Источник Бэттэрис | Федеральный дистрибьютор источников питания
ФДИП ООО «Источник Бэттэрис» осуществляет оптовые продажи батареек, аккумуляторов, блоков питания, зарядных устройств, электротоваров, фонарей, ламп, беспроводных звонков, бытовой техники и других сопутствующих товаров.
Компания “Источник Бэттэрис” федеральный дистрибьютор источников питания с 1994 года.
В постоянном наличии на складе компании самый полный ассортимент продукции мировых лидеров рынка элементов питания — DURACELL, Energizer, Panasonic, VARTA, GP Batteries, лидеров российского рынка специализированных элементов – ROBITON, SAFT, Renata, Panasonic Eneloop, а также еще 15 торговых марок, что предоставляет партнерам “Источник Бэттэрис” возможность выбора из более чем 1200 наименований источников тока. В ассортименте представлены как общераспространенные, так и специализированные первичные — щелочные (LR), солевые (R), литий-диоксид марганцевые (CR), литий-тионилхлоридные (ER), литий-дисульфид железные (FR), и вторичные — никель-металл гидридные (Ni-MH), никель-кадмиевые (Ni-Cd), литий-ионные (Li-ion), нанофосфатные (Li-FePO4), литий-полимерные (Li-po) и свинцово-кислотные (VRLA) элементы питания всех типоразмеров.
Полный ассортимент компании содержит более 3300 готовых к отгрузке наименований от 76 производителей.
ООО “Источник Бэттэрис” — эксклюзивный дистрибьютор торговых марок ANSMANN, ROBITON и GARIN. Продукция этих марок поставляется только через “Источник Бэттэрис”.
ROBITON – специалист в области питания современных электроприборов и радиоаппаратуры, в том числе узкоспециализированной и редкой. В ассортименте ROBITON представлен широкий выбор батареек и аккумуляторов, аккумуляторных сборок, блоков питания, зарядных устройств, светодиодных ламп, измерительных приборов и устройств энергосбережения, авто-аксессуаров и многих других категорий. ROBITON – российская торговая марка, что позволяет разрабатывать ее ассортимент согласно актуальным требованиям потребителей России и СНГ и оперативно реагировать на рыночные тенденции. Это качественная продукция по максимально конкурентной цене.
ANSMANN – лидер рынка высокотехнологичных аккумуляторов и зарядных устройств Германии и Северной Европы.
Ассортимент т.м. GARIN представлен фонарями, беспроводными звонками, электронными термометрами, электронными безменами и алкотестерами и другой потребительской электроникой.
ООО “Источник Бэттэрис” предлагает максимально комфортные условия сотрудничества для своих клиентов – юридических лиц и индивидуальных предпринимателей. Мы постоянно разрабатываем и предлагаем нашим потребителям антикризисные линейки продуктов, специальные предложения и различные акции для поддержания и развития совместного бизнеса.
Если вы хотите стать нашим партнером, пожалуйста, ознакомьтесь с условиями работы.
Доставка по Москве и Московской области осуществляется на следующий рабочий день. При оформлении заказа в офисе компании его можно забрать в тот же день с нашего склада (склад и офис расположены в г. Москва по адресу Шоссе Энтузиастов, д. 56).
DURACELL
Ведущий мировой производитель высокоэффективных щелочных батарей. Батарейки DURACELL представлены во многих странах мира, это самая популярная марка батареек. На сегодня батарейки DURACELL Turbo Max являются наиболее мощными батарейками в щелочном сегменте среди всех представленных на рынке!
ROBITON
С 2004 года поставляет на рынок РФ источники питания и сейчас является торговой маркой с самым большим ассортиментом. В постоянном наличии на складе более 300 наименований батареек, аккумуляторов, зарядных устройств, батарейных отсеков, контейнеров для элементов питания, адаптеров и тестеров. Для упаковки элементов питания используются блистеры, шринки, боксы, пакеты. Преимущества ROBITON – минимальные цены за единицу энергии, высокое качество, подтвержденное тестами, спецификации и техническая поддержка на официальном сайте. Вся продукция ROBITON адаптирована для использования в РФ.
Energizer
Один из крупнейших в мире производителей элементов питания. Разрабатывает и выпускает батарейки для всех сегментов рынка. Широко известны литиевые батарейки Energizer. Литиевые батарейки Energizer совершенны в технологическом отношении, они имеют самый долгий в мире срок службы – 15 лет и идеальны для приборов с высоким потреблением энергии.
Panasonic
Замыкает тройку лидеров на российском рынке элементов питания. Миллионы людей ежедневно используют батарейки Panasonic. Мы, являясь федеральным дистрибьютором источников питания, предлагаем батарейки Panasonic оптом, а также другие элементы питания Panasonic оптом.
VARTA
Также является одним из крупнейших производителей портативных источников питания в мире. VARTA предлагает элементы питания как для современных высокотехнологичных устройств, так и устройств с низким потреблением энергии. Четкая сегментация по каждой категории элементов питания VARTA.
ANSMANN
Лидер Германии и Северной Европы по производству высококачественных первичных и перезаряжаемых элементов питания в самом широком ассортименте. Производство всех элементов питания ANSMANN, как стандартных, так и специализированных — дисковых и пуговичных цинково-воздушных, щелочных и литиевых, сертифицировано по последним международным стандартам качества и отвечает регламентам Европейского Союза.
GP Batteries
Компания, за кратчайший срок вошедшая в пятерку мировых лидеров в сфере производства элементов питания. Батарейки GP Batteries присутствуют на российском рынке уже более 20 лет и стали неотъемлемой его частью. Источник Бэттэрис, как федеральный дистрибьютор источников питания, предлагает широкий ассортимент батареек GP Batteries оптом на самых выгодных условиях.
Химические источники тока.
Обозначение на схеме и устройство химических источников тока
К химическим источникам тока причисляют гальванические элементы и аккумуляторы. Есть и другие химические источники тока, но они менее распространены. В обиходе гальванический элемент получил название батарейка. Это не совсем верное определение, так как батарейкой можно назвать несколько отдельных гальванических элементов соединённых вместе – это и есть батарея питания или батарейка.
Узнайте подробнее о правильном соединении элементов питания.
На принципиальных схемах гальванический элемент обозначается так.
Так обозначают один гальванический элемент или один элемент аккумулятора.
Но поскольку номинальное напряжение на одном гальваническом элементе обычно не более 1,5 вольта, их соединяют в батареи питания. Батарея питания на принципиальной схеме обозначается вот так.
Здесь показано, что батарея питания состоит из двух отдельных гальванических элементов. Общее напряжение на полюсах этой составной батареи — 3 вольта из расчёта, что каждый из элементов имеет на полюсах напряжение 1,5 вольта. Также на схемах можно встретить и такое обозначение.
Это тоже условное изображение батареи питания или батарейки на принципиальной схеме, только здесь не уточняется, сколько именно гальванических элементов используется в батарее, а указано лишь общее напряжение на полюсах батареи.
Одиночный аккумуляторный элемент обозначается на схемах так же, как и отдельный гальванический элемент. Номинальное напряжение одного аккумуляторного элемента обычно составляет около 1,25 вольт. Чтобы получить аккумулятор с большим напряжением аккумуляторные элементы соединяют вместе – получается аккумуляторная батарея или просто аккумулятор. Обозначение аккумуляторной батареи на схемах такое же, как и батареи, составленной из гальванических элементов.
Чем гальванический элемент отличается от аккумулятора?
Дело в том, что гальванический элемент сам является источником постоянного тока, который образуется за счёт необратимой химической реакции. Гальванический элемент причисляют к первичным источникам тока.
Аккумулятор является так называемым вторичным источником тока. Почему? Потому, что перед тем, как использовать аккумулятор, его нужно предварительно зарядить от источника постоянного тока — зарядника. Только после полной зарядки аккумулятор сможет питать электронное устройство. Отличительным качеством аккумуляторов является то, что их можно заряжать и разряжать много раз. В отличие от аккумулятора, гальваническая батарея питания после своего полного разряда не может быть использована повторно.
Какие существуют батарейки?
Наибольшее распространение в настоящее время получили щелочные батареи питания. Их ещё называют алкалиновыми – производное от английского слова
Работа щелочной батарейки основана на окислительно-восстановительной химической реакции между цинком и диоксидом марганца. Результатом, а точнее полезным продуктом этой реакции является электрический постоянный ток и тепло, которое не используется. Электрическая ёмкость щелочной батарейки составлет около 1700 — 3000 мАч. По величине своей ёмкости, щелочные батарейки лидируют по сравнению с солевыми батарейками, электроёмкость которых меньше и составляет 550 — 1100 мАч.
Щелочная батарейка устроена следующим образом. Взглянем на рисунок.
Корпусом элемента является никелированный стальной стакан. Он же является плюсовым контактом батарейки «+». Активная масса представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь порошка цинка (Zn) и густого щелочного электролита. Электролитом обычно служит раствор гидроксида калия (KOH). Анодная паста отделена от активной массы сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Также сепаратор пропитан электролитом.
Отрицательный потенциал снимается с латунного стержня, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «—».
Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. В толще прокладки имеется защитный клапан или по-другому предохранительная мембрана. Защитный клапан служат для того, чтобы при чрезмерном давлении газа сработать и выпустить его наружу. Это предотвращает взрыв щелочного элемента, но и приводит к его разгерметизации. Как правило, разгерметизация приводит к течи электролита.
Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Он может вызвать коррозию контактов. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.
Как работает щелочной элемент.
Для начала, маленькое отступление…
Как вы заметили, почему то анодная паста соединяется с помощью токосъёмника с отрицательным контактом элемента – стальной тарелкой. А ведь анод – это «+». Получается нестыковочка…
В чём тут дело? А дело в том, что в электронике есть один каламбур. По умолчанию, за направление тока в электрической цепи считается направление от плюса (анода) к минусу (катоду) – так повелось ещё с тех времён, когда электроника ещё зарождалась.
Но ведь электрический ток, как известно, это упорядоченное движение электронов, которые имеют отрицательный заряд. И поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. Именно поэтому образуется эта нестыковка, которая порой вводит начинающих радиолюбителей в ступор.
В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления. Так вот в щелочной батарейке (и не только) на аноде в результате окисления образуется избыток электронов. То есть по сути – это катод, «минус». Но, как уже говорилось, в электрохимии всё наоборот. Итак, электроны вырабатываются анодной пастой – смесью цинкового порошка (Zn) и густого электролита (раствора KOH).
Катодом же считается электрод, где происходит реакция восстановления. Далее электроны, которые были получены в результате реакции окисления, проходят по электрической цепи электронного прибора, и возвращаются опять в батарейку, но уже на катод, где эти электроны используются для восстановительной химической реакции. Катод – это диоксид марганца. Токоприёмником катода служит никелированный стальной стакан, который контактирует с активной массой – диоксидом марганца (MnO2).
Вот такая игра в наоборот. Напомню ещё раз, что в электронике за направление тока в цепи считается направление от плюса-«анода» к минусу-«катоду». В электрохимии всё наоборот. С этим и связаны особенности в названии реагентов химического источника тока.
Можно ли заряжать батарейки?
Также часто можно слышать вопрос: «Можно ли заряжать батарейки?» Ответим: «Лучше не стоит». Дело в том, что для вырабатывания электрической энергии в батарейках используется необратимая химическая реакция. Поэтому батарейка и является первичным источникам тока.
А вот в аккумуляторах используется обратимая химическая реакция, которая позволяет заряжать и разряжать их множество раз. Поэтому аккумуляторы и называют вторичными источниками тока.
Несмотря на это, известно, что щелочные элементы допускают перезарядку, т.е. их можно зарядить и использовать повторно. Но такие, перезаряжаемые щелочные элементы имеют свою особую конструкцию. Также стоит отметить, что даже такие элементы нельзя перезаряжать много раз, обычно не более 25. В широкой продаже такие щелочные элементы не встречаются. Их маркируют как Rechargeable Alkaline Manganese.
Из всего этого следует, что заряжать обычные щелочные батарейки категорически не стоит. Такие эксперименты могут завершиться взрывом батарейки и разбрызгиванием электролита. А это не есть гуд +опасно для здоровья .
Чтобы замедлить химическую реакцию в щелочном элементе и, тем самым, продлить срок её хранения и снизить саморазряд батареи, в них раньше добавляли кадмий и ртуть. Эти вещества замедляли химическую реакцию, и цинк окислялся медленнее. Но, из-за токсичности ртути и кадмия их сейчас не используют, а применяют другие, менее вредные ингибиторы.
На многих батарейках можно даже увидеть надпись – 0% кадмия и ртути или 0% Hg & Cd. Это своеобразный маркетинговый ход, как бы намекающий на то, что данные батарейки безопасны.
Если вы с успехом дошли до этих строк, то теперь вас можно поздравить, ведь теперь вы знаете, как устроена и работает щелочная батарейка. И поэтому её и не обязательно разбирать . Кроме щелочных элементов питания существуют и другие, но об их устройстве мы расскажем в другой раз.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Электрический аккумулятор — Википедия
Зарядное устройство «Duracell», для заряжания как аккумуляторов типоразмеров AA и AAA (видны пружинные прижимы для них), так и аккумуляторные батареи типа «Крона». Во время зарядки горят индикаторыЭлектри́ческий аккумуля́тор — химический источник тока, источник ЭДС многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах.
Термин «аккумулятор» используется для обозначения отдельного элемента: например, аккумулятор, аккумуляторная банка, аккумуляторная ячейка. Но, разговорной речи на бытовом уровне может также применяться в отношении нескольких отдельных элементов, соединённых последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока) друг с другом, то есть для обозначения аккумуляторной батареи.
Первый прообраз аккумулятора, который, в отличие от батареи Алессандро Вольты, можно было многократно заряжать, был создан в 1803 году Иоганном Вильгельмом Риттером. Его аккумуляторная батарея представляла собой столб из пятидесяти медных кружочков, между которыми было проложено влажное сукно. После пропускания через данное устройство тока от вольтова столба оно само начинало вести себя как источник электричества[1].
Принцип действия аккумулятора основан на обратимости химической реакции. Работоспособность аккумулятора может быть восстановлена путём заряда, то есть пропусканием электрического тока в направлении, обратном направлению тока при разряде. Несколько аккумуляторов, объединённых в одну электрическую цепь, составляют аккумуля́торную батаре́ю.
Свинцово-кислотный аккумулятор[править | править код]
Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в растворе серной кислоты.
Химическая реакция (слева направо — разряд, справа налево — заряд):
- Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}}
- PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}
Литий-ионный аккумулятор[править | править код]
Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанными электролитом пористыми сепараторами. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который внедряется (интеркалируется) в кристаллическую решетку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи (например: в графит с образованием LiC6, оксиды (LiMO2) и соли (LiMRON) металла).
Алюминий-ионный аккумулятор состоит из металлического алюминиевого анода, катода из графита в виде пены и жидкого ионного невоспламеняющегося электролита. Батарея работает по принципу электрохимического осаждения: происходит растворение алюминия на аноде, далее в среде жидкого электролита анионы хлоралюмината интеркалируют в графит. Количество возможных перезарядок батареи — более 7,5 тыс. циклов без потери мощности[2][3].
Ёмкость аккумулятора[править | править код]
За ёмкость аккумулятора чаще всего принимают количество электричества равное 1 Кл, при силе тока 1 А в течение 1 с, (при переводе времени в часы получаем 1 А*ч=3600 Кл). Однако принимают, а не измеряют. Существует распространенное заблуждение, что ёмкость аккумулятора измеряется в А*ч, это не совсем так, т. к. в 1 А*с=1 Кл или 1 А*ч=3600 Кл измеряется количество электричества или электрический заряд; по формуле Q= I*t, где Q -количество электричества или электрический заряд, I — сила тока, t — время протекания электрического тока. Например, обозначение «12 В на 55 А*ч» означает, что аккумулятор выдаёт количество электричества 198 кКл (килокулон) по какому-либо контуру, при токе разряда 55 А за 1 ч (3600 с) до порогового напряжения 10,8 В. Расчёт показывает, что при токе разряда в 255 А аккумулятор разрядится за 12,9 минут. Как видно 55 А*ч — это не ёмкость (электрическая ёмкость измеряется в Фарадах, 1 Ф= 1 Кл/В). Поэтому на аккумуляторе написано количество электричества Q, которое он выдаёт при определённом токе разряда и определённом времени его прохождения.[источник не указан 1064 дня]
Плотность энергии[править | править код]
Плотность энергии — количество энергии на единицу объёма или единицу веса аккумулятора (см. ст. Плотность энергии).
Саморазряд[править | править код]
Саморазряд — это потеря аккумулятором заряда после полной зарядки при отсутствии нагрузки. Саморазряд проявляется по-разному у разных типов аккумуляторов, но всегда максимален в первые часы после заряда, а после — замедляется.
Для Ni-Cd аккумуляторов считают допустимым не более 10 % саморазряда за первые 24 часа после проведения зарядки. Для Ni-MH саморазряд чуть меньше. У Li-ion он пренебрежимо мал и значительно себя проявляет только в течение нескольких месяцев.
В свинцово-кислотных герметичных аккумуляторах саморазряд составляет около 40 % за 1 год хранения при 20°С, 15 % — при 5°С. Если температуры хранения более высокие, то саморазряд возрастает: батареи при 40°С теряют ёмкости 40 % всего за 4-5 месяцев.
Температурный режим[править | править код]
Следует беречь аккумуляторы от огня и воды, чрезмерного нагревания и охлаждения, резких перепадов температур.
Не следует использовать аккумуляторы при температурах выше +50°С и ниже −25°С. При эксплуатации аккумулятора в условиях «холодной зимы» рекомендуется его снимать и хранить в тёплом помещении. Нарушение температурного режима может привести к сокращению срока службы или потере работоспособности.
Тип аккумулятора[править | править код]
Тип аккумулятора определяется используемыми материалами. Различают следующие:
- Cn-Po — Графен-полимерный аккумулятор.
- La-Ft — лантан-фторидный аккумулятор
- Li-Ion — литий-ионный аккумулятор (3,2-4,2 V), общее обозначение для всех литиевых аккумуляторов
- Li-Co — литий-кобальтовый аккумулятор, (3,6 V), на базе LiCoO2, технология в процессе освоения
- Li-Po — литий-полимерный аккумулятор (3,7 V), полимер в качестве электролита
- Li-Ft — литий-фторный аккумулятор
- Li-Mn — литий-марганцевый аккумулятор (3,6 V) на базе LiMn2O4
- LiFeS — литий-железно-сульфидный аккумулятор (1,35 V)[источник не указан 663 дня]
- LiFeP или LFP — Литий-железно-фосфатный аккумулятор (3,3 V) на базе LiFePO4
- LiFeYPO4 — литий-железо-иттрий-фосфатный (Добавка иттрия для улучшения свойств)
- Li-Ti — литий-титанатный аккумулятор (3,2 V) на базе Li4Ti5О12
- Li-Cl — литий-хлорный аккумулятор (3,99 V)
- Li-S — литий-серный аккумулятор (2,2 V)
- LMPo — литий-металл-полимерный аккумулятор
- Fe-air — железо-воздушный аккумулятор
- Na/NiCl — никель-солевой аккумулятор (2,58 V)
- Na-S — натрий-серный аккумулятор, (2 V), высокотемпературный аккумулятор
- Ni-Cd — никель-кадмиевый аккумулятор (1,2 V)
- Ni-Fe — железо-никелевый аккумулятор (1,2-1,9 V)
- Ni-H2 — никель-водородный аккумулятор (1,5 V)
- Ni-MH — никель-металл-гидридный аккумулятор (1,2 V)
- Ni-Zn — никель-цинковый аккумулятор (1,65 V)
- Pb — свинцово-кислотный аккумулятор (2 V)
- Pb-H — свинцово-водородный аккумулятор
- Ag-Zn — серебряно-цинковый аккумулятор (1,85 V)
- Ag-Cd — серебряно-кадмиевый аккумулятор (1,6 V)
- Zn-Br — цинк-бромный аккумулятор (1,8 V)
- Zn-air — цинк-воздушный аккумулятор
- Zn-Cl — цинк-хлорный аккумулятор
- RAM (Rechargeable Alkaline Manganese) — перезаряжаемая разновидность марганцево-цинкового щелочного гальванического элемента (1,5 V)[источник не указан 991 день]
- Ванадиевый аккумулятор (1,41 V)[источник не указан 991 день]
- Алюминиево-графитный аккумулятор (2 V)[источник не указан 991 день]
- Алюминиево-ионный аккумулятор (2 V)[4]
Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:
Тип | ЭДС (В) | Область применения |
---|---|---|
свинцово-кислотные Pb | 2,1 | троллейбусы, трамваи, воздушные суда, автомобили, мотоциклы, электропогрузчики, штабелеры, электротягачи, аварийное электроснабжение, источники бесперебойного питания |
никель-кадмиевые Ni-Cd | 1,2 | замена стандартного гальванического элемента, строительные электроинструменты, троллейбусы, воздушные суда |
никель-металл-гидридные Ni-MH | 1,2 | замена стандартного гальванического элемента, электромобили |
литий-ионные Li‑ion | 3,7 | мобильные устройства, строительные электроинструменты, электромобили |
литий-полимерные Li‑pol | 3,7 | мобильные устройства, электромобили |
никель-цинковые Ni-Zn | 1,6 | замена стандартного гальванического элемента |
Форм-факторы[править | править код]
Литий-ионный аккумулятор форм-фактора 18650Внешний аккумулятор[править | править код]
Внешний аккумулятор (аккумуляторная батарея) (англ. power bank) — устройство для многократной подзарядки мобильного устройства (телефона, смартфона, планшетного компьютера) при отсутствии источника переменного тока (электросети).
Причиной появления этих устройств стало то, что при активном использовании современных смартфонов и планшетов заряда их аккумуляторов хватает на сравнительно короткое время — полдня или день. Для их зарядки в полевых условиях и были разработаны портативные аккумуляторы[5][6]. Типичный вес таких устройств — от нескольких сотен грамм, ёмкость от нескольких тысяч мА*ч до 10-20 А*ч[7]. С их помощью можно зарядить телефон 2-3 раза. Чаще всего они предоставляют для подключения порт USB. Некоторые из них имеют разъёмы или переходники для популярных разъёмов мобильных телефонов. Внешние аккумуляторы больших ёмкостей могут иметь переходники для зарядки ноутбуков. Иногда на внешних аккумуляторах имеется индикатор заряда или встроенный светодиодный фонарик.
В большинстве случаев возможность систематического использования аккумуляторов есть только в портативных устройствах радиосвязи и иной цифровой технике, где используются литий-ионные аккумуляторы и система контроля заряда-разряда встроена в устройство. В бюджетном сегменте «простые» никель-металл-гидридные и никель-кадмиевые аккумуляторы используются в качестве бюджетной замены щелочных элементов питания (батареек). В качестве источника тока для бюджетного аккумуляторного электроинструмента используются никель-кадмиевые аккумуляторы.
Если в первом случае обычно есть возможность выбирать между бюджетным устройством «стандартного» заряда и зарядным устройством с контролем заряда (капельный заряд, импульсный заряд, ускоренный заряд с контролем напряжения и т. д.), то во втором случае изделие комплектуется, как правило, с трансформаторным источником питания для зарядки постоянным током, что при несоблюдении технических условий эксплуатации аккумулятора снижает срок его службы.
По мере исчерпания химической энергии напряжение и ток падают, аккумулятор перестаёт действовать. Зарядить аккумулятор (батарею аккумуляторов) можно от любого источника постоянного тока с бо́льшим напряжением при ограничении тока. Наиболее распространённым считается зарядный ток (в амперах), пропорциональный 1/10 условной номинальной ёмкости аккумулятора (в ампер⋅часах).
Однако, основываясь на техническом описании, распространяемом изготовителями широко применяемых электрических аккумуляторов (NiMH, NiCd), можно сделать предположение о том, что данный режим заряда, обычно именуемый стандартным, рассчитывается исходя из продолжительности восьмичасового рабочего дня, когда разряженный в конце рабочего дня аккумулятор подключается к сетевому зарядному устройству до начала нового рабочего дня. Применение такого режима заряда для этих типов аккумуляторов при систематическом использовании позволяет соблюсти качественно-стоимостной баланс эксплуатации изделия. Таким образом, с подачи изготовителя данный режим можно применять только для никель-кадмиевых и никель-металл-гидридных аккумуляторов.
Многие типы аккумуляторов имеют различные ограничения, которые необходимо учитывать при зарядке и последующей эксплуатации, например NiMH-аккумуляторы чувствительны к перезаряду, литиевые — к переразряду, напряжению и температуре. NiCd- и NiMH-аккумуляторы имеют так называемый эффект памяти, заключающийся в снижении ёмкости в случае, когда зарядка осуществляется при не полностью разряженном аккумуляторе. Также эти типы аккумуляторов обладают заметным саморазрядом, то есть они постепенно теряют заряд, не будучи подключенными к нагрузке. Для борьбы с этим эффектом может применяться капельная подзарядка.
Методы заряда аккумуляторов[править | править код]
Для заряда аккумуляторов применяется несколько методов; как правило, метод заряда зависит от типа аккумулятора[8].
- Медленный заряд постоянным током
Заряд постоянным током, пропорциональным 0,1-0,2 условной номинальной ёмкости Q в течение примерно 15-7 часов соответственно.
Самый длительный и безопасный метод заряда. Подходит для большинства типов аккумуляторов.
- Быстрый заряд
Заряд постоянным током, пропорциональным 1/3 Q в течение примерно 3—5 часов.
- Ускоренный или «дельта-V» заряд
Заряд с начальным током заряда, пропорциональным величине условной номинальной ёмкости аккумулятора, при котором постоянно измеряется напряжение аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда — примерно час-полтора. Возможен разогрев аккумулятора и даже его разрушение.
- Реверсивный заряд
Выполняется чередованием длинных импульсов заряда с короткими импульсами разряда. Реверсивный метод наиболее полезен для заряда NiCd и NiMH аккумуляторов, для которых характерен т. н. «эффект памяти».
Химия и ток
В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.
На сегодняшний день существует
множество разных типов батареек, среди
которых все сложнее ориентироваться.
Далеко не каждому очевидно, чем аккумулятор
отличается от суперконденсатора и почему
водородный топливный элемент можно
использовать, не опасаясь нанести
вред окружающей среде. В этой статье
мы расскажем о том, как для получения
электроэнергии используются химические
реакции, в чем разница между основными
типами современных химических источников
тока и какие перспективы открываются
перед электрохимической энергетикой.
Химия как источник электричества
Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.
Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.
Схема гальванического элемента
Wikimedia commons
Помимо материалов анода и катода, важной составляющей химического источника тока является электролит, внутри которого движутся ионы и на границе которого с электродами протекают все электрохимические реакции. При этом электролит не обязательно должен быть жидким — это может быть и полимерный, и керамический материал.Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.
Пальчиковые щелочные батарейки
Возможность перезарядки
Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора — источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.
Автомобильный свинцово-кислотный аккумулятор
На сегодня создано много различных типов аккумуляторов, которые отличаются типом происходящей в них химической реакции. Наиболее распространенными типами аккумуляторов являются свинцово-кислотные (или просто свинцовые) аккумуляторы, в основе которых лежит реакция окисления-восстановления свинца. Такие устройства обладают довольно длительным сроком службы, а их энергоемкость составляет до 60 ватт-часов на килограмм. Еще более популярными в последнее время являются литий-ионные аккумуляторы, основанные на реакции окисления-восстановления лития. Энергоемкость современных литий-ионных аккумуляторов сейчас превышает 250 ватт-часов на килограмм.Литий-ионный аккумулятор для мобильного телефона
Основными проблемами литий-ионных аккумуляторов являются их небольшая эффективность при отрицательных температурах, быстрое старение и повышенная взрывоопасность. А из-за того, что металлический литий очень активно реагирует с водой с образованием газообразного водорода и при горении аккумулятора выделяется кислород, самовозгорание литий-ионного аккумулятора очень тяжело поддается традиционным способам пожаротушения. Для того чтобы повысить безопасность такого аккумулятора и ускорить время его зарядки, ученые предлагают модифицировать материал катода, воспрепятствовав образованию дендритных литиевых структур, а в электролит добавить вещества, которые блокируют образование взрывоопасных структур, и компоненты, подавляющие возгорание на ранних стадиях.Твердый электролит
В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы — в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H+, ионы лития Li+ или ионы кислорода O2-.
Водородные топливные элементы
Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.
Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.
Наиболее подходящее вещество такого типа — газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H2 + O2 → 2H2O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.
Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство — совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.
Принципиальная схема работы водородного топливного элемента
econet.ru
Схема работающего водородного топливного элемента очень похожа на схему химического источника тока, но содержит в себе дополнительные каналы для подачи топлива и окислителя и отвода продуктов реакции и избытка поданных газов. Электродами в таком элементе являются пористые проводящие катализаторы. К аноду подается газообразное топливо (водород), а к катоду — окислитель (кислород из воздуха), и на границе каждого из электродов с электролитом проходит своя полуреакция (окисление водорода и восстановление кислорода соответственно). При этом, в зависимости от типа топливного элемента и типа электролита, само образование воды может протекать или в анодном, или в катодном пространстве.Водородный топливный элемент Toyota
Joseph Brent / flickr
Если электролит является протонпроводящей полимерной или керамической мембраной, раствором кислоты или щелочи, то носителем заряда в электролите являются ионы водорода. В таком случае на аноде молекулярный водород окисляется до ионов водорода, которые проходят через электролит и там реагируют с кислородом. Если же носителем заряда является ион кислорода O2–, как в случае твердооксидного электролита, то на катоде происходит восстановление кислорода до иона, этот ион проходит через электролит и окисляет на аноде водород с образованием воды и свободных электронов.Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.
Эффективность топливных элементов
Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.
Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых предлагают использовать, например, графеновые мембраны.
В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.
Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.
Альтернативные электрохимические накопители
Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) — устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.
Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов — высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!
Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых современных разработках.
* * *
Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.
N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?
Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.
Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.
Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов — «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых — топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.
Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.
Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?
Одними из наиболее перспективных
типов топливных элементов являются
протонно-керамические элементы. Они
обладают преимуществами перед полимерными
топливными элементами с протонно-обменной
мембраной и твердооксидными элементами,
так как могут работать при прямой подаче
углеводородного топлива. Это существенно
упрощает конструкцию энергоустановки
на основе протонно-керамических
топливных элементов и систему
управления, а следовательно, увеличивает
надежность работы. Правда, такой тип
топливных элементов на данный момент
является исторически менее проработанным,
но современные научные исследования
позволяют надеяться на высокий
потенциал данной технологии в будущем.
Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?
Сейчас ученые УрФУ совместно с Институтом
высокотемпературной электрохимии
(ИВТЭ) Уральского отделения Российской
академии наук работают над созданием
высокоэффективных электрохимических
устройств и автономных генераторов
электроэнергии для применений в
распределенной энергетике.
Создание энергоустановок для распределенной
энергетики изначально подразумевает
разработку гибридных систем на основе
генератора электроэнергии и накопителя,
в качестве которых выступают аккумуляторы.
При этом топливный элемент работает
постоянно, обеспечивая нагрузку в
пиковые часы, а в холостом режиме заряжает
аккумулятор, который может сам выступать
резервом как в случае высокого
энергопотребления, так и в случае
внештатных ситуаций.
Наибольших успехов химики УрФУ и ИВТЭ
достигли в области разработки
твердо-оксидных и протонно-керамических
топливных элементов. Начиная с 2016
года на Урале вместе с ГК «Росатом»
создается первое в России производство
энергоустановок на основе твердо-оксидных
топливных элементов. Разработка уральских
ученых уже прошла «натурные» испытания
на станции катодной защиты
газотрубопроводов на экспериментальной
площадке ООО «Уралтрансгаз». Энергоустановка
с номинальной мощностью 1,5 киловатта
отработала более 10 тысяч часов
и показала высокий потенциал применения
таких устройств.
В рамках совместной лаборатории
УрФУ и ИВТЭ ведутся разработки
электрохимических устройств на основе
протонпроводящей керамической мембраны.
Это позволит в ближайшем будущем снизить
рабочие температуры для твердо-оксидных
топливных элементов с 900 до 500
градусов Цельсия и отказаться
от предварительного риформинга
углеводородного топлива, создав, таким
образом, экономически эффективные
электрохимические генераторы, способные
работать в условиях развитой в России
инфраструктуры газоснабжения.
Александр Дубов
какими могут быть аккумуляторы будущего / Mail.ru Group corporate blog / Habr
В последние годы мы часто слышали, что вот-вот — и человечество получит аккумуляторы, которые будут способны питать наши гаджеты неделями, а то и месяцами, при этом очень компактные и быстрозаряжаемые. Но воз и ныне там. Почему до сих пор не появились более эффективные аккумуляторы и какие существуют разработки в мире, читайте под катом.
Сегодня ряд стартапов близки к созданию безопасных компактных аккумуляторов со стоимостью хранения энергии около 100 долларов за кВт⋅ч. Это позволило бы решить проблему электропитания в режиме 24/7 и во многих случаях перейти на возобновляемые источники энергии, а заодно снизило бы вес и стоимость электромобилей.
Но все эти разработки крайне медленно приближаются к коммерческому уровню, что не позволяет ускорить переход с ископаемых на возобновляемые источники. Даже Илон Маск, который любит смелые обещания, был вынужден признать, что его автомобильное подразделение постепенно улучшает литий-ионные аккумуляторы, а не создаёт прорывные технологии.
Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков.
Основатель компании SolidEnergy Systems Кичао Ху (Qichao Hu), в течение десяти лет разрабатывавший литий-металлический аккумулятор (анод металлический, а не графитовый, как в традиционных литий-ионных), утверждает, что главная проблема при создании новых технологий хранения энергии заключается в том, что при улучшении какого-то одного параметра ухудшаются остальные. К тому же сегодня существует столько разработок, авторы которых громко утверждают о своём превосходстве, что стартапам очень трудно убедить потенциальных инвесторов и привлечь достаточно средств для продолжения исследований.
Согласно отчёту Lux Research, за последние 8—9 лет компания вложила в исследование хранения энергии около 4 млрд долларов, из которых стартапам, создающим «технологии нового поколения», в среднем досталось по 40 млн долларов. При этом Tesla вложила около 5 млрд долларов в Gigafactory, занимающуюся производством литий-ионных аккумуляторов. Такой разрыв очень трудно преодолеть.
По словам Герда Седера (Gerd Ceder), профессора в области материаловедения Калифорнийского университета в Беркли, создание маленькой производственной линии и решение всех производственных проблем для налаживания выпуска аккумуляторов обходится примерно в 500 млн долларов. Автопроизводители могут годами тестировать новые аккумуляторные технологии, прежде чем решить, приобретать ли создавшие их стартапы. Даже если новая технология выходит на рынок, нужно преодолеть опасный период наращивания объёмов и поиска клиентов. К примеру, компании Leyden Energy и A123 Systems потерпели неудачу, несмотря на перспективность их продуктов, поскольку финансовые потребности оказались выше расчётных, а спрос не оправдал ожиданий. Ещё два стартапа, Seeo и Sakti3, не успели выйти на массовые объёмы производства и значительный уровень дохода и были куплены за гораздо меньшие суммы, чем ожидали первичные инвесторы.
В то же время три основных мировых производителя аккумуляторов — Samsung, LG и Panasonic — не слишком заинтересованы в появлении инноваций и радикальных переменах, они предпочитают незначительно улучшать свою продукцию. Так что все стартапы, предлагающие «прорывные технологии», сталкиваются с основной проблемой, о которой они предпочитают не упоминать: литий-ионные аккумуляторы, разработанные в конце 1970-х, продолжают совершенствоваться.
Но всё же — какие технологии могут прийти на смену вездесущим литий-ионным аккумуляторам?
Литий-воздушные «дышащие» аккумуляторы
В литий-воздушных аккумуляторах в качестве окислителя используется кислород. Потенциально они могут быть в разы дешевле и легче литий-ионных аккумуляторов, а их ёмкость способна оказаться гораздо больше при сравнимых размерах. Главные проблемы технологии: значительная потеря энергии за счёт теплового рассеивания при зарядке (до 30 %) и относительно быстрая деградация ёмкости. Но есть надежда, что в течение 5—10 лет эти проблемы удастся решить. Например, в прошлом году была представлена новая разновидность литий-воздушной технологии — аккумулятор с нанолитическим катодом.
Зарядное устройство Bioo
Это устройство в виде специального горшка для растений, использующего энергию фотосинтеза для зарядки мобильных гаджетов. Причём оно уже доступно в продаже. Устройство может обеспечивать две-три сессии зарядки в день с напряжением 3,5 В и силой тока 0,5 А. Органические материалы в горшке взаимодействуют с водой и продуктами реакции фотосинтеза, в результате получается достаточно энергии для зарядки смартфонов и планшетов.Представьте себе целые рощи, в которых каждое дерево высажено над таким устройством, только более крупным и мощным. Это позволит снабжать «бесплатной» энергией окружающие дома и будет веской причиной для защиты лесов от вырубки.
Аккумуляторы с золотыми нанопроводниками
В Калифорнийском университете в Ирвайне разработали нанопроводниковые аккумуляторы, которые могут выдерживать более 200 тыс. циклов зарядки в течение трёх месяцев без каких-либо признаков деградации ёмкости. Это позволит многократно увеличить жизненный цикл систем питания в критически важных системах и потребительской электронике.Нанопроводники в тысячи раз тоньше человеческого волоса обещают светлое будущее. В своей разработке учёные применили золотые провода в оболочке из диоксида марганца, которые помещены в гелеобразный электролит. Это предотвращает разрушение нанопроводников при каждом цикле зарядки.
Магниевые аккумуляторы
В Toyota работают над использованием магния в аккумуляторах. Это позволит создавать маленькие, плотно упакованные модули, которым не нужны защитные корпуса. В долгосрочной перспективе такие аккумуляторы могут быть дешевле и компактнее литий-ионных. Правда, случится это ещё не скоро. Если случится.Твердотельные аккумуляторы
В обычных литий-ионных аккумуляторах в качестве среды для переноса заряженных частиц между электродами используется жидкий легковоспламеняющийся электролит, постепенно приводящий к деградации аккумулятора.Этого недостатка лишены твердотельные литий-ионные аккумуляторы, которые сегодня считаются одними из самых перспективных. В частности, разработчики Toyota опубликовали научную работу, в которой описали свои эксперименты с сульфидными сверхионными проводниками. Если у них всё получится, то будут созданы аккумуляторы на уровне суперконденсаторов — они станут полностью заряжаться или разряжаться всего за семь минут. Идеальный вариант для электромобилей. А благодаря твердотельной структуре такие аккумуляторы будут гораздо стабильнее и безопаснее современных литий-ионных. Расширится и их рабочий температурный диапазон — от –30 до +100 градусов по Цельсию.
Учёные из Массачусетского технологического института в содружестве с Samsung также разработали твердотельные аккумуляторы, превосходящие по своим характеристикам современные литий-ионные. Они безопаснее, энергоёмкость выше на 20—30 %, да к тому же выдерживают сотни тысяч циклов перезарядки. Да ещё и не пожароопасны.
Топливные ячейки
Совершенствование топливных ячеек может привести к тому, что смартфоны мы будем заряжать раз в неделю, а дроны станут летать дольше часа. Учёные из Пхоханского университета науки и технологии (Южная Корея) создали ячейку, в которой объединили пористые элементы из нержавеющей стали с тонкоплёночным электролитом и электродами с минимальной теплоёмкостью. Конструкция оказалась надёжнее литий-ионных аккумуляторов и работает дольше них. Не исключено, что разработка будет внедрена в коммерческие продукты, в первую очередь в смартфоны Samsung.Графеновые автомобильные аккумуляторы
Многие специалисты считают, что будущее — за графеновыми аккумуляторами. В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей.Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг.
Микросуперконденсаторы, изготовленные с помощью лазера
Учёные из Университета Райса добились прогресса в разработке микросуперконденсаторов. Один из главных недостатков технологии — дороговизна изготовления, но применение лазера может привести к существенному удешевлению. Электроды для конденсаторов вырезаются лазером из пластикового листа, что многократно снижает трудоёмкость производства. Такие аккумуляторы могут заряжаться в 50 раз быстрее литий-ионных, а разряжаются медленнее используемых сегодня суперконденсаторов. К тому же они надёжны, в ходе экспериментов продолжали работать даже после 10 тыс. сгибаний.
Натрий-ионные аккумуляторы
Группа французских исследователей и компаний RS2E разработала натрий-ионные аккумуляторы для ноутбуков, в которых используется обычная соль. Принцип работы и процесс изготовления держатся в секрете. Ёмкость 6,5-сантиметрового аккумулятора — 90 Вт⋅ч/кг, что сравнимо с массовыми литий-ионными, но он выдерживает пока не более 2 тыс. циклов зарядки.
Пенные аккумуляторы
Другая тенденция в разработке технологий хранения энергии — создание трёхмерных структур. В частности, компания Prieto создала аккумулятор на основе субстрата пенометалла (меди). Здесь нет легковоспламеняющегося электролита, у такого аккумулятора большой ресурс, он быстрее заряжается, его плотность в пять раз выше, а также он дешевле и меньше современных аккумуляторов. В Prieto надеются сначала внедрить свою разработку в носимую электронику, но утверждают, что технологию можно будет распространить шире: использовать и в смартфонах, и даже в автомобилях.Быстрозаряжаемый «наножелток» повышенной ёмкости
Ещё одна разработка Массачусетского технологического института — наночастицы для аккумуляторов: полая оболочка из диоксида титана, внутри которой (как желток в яйце) находится наполнитель из алюминиевой пудры, серной кислоты и оксисульфата титана. Размеры наполнителя могут меняться независимо от оболочки. Применение таких частиц позволило в три раза увеличить ёмкость современных аккумуляторов, а длительность полной зарядки снизилась до шести минут. Также снизилась скорость деградации аккумулятора. Вишенка на торте — дешевизна производства и простота масштабирования.
Алюминий-ионный аккумулятор сверхбыстрой зарядки
В Стэнфорде разработали алюминий-ионный аккумулятор, который полностью заряжается примерно за одну минуту. При этом сам аккумулятор обладает некоторой гибкостью. Главная проблема — удельная ёмкость примерно вдвое ниже, чем у литий-ионных аккумуляторов. Хотя, учитывая скорость зарядки, это не так критично.Alfa battery — две недели на воде
Если компании Fuji Pigment удастся довести до ума свой алюминий-воздушный аккумулятор Alfa battery, то нас ждёт появление носителей энергии, ёмкость которых в 40 раз больше ёмкости литий-ионных. Более того, аккумулятор перезаряжается доливкой воды, простой или подсоленной. Как утверждают разработчики, на одном заряде Alfa сможет работать до двух недель. Возможно, сначала такие аккумуляторы появятся на электромобилях. Представьте себе автозаправку, на которую вы заезжаете за водой.Аккумуляторы, которые можно сгибать, как бумагу
Компания Jenax создала гибкий аккумулятор J.Flex, похожий на плотную бумагу. Его даже можно складывать. К тому же он не боится воды и потому очень удобен для использования в одежде. Или представьте себе наручные часы с аккумулятором в виде ремешка. Эта технология позволит и уменьшить размер самих гаджетов, и увеличить носимый объём энергии. Другой сценарий — создание гибких складных смартфонов и планшетов. Нужен экран побольше? Просто разверните сложенный вдвое гаджет.
Как утверждают разработчики, тестовый образец выдерживает 200 тыс. складываний без потери ёмкости.
Эластичные аккумуляторы
Над созданием гибких носителей энергии работают во многих компаниях. А команда учёных из Университета штата Аризона пошла дальше и с помощью особой механической конструкции создала аккумулятор в виде эластичной ленты. Не исключено, что идея будет развита и позволит встраивать аккумуляторы в одежду.
Мочевой аккумулятор
В 2013 году Фонд Билла Гейтса вложился в продолжение исследований Bristol Robotic Laboratory по созданию аккумуляторов, работающих на моче. Весь цимес в использовании «микробных топливных ячеек»: в них содержатся микроорганизмы, расщепляющие мочу и вырабатывающие электричество. Кто знает, возможно, скоро поход в туалет будет не только потребностью, но и в буквальном смысле полезным занятием.Ryden — углеродные аккумуляторы с быстрой зарядкой
В 2014 году компания Power Japan Plus сообщила о планах по выпуску аккумуляторов, в основе которых лежат углеродные материалы. Их можно было производить на том же оборудовании, что и литий-ионные. Углеродные аккумуляторы должны работать дольше и заряжаться в 20 раз быстрее литий-ионных. Был заявлен ресурс в 3 тыс. циклов зарядки.Органический аккумулятор, почти даром
В Гарварде была создана технология органических аккумуляторов, стоимость производства которых составляла бы 27 долларов за кВт⋅ч. Это на 96 % дешевле аккумуляторов на основе металлов (порядка 700 долларов за кВт⋅ч). В изобретении применяются молекулы хинонов, практически идентичные тем, что содержатся в ревене. По эффективности органические аккумуляторы не уступают традиционным и могут без проблем масштабироваться до огромных размеров.Просто добавь песка
Эта технология представляет собой модернизацию литий-ионных аккумуляторов. В Калифорнийском университете в Риверсайде вместо графитовых анодов использовали обожжённую смесь очищенного и измельчённого песка (читай — кварца) с солью и магнием. Это позволило повысить производительность обычных литий-ионных аккумуляторов и примерно втрое увеличить их срок службы.
Быстрозаряжаемые и долгоживущие
В Наньянском технологическом университете (Сингапур) разработали свою модификацию литий-ионного аккумулятора, который заряжается на 70 % за две минуты и служит в 10 раз дольше обычных литий-ионных. В нём анод изготовлен не из графита, а из гелеобразного вещества на основе диоксида титана — дешёвого и широко распространённого сырья.Аккумуляторы с нанопорами
В Мэрилендском университете в Колледж-Парке создали нанопористую структуру, каждая ячейка которой работает как крохотный аккумулятор. Такой массив заряжается 12 минут, по ёмкости втрое превосходит литий-ионные аккумуляторы такого же размера и выдерживает около 1 тыс. циклов зарядки.
Генерирование электричества
Энергия кожи
Тут речь идёт не столько об аккумуляторах, сколько о способе получения энергии. Теоретически, используя энергию трения носимого устройства (часов, фитнес-трекера) о кожу, можно генерировать электричество. Если технологию удастся достаточно усовершенствовать, то в будущем в некоторых гаджетах аккумуляторы станут работать просто потому, что вы носите их на теле. Прототип такого наногенератора — золотая плёнка толщиной 50 нанометров, нанесённая на силиконовую подложку, содержащую тысячи крошечных ножек, которые увеличивают трение подложки о кожу. В результате возникает трибоэлектрический эффект.
uBeam — зарядка по воздуху
uBeam — любопытный концепт передачи энергии на мобильное устройство с помощью ультразвука. Зарядное устройство испускает ультразвуковые волны, которые улавливаются приёмником на гаджете и преобразуются в электричество. Судя по всему, в основе изобретения лежит пьезоэлектрический эффект: приёмник резонирует под действием ультразвука, и его колебания генерируют энергию.
Схожим путём пошли и учёные из Лондонского университета королевы Марии. Они создали прототип смартфона, который заряжается просто благодаря внешним шумам, в том числе от голосов людей.
StoreDot
Зарядное устройство StoreDot разработано стартапом, появившимся на базе Тель-Авивского университета. Лабораторный образец смог зарядить аккумулятор Samsung Galaxy 4 за 30 секунд. Сообщается, что устройство создано на базе органических полупроводников, изготовленных из пептидов. В конце 2017 года в продажу должен поступить карманный аккумулятор, способный заряжать смартфоны за пять минут.Прозрачная солнечная панель
В Alcatel был разработан прототип прозрачной солнечной панели, которая помещается поверх экрана, так что телефон можно заряжать, просто положив на солнце. Конечно, концепт не идеален с точки зрения углов обзора и мощности зарядки. Но идея красивая.Год спустя, в 2014-м, компания Tag Heuer анонсировала новую версию своего телефона для понтов Tag Heuer Meridiist Infinite, у которого между внешним стеклом и самим дисплеем должна была быть проложена прозрачная солнечная панель. Правда, непонятно, дошло ли дело до производства.
Постлитийионные аккумуляторы — лекции на ПостНауке
Вторая проблема связана с катодом. Сера, несмотря на то что у нее высокая удельная емкость, не проводит электроны. Для того чтобы стимулировать электрохимические процессы превращения серы в сульфид лития и назад, необходимо наличие проводящей добавки в структуре катодного материала, чтобы обеспечить электронный транспорт. Но полисульфиды, которые образуются на этапе преобразования серы в сульфид, очень хорошо растворяются в электролитах. Происходит их вымывание в объем ячейки и образование полисульфидного шаттла, причем назад в катод они уже не встраиваются. Это означает, что мы теряем серу, которая могла бы быть полезна нам в запасании энергии. Кроме того, они являются сильными окислителями и, диффундируя к металлическому литию, могут приводить к его коррозии.
Проблема создания эффективного композитного катодного материала связана с выбором углеродной матрицы, потому что в качестве проводящей добавки используют углероды. Наиболее перспективный материал — это графен и его производные, углеродные нанотрубки. Такая матрица должна обеспечивать эффективный электронный транспорт к сере, а также цеплять на себя полисульфиды и не давать им выйти в объем, не давать образовываться полисульфидному шаттлу. Сейчас 80% научных работ, которые публикуются, посвящены именно катодной тематике. Другая часть работ посвящена проблеме анода. Если решения, которые худо-бедно можно назвать технологическими в области катодного материала, существуют, то с анодом беда. Стабилизировать металлический литий пока не получается.
В литийионных аккумуляторах, помимо сравнительно низкой удельной энергии, по сравнению с литий-серой, есть еще один недостаток, а именно высокая цена. Это особенно чувствуется в автотранспорте при создании батарей для электромобилей, потому что на уровне гаджетов и портативных электронных устройств это не так чувствуется, но там, где этих ячеек много, стоимость ощутима. Естественно, поиск нового накопителя энергии связан не только с повышением энергоемкости, но и с уменьшением стоимости. Примерно 40% массы литийионного аккумулятора — это катодный материал. Это либо феррофосфат, либо смешанные оксиды, такие как NMC, NCA. Это дорогие материалы.
Если говорить про серу, которая является побочным продуктом добычи природного газа, то это очень дешевый материал. Поэтому есть все предпосылки у литий-серного аккумулятора удовлетворить этим двум требованиям: высокой энергоэффективности и низкой стоимости. Но говорить о стоимости ячейки можно только тогда, когда будет известна технологическая карта.
Если говорить про утилизацию, то в литийионных источниках смешанные оксиды содержат кобальт, достаточно токсичный материал. Сейчас страны, где существует индустрия литийионных аккумуляторов, стараются искать материалы, которые заместили бы кобальт на менее токсичные вещества. Сера нетоксична, то есть перерабатывать такой аккумулятор будет проще. Но это будет реальностью, когда научатся работать с металлическим литием, потому что, если просто разбирать такую ячейку на воздухе, ни к чему хорошему это не приведет. Если сравнивать отдельно катодные материалы, то в литий-серной ячейке он намного безопаснее, чем катодный материал в литийионном аккумуляторе.
Традиционно мы занимались разработкой именно материалов для химических источников тока. Одно из наших ключевых направлений связано именно с разработкой катодных материалов, эффективной углеродной матрицы, в которую потом интегрировалась бы сера на этапе синтеза, и можно было бы получить эффективный материал, который был бы стабильным и сдерживал образование полисульфидного шаттла. Также сейчас совместно с нашими индийскими коллегами мы инициировали научно-исследовательскую работу по замещению металлического лития. Несмотря на попытки стабилизировать металлический литий, это все еще фундаментальная проблема. Какое-то время назад было предложено заменить этот литий смежными материалами, которые бы обладали большой емкостью и у которых не было бы недостатков, связанных с неравномерным электроосаждением лития и образованием дисперсного осадка. Один из таких материалов кремний. В этом вопросе много проблем, но исследователи научились их решать, пытаясь применить этот материал в литийионной ячейке.
Аккумуляторы для ИБП. Классификация
Содержание:
Аккумулятор ИБП — основная часть бесперебойника
Очень важной частью любого источника бесперебойного питания является аккумуляторная батарея. От технических характеристик аккумулятора для ИБП зависят все основные параметры бесперебойника. Именно аккумулятор ИБП определяет в конечном счете и мощность источника и длительность резерва бесперебойника. Вот почему необходимо грамотно подойти к вопросу выбора аккумулятора для источника бесперебойного питания.
Аккумуляторы для бесперебойников. Классификация по конструктивному типу
В наше время в мире выпускаются аккумуляторы различных типов. Вот далеко не полный список: свинцово-кислотные, медно-литиевые, никель-кадмиевые, никель-металлогидридные, железо-никелевые, серно-натриевые, серебряно-цинковые, серебряно-кадмиевые, литий-ионные, литий-полимерные, никель-водородные, марганцево-цинковые. Все типы аккумуляторных батарей имеют различную конструкцию, различные свойства и различные цены.
Рассмотрим основные типы аккумуляторов, применяемых для источников бесперебойного питания.
Свинцово-кислотные аккумуляторы для ИБП
Свинцово-кислотные (с английского Sealed Lead Acid) аккумуляторные батареи получили наибольшее распространение. К положительным свойствам относятся: низкая стоимость, низкий саморазряд, высокая надежность, стабильность напряжения, работа в широком диапазоне температур, длительность циклов работы, возможность совершать до тысячи циклов заряда / разряда. К отрицательным свойствам можно отнести: большой вес и габариты, маленькая удельная ёмкость, теряют работоспособность при глубоких разрядах.
Никелево-кадмиевые аккумуляторы для ИБП
Никелево-кадмиевые (Ni-Cd) аккумуляторные батареи получили большую известность в последние годы благодаря маленькому весу и размерам широко применяются в различных электронных устройствах. К положительным свойствам относятся: высокая энергетическая плотность, возможность осуществления до 1500 перезарядок, низкий саморазряд (менее 20 % в месяц), не дорогая цена, высокая надежность, простота в эксплуатации, хорошая стойкость к перепадам температур. К отрицательным свойствам относятся: наличие «эффекта памяти», постепенное уменьшение ёмкости АКБ, использует высокотоксичное вещество, высокая стоимость переработки и утилизации.
Никелево-металлогидридные аккумуляторы для ИБП
Никелево-металлогидридные (Ni-MH) аккумуляторные батареи известны довольно давно и обладают рядом улучшенных характеристик, но они не получили большого распространения, прежде всего из-за сложностей в эксплуатации. К положительным свойствам относятся: высокая удельная ёмкость, стабильная работа, большая энергетическая плотность, не снижает уровень ёмкости. К отрицательным свойствам относятся: малое число циклов заряда / разряда, высокая цена батареи, более узкий температурный режим работы, малая нагрузочная способность, не переносит глубоких разрядов, высокий уровень саморазряда, сложность процесса зарядки, большие расходы на эксплуатацию.
Литиево-ионные аккумуляторы для ИБП
Литиево-ионные (Li-Ion) аккумуляторные батареи были изобретены ещё в первой половине 20 века, однако их массовое производство началось только в 90-х годах. Сегодня они являются наиболее перспективными для использования в электронных устройствах. Такие батареи имеют большую удельную ёмкость и могут обеспечить мощного потребителя при малом собственном весе и размере. К положительным свойствам относятся: высокая надёжность работы, большая энергетическая плотность (около 100 Вт*ч/кг), очень маленькая скорость саморазряда (около пяти процентов в месяц), АКБ не теряет ёмкости в процессе работы, низкая стоимость обслуживания. К отрицательным свойствам относятся: высокая цена, не достаточно широкий диапазон температур работы, АКБ необходимо хранить в заряженном виде, есть эффект старения, необходимо использовать специальные зарядные устройства.
В настоящее время наибольшее распространение получили обычные свинцово-кислотные аккумуляторы для ИБП. Основные причины — высокая надёжность аккумуляторных батарей, низкая стоимость приобретения, простота в обслуживании, работоспособность в тяжелых климатических условиях, возможность многократных процедур заряда.
Аккумуляторы для бесперебойников. Классификация по типу электролита
По типу используемого электролита все аккумуляторные батареи можно разделить на три основные группы: АКБ с жидким электролитом, АКБ по технологии GEL, АКБ по технологии AGM. Рассмотрим основные характеристики этих типов аккумуляторов.
Аккумуляторы для источника бесперебойного питания с жидким электролитом
Аккумуляторные батареи с жидким электролитом имеют наибольшее распространение. Эта технология включает использование раствора серной кислоты в качестве электролита. К такому типу относятся обычные автомобильные АКБ. Основной их недостаток состоит в том, что они не герметичны. В процессе работы такие батареи выделяют водород и пары серной кислоты, что негативно сказывается на их экологичности. Негерметичные аккумуляторы требуют сложного обслуживания, специального помещения для проведения работ по зарядке и обслуживанию. К положительным свойствам следует отнести низкую стоимость приобретения батареи. Такие аккумуляторы редко используются для источников бесперебойного питания, однако могут быть применены в случае внешнего подключения АКБ и наличия специального не жилого помещения.
Аккумуляторы GEL для источника бесперебойного питания
Аккумуляторы GEL (гелиевые аккумуляторы) производятся по технологии GEL-Electrolite. Для получения нужного желеобразного состояния в состав электролита АКБ добавляют специальный загуститель. Аккумуляторы, созданные по этой технологии, не имеют выделения газов. Поэтому они изготавливаются герметичными. Герметичные аккумуляторы для ИБП безопасны и не требуют специального обслуживания. GEL АКБ имеют высокую надёжность, работоспособны в широком диапазоне температур, имеют высокую ёмкость и длительный срок эксплуатации. Однако их стоимость более высокая, чем у негерметичных АКБ. Также необходимо не допускать глубокого разряда таких батарей.
Аккумуляторы AGM для источника бесперебойного питания
Аккумуляторы по технологии AGM (Absorptive Glass Mat) являются самыми современными. По сути они являются модернизацией АКБ типа GEL. В качестве электролита в таких батареях используют жидкий электролит, абсорбированный специальными пористыми волокнами. Такая технология позволяет делать батареи герметичными. При их работе не выделяются вредные пары. В то же время электрическое сопротивление таких АКБ ниже, что существенно улучшает показатели. В производстве источников бесперебойного питания именно аккумуляторы по технологии AGM получили большое распространение. Такие АКБ имеет ряд положительных свойств: высокая надёжность работы, простое обслуживание, большая эпикритическая ёмкость, низкая стоимость приобретения и низкая стоимость обслуживания, большой срок службы.
Купить аккумуляторы для ИБП в Ростове-на-Дону, Москве, Санкт-Петербурге, Новосибирске в магазинах СКАТ
Получить необходимые консультации специалистов, подобрать нужный аккумулятор по размерам и техническим характеристикам помогут специалисты сети магазинов СКАТ. Большой выбор различных моделей аккумуляторов для бесперебойников вы найдете в фирменных салонах в городах: Москва, Ростов-на-Дону, Санкт-Петербург, Новосибирск.
Читайте также:
Сегодня ряд стартапов близки к созданию безопасных компактных аккумуляторов со стоимостью хранения энергии около 100 долларов за кВт⋅ч. Это позволило бы решить проблему электропитания в режиме 24/7 и во многих случаях перейти на возобновляемые источники энергии, а заодно снизило бы вес и стоимость электромобилей.
Рассмотрим основные типы аккумуляторов, применяемых для источников бесперебойного питания.