой для выполнения непродуктивных действий, например зарядка конденсатора или создание магнитного поля в асинхронном двигателе. Его единица измерения реактивная вольт-амперная (ВАР). В электрической цепи, устройства, производящие или потребляющие реактивную мощности, такие как шунтирующие реакторы и конденсаторы, имеют рейтинг VAR.

    ·

    Полная мощность

    Видимо мощность — это общая мощность, проходящая через электрическую цепь, как активная, так и реактивная. Это важная ценность для рассмотрения при проектировании и расчете электрической схемы. Измерение полной мощности — вольт-ампер (ВА). Вы часто будете видеть устройства используется для выработки или преобразования электроэнергии номинальной мощностью в кВА или МВА. Примеры может включать трансформатор на 50 кВА или дизельный генератор на 1000 кВА.

    Как вы измеряете коэффициент мощности?

    Вы можете подключить устройства мониторинга к критическим точкам в электрической цепи, чтобы измерить напряжение и ток. Эти места включают выходы генератора, трансформатор соединения, а также большие, прерывистые или непредсказуемые нагрузки. Такой мониторинг устройство может использовать измеренные значения напряжения и тока для расчета активных, реактивная, полная мощность, и коэффициент мощности. Более современные устройства, такие как анализатор мощности PQube 3, могут записывать эти данные с течением времени и формировать регулярные отчеты.

    Ведущий и отстающий коэффициент мощности

    Вернувшись в ресторан, в идеальном мире официант обслужит основное блюдо и гарниры одновременно. Это самый эффективный метод доставки еды. Если гарниры приходят на ваш стол очень рано или поздно, это снизит вашу удовлетворенность обслуживанием. Чем раньше сторона блюда свинцовые, или чем позже они отстают от основного блюда, тем менее приемлемо ситуация становится.Примерно так же и переменный ток в электрической цепи может опережать, отставать или соответствовать напряжению, и это влияет на коэффициент мощности.

    В идеальном электрическом цепь, где сопротивление нагрузки только резистивное, ток и напряжение проходит через нагрузку одновременно. Когда это происходит, полная мощность равна к активной мощности а коэффициент мощности равен один. Это также известно как единичный коэффициент мощности. Власть Фактор также иногда описывается как опережающий или запаздывающий.С ведущий коэффициент мощности, ток опережает напряжение, а схема вырабатывает реактивную мощность. Это до к сопротивлению электрического цепь в основном емкостная, например, в подземных кабелях. С отстающий коэффициент мощности, наоборот, ток отстает от напряжения. Эта электрическая схема потребляемая реактивная мощность, вызвано преимущественно индуктивной нагрузкой, такой как асинхронный двигатель.

    Таким образом, мощность Коэффициент просто выражается как отношение активной мощности к полной мощности.Чем ближе это соотношение к единице, более очевидное мощность активна мощность, подаваемая на нагрузку, и тем эффективнее электрическая цепь является. Чем больше коэффициент мощности опережает или отстает, чем больше отклонение от единичного коэффициента мощности, и тем больше мощность требования к электрическому схема.

    Коэффициент мощности

    — обзор

    2.1.28 Мощность и коэффициент мощности переменного тока схемы

    Обозначив фазовый угол между напряжением и током как ϕ, можно показать 2 , что средняя мощность составляет

    В терминах r.РС. значения:

    , где cos (ϕ) называется «коэффициентом мощности».

    Коэффициент мощности — важный параметр при работе с электрическими трансформаторами и генераторами. Все такие машины рассчитаны на киловольт-амперы (кВА), которые являются мерой допустимой нагрузки по току для данного приложенного напряжения. Потребляемая мощность зависит как от номинальной мощности в кВА, так и от коэффициента мощности нагрузки. На рисунке 2.17 показана взаимосвязь между кВА, киловаттами (кВт) и коэффициентом мощности, иногда называемая треугольником мощности.Нетрудно заметить, что

    Рисунок 2.17. Треугольник мощности

    и

    , где кВА R — реактивная мощность. Таким образом, зная номинальную мощность в кВА и коэффициент мощности ряда различных нагрузок, можно определить требования к мощности от общего источника питания.

    При указании коэффициента мощности в практических приложениях обычно указывается фаза тока по отношению к напряжению. Для индуктивной нагрузки ток отстает от напряжения, и говорят, что коэффициент мощности отстает.Для преимущественно емкостной нагрузки ток опережает напряжение, а коэффициент мощности опережает.

    Если питание подается, скажем, от генератора переменного тока номиналом 400 В и 1000 А, то это максимальное напряжение и ток, которые машина может выдерживать без перегрева. Разность фаз между напряжением и током полностью зависит от нагрузки. Таким образом, если коэффициент мощности нагрузки равен единице, генератор переменного тока мощностью 400 кВА может обеспечить нагрузку мощностью 400 кВт. Пренебрегая потерями, первичный двигатель, приводящий в действие генератор, также должен обеспечивать мощность 400 кВт.Если же коэффициент мощности нагрузки равен 0,5, то подаваемая мощность будет только 200 кВт. Это означает, что хотя генератор будет работать на номинальной мощности в кВА, первичный двигатель, приводящий в действие генератор, будет работать только на половину своей мощности.

    Альтернативный способ взглянуть на это явление — рассмотреть нагрузку, скажем, 100 кВт с запаздывающим коэффициентом мощности 0,75. Если напряжение питания составляет 50 В, то требуемый ток из уравнения (2.55) равен 2,67 А. Если, однако, коэффициент мощности нагрузки должен быть увеличен до единицы, то требуемый ток будет уменьшен до 2 А. .Это означает, что токопроводящие кабели при подаче пониженного тока могут иметь соответственно уменьшенную площадь поперечного сечения.

    Как правило, размер электрической системы, включая линии передачи, распределительное устройство и трансформаторы, зависит от величины тока. Поэтому экономически целесообразно минимизировать ток. В качестве дополнительного стимула для промышленных потребителей органы электроснабжения обычно используют двухставочную систему тарифов. Он состоит из фиксированного тарифа, зависящего от номинальной мощности максимального потребления в кВА, и текущего заряда за единицу потребляемой киловатт в час.

    По этим причинам полезно попытаться увеличить коэффициент мощности так, чтобы он был близок к единице (но не совсем). Фактически, следует избегать единичного коэффициента мощности, поскольку он вызывает состояние резонанса (см. Раздел 2.1.29). На практике конденсаторы, соединенные параллельно, часто используются для улучшения коэффициента мощности преимущественно индуктивных нагрузок, таких как электродвигатели. Для крупномасштабных энергосистем используется отдельная установка с опережением фазы.

    Реальная, реактивная комплексная и полная мощность


    Полная мощность — это векторная сумма реальной и реактивной мощности

    Инженеры используют следующие термины для описания потока энергии в системе (и назначают каждому из них разные единицы, чтобы различать их):

    • Реальная мощность ( P ) [Единица: Вт]
    • Реактивная мощность ( Q ) [Единица: Вар]
    • Комплексная мощность ( S )
    • Полная мощность (| S |) [Единица: ВА]: i.е. абсолютное значение комплексной мощности S .

    P — активная мощность, Q — реактивная мощность (в данном случае отрицательная), S — комплексная мощность, а длина S — полная мощность.

    Единицей измерения всех форм мощности является Вт (обозначение: Вт) . Однако этот блок обычно зарезервирован для компонента реальной мощности. Полная мощность обычно выражается в вольт-амперах (ВА), поскольку это простое произведение среднеквадратичного напряжения и действующего тока.Блоку реактивной мощности присвоено специальное название «VAR» , что означает реактивная мощность в вольт-амперах (поскольку поток реактивной мощности не передает полезную энергию нагрузке, ее иногда называют мощностью без мощности). Обратите внимание, что не имеет смысла назначать один блок для комплексной мощности, потому что это комплексное число, и поэтому оно определяется как пара из двух блоков: Вт и VAR.

    Понимание взаимосвязи между этими тремя величинами лежит в основе понимания энергетики.Математические отношения между ними могут быть представлены векторами или выражены с помощью комплексных чисел
    (где j — мнимая единица).

    Комплексное значение

    S упоминается как комплексная мощность.

    Рассмотрим идеальную цепь переменного тока, состоящую из источника и обобщенной нагрузки, в которой и ток, и напряжение синусоидальны. Если нагрузка является чисто резистивной, две величины меняют полярность одновременно, направление потока энергии не меняется, и течет только реальная мощность.Если нагрузка чисто реактивная, то напряжение и ток сдвинуты по фазе на 90 градусов и нет полезного потока мощности. Эта энергия, текущая вперед и назад, известна как реактивная мощность.

    Если конденсатор и катушка индуктивности размещены параллельно, то токи, протекающие через катушку индуктивности и конденсатор, противоположны и имеют тенденцию компенсироваться, а не складываться. Обычно считается, что конденсаторы генерируют реактивную мощность, а катушки индуктивности — ее потребляют. Это основной механизм управления коэффициентом мощности при передаче электроэнергии; конденсаторы (или катушки индуктивности) вставляются в цепь для частичного гашения реактивной мощности нагрузки.Практическая нагрузка будет иметь резистивную, индуктивную и емкостную части, поэтому к нагрузке будет поступать как реальная, так и реактивная мощность.
    Полная мощность — это произведение напряжения и тока. Полная мощность удобна для определения размеров оборудования или проводки. Однако сложение полной мощности для двух нагрузок не даст точной полной полной мощности, если они не имеют одинакового смещения между током и напряжением.

    Коэффициент мощности:

    Коэффициент мощности измеряет эффективность системы питания переменного тока.Коэффициент мощности — это реальная мощность на единицу полной мощности. (pf = Wh / VAh) Коэффициент мощности, равный единице, является идеальным, а 99% — хорошим. Если формы сигналов являются чисто синусоидальными, коэффициент мощности представляет собой косинус фазового угла (f) между формами синусоидальных сигналов тока и напряжения. По этой причине в технических паспортах оборудования и паспортных табличках коэффициент мощности часто сокращается до «cosf».
    Коэффициент мощности равен 1, когда напряжение и ток совпадают по фазе, и равен нулю, когда ток опережает или отстает от напряжения на 90 градусов.Коэффициенты мощности обычно указываются как «опережающие» или «запаздывающие», чтобы показать знак фазового угла, где опережение указывает на отрицательный знак. Для двух систем, передающих одинаковое количество реальной мощности, система с более низким коэффициентом мощности будет иметь более высокие циркулирующие токи из-за энергии, которая возвращается к источнику из накопителя энергии в нагрузке. Эти более высокие токи в практической системе приведут к более высоким потерям и уменьшат общую эффективность передачи. Схема с более низким коэффициентом мощности будет иметь более высокую кажущуюся мощность и более высокие потери при том же количестве передаваемой активной мощности.
    Чисто емкостные цепи вызывают реактивную мощность, при этом форма волны тока опережает волну напряжения на 90 градусов, в то время как чисто индуктивные цепи вызывают реактивную мощность, при этом форма волны тока отстает от формы волны напряжения на 90 градусов. В результате емкостные и индуктивные элементы схемы имеют тенденцию компенсировать друг друга.

    Поток реактивной мощности:

    При передаче и распределении энергии значительные усилия прилагаются для управления потоком реактивной мощности. Обычно это делается автоматически путем включения и выключения катушек индуктивности или конденсаторных батарей, регулировки возбуждения генератора и другими способами.Розничные продавцы электроэнергии могут использовать счетчики электроэнергии, измеряющие реактивную мощность, для финансового наказания потребителей с нагрузками с низким коэффициентом мощности. Это особенно актуально для клиентов, работающих с высокоиндуктивными нагрузками, такими как двигатели на водонасосных станциях.

    Intelligent Battery:

    Выходной ток зависит от состояния батареи. Интеллектуальное зарядное устройство может контролировать напряжение, температуру и / или время зарядки аккумулятора, чтобы определить оптимальный ток заряда в этот момент.Заряд прекращается, когда сочетание напряжения, температуры и / или времени указывает на то, что аккумулятор полностью заряжен.

    Для никель-кадмиевых и никель-металлгидридных аккумуляторов напряжение на аккумуляторе медленно увеличивается во время процесса зарядки, пока аккумулятор не будет полностью заряжен. После этого напряжение уменьшается до , что указывает интеллектуальному зарядному устройству, что аккумулятор полностью заряжен. Такие зарядные устройства часто обозначаются как зарядное устройство? V или «дельта-V», что указывает на то, что они отслеживают изменение напряжения.

    Типичное интеллектуальное зарядное устройство быстро заряжает аккумулятор примерно до 85% от его максимальной емкости менее чем за час, а затем переключается на непрерывную зарядку, которая занимает несколько часов, чтобы полностью зарядить аккумулятор.

    Вольт-ампер:

    Вольт-ампер в электрических терминах означает количество полной мощности в цепи переменного тока, равное току в один ампер при ЭДС одного вольт. Это эквивалент ватт для безреактивных цепей.
    • 10 кВ · A = мощность 10 000 ватт (где префикс SI k равен килограммам)
    • 10 MV · A = мощность 10 000 000 ватт (где M равняется мега)

    В то время как вольт-ампер и ватт эквивалентны по размерам могут найти продукты, рассчитанные как в ВА, так и в ваттах с разными числами.Это обычная практика для ИБП (источников бесперебойного питания). Номинальная мощность в ВА — это кажущаяся мощность, которую ИБП способен производить, а номинальная мощность в ваттах — это реальная мощность (или истинная мощность), которую он способен производить, в отличие от реактивной мощности. Реактивная мощность возникает из-за влияния емкости и индуктивности компонентов нагрузки, питаемой от цепи переменного тока. В чисто резистивной нагрузке (например, лампы накаливания) кажущаяся мощность равна истинной мощности, а количество используемых ВА и ватт будет эквивалентным.Однако в более сложных нагрузках, таких как компьютеры (для питания которых предназначены ИБП), полная потребляемая мощность (ВА) будет больше, чем истинная потребляемая мощность (Вт).

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *