1A транзистор: Маркировка радиодеталей, Коды SMD 1A, 1A **, 1A-, 1A1, 1A18, 1A20, 1A25, 1A30, 1A35, 1A4, 1A40, 1A45, 1A50, 1A55, 1A60, 1A=***, 1AM, 1AW, 1Ap, 1At. Даташиты BC846A, BC846AT, BC846AW, DAN202UM, FMMT3904, IRLML2402, KST3904, MMBT3904, MMBT3904LT1, MT501, RT9169-26GB, ZXTN25020DFLTA, ZXTN25040DFH.

Маркировка радиодеталей, Коды SMD 1A, 1A **, 1A-, 1A1, 1A18, 1A20, 1A25, 1A30, 1A35, 1A4, 1A40, 1A45, 1A50, 1A55, 1A60, 1A=***, 1AM, 1AW, 1Ap, 1At. Даташиты BC846A, BC846AT, BC846AW, DAN202UM, FMMT3904, IRLML2402, KST3904, MMBT3904, MMBT3904LT1, MT501, RT9169-26GB, ZXTN25020DFLTA, ZXTN25040DFH.
1ASOT-23BC846AGeneral Semiconductor (Now Vishay)NPN транзистор
1ASOT-416BC846ATNXPNPN транзистор
1AUMD3FDAN202UMROHMПереключающие диоды
1ASOT-23FMMT3904Zetex (Now Diodes)NPN транзистор
1ASOT-23KST3904FairchildNPN транзистор
1ASOT-23MMBT3904FairchildNPN транзистор
1ASOT-23MMBT3904TaitronNPN транзистор
1A **SOT-23IRLML2402IRFN-канальный MOSFET
1A-SOT-23BC846ANXPNPN транзистор
1A-SOT-323BC846AWNXPNPN транзистор
1A1SOT-23ZXTN25020DFLTAZetex (Now Diodes)NPN транзистор
1A18SOT-23MT501Mos-TechДрайвер светодиода
1A18SOT-89MT501Mos-TechДрайвер светодиода
1A20SOT-23MT501Mos-TechДрайвер светодиода
1A20SOT-89MT501Mos-TechДрайвер светодиода
1A25SOT-23MT501Mos-TechДрайвер светодиода
1A25SOT-89MT501Mos-TechДрайвер светодиода
1A30SOT-23MT501Mos-TechДрайвер светодиода
1A30SOT-89MT501Mos-TechДрайвер светодиода
1A35SOT-23MT501Mos-TechДрайвер светодиода
1A35SOT-89MT501Mos-TechДрайвер светодиода
1A4SOT-23ZXTN25040DFHZetex (Now Diodes)NPN транзистор
1A40SOT-23MT501Mos-TechДрайвер светодиода
1A40SOT-89MT501Mos-TechДрайвер светодиода
1A45SOT-23MT501Mos-TechДрайвер светодиода
1A45SOT-89MT501Mos-TechДрайвер светодиода
1A50SOT-23MT501Mos-TechДрайвер светодиода
1A50SOT-89MT501Mos-TechДрайвер светодиода
1A55SOT-23MT501Mos-TechДрайвер светодиода
1A55SOT-89MT501Mos-TechДрайвер светодиода
1A60SOT-23MT501Mos-TechДрайвер светодиода
1A60SOT-89MT501Mos-TechДрайвер светодиода
1A=***SOT-25RT9169-26GBRichtekСтабилизатор напряжения
1AMSOT-23MMBT3904DiodesNPN транзистор
1AMSOT-23MMBT3904BL Galaxy ElectricalNPN транзистор
1AMSOT-23MMBT3904TaitronNPN транзистор
1AMSOT-23MMBT3904LT1ONNPN транзистор
1AWSOT-23BC846ANXPNPN транзистор
1AWSOT-323BC846AWNXPNPN транзистор
1ApSOT-23BC846ANXPNPN транзистор
1ApSOT-323BC846AWNXPNPN транзистор
1AtSOT-23BC846ANXPNPN транзистор
1AtSOT-323BC846AWNXPNPN транзистор
Маркировка радиодеталей, Коды SMD A1, A1 GN*, A1*, A1**, A1***, A1-***, A10*, A1013, A1038S, A10A, A10B, A10C, A10D, A10E, A10F, A10G, A10H, A10I, A10J, A10K, A10L, A10M, A10N, A10O, A10P, A10Q, A10R, A10S, A10T, A10U, A10V, A10W, A10X, A10Y, A10Z, A11, A11*, A113ZS, A114GS, A114TS, A114WS, A114YS, A115ES, A115TS, A123JS, A123YS, A124ES, A124GS, A124TS, A124XS, A125TS, A13, A14, A143ES, A143XS, A144ES, A144VS, A15, A1515S, A1585S, A16*, A17, A17*, A1727, A1776, A18, A1862, A19, A1=***, A1C, A1O*, A1Y*. Даташиты 1KSMB10A, 1KSMB11A, 1KSMB12A, 1KSMB13A, 1KSMB15A, 1KSMB16A, 1KSMB18A, 1KSMB20A, 1KSMB22A, 1KSMB24A, 1KSMB27A, 1KSMB30A, 1KSMB33A, 1KSMB36A, 1KSMB39A, 1KSMB43A, 1KSMB47A, 1KSMB51A, 1KSMB56A, 1KSMB6.8A, 1KSMB62A, 1KSMB68A, 1KSMB7.5A, 1KSMB75A, 1KSMB8.2A, 1KSMB9.1A, 2SA1013, 2SA1038S, 2SA1515S, 2SA1585S, 2SA1727, 2SA1776, 2SA1862, 2SK436, ADT7110, AO3401L, APS1006ET5, BGA2001, DTA113ZSA, DTA114GSA, DTA114TSA, DTA114WSA, DTA114YM, DTA115ESA, DTA115TSA, DTA123JSA, DTA123YSA, DTA124ESA, DTA124GSA, DTA124TSA, DTA124XSA, DTA125TSA, DTA143ESA, DTA143XSA, DTA144ESA, DTA144VSA, ELM9710NBA, ELM9711NBA, FMA1A, KB3426-ADJ, MMBD1501A, MMBD1503A, MMBD1504A, MMBD1505A, N6200M5G, P2003BEA, RT9011-KNPQV, RT9193-33GU5, RT9193-33PU5, RT9198-18PY, RT9261-50PB, RT9284A-15PJ6, RT9284APJ5, SSM2301CPZ, SSM2301RMZ, STB1132, Si2301DS, UMA1N.
A1SOT-343RBGA2001Philips (Now NXP)MMIC усилитель
A1SOT-753FMA1AROHMЦифровые PNP транзисторы
A1SOT-353UMA1NROHMЦифровые PNP транзисторы
A1 GN*DFN-8 3×3P2003BEAUnikcN-канальный MOSFET
A1*VDFN-8 2×2RT9011-KNPQVRichtekСтабилизатор напряжения
A1**SOT-23AO3401LAlpha & OmegaПолевой транзистор с P-каналом
A1**SOT-25APS1006ET5APSemiПонижающий преобразователь
A1**SOT-25N6200M5GNIKO-SEMПонижающий преобразователь
A1***SOT-23Si2301DSVishayПолевой транзистор с P-каналом
A1-***SOT-353RT9193-33PU5RichtekСтабилизатор напряжения
A1-***SOT-343RT9198-18PYRichtekСтабилизатор напряжения
A1-***SOT-25RT9261-50PBRichtekПовышающий пребразователь
A1-***SOT-26RT9284A-15PJ6RichtekДрайвер светодиода
A1-***SOT-25RT9284APJ5RichtekДрайвер светодиода
A10*SOT-23ELM9710NBAELMДетектор напряжения
A1013TO-922SA1013ToshibaPNP транзистор
A1038SSPT / SC-722SA1038SROHMPNP транзистор
A10ADO-214AA1KSMB6.8ALittelfuseЗащитный диод
A10BDO-214AA1KSMB7.5A
Littelfuse
Защитный диод
A10CDO-214AA1KSMB8.2ALittelfuseЗащитный диод
A10DDO-214AA1KSMB9.1ALittelfuseЗащитный диод
A10EDO-214AA1KSMB10ALittelfuseЗащитный диод
A10FDO-214AA1KSMB11ALittelfuseЗащитный диод
A10GDO-214AA1KSMB12ALittelfuseЗащитный диод
A10HDO-214AA1KSMB13ALittelfuseЗащитный диод
A10IDO-214AA1KSMB15ALittelfuseЗащитный диод
A10JDO-214AA1KSMB16ALittelfuseЗащитный диод
A10KDO-214AA1KSMB18ALittelfuseЗащитный диод
A10LDO-214AA1KSMB20ALittelfuseЗащитный диод
A10MDO-214AA1KSMB22ALittelfuseЗащитный диод
A10NDO-214AA1KSMB24ALittelfuseЗащитный диод
A10ODO-214AA1KSMB27ALittelfuseЗащитный диод
A10PDO-214AA1KSMB30ALittelfuseЗащитный диод
A10QDO-214AA1KSMB33ALittelfuseЗащитный диод
A10RDO-214AA1KSMB36ALittelfuseЗащитный диод
A10SDO-214AA1KSMB39ALittelfuseЗащитный диод
A10TDO-214AA1KSMB43ALittelfuseЗащитный диод
A10UDO-214AA1KSMB47ALittelfuseЗащитный диод
A10VDO-214AA1KSMB51ALittelfuseЗащитный диод
A10WDO-214AA1KSMB56ALittelfuseЗащитный диод
A10XDO-214AA1KSMB62ALittelfuseЗащитный диод
A10YDO-214AA1KSMB68ALittelfuseЗащитный диод
A10ZDO-214AA1KSMB75ALittelfuseЗащитный диод
A11SOT-26ADT7110AD-TechДрайвер светодиода
A11SOT-23MMBD1501ABL Galaxy ElectricalДиод
A11SOT-23MMBD1501AFairchild (Now ON)Диод
A11*SOT-23ELM9711NBAELMДетектор напряжения
A113ZSSPT / SC-72DTA113ZSAROHMЦифровой PNP транзистор
A114GSSPT / SC-72DTA114GSAROHMЦифровой PNP транзистор
A114TSSPT / SC-72DTA114TSAROHMЦифровой PNP транзистор
A114WSSPT / SC-72DTA114WSAROHMЦифровой PNP транзистор
A114YSSPT / SC-72DTA114YMROHMЦифровой PNP транзистор
A115ESSPT / SC-72DTA115ESAROHMЦифровой PNP транзистор
A115TSSPT / SC-72DTA115TSAROHMЦифровой PNP транзистор
A123JSSPT / SC-72DTA123JSAROHMЦифровой PNP транзистор
A123YSSPT / SC-72DTA123YSAROHMЦифровой PNP транзистор
A124ESSPT / SC-72DTA124ESAROHMЦифровой PNP транзистор
A124GSSPT / SC-72DTA124GSAROHMЦифровой PNP транзистор
A124TSSPT / SC-72DTA124TSAROHMЦифровой PNP транзистор
A124XSSPT / SC-72DTA124XSAROHMЦифровой PNP транзистор
A125TSSPT / SC-72DTA125TSAROHMЦифровой PNP транзистор
A13SOT-23MMBD1503ABL Galaxy ElectricalДиоды
A13SOT-23MMBD1503AFairchild (Now ON)Диоды
A14SOT-23MMBD1504ABL Galaxy ElectricalДиоды
A14SOT-23MMBD1504AFairchild (Now ON)Диоды
A143ESSPT / SC-72DTA143ESAROHMЦифровой PNP транзистор
A143XSSPT / SC-72DTA143XSAROHMЦифровой PNP транзистор
A144ESTO-92SDTA144ESASecosЦифровой PNP транзистор
A144VSSPT / SC-72DTA144VSAROHMЦифровой PNP транзистор
A15SOT-23MMBD1505ABL Galaxy ElectricalДиоды
A15SOT-23MMBD1505AFairchild (Now ON)Диоды
A1515SSPT / SC-722SA1515SROHMPNP транзистор
A1585SSPT / SC-722SA1585SROHMPNP транзистор
A16*SOT-25KB3426-ADJKingborПонижающий преобразователь
A17SOT-232SK436Sanyo (Now Panasonic)N-канальный JFET
A17*SOT-25KB3426-ADJKingborПонижающий преобразователь
A1727SOT-4282SA1727ROHMPNP транзистор
A1776ATV2SA1776ROHMPNP транзистор
A18SOT-232SK436Sanyo (Now Panasonic)N-канальный JFET
A1862SOT-4282SA1862ROHMPNP транзистор
A19SOT-232SK436Sanyo (Now Panasonic)N-канальный JFET
A1=***SOT-353RT9193-33GU5RichtekСтабилизатор напряжения
A1CLFCSP_VD 3×3SSM2301CPZAnalog DevicesАудио усилитель
A1CMSOP-8SSM2301RMZAnalog DevicesАудио усилитель
A1O*SOT-89STB1132AUKPNP транзистор
A1Y*SOT-89STB1132AUKPNP транзистор

1A SMD маркировка | Все для ремонта электроники

 Маркировка Корпус Элемент Описание datasheet
1Asot23
BC846Anpn: 65В/100мА/h31=150datasheet
1Asot23
FMMT3904npn: 40В/200мА (=2N3904)datasheet
1Asod323
MM3Z47VT1Gстабилитрон 200мВт: 47Вdatasheet
1Asot23
SMBT3904npn: 40В/200мА (=2N3904)datasheet
1Asot23
SXT3904npn: 40В/200мА (=2N3904)datasheet
1AUMD3F
DAN202UMПереключающие диодыdatasheet
1A **sot23
IRLML2402N-канальный MOSFETdatasheet
1A1sot-23
ZXTN25020DFLTANPN транзисторdatasheet
1A18sot-23
MT501LED-драйверdatasheet
1A18sot-89
MT501LED-драйверdatasheet
1A20sot-23
MT501LED-драйверdatasheet
1A20sot-89
MT501LED-драйверdatasheet
1Apsot23
BC846Anpn: 65В/100мА/h31=150 (=BC546A)datasheet
1Assot23
BC846Anpn: 65В/100мА/h31=150 (=BC546A)datasheet
1Atsot23
BC846Anpn: 65В/100мА/h31=150 (=BC546A)datasheet
1A xxsot23
IRLML2402nМОП: 20В/1.2Аdatasheet
1Axx#sot23
TS431ACXшунтовой ИОН: 2.495В 1%datasheet
1AMsot23
MMBT3904npn: 40В/200мА/h31=150datasheet
1AMxsot23
MMBT3904npn: 40В/200мА/h31=150datasheet

A1 SMD маркировка | Все для ремонта электроники

A1SOT-343R
BGA2001MMIC усилительСкачать
A1SOT-753
FMA1AЦифровые PNP транзисторыСкачать
A1SOT-353
UMA1NЦифровые PNP транзисторыСкачать
A1 GN*DFN-8 3×3
P2003BEAN-канальный MOSFETСкачать
A1*VDFN-8 2×2
RT9011-KNPQVСтабилизатор напряженияСкачать
A1**SOT-23
AO3401LПолевой транзистор с P-каналомСкачать
A1**SOT-25
APS1006ET5Понижающий преобразовательСкачать
A1**SOT-25
N6200M5GПонижающий преобразовательСкачать
A1***SOT-23
Si2301DSПолевой транзистор с P-каналомСкачать
A1-***SOT-353
RT9193-33PU5Стабилизатор напряженияСкачать
A1-***SOT-343
RT9198-18PYСтабилизатор напряженияСкачать
A1-***SOT-25
RT9261-50PBПовышающий преобразовательСкачать
A1-***SOT-26
RT9284A-15PJ6Драйвер светодиодаСкачать
A1-***SOT-25
RT9284APJ5Драйвер светодиодаСкачать
A10*SOT-23
ELM9710NBAДетектор напряженияСкачать
A1013
TO-92
2SA1013PNP транзисторСкачать
A1038SSPT / SC-722SA1038SPNP транзисторСкачать
A10A
DO-214AA1KSMB6.8AЗащитный диодСкачать
A10B
DO-214AA1KSMB7.5AЗащитный диодСкачать
A10C
DO-214AA1KSMB8.2AЗащитный диодСкачать
A10D
DO-214AA1KSMB9.1AЗащитный диодСкачать
A10E
DO-214AA1KSMB10AЗащитный диодСкачать
A10F
DO-214AA1KSMB11AЗащитный диодСкачать
A10G
DO-214AA1KSMB12AЗащитный диодСкачать
A10H
DO-214AA1KSMB13AЗащитный диодСкачать
A10I
DO-214AA1KSMB15AЗащитный диодСкачать
A10J
DO-214AA1KSMB16AЗащитный диодСкачать
A10K
DO-214AA1KSMB18AЗащитный диодСкачать
A10L
DO-214AA1KSMB20AЗащитный диодСкачать
A10M
DO-214AA1KSMB22AЗащитный диодСкачать
A10N
DO-214AA1KSMB24AЗащитный диодСкачать
A10O
DO-214AA1KSMB27AЗащитный диодСкачать
A10P
DO-214AA1KSMB30AЗащитный диодСкачать
A10Q
DO-214AA1KSMB33AЗащитный диодСкачать
A10R
DO-214AA1KSMB36AЗащитный диодСкачать
A10S
DO-214AA1KSMB39AЗащитный диодСкачать
A10T
DO-214AA1KSMB43AЗащитный диодСкачать
A10U
DO-214AA1KSMB47AЗащитный диодСкачать
A10V
DO-214AA1KSMB51AЗащитный диодСкачать
A10W
DO-214AA1KSMB56AЗащитный диодСкачать
A10X
DO-214AA1KSMB62AЗащитный диодСкачать
A10Y
DO-214AA1KSMB68AЗащитный диодСкачать
A10Z
DO-214AA1KSMB75AЗащитный диодСкачать
A11SOT-26
ADT7110Драйвер светодиодаСкачать
A11SOT-23
MMBD1501AДиодСкачать
A11*SOT-23
ELM9711NBAДетектор напряженияСкачать
A113ZSSPT / SC-72DTA113ZSAЦифровой PNP транзисторСкачать
A114GSSPT / SC-72DTA114GSAЦифровой PNP транзисторСкачать
A114TSSPT / SC-72DTA114TSAЦифровой PNP транзисторСкачать
A114WSSPT / SC-72DTA114WSAЦифровой PNP транзисторСкачать
A114YSSPT / SC-72DTA114YMЦифровой PNP транзисторСкачать
A115ESSPT / SC-72DTA115ESAЦифровой PNP транзисторСкачать
A115TSSPT / SC-72DTA115TSAЦифровой PNP транзисторСкачать
A123JSSPT / SC-72DTA123JSAЦифровой PNP транзисторСкачать
A123YSSPT / SC-72DTA123YSAЦифровой PNP транзисторСкачать
A124ESSPT / SC-72DTA124ESAЦифровой PNP транзисторСкачать
A124GSSPT / SC-72DTA124GSAЦифровой PNP транзисторСкачать
A124TSSPT / SC-72DTA124TSAЦифровой PNP транзисторСкачать
A124XSSPT / SC-72DTA124XSAЦифровой PNP транзисторСкачать
A125TSSPT / SC-72DTA125TSAЦифровой PNP транзисторСкачать
A13SOT-23
MMBD1503AДиодыСкачать
A14SOT-23
MMBD1504AДиодыСкачать
A14SOT-23
MMBD1504AДиодыСкачать
A143**SPT / SC-72DTA143ESAЦифровой PNP транзисторСкачать
A144ESTO-92S
DTA144ESAЦифровой PNP транзисторСкачать
A144VSSPT / SC-72DTA144VSAЦифровой PNP транзисторСкачать
A15SOT-23
MMBD1505AДиодыСкачать
A1515SSPT / SC-722SA1515SPNP транзисторСкачать
A1585SSPT / SC-722SA1585SPNP транзисторСкачать
A16*SOT-25
KB3426-ADJПонижающий преобразовательСкачать
A17SOT-23
2SK436N-канальный JFETСкачать
A17*SOT-25
KB3426-ADJПонижающий преобразовательСкачать
A1727SOT-428
2SA1727PNP транзисторСкачать
A1776ATV2SA1776PNP транзисторСкачать
A18SOT-23
2SK436N-канальный JFETСкачать
A1862
SOT-428
2SA1862PNP транзисторСкачать
A19SOT-23
2SK436N-канальный JFETСкачать
A1=***SOT-353
RT9193-33GU5Стабилизатор напряженияСкачать
A1CLFCSP_VD 3×3SSM2301CPZАудио усилительСкачать
A1CMSOP-8
SSM2301RMZАудио усилительСкачать
A1O*SOT-89
STB1132PNP транзисторСкачать
A1Y*SOT-89
STB1132PNP транзисторСкачать
Маркировка радиодеталей, Коды SMD W1, W1***, W1-, W10, W11, W12, W12*, W13, W14, W15, W16, W17, W18F, W19, W1A, W1D, W1T, W1W, W1p, W1s, W1t. Даташиты APW7212CT, APX823-46W5, BCR10PN, BFT92, BZT52-C2V4, BZT52C2V7, BZX84C2V4, BZX84C2V4-AU, CMPZDA27V, CMPZDA30V, CMPZDA33V, CMPZDA36V, CMPZDA39V, CMPZDA43V, CMPZDA47V, MIC3291-18YD6, PDTA143ZT, PDTC114ET, PDTC115EU, PDTC124ET, PDTD123TT, PMBTA42, PMST3904.
W1SOD-123BZT52-C2V4PanjitСтабилитрон
W1SOD-123BZT52C2V7DiodesСтабилитрон
W1SOT-23BZX84C2V4TaitronСтабилитрон
W1SOT-23BZX84C2V4-AUPanjitСтабилитрон
W1***SOT-25APX823-46W5DiodesЦепь сброса микропроцессора
W1-SOT-23BFT92NXPPNP транзистор
W10SOT-23CMPZDA27VCentralСтабилитроны
W11SOT-23CMPZDA30VCentralСтабилитроны
W12SOT-23CMPZDA33VCentralСтабилитроны
W12*SOT-26APW7212CTAnpecПовышающий пребразователь
W13SOT-23CMPZDA36VCentralСтабилитроны
W14SOT-23CMPZDA39VCentralСтабилитроны
W15SOT-23CMPZDA43VCentralСтабилитроны
W15SOT-323PDTC115EUNXPЦифровой NPN транзистор
W16SOT-23CMPZDA47VCentralСтабилитроны
W16SOT-23PDTC114ETNXPЦифровой NPN транзистор
W17SOT-23PDTC124ETNXPЦифровой NPN транзистор
W18FSOT-26MIC3291-18YD6MicrelДрайвер светодиода
W19SOT-23PDTA143ZTNXPЦифровой PNP транзистор
W1ASOT-323PMST3904NXPNPN транзистор
W1DSOT-23PMBTA42NXPNPN транзистор
W1TSOT-23PDTD123TTNXPЦифровой NPN транзистор
W1WSOT-23BFT92NXPPNP транзистор
W1pSOT-23BFT92NXPPNP транзистор
W1sSOT-363BCR10PNInfineonNPN + PNP цифровые транзисторы
W1tSOT-23BFT92NXPPNP транзистор
Маркировка радиодеталей, Коды SMD G1, G1**, G1***, G1-, G1-***, G11, G15N60, G1=**, G1=***, G1F, G1W, G1p, G1t. Даташиты BC847B, BFS20, DTB113ZK, EMG1, EUP7965-18VIR1, FMG1A, KST5551, MMBT5551, RT9161A-16PX, RT9166-33GVL, RT9166-33PVL, RT9715BGQW, SGB15N60, SGP15N60, SGW15N60, Si2351DS, TC1188-TECT, UMG1N.
G1SOT-23BFS20Zetex (Now Diodes)NPN транзистор
G1SOT-23BFS20KECNPN транзистор
G1SOT-553EMG1ROHMЦифровые NPN транзисторы
G1SOT-753FMG1AROHMЦифровые NPN транзисторы
G1SOT-23KST5551Fairchild (Now ON)NPN транзистор
G1SOT-23MMBT5551BL Galaxy ElectricalNPN транзистор
G1SOT-353UMG1NROHMЦифровые NPN транзисторы
G1**SOT-25EUP7965-18VIR1EutechСтабилизатор напряжения
G1**SOT-25TC1188-TECTMicrochipСтабилизатор напряжения
G1***SOT-23Si2351DSVishayПолевой транзистор с P-каналом
G1-SOT-23BFS20NXPNPN транзистор
G1-SOT-89RT9161A-16PXRichtekСтабилизатор напряжения
G1-***SOT-23RT9166-33PVLRichtekСтабилизатор напряжения
G11SOT-346DTB113ZKROHMЦифровой PNP транзистор
G15N60TO-263-3SGB15N60InfineonБыстрый IGBT
G15N60TO-220-3-1SGP15N60InfineonБыстрый IGBT
G15N60TO-247-3-21SGW15N60InfineonБыстрый IGBT
G1=**WDFN-8 3×3RT9715BGQWRichtekКоммутатор питания
G1=***SOT-23RT9166-33GVLRichtekСтабилизатор напряжения
G1FSOT-23BC847BROHMNPN транзистор
G1WSOT-23BFS20NXPNPN транзистор
G1pSOT-23BFS20NXPNPN транзистор
G1tSOT-23BFS20NXPNPN транзистор
Маркировка радиодеталей, Коды SMD A4, A4*, A4**, A4**B, A4-, A4-**, A4-***, A41, A44, A45A, A4775, A47A, A48A, A4=**, A4=***, A4W, A4p, A4s, A4t. Даташиты 1S2836, A4775E5R, AO3404, APS1006ET5-1.2, BAV70, BAV70S, BAV70T, BAV70U, BAV70W, BFU540, EMA4, FMA4A, HSMS-2804, HSMS-280F, LM8261M5, LMV710M5, LMV711M6, MIC803-31D3VC3, MIC803-31D3VM3, MMBD2836, MMBTA44, N6200M5G-1.2, RT8008GJ5, RT8008PJ5, RT8202BGQW, RT9011-KMPQV, RT9161-20PV, RT9198-30PY, RT9261A-50PB, RT9284B-20GJ6, RT9284B-20PJ6, RT9818A-38PU3, Si9183DT-25-T1, TPS3831G12DQNR, UMA4N.
A4SOT-23BAV70Fairchild (Now ON)Диоды
A4SOT-23BAV70TaitronДиоды
A4SOT-416BAV70TNXPДиоды
A4SOT-343RBFU540Philips (Now NXP)NPN транзистор
A4SOT-553EMA4ROHMЦифровые PNP транзисторы
A4SOT-753FMA4AROHMЦифровые PNP транзисторы
A4SOT-323MIC803-31D3VC3MicrelЦепь сброса микропроцессора
A4SOT-23MIC803-31D3VM3MicrelЦепь сброса микропроцессора
A4X2SON-4 1×1TPS3831G12DQNRTexas InstrumentsДетектор напряжения
A4SOT-353UMA4NROHMЦифровые PNP транзисторы
A4*SOT-23HSMS-2804AgilentОграничительные диоды Шоттки
A4*SOT-323HSMS-280FAgilentОграничительные диоды Шоттки
A4*VDFN-8 2×2RT9011-KMPQVRichtekСтабилизатор напряжения
A4**SOT-23AO3404Alpha & OmegaN-канальный MOSFET
A4**SOT-25APS1006ET5-1.2APSemiПонижающий преобразователь
A4**SOT-25Si9183DT-25-T1VishayСтабилизатор напряжения
A4**BSOT-25N6200M5G-1.2NIKO-SEMПонижающий преобразователь
A4-SOT-23BAV70NXPПереключающие диоды
A4-SOT-363BAV70SNXPПереключающие диоды
A4-SOT-323BAV70WNXPПереключающие диоды
A4-**SOT-323RT9818A-38PU3RichtekДетектор напряжения
A4-***SOT-25RT8008PJ5RichtekПонижающий преобразователь
A4-***SOT-23RT9161-20PVRichtekСтабилизатор напряжения
A4-***SOT-343RT9198-30PYRichtekСтабилизатор напряжения
A4-***SOT-25RT9261A-50PBRichtekПовышающий пребразователь
A4-***SOT-26RT9284B-20PJ6RichtekДрайвер светодиода
A41SOT-231S2836TIPПереключающий диод
A41SOT-23MMBD2836BL Galaxy ElectricalПереключающий диод
A44SOT-23MMBTA44MCCNPN транзистор
A45ASOT-25LM8261M5NationalОперационный усилитель
A4775SOT-25A4775E5RAiTКоммутатор питания
A47ASOT-26LMV711M6NationalОперационный усилитель
A48ASOT-25LMV710M5NationalОперационный усилитель
A4=**WQFN-14 3.5×3.5RT8202BGQWRichtekКонтроллер понижающего преобразователя
A4=***SOT-25RT8008GJ5RichtekПонижающий преобразователь
A4=***SOT-26RT9284B-20GJ6RichtekДрайвер светодиода
A4WSOT-23BAV70NXPПереключающие диоды
A4WSOT-363BAV70SNXPПереключающие диоды
A4WSOT-323BAV70WNXPПереключающие диоды
A4pSOT-23BAV70NXPПереключающие диоды
A4pSOT-363BAV70SNXPПереключающие диоды
A4pSOT-323BAV70WNXPПереключающие диоды
A4sSOT-23BAV70InfineonДиоды
A4sSOT-363BAV70SInfineonДиоды
A4sSOT-26BAV70UInfineonДиоды
A4sSOT-323BAV70WInfineonДиоды
A4tSOT-23BAV70NXPПереключающие диоды
A4tSOT-363BAV70SNXPПереключающие диоды
A4tSOT-323BAV70WNXPПереключающие диоды
90000 Transistor | Electronics Basics 90001 90002 Reverse Current When ON 90003 90004 In an NPN transistor, the Base is at a positive bias, the Collector at a negative bias, and reverse current flows from the Emitter to the Collector. Also, please consider problems that may arise from usage as transistors (such as smaller current gain). 90005 90004 1.It has been determined that no problems, such as degradation or destruction, will arise from use.90005 90004 2.In the case of an NPN transistor, B is symmetrical with C, and E with N. Therefore, C and E can be used as a transistor, even when connected in reverse. In this case current will flow from E to C. 90005 90004 3.The following are characteristics of transistors connected in reverse. 90005 90012 90013 Low h 90014 FE 90015 (approx. 10% of the value of the forward direction) 90016 90013 Low voltage resistance (around 7-8V, about the same as VEBO) The voltage may even be lower (below 5V) in some standard transistors (Please consider that excessively low voltage resistance may result in breakdown and degradation of characteristics) 90016 90013 V 90014 CE 90015 (sat) and V 90014 BE 90015 (ON) should not change much 90016 90025 90002 Package Power Permissible Loss 90003 90004 Package power permissible loss is when voltage is supplied to a transistor and the device begins to generate heat due to power loss due to current flow, particularly when the junction temperature Tj reaches the absolute maximum value (150ºC).90005 90004 Calculation Method (Where △ Tx is the amount of temperature rise when power Px is supplied) 90005 90004 In this case, Pc, Ta, △ Tx, and Px can be directly derived from measurement results. Tj is the only value that can not be directly derived. Therefore, the following shows how to measure VBE, from which we can determine the junction temperature Tj. 90005 90004 In silicon based transistors, VBE will vary based on the temperature. 90005 90004 Therefore, the junction temperature can be inferred by measuring VBE.From the measurement circuit shown in Diagram 1, the package power Pc (max) condition is applied to the transistor (In the case of a 1W transistor, the conditions for supply are VCB = 10VIE = 100mA). 90005 90004 As seen in Diagram 2: 90005 90012 90013 V 90014 BE 90015 1 is measured as the initial value of VBE 90016 90013 When power is supplied to the transistor, heat saturation will occur at the junction 90016 90013 he value of VBE after will be V 90014 BE 90015 2 90016 90025 90004 From these results: △ V 90014 BE 90015 = V 90014 BE 90015 2-V 90014 BE 90015 1 90005 90004 Here, a silicon transistor will have a fixed temperature coefficient which is approximately -2.2mV / ºC. (NoteL Darlington transistors are due to the use of two transistors -4.4mV / ºC). Therefore, △ VBE from the supplied power can be derived from the rise in junction temperature using the following formula. 90005 90002 fT: Gain Bandwidth, Cutoff Frequency 90003 90004 fT: Gain bandwidth indicates the maximum operating frequency of the transistor. At this time the collector current ratio with the base current is limited to 1 (hFE = 1). 90005 90004 As the frequency of the signal input applied to the base approaches the operating frequency, the hFE begins to reduce.When hFE becomes 1, the operating frequency fT is referred to as the gain bandwidth. fT signifies the operating frequency limit. However, in actuality for operation the value will be about 1 / 5th to 1 / 10th that of fT. 90005 90004 f: Depends on the measurement equipment. Reference frequency for measurement. 90069 VCE: optional setting — standard value is normally used for ROHM products. 90069 Ic: optional setting — standard value is normally used for ROHM products. 90005 90004 TransistorsTo Product Page 90005 90004 In addition to low voltage drive MOSFETs for portable products and digital transistors with built-in resistor, ROHM offers a range of transistor products, including standard MOSFETs, bipolar transistors, and complex transistors with integrated diode.90005 .90000 What is a Transistor? | Electronics Basics 90001 90002 The Transistor was Invented in 1948 at Bell Telephone Laboratories 90003 90004 The invention of the transistor was an unprecedented development in the electronics industry. It marked the beginning of the current age in the electronics sector. After the transistor’s invention, advances in technology became more frequent, the most notable of which was computer technology. The three physicists who invented the transistor; William Shockley, John Bardeen, and Walter Brattain were awarded with the Nobel Prize.Considering the inventions that the transistor paved the way for, one could argue that it was the most important invention of the twentieth century. 90005 90002 From Germanium to Silicon 90003 90004 Transistors were originally manufactured using Germanium. This was the standard for the first decade of transistor production. The Silicon-based transistors that we’re used to seeing today were adopted because Germanium breaks down at 180 degrees F. 90005 90002 Functions of a Transistor 90003 90004 A transistor’s functions consist of amplification and switching.Let’s use a radio as an example: the signals that the radio receives from the atmosphere are extremely weak. The radio amplifies these signals through the speaker’s output. This is the «amplification» function. 90005 90004 For an analog radio, simply amplifying the signal will cause the speakers to produce sound. For digital devices, however, the waveform of the input signal needs to be changed. For a digital device like a computer or MP3 player, the transistor needs to switch the signal state to a 0 or 1.This is the «switching function» 90005 90004 Even more complex components like Integrated circuits made from Liquid Silicon Infiltration are basically collections of transistors. 90005 90002 Resistors and Transistors on a Single Chip 90003 90004 Originally, discrete resistors and transistors were mounted on the same printed circuits boards.Later on, transistor chips with built-in resistors were developed as digital transistors.Using digital transistors in designs has: 90021 90022 1.They require less area to mount components on a printed circuit board. 90021 2.They require less time to mount the components on a printed circuit board 90021 3.This reduces the number of components needed. 90025 90005 90027 Digital transistors are covered by one of ROHM’s exclusive patents. 90004 The first transistors with built-in resistors were developed by ROHM, who was awarded the patent rights. Digital transistors are also covered by one of ROHM’s exclusive patents. 90005 90030 90002 How Does a Transistor Work? 90003 90004 One analogy that helps explain how a transistor operates is to think of it like a water tap.In this case, electrical current works like water. A transistor has three pins: the base, the collector, and the emitter. The base works like the tap handle, the collector is like the pipe that feeds into the tap, and the emitter is like the opening where water pours out. By turning the tap handle with a small amount of force, we can control a powerful flow of water. This water flows through the pipe and out of the opening. Turning the tap handle slightly can dramatically increase the rate that water flows.If closed completely, no water will flow. If opened completely, water will gush out as fast as possible! 90005 90004 Now we can dive into a proper explanation using the diagrams below. A transistor has three pins, the emitter (E), the collector (C), and the base (B). The base controls the current from the collector to the emitter. The current that flows from the collector to the emitter is proportional to the base current. The emitter current, or base current = hFE. The setup shown uses a collector resistor (RI).If a current of Ic flows through RI, a voltage across that resistor will be formed, which is equal to the product of Ic x RI. This means that the voltage across the transistor equals: E2 — (RI x Ic). Ic is approximately Ie, so if IE = hFE x IB, then Ic also equals hFE x IB. Therefore, through substitution, voltage across transistors (E) = E2 (RI x le x hFE). Essentially, the input voltage E appears at the output after being converted into a voltage of IcRL. 90005 90004 90027 (* 1) hfe: DC Current amplification factor of the transistor.90030 90005 TransistorProduct Page .90000 Electronics Club — Transistor Circuits 90001 Electronics Club — Transistor Circuits — functional model, base, collector, emitter, use as switch, inverter, Darlington pair 90002 90003 Types | Currents | Functional model | Use as switch | IC output | Sensors | Inverter | Darlington pair 90004 90003 Next Page: Capacitance 90004 90003 Also See: Transistors 90004 90003 90010 This page explains the operation of transistors in simple circuits, mainly their use as switches.Practical matters such as testing, precautions when soldering and identifying leads are covered by the transistors page. 90011 90004 90013 Types of transistor 90014 90003 There are two types of standard (bipolar junction) transistors, 90016 NPN 90017 and 90016 PNP 90017, with different circuit symbols. The letters refer to the layers of semiconductor material used to make the transistor. Most transistors used today are NPN because this is the easiest type to make from silicon. This page is mostly about NPN transistors and beginners should initially focus on this type.90004 90003 The leads are labelled 90016 base 90017 (B), 90016 collector 90017 (C) and 90016 emitter 90017 (E). These terms refer to the internal operation of a transistor but they are not much help in understanding how a transistor is used, so just treat them as labels. 90004 90029 90003 Transistor circuit symbols 90004 90003 A Darlington pair is two transistors connected together to give a very high current gain. 90004 90003 In addition to standard (bipolar junction) transistors, there are 90016 field-effect transistors 90017 which are usually referred to as 90016 FET 90017 s.They have different circuit symbols and properties and they are not covered by this page. 90004 90003 Rapid Electronics: transistors 90004 90042 90043 90013 Transistor currents 90014 90003 The diagram shows the two current paths through a transistor. 90004 90003 The small 90016 base current 90017 controls the larger 90016 collector current 90017. 90004 90003 90016 When the switch is closed 90017 a small current flows into the base (B) of the transistor. It is just enough to make LED B glow dimly.The transistor amplifies this small current to allow a larger current to flow through from its collector (C) to its emitter (E). This collector current is large enough to make LED C light brightly. 90004 90003 90016 When the switch is open 90017 no base current flows, so the transistor switches off the collector current. Both LEDs are off. 90004 90003 You can build this circuit with two standard 5mm red LEDs and any general purpose low power NPN transistor (BC108, BC182 or BC548 for example).It is a good way to test a transistor and confirm it is working. 90004 90003 A transistor amplifies current and can be used as a switch, as explained on this page. 90004 90003 With suitable resistors (and capacitors for AC) a transistor can amplify voltage such as an audio signal but this is not yet covered by this website. 90004 90068 90069 Common Emitter Mode 90070 90003 This arrangement where the emitter (E) is in the controlling circuit (base current) and in the controlled circuit (collector current) is called 90016 common emitter mode 90017.It is the most widely used arrangement for transistors so it is the one to learn first. 90004 90043 90043 90013 Functional model of an NPN transistor 90014 90003 The operation of a transistor is difficult to explain and understand in terms of its internal structure. It is more helpful to use this functional model. 90004 90081 90082 The base-emitter junction behaves like a diode. 90083 90082 A base current I 90085 B 90086 flows only when the voltage V 90085 BE 90086 across the base-emitter junction is 0.7V or more. 90083 90082 The small base current I 90085 B 90086 controls the large collector current Ic by varying the resistance R 90085 CE 90086. 90083 90082 Ic = h 90085 FE 90086 × I 90085 B 90086 (Unless the transistor is full on and saturated). h 90085 FE 90086 is the current gain (strictly the DC current gain), a typical value for h 90085 FE 90086 is 100 (it is a ratio so it has no units). 90083 90082 The collector-emitter resistance R 90085 CE 90086 is controlled by the base current I 90085 B 90086: 90111 90016 I 90085 B 90086 = 0 90017, R 90085 CE 90086 = infinity, transistor off 90111 90016 I 90085 B 90086 small 90017, R 90085 CE 90086 reduced, transistor partly on 90111 90016 I 90085 B 90086 increased 90017, R 90085 CE 90086 = 0, transistor full on ( ‘saturated’) 90083 90133 90134 90069 Additional notes: 90070 90081 90082 The base current I 90085 B 90086 must be limited to prevent the transistor being damaged and a resistor may be connected in series with the base.90083 90082 Transistors have a maximum collector current Ic rating. 90083 90082 The 90016 current gain h 90085 FE 90086 can vary widely 90017, even for transistors of the same type! 90083 90082 A transistor that is 90016 full on 90017 (with R 90085 CE 90086 = 0) is said to be ‘90016 saturated 90017’. 90083 90082 When a transistor is saturated the collector-emitter voltage V 90085 CE 90086 is reduced to almost 0V. 90083 90082 When a transistor is saturated the collector current Ic is determined by the supply voltage and the external resistance in the collector circuit, not by the transistor’s current gain.As a result the ratio Ic / I 90085 B 90086 for a saturated transistor is less than the current gain h 90085 FE 90086. 90083 90082 The emitter current I 90085 E 90086 = Ic + I 90085 B 90086, but Ic is much larger than I 90085 B 90086, so roughly I 90085 E 90086 = Ic. 90083 90133 90043 90013 Using a transistor as a switch 90014 90003 When a transistor is used as a switch it must be either 90016 OFF 90017 or 90016 fully ON 90017. It must never be partly on (with significant resistance between C and E) because in this state the transistor is liable to overheat and be destroyed.90004 90003 In the fully ON state the voltage V 90085 CE 90086 across the transistor is almost zero and the transistor is said to be 90016 saturated 90017 because it can not pass any more collector current Ic. 90004 90003 The device switched by the transistor is called the 90016 load 90017. 90004 90003 When choosing a transistor to use as a switch you need to consider its maximum collector current 90016 Ic (max) 90017 and its minimum current gain 90016 h 90085 FE 90086 (min) 90017. Transistor voltage ratings may be ignored for supply voltages less than 15V.90004 90206 90069 Transistor technical data 90070 90003 Most suppliers provide data for transistors they sell, for example Rapid Electronics. 90004 90211 Power developed in a switching transistor should be very small 90212 90003 Power developed in a transistor appears as 90016 heat 90017 and the transistor will be destroyed if it becomes too hot. This should not be a problem for a transistor being used as a switch if it has been chosen and set up correctly because the power developed inside it will be very small.90004 90217 90218 90219 Power (heat) developed in transistor: 90003 90016 Power = Ic × V 90085 CE 90086 90017 90004 90226 90227 90228 90081 90082 When 90016 OFF 90017: Ic is zero so the 90016 power is zero 90017. 90083 90082 When 90016 full ON 90017: V 90085 CE 90086 is almost zero so the 90016 power is very small 90017. 90083 90133 90069 Would a relay be better than a transistor switch? 90070 90003 Transistors can not switch AC or high voltages (such as mains electricity) and they are not usually a good choice for switching large currents (> 5A).Relays are suitable for all these situations but note that a low power transistor may still be needed to switch the current for the relay’s coil. For more information, including the advantages and disadvantages, please see the relays page. 90004 90069 Protection diode for loads with a coil such as relays and motors 90070 90003 If the transistor is switching a load with a coil such, as a motor or relay, a diode must be connected across the load to protect the transistor from the brief high voltage produced when the load is switched off.90004 90003 The diagram shows how a protection diode is connected ‘backwards’ across the load, in this case a relay coil. 90004 90003 A signal diode such as the 1N4148 is suitable for this. 90004 90257 90069 Why is a protection diode needed? 90070 90003 Current flowing through a coil creates a magnetic field which collapses suddenly when the current is switched off. The sudden collapse of the magnetic field induces a brief high voltage across the coil which is very likely to damage transistors and ICs.The protection diode allows the induced voltage to drive a brief current through the coil (And diode) so the magnetic field dies away quickly rather than instantly. This prevents the induced voltage becoming high enough to cause damage to transistors and ICs. 90004 90043 90003 Short of money for your electronics projects? Sell ​​your old iPhone, iPad, MacBook or other Apple device: macback.co.uk 90004 90043 90013 Connecting a transistor to a digital IC’s on / off output 90014 90003 Most ICs can not supply large output currents so it may be necessary to use a transistor to switch the larger current required for devices such as lamps, motors and relays.The 555 timer IC is unusual in being able to supply a relatively large current of up to 200mA, sufficient for many relays and other loads without needing a transistor. 90004 90003 A base resistor limits the current flowing into the base of the transistor to prevent it being damaged but it must also allow sufficient base current to flow to ensure that the transistor is fully saturated when switched on. 90004 90003 A transistor that is not fully saturated when switched on is likely to overheat and be destroyed, especially if the transistor is switching a large current (> 100mA).90004 90003 The next section explains how to choose a transistor and base resistor to ensure full saturation. 90004 90069 Switching a load with a different supply voltage 90070 90003 A transistor can be used to enable an IC connected to a low voltage supply (such as 5V) to switch the current for a load with a separate DC supply (such as 12V). 90004 90003 The two power supplies must be linked. Usually their 0V connections are linked and an NPN transistor is used on the IC output. However, if a PNP transistor is used on the IC output the positive (+) connections of the supplies should be linked instead.90004 90211 Choosing a transistor and base resistor for a digital IC output 90212 90003 Follow this step-by-step guide to choose a suitable transistor to connect to the on / off output of a digital IC (logic gate, counter, PIC, microcontroller etc.) to switch a load such as a lamp, motor or relay. Transistor data is available from most suppliers, for example see Rapid Electronics. 90004 90069 1. Choose the right type of transistor, NPN or PNP 90070 90003 Do you want the load to switch on when the IC output is high? Or when it is or low? 90004 90081 90082 To switch on when the IC output is 90016 high 90017 use an 90016 NPN transistor 90017.90083 90082 To switch on when the IC output is 90016 low 90017 use a 90016 PNP transistor 90017. 90083 90133 90003 NPN and PNP transistors are connected differently as shown in the diagrams below but the calculations and properties required are the same for both types of transistor. 90004 90306 90003 90016 NPN transistor switch 90017 90111 load switched on when IC output is 90016 high 90017 90004 90314 90003 90016 PNP transistor switch 90017 90111 load switched on when IC output is 90016 low 90017 90004 90069 2.Find out the supply voltage (s) and load properties. 90070 90003 In order to work out the transistor properties required you need to know these values: 90004 90081 90082 Vs = load supply voltage. 90083 90082 R 90085 L 90086 = load resistance (for example the coil resistance of a relay). 90083 90082 Ic = load current (= Vs / R 90085 L 90086). 90083 90082 Maximum output current from IC — check the IC datasheet. 90010 If you are unable to find this information assume a low value such as 5mA.90011 90083 90082 Vc = IC supply voltage (usually this is Vs but it will be different if the IC and load have separate supplies). 90083 90133 90003 90010 Note: avoid confusing IC (integrated circuit) with Ic (collector current). 90011 90004 90069 3. Work out the transistor properties required 90070 90003 Choose a transistor of the right type (NPN or PNP from step 1) to meet these requirements: 90004 90081 90082 The transistor’s 90016 maximum collector current Ic (max) 90017 must be greater than the load current: 90217 90218 90358 Ic (max)> 90226 90219 90361 supply voltage Vs 90362 90226 90227 90218 90219 load resistance R 90085 L 90086 90226 90227 90228 90083 90082 The transistor’s 90016 minimum current gain h 90085 FE 90086 (min) 90017 must be at least 5 times the load current Ic divided by the maximum output current from the IC.90217 90218 90358 h 90085 FE 90086 (min)> 5 × 90 226 90219 90361 load current Ic 90362 90226 90227 90218 90219 max. IC current 90226 90227 90228 90083 90133 90069 4. Work out a value for the base resistor R 90085 B 90086 90070 90003 The base resistor (R 90085 B 90086) must allow sufficient current to flow to ensure the transistor is fully saturated when switched on and it is good to make the base current (I 90085 B 90086) about five times the value which just saturates the transistor.Use the formula below to find a suitable resistance for R 90085 B 90086 and choose the nearest standard value. 90004 90217 90218 90219 R 90085 B 90086 = 0.2 × R 90085 L 90086 × h 90085 FE 90086 (see note) 90226 90227 90228 90003 90010 90016 Note: 90017 Where the IC and load have different supply voltages, for example 5V for the IC but 12V for the load use the formula below for R 90085 B 90086: 90011 90004 90217 90218 90358 R 90085 B 90086 = 90226 90219 90361 Vc × h 90085 FE 90086 90362 90226 90358 90441 where Vc is the 90111 IC supply voltage 90443 90226 90227 90218 90219 5 × Ic 90226 90227 90228 90069 5.Check if you need a protection diode 90070 90003 If the load being switched on and off is a motor, relay or solenoid (or any other device with a coil) a diode must be connected across the load to protect the transistor from the brief high voltage produced when the load is switched off. Note that the diode is connected ‘backwards’ as shown in the diagrams above. 90004 90069 Example 90070 90003 The output from a 4000 series CMOS IC is required to operate a relay with a 100 90458 coil, switching it on when the IC output is high.The supply voltage is 6V for both the IC and load. The IC can supply a maximum current of 5mA. 90004 90081 90082 An 90016 NPN transistor 90017 is required because the relay coil must be on when the IC output is high. 90083 90082 Load current = Vs / R 90085 L 90086 = 6/100 = 0.06A = 60mA, so the transistor must have 90016 Ic (max)> 60mA 90017. 90083 90082 The maximum current from the IC is 5mA, so the transistor must have 90016 h 90085 FE 90086 (min)> 60 90017 (5 × 60mA / 5mA). 90083 90082 Choose general purpose low power transistor 90016 BC182 90017 with 90016 Ic (max) = 100mA 90017 and 90016 h 90085 FE 90086 (min) = 100 90017.90083 90082 R 90085 B 90086 = 0.2 × R 90085 L 90086 × h 90085 FE 90086 = 0.2 × 100 × 100 = 2000 90458, so choose 90016 R 90085 B 90086 = 1k8 or 2k2 90017. 90083 90082 The relay coil requires a 90016 protection diode 90017. 90083 90133 90003 Rapid Electronics: transistors 90004 90043 90013 Using a transistor as a switch with sensors 90014 90003 The diagrams below show how to connect an LDR (light sensor) to a transistor to make a light-sensitive circuit switch on an LED.There are two versions, one switches on in darkness, the other in bright light. The variable resistor adjusts the sensitivity. Any general purpose low power transistor can be used to switch an LED. 90004 90003 If the transistor is switching a load with a coil (such as a motor or relay) instead of an LED you must include a protection diode across the load. 90004 90003 If the variable resistor is between + Vs and the base you must add a fixed value resistor of at least 1k 90458 (10k 90458 in the example below) to protect the transistor when the variable resistor is reduced to zero, otherwise excessive base current will destroy the transistor.90004 90518 90003 LED lights when the LDR is 90016 dark 90017 90004 90523 90003 LED lights when the LDR is 90016 bright 90017 90004 90003 Note that the switching action of these simple circuits is not particularly good because there will be an intermediate brightness when the transistor will be 90016 partly on 90017 (not saturated). In this state the transistor is in danger of overheating unless it is switching a small current. There is no problem with the small LED current but the larger current for a lamp, motor or relay is likely to cause overheating.90004 90003 Other sensors, such as a thermistor, can be used with these circuits, but they may require a different variable resistor. You can work out an approximate value for the variable resistor (Rv) by using a multimeter to find the minimum and maximum values of the sensor’s resistance (Rmin and Rmax) and then using this formula: 90004 90217 90218 90219 Variable resistor value: 90111 90016 Rv = square root of (Rmin × Rmax) 90017 90226 90227 90228 90003 For example an LDR: Rmin = 100 90458, Rmax = 1M 90458, so Rv = square root of (100 × 1M) = 10k 90458.90004 90003 You can make a much better switching circuit with sensors connected to a suitable IC (chip). The switching action will be much sharper with no partly on state. 90004 90043 90043 90013 A transistor inverter (NOT gate) 90014 90554 90043 90013 Darlington pair 90014 90003 A Darlington pair is two transistors connected together so that the current amplified by the first is amplified further by the second transistor. 90004 90003 The pair behaves like a single transistor with a very high current gain so that only a tiny base current is required to make the pair switch on.90004 90003 The Darlington pair current gain (h 90085 FE 90086) is equal to the two individual gains (H 90085 FE1 90086 and h 90085 FE2 90086) multiplied together — this gives the pair a very high current gain, such as 10000. 90004 90217 90218 90219 Darlington pair current gain: 90111 90016 h 90085 FE 90086 = h 90085 FE1 90086 × h 90085 FE2 90086 90017 90226 90227 90228 90003 Note that to turn on a Darlington pair there must be 0.7V across both the base-emitter junctions which are connected in series so 90016 1.4V is required to turn on 90017. 90004 90003 Rapid Electronics: Darlington transistors 90004 90591 90069 Darlington transistors 90070 90003 Darlington pairs are available as a ‘darlington transistor’ package with three leads (B, C and E) equivalent to those of a standard transistor. 90004 90003 You can also make your own Darlington pair from two ordinary transistors. TR1 can be a low power type but TR2 may need to be high power. The maximum collector current Ic (max) for the pair is the same as Ic (max) for TR2.90004 90069 Touch-switch Circuit 90070 90003 A Darlington pair is sufficiently sensitive to respond to the small current passed by your skin and it can be used to make a 90016 touch-switch 90017 as shown in the diagram. 90004 90003 For this circuit which just lights an LED the two transistors can be any general purpose low power transistors. 90004 90003 The 100k 90458 resistor protects the transistors if the contacts are linked with a piece of wire. 90004 90609 90003 Touch switch circuit 90004 90043 90003 Rapid Electronics have kindly allowed me to use their images on this website and I am very grateful for their support.They stock a wide range of components, tools and materials for electronics and I am happy to recommend them as a supplier. 90004 90043 90003 90016 Next Page: 90017 Capacitance | Study 90004 90043 90069 Privacy Policy & Cookies 90070 90003 90441 This website does not collect personal information. If you send an email your email address and any personal information will be used only to respond to your message, it will not be given to anyone else. This website displays advertisements, if you click on these the advertiser may know that you came from this site and I may be rewarded.No personal information is passed to advertisers. This website uses some cookies classed as ‘strictly necessary’, they are essential for operation of the website and can not be refused but they do not contain any personal information. This website uses the Google AdSense service which uses cookies to serve advertisements based on your use of websites (Including this one) as explained by Google. To learn how to delete and control cookies from your browser please visit AboutCookies.org. 90443 90004 90003 electronicsclub.info © John Hewes 2020 90004 90003 Website hosted by Tsohost 90004 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *