1 фарад чему равен: The page cannot be found

Содержание

Фарад единица измерения единица измерения конденсатор сколько

Фарад.

 

 

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ). Имеет русское обозначение – Ф и международное обозначение – F.

 

Фарад, как единица измерения

Применение фарада

Представление фарада в других единицах измерения – формулы

Кратные и дольные единицы фарада

Другие единицы измерения

 

Фарад, как единица измерения:

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея. Прежнее название – фарада.

Фарад как единица измерения имеет русское обозначение – Ф и международное обозначение – F.

1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон (Кл) создаёт между обкладками конденсатора напряжение 1 вольт (В).

Ф = Кл/В.

1 Ф = 1 Кл/1 В.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

Ф = А · с / В.

1 Ф = 1 А · 1 с / 1 В.

Фарад — очень большая ёмкость. Ёмкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с Землю, как уединенного проводника) составляет всего около 700 микрофарад.

В Международную систему единиц фарад введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада.

 

Применение фарада:

В фарадах измеряют электрическую ёмкость проводников, кабелей, межэлектродные ёмкости различных приборов и конденсаторов, то есть их способность накапливать электрический заряд.

Различается электрическую ёмкость и электрохимическую ёмкость. Электрохимическую ёмкость применяется к обычным батарейкам и аккумуляторам. Она имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

 

Представление фарада в других единицах измерения – формулы:

Через основные и производные единицы системы СИ фарад выражается следующим образом:

Ф = Кл / В.

Ф = А · с / В.

Ф = Дж / В2.

Ф = Вт · с / В2. 

Ф = Н · м / В2.

Ф = Кл · м / Дж.

Ф = Кл2 / Н · м.

Ф = с2 · Кл2 / кг · м2.

Ф = А2 · с4 / кг · м2.

Ф = с / Ом.

Ф = 1 / Ом · Гц.

Ф = с

2 / Ом · Гн.

где Ф – фарад, А – ампер, В – вольт, Кл – кулон, Дж – джоуль, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом, Гц – герц, Гн – генри.

 

Кратные и дольные единицы фарада:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

КратныеДольные
величинаназваниеобозначениевеличинаназвание
обозначение
101 ФдекафараддаФdaF10−1 ФдецифараддФdF
102 ФгектофарадгФhF10−2 ФсантифарадсФcF
103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
106 ФмегафарадМФMF10−6 Фмикрофарад
мкФ
µF
109 ФгигафарадГФGF10−9 ФнанофараднФnF
1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF

 

Источник: https://ru. wikipedia.org/wiki/Фарад

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

карта сайта

перевод 1 2 4 5 10 100 фарад единица измерения в джоули формула


перевести микрофарады пикофарады в фарады
конденсатор емкостью 1 2 4 10 фарада википедия емкость конденсатора фарад это сколько
вольт на фарад
мкф в фарады
нанофарады в фарады
что измеряется в фарадах
фарады в ампер

 

Коэффициент востребованности 3 761

Чему равен 1 Пикофарад?

0.

Как перевести из НФ в Ф?

1 нанофарад [нФ] = 0,фарад [Ф] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования нанофарад в фарад.

В чем измеряется конденсатор?

Единицей электрической емкости

конденсатора в системе СИ является Фарада. Сокращенно обозначается буквой Ф. Названа в честь английского физика Майкла Фарадея. В радиоэлектронике используется емкость конденсатора, выраженная через дробные единицы фарад: пикофарад, нанофарад, микрофарад.

Что такое uF на конденсаторе?

Емкость больших конденсаторов (алюминиевых электролитических или двухслойных) измеряется в микрофарадах (мкФ, uF или µF), которые равны 10-6 Ф. Возможно, на корпусе конденсатора будет проставлена буква, обозначающая единицу измерения, например, p – пикофарад, n – нанофарад, u – микрофарад.

Что означают цифры на конденсаторе?

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.

Что такое UF в транзисторах?

Uf — при наличии защитного диода — напряжение диодного перехода в прямом направлении. PNP*Транзистор: hFE — коэффициент усиления транзистора по току в схеме с общим эмиттером.Uf — при наличии защитного диода — напряжение диодного перехода в прямом направлении.

Как узнать номинал конденсатора?

По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.

Как определить емкость конденсатора формула?

2. Емкость конденсатора с диэлектриком из воздуха можно подсчитать по формуле C=S/(4∙π∙d)∙1,11, пФ, где S – площадь одной обкладки, см2; d – расстояние между обкладками, см; C – емкость конденсатора, пФ. Емкость конденсатора, состоящего из n пластин (рис.

Как рассчитать емкость конденсатора для однофазного двигателя?

Есть и более простой подход к выбору емкости рабочего конденсатора — на каждые 100 ватт мощности двигателя в соединении «звезда» принимается 7 мкф емкости конденсатора. Если же соединение «треугольник», то емкость на 100 ватт будет 12 мкф.

Как рассчитывается электрическая емкость конденсаторов?

Конденсатор – устройство для накопления электрического заряда. Электроёмкостью конденсатора называют физическую величину, численно равную отношению заряда, одного из проводников конденсатора к разности потенциалов между его обкладками. Под зарядом конденсатора понимают модуль заряда одной из его обкладок.

Как рассчитывается электрическая емкость батареи при параллельном?

C = Q / U = (Q1 + Q2 + Q3) / U = C1 + C2 + C3, т. е. при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов.

Чем больше расстояние между обкладками?

Чем больше площадь перекрытия его обкладоктем больше емкость конденсатора, так как заряды взаимодействуют на большей площади. Чем меньше

расстояние между обкладками (по сути — толщина диэлектрической прослойки) — тем больше емкость конденсатора, потому что сила взаимодействия зарядов при их сближении увеличивается.

Как найти электрическую емкость?

ч. и для сферы. По отношению к конденсатору, для определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см.

Как обозначается электрическая емкость?

Электрическая емкость и ее единица измерения Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

Как измеряется емкость?

Цифровые вольтметры Большинство цифровых вольтметров имеют функцию измерения ёмкости. Обычно они работают по зарядке и разрядке тестируемого конденсатора с известным током и скорости его увеличения. Чем меньше скорость, тем больше ёмкость.

В чем измеряется электрическая емкость?

фарадах

Что такое электро емкость?

— Это отношение количества электричества, имеющегося на каком-либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле через Q и потенциал через V, имеем C = Q/V.

Что измеряют Фарадами?

1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт: 1 Ф = 1 Кл/1 В. Через основные единицы системы СИ фарад выражается следующим образом: Ф = А2·с4·кг−1·м−2.

Что называется Электроёмкостью?

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними: В системе СИ единица электроемкости называется фарад (Ф):

Что называется Электроемкостью проводника конденсатора от чего зависит эта величина?

Определение: Электроемкостью уединенного проводника называется мера его способности удерживать электрический заряд. … Она зависит от геометрии проводника (размеры, форма), от свойств среды (диэлектрическая проницаемость), от расположения заряженных тел. Емкость не зависит от внутреннего устройства проводника.

Что называется электрическим конденсатором?

Конденса́тор электрический (от лат. сondensator, — тот, кто уплотняет, сгущает), устройство, предназначенное для получения нужных величин электрической емкости и способное накапливать (перераспределять) электрические заряды.

Как определить электроемкость плоского конденсатора?

Введем обозначение емкости в виде буквы С и запишем это в виде формулы: C=εε0Sd C = ε ε 0 S d . Данная формула называется формулой электроемкости плоского конденсатора.

Конденсатор — урок. Физика, 9 класс.

Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля (от лат. kondensator — «уплотнять», «сгущать»).

Простейший плоский конденсатор состоит из двух одинаковых металлических пластин — обкладок — и  слоя диэлектрика, толщина которого мала по сравнению с размерами пластин.

 

 

На схемах электрических цепей  конденсатор обозначается:  .

 

Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника тока. При зарядке обе обкладки получают заряды, равные по модулю, но противоположные по знаку. Под зарядом конденсаторов понимают модуль заряда одной из его обкладок. Свойство конденсатора накапливать электрический заряд характеризуется физической величиной — электроёмкостью.

Электроёмкость  обозначается буквой \(C\) и определяется по формуле:

C=qU, где  \(q\) — заряд конденсатора, \(U\) — напряжение между обкладками конденсатора.

                

Электроёмкость конденсатора зависит от площади перекрытия пластин и расстояния между ними, а также от свойств используемого диэлектрика:

 

C∼Sd, где \(S\) — площадь каждой обкладки, \(d\) — расстояние между обкладками.

За единицу электроёмкости в СИ принимается Фарад (Ф).   

Она названа в честь Майкла Фарадея — английского физика. \(1\) Фарад равен ёмкости конденсатора, при которой заряд \(1\) Кулон создаёт между его обкладками напряжение \(1\) Вольт:  1 Фарад=1 Кулон1 Вольт.

 

 

\(1\) Ф — это очень большая ёмкость для конденсатора. Чаще всего конденсаторы имеют электроёмкость, равную дольным единицам Ф: микрофарад (мкФ) — 10−6Ф,  пикофарад (пФ) — 10−12 Ф.

 

Для получения требуемой ёмкости конденсаторы соединяют в батареи.

 

Если конденсаторы соединены параллельно, то общая ёмкость равна сумме ёмкостей: Cоб=C1+C2+C3.

 

  

Если конденсаторы соединены последовательно, то общая ёмкость будет равна: 1Cоб=1C1+1C2+1C3.

 

  

При зарядке конденсатора внешними силами совершается работа по разделению положительных и отрицательных зарядов. По закону сохранения энергии работа внешних сил равна энергии поля конденсатора. При разрядке конденсатора за счёт этой энергии может быть совершена работа. Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Энергию электрического поля конденсатора можно рассчитать по формуле: Eэл=q22C.

Из формулы видно, что энергия конденсатора данной электроёмкости тем больше, чем больше его заряд.

Единица измерения заряда конденсатора

Фарад
Ф, F
Величинаэлектрическая ёмкость
СистемаСИ
Типпроизводная

Фара́д (русское обозначение: Ф; международное обозначение: F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея [1] . 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт :

Через основные единицы системы СИ фарад выражается следующим образом:

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада. Например, обозначение единицы измерения абсолютной диэлектрической проницаемости «фарад на метр» записывается как Ф/м.

В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом [2] .

Фарад — очень большая ёмкость для уединённого проводника: ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца (ёмкость же шара размером с Землю, используемого как уединённый проводник, составляла бы около 710 микрофарад).

Содержание

Область применения [ править | править код ]

В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.

Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

Эквивалентное представление [ править | править код ]

Фарад может быть выражен через основные единицы системы СИ как:

Таким образом, его значение равно:

Ф = Кл·В −1 = А·с·В −1 = Дж·В −2 = Вт·с·В −2 = Н·м·В −2 = Кл 2 ·Дж −1 = Кл 2 ·Н −1 ·м −1 = с 2 ·Кл 2 ·кг −1 ·м −2 = с 4 ·А 2 ·кг −1 ·м −2 = с·Ом −1 = Ом −1 ·Гц −1 = с 2 ·Гн −1 ,

где Ф — фарад , А — ампер , В — вольт , Кл — кулон , Дж − джоуль , м — метр , Н — ньютон , с — секунда , Вт — ватт , кг — килограмм , Ом — ом , Гц — герц , Гн — генри .

Кратные и дольные единицы [ править | править код ]

Образуются с помощью стандартных приставок СИ.

Конденсатор представляет собой электрическое устройство, которое обладает возможностью накапливать заряд, состоит из обкладок и слоя диэлектрика между ними. Одной из важнейших характеристик прибора является ёмкость.

Единица измерения емкости

В Международной системе СИ за единицу измерения ёмкости конденсатора принимают фарад:

[C] = Ф, где С – обозначение ёмкости устройства.

Международное обозначение – F. Названа в честь английского физика М.Фарадея и используется в Международной системе СИ с 1960г.

Формула для расчёта электроёмкости записывается следующим образом:

  • Dq – заряд (измеряется в кулонах, или Кл),
  • U – разность потенциалов между обкладками (измеряется в вольтах или В).

Следовательно, 1Ф = 1Кл / 1В.

То есть конденсатор ёмкостью в 1 фарад накапливает на обкладках заряд, равный 1 кулон, создавая напряжение между ними, равное 1 вольт.

В фарадах измеряются электроёмкости проводников и конденсаторов.

Согласно правилам написания, принятых в СИ, если название происходит от фамилии учёного, то полное её название «фарад» пишется с маленькой (строчной) буквы, а её сокращённое название «Ф» – с прописной.

Единица измерения электроёмкости в других системах

Помимо СИ, есть ещё устаревшая система СГС, которой пользовались ранее. Первые три символа в названии обозначают:

Существует две разновидности системы: СГСЭ и СГСМ. Символ Э в СГСЭ обозначает электростатическую систему, а символ М – магнитную. В системе СГСЭ емкость конденсатора измеряется в сантиметрах, или см. Для пересчёта используют соотношение:

  • 1см » 1,1126 · 10-12Ф,
  • 1Ф » 8,99 · 1011 статФ.

Сантиметр по-другому может называться статфарад, или статФ.

В системе СГСМ единицей измерения является абфарад, или абФ. Абфарад связан с фарадом следующим образом:

1абф = 1·109 Ф = 1ГФ.

Для перевода из СГСЭ и СГСМ в СИ в сети Интернет имеются специальные сервисы, которые позволяют автоматизировать эти действия.

Онлайн переводчик из СГС в СИ

Фарады через основные единицы системы СИ

Для выражения фарады через основные единицы СИ воспользуемся следующими формулами.

Единица измерения заряда вычисляется как:

Dq = I · Dt (2), где:

  • I – сила тока (измеряется в амперах или А),
  • Dt – время прохождения заряда (измеряется в секундах или с).

В свою очередь, напряжение определяется как работа, которую нужно выполнить для перемещения заряда в электростатическом поле:

U = А / Dq (3), где А – работа по перемещению заряда, определяется в джоулях, или Дж.

Из механики известно, что:

А = F · s = m · a · s (4), где:

  • m – масса, измеряется в килограммах, или кг,
  • s – перемещение, рассчитывается в метрах, или м,
  • a – ускорение, определяется в м/с2.

Из формул 1-4 имеем:

Таким образом, 1 фарад через единицы СИ определяется как:

Кратные единицы ёмкости

При покупке радиодеталей невозможно купить конденсатор с электроёмкостью даже в несколько единиц фарад. Они выпускаются с гораздо меньшими параметрами. Это объясняется тем, что ёмкость в 1 фарад является очень большой величиной. Например, такую электроёмкость может иметь изолированный проводник в форме шара с радиусом в 13 раз больше радиуса Солнца.

Именно по этой причине для характеристики емкостных устройств применяют дольные единицы, которые рассчитываются как доля от определённого числа фарад. Для обозначения используют приставки, которые применяются для сокращения длины записываемого числа.

Таблица перевода дольных единиц

ПриставкаОбозначениеМножитель
децидФdF10^-1
сантисФsF10^-2
миллимФmF10^-3
микромкФF или uF10^-6
нанонФnF10^-9
пикопФpF, mmF, uuF10^-12
фемтофФfF10^-15
аттоаФaF10^-18
зептозФzF10^-21
йоктоиФyF10^-24

Таким образом, если параметр указывается равным 5 uF, то для перевода в фарады необходимо умножить цифру 5 на соответствующий множитель. Получаем 5 uF = 5 · 10-6 F.

В радиотехнике наиболее популярны модели, ёмкость которых измеряется в микрофарадах, нанофарадах (микромикрофарадах) или пикофарадах.

Также промышленность выпускает устройства ионисторы, которые представляют собой конденсаторы, имеющие двойной электрический слой. У некоторых ионисторов ёмкость может измеряться в килофарадах.

Ионистор с характеристикой в 1F

Маркировка конденсаторов в зависимости от ёмкости

Кодировка маленьких по размерам устройств

Существует специальная цифровая кодировка. Её используют для маркировки маленьких по размерам приборов. Кодировка электроёмкости выполняется согласно стандарту EIA.

Внимание! Ёмкость небольших конденсаторов, например, керамических или танталовых, обычно измеряется в пикофарадах, а больших, например, алюминиевых электролитических, в микрофарадах.

Существует специальная таблица таких обозначений, с помощью которой можно быстро подобрать такую же или аналогичную радиодеталь по соответствующему коду. Её можно свободно найти в Интернете.

В старых маркировках использовалась следующая кодировка. Если нанесено целое двузначное число, значит, значение ёмкость измеряется в пикофарадах, а если нанесена десятичная дробь, значит, параметр определяется в микрофарадах.

Например, радиодеталь с параметром 1000 nF =1 uF будет иметь маркировку 105, с параметрами 820 nF = 0, 82 uF – маркировку 824, а 0,27 uF = 270nF будет обозначено кодом 274.

В настоящее время, если на устройстве нанесено значение, не содержащее буквы, то оно обозначает ёмкость в пикофарадах. Если перед цифрами или после них стоит символ «н» («n»), то это означает, что значение даётся в нанофарадах, если «мк» («m», «u») – микрофарадах. В том случае, когда символ располагается перед числом, цифры в нём обозначают сотые доли. Например, n61 расшифровывается как 0,61нФ. Если символ располагается посередине значения, то на место символа нужно поставить запятую. Сам символ покажет единицы измерения. Например, 5u2 обозначает 5,2 мкФ.

Также в настоящее время используется цифровая кодировка, содержащая три числа. Первые две цифры являются числовыми характеристиками ёмкости. Параметр при этом измеряется в пикофарадах. Если значение меньше 1, то первая цифра – 0. Третья цифра определяет множитель, на который нужно умножить число, получаемое из первых двух цифр.

В случае, когда последнее число находится в диапазоне от 0 до 6, к значению дописывают количество нулей, равное третьей цифре. Например, если указано число 270, то устройство имеет параметр 27 пФ, если 271 – то на 270 пФ.

Если число равно 8, то в этом случае множитель равен 0,01. То есть если указано число 278, то ёмкость будет равна 27 · 10-2 = 0,27. Когда третье число равно 9, то множитель будет 0,1. Например, маркировка 109 указывает на электроёмкость в 1 пФ.

Если в кодировке присутствует символ «R», то параметр указывается в пикофарадах, а символ показывает место расположения запятой. Например, 4R1 расшифровывается как 4,1пФ.

Кодировка больших по размерам устройств

На больших по габаритным размерам конденсаторах маркировка наносится сверху на корпус, причём в данном случае будет присутствовать полная информация о параметрах устройства.

В обозначениях может встречаться значение MF. В приставках Международной системы единиц СИ если перед единицей измерения располагается большая буква М, то это обозначает, что должен использоваться множитель 106. В случае с конденсатором это всё равно будет обозначать микрофарады.

Также может встречаться обозначение МFD или mfd. В данном случае сочетание символов «fd» обозначает farad. Таким образом, если на корпусе написано 5 mfd, то значит, что конденсатор используется на 5 микрофарад.

Маркировка больших по размерам конденсаторов

Таким образом, при ремонте электросхемы, содержащей конденсатор, нужно правильно читать маркировку устройства и соответственно информации подбирать нужный прибор.

Видео

Конденсатор – электронный компонент, предназначенный для накопления электрического заряда. Способность конденсатора накапливать электрический заряд зависит от его главной характеристики – емкости. Емкость конденсатора (С) определяется как соотношение количества электрического заряда (Q) к напряжению (U).

Емкость конденсатора измеряется в фарадах (F) – единицах, названых в честь британского ученого физика Майкла Фарадея. Емкость в один фарад (1F) равняется количеству заряда в один кулон (1C), создающему напряжение на конденсаторе в один вольт (1V). Вспомним, что один кулон (1С) равняется величине заряда, прошедшего через проводник за одну секунду (1sec) при силе тока в один ампер (1A).

Однако кулон, это очень большое количество заряда относительно того, сколько способно хранить большинство конденсаторов. По этой причине, для измерения емкости обычно используют микрофарады (µF или uF), нанофарады (nF) и пикофарады (pF).

  • 1µF = 0.000001 = 10 -6 F
  • 1nF = 0.000000001 = 10 -9 F
  • 1pF = 0.000000000001 = 10 -12 F

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания, на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов, на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик, заряженные частицы не могут «перескочить» на противоположную сторону конденсатора. Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.

В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места. Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным. По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное место на обкладках и ток совсем не прекратится.

Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного» конденсатора с минимальным значением тока (т.е. его отсутствием), называют переходным периодом заряда конденсатора.

Заряд конденсатора. Напряжение

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

  • Ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVc/Δt – Изменение напряжения на конденсаторе за отрезок времени

Разряд конденсатора

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.

В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.

Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу τ (тау). За один τ конденсатор заряжается или разряжается на 63%. За пять τ конденсатор заряжается или разряжается полностью.

Для наглядности подставим значения: конденсатор емкостью в 20 микрофарад, сопротивление в 1 килоом и источник питания в 10В. Процесс заряда будет выглядеть следующим образом:

Устройство конденсатора. От чего зависит емкость?

Емкость плоского конденсатора зависит от трех основных факторов:

  • Площадь пластин — A
  • Расстояние между пластинами – d
  • Относительная диэлектрическая проницаемость вещества между пластинами — ɛ

Площадь пластин

Чем больше площадь пластин конденсатора, тем больше заряженых частиц могут на них разместится, и тем больше емкость.

Расстояние между пластинами

Емкость конденсатора обратно пропорциональна расстоянию между пластинами. Для того чтобы объяснить природу влияния этого фактора, необходимо вспомнить механику взаимодействия зарядов в пространстве (электростатику).

Если конденсатор не находится в электрической цепи, то на заряженные частицы, расположенные на его пластинах влияют две силы. Первая — это сила отталкивания между одноименными зарядами соседних частиц на одной пластине. Вторая – это сила притяжения разноименных зарядов между частицами, находящимися на противоположных пластинах. Получается, что чем ближе друг к другу находятся пластины, тем больше суммарная сила притяжения зарядов с противоположным знаком, и тем больше заряда может разместится на одной пластине.

Относительная диэлектрическая проницаемость

Не менее значимым фактором, влияющим на емкость конденсатора, является такое свойство материала между обкладками как относительная диэлектрическая проницаемость ɛ. Это безразмерная физическая величина, которая показывает во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме.

Материалы с более высокой диэлектрической проницаемостью позволяют обеспечить большую емкость. Объясняется это эффектом поляризации – смещением электронов атомов диэлектрика в сторону положительно заряженной пластины конденсатора.

Поляризация создает внутренне электрическое поле диэлектрика, которое ослабляет общую разность потенциала (напряжения) конденсатора. Напряжение U препятствует притоку заряда Q на конденсатор. Следовательно, понижение напряжения способствует размещению на конденсаторе большего количества электрического заряда.

Ниже приведены примеры значений диэлектрической проницаемости для некоторых изоляционных материалов, используемых в конденсаторах.

  • Бумага – от 2.5 до 3.5
  • Стекло – от 3 до 10
  • Слюда – от 5 до 7
  • Порошки оксидов металлов – от 6 до 20

Номинальное напряжение

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора. Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

Ток утечки

Также при работе конденсатора учитывается такой параметр как ток утечки. Поскольку в реальной жизни диэлектрик между пластинами все же пропускает маленький ток, это приводит к потере со временем начального заряда конденсатора.

Фарад (единица измерения)

Фара́д (русское обозначение: Ф; международное обозначение: F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея[1]. 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

1 Ф = 1 Кл/1 В.

Через основные единицы системы СИ фарад выражается следующим образом:

Ф = А2·с4·кг−1·м−2.

В соответствии с правилами СИ о написании единиц измерения, названных в честь учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных умножением или делением фарада на другую единицу. Например, обозначение единицы измерения абсолютной диэлектрической проницаемости фарад-метр записывается как Ф/м.

В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в 1960 году, одновременно с принятием Международной системы в целом[2].

Фарад — очень большая ёмкость для уединённого проводника: ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца (ёмкость же шара размером с Землю, используемого как уединённый проводник, составляла бы около 710 микрофарад).

Область применения

В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад. {2}}{\text{H}}},}

где F — фарад, C — кулон, V — вольт, A — ампер, s — секунда, J — джоуль, N — ньютон, m — метр, W — ватт, kg — килограмм, Ω — ом, Hz — герц, H — генри.

Кратные и дольные единицы

Образуются с помощью стандартных приставок СИ.

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 ФдекафараддаФdaF10−1 ФдецифараддФdF
102 ФгектофарадгФhF10−2 ФсантифарадсФcF
103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
106 ФмегафарадМФMF10−6 ФмикрофарадмкФµF
109 ФгигафарадГФGF10−9 ФнанофараднФnF
1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF
     рекомендовано к применению      применять не рекомендуется      не применяются или редко применяются на практике
  • Дольную единицу пикофарад до 1967 года называли микромикрофарада (русское обозначение: мкмкф; международное: µµF)[3].
  • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н — в нанофарадах; а с буквами мк — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[источник не указан 2970 дней].
  • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

Связь с единицами измерения в других системах

  • Сантиметр (другое название «статфарад», статФ) — единица электрической ёмкости в СГСЭ и гауссовой системе, ёмкость шара радиусом 1 см в вакууме:
    • 1 статФ ≈ 1,1126… пФ;
    • 1 Ф = 8,9875517873681764×1011 статФ (точно). Коэффициент равен с2×10−5 Ф/см = 100/(4πε0).
  • Абфарад — единица электрической ёмкости в СГСМ; очень большая единица: 1 абФ = 109 Ф = 1 ГФ.

См. также

Примечания

gaz.wiki — gaz.wiki

Navigation

  • Main page

Languages

  • Deutsch
  • Français
  • Nederlands
  • Русский
  • Italiano
  • Español
  • Polski
  • Português
  • Norsk
  • Suomen kieli
  • Magyar
  • Čeština
  • Türkçe
  • Dansk
  • Română
  • Svenska

Фарад

Фарад — единица измерения электрической ёмкости в Международной системе единиц, названная в честь английского физика Майкла Фарадея. 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:
1 Ф = 1 Кл/1 В.
Через основные единицы системы СИ фарад выражается следующим образом:
Ф = А 2 с 4 кг −1 м −2.
В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной Ф. Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада. Например, обозначение единицы измерения абсолютной диэлектрической проницаемости «фарад на метр» записывается как Ф/м.
В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом.
Фарад — очень большая ёмкость для уединённого проводника: ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца.

1. Область применения
В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах и производных единицах измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т. н. ионисторов супер-конденсаторов с двойным электрическим слоем может достигать многих килофарад.
Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду 1 ампер-час равен 3600 кулонам.

2. Эквивалентное представление
Фарад может быть выражен через основные единицы системы СИ как:
с 4 ⋅А 2 ⋅м −2 ⋅кг −1.
Таким образом, его значение равно:
Ф = Кл В −1 = А с В −1 = Дж В −2 = Вт с В −2 = Н м В −2 = Кл 2 Дж −1 = Кл 2 Н −1 м −1 = с 2 Кл 2 кг −1 м −2 = с 4 А 2 кг −1 м −2 = с Ом −1 = Ом −1 Гц −1 = с 2 Гн −1,
где Ф — фарад, А — ампер, В — вольт, Кл — кулон, Дж − джоуль, м — метр, Н — ньютон, с — секунда, Вт — ватт, килограмм — килограмм, Ом — ом, Гц — герц, Гн — генри.

3. Кратные и дольные единицы
Образуются с помощью стандартных приставок СИ.
Дольную единицу пикофарад до 1967 года называли микромикрофарада русское обозначение: мкмкф; международное: µµF.
На схемах электрических цепей и часто в маркировке ранних конденсаторов советского производства целое число например, «47» означало ёмкость в пикофарадах, а десятичная дробь например, «10.0» или «0.1» — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н — в нанофарадах; а с буквами мк — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано как и обозначение номинала на конденсаторах. На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей.
В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ мю на латинскую u «uF» вместо «µF» из-за отсутствия в раскладке клавиатуры греческих букв.

4. Связь с единицами измерения в других системах
1 Ф = 8.9875517873681764×10 11 статФ точно. Коэффициент равен с 2 ×10 −5 Ф/см = 100/4πε 0.
Сантиметр другое название «статфарад», статФ — единица электрической ёмкости в СГСЭ и гауссовой системе, ёмкость шара радиусом 1 см в вакууме
1 статФ ≈ 1.1126. пФ ;
Абфарад — единица электрической ёмкости в СГСМ; очень большая единица: 1 абФ = 10 9 Ф = 1 ГФ.

Дата публикации:
05-16-2020

Дата последнего обновления:
05-16-2020

Перевести фарад [Ф] в кулон на вольт [К / В] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстоянияМассовый конвертерПреобразователь сухого объема и общих измерений при приготовлении пищиПреобразователь объема и общих измерений при приготовлении пищиПреобразователь температуры Конвертер модуля упругости ЮнгаПреобразователь энергии и рабочего времениПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиКонвертер мужской одежды и размеров обувиКонвертер угловой скорости и частоты вращения Конвертер объема Конвертер момента инерции Конвертер момента силы Конвертер крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания ( на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер коэффициента теплопередачиКонвертер абсолютного абсолютного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потокаПреобразователь массового расхода КонвертерКонвертер кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиКонвертер световой интенсивностиПреобразователь световой длины (цифровой преобразователь длины изображения) Конвертер частоты и длины волны Конвертер Оптическая сила (диоптрия) t o Преобразователь увеличения (X )Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимости в дБм, дБВ, ваттах и ​​других единицах Преобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Конвертер молярной массы Периодическая таблица

Экран сенсора этого планшета выполнен с использованием технологии проекции емкости

Обзор

Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.

Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:

C = Q / ∆φ

Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, в то время как емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

Поскольку один фарад — это такая большая величина, используются меньшие единицы, такие как микрофарад (мкФ), что равно одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — в ней сантиметры, граммы и секунды используются в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.

Использование емкости

Конденсаторы — электронные компоненты для накопления электрических зарядов

Электронные символы

Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

Немного истории

Ученые смогли создать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд около одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули в ужасе, почувствовав толчок.

«Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий учредил Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

Примеры конденсаторов

Конденсаторы электролитические в блоке питания.

Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

Обычно емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, потому что их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении цепей обычно используются конденсаторы, номинальное напряжение которых в два раза превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, если увеличение не станет вдвое больше нормы.

Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

Маркировка конденсаторов

Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы путем короткого замыкания их выводов с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

3-секционный воздушный конденсатор переменной емкости

Переменные конденсаторы: емкость этих конденсаторов может быть изменена механически, регулируя электрическое напряжение или изменяя температуру.

Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

Есть и другие типы конденсаторов.

Суперконденсаторы

Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды были угольными и пористыми. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

Суперконденсаторы используются в электрических цепях как источник электроэнергии. У них много преимуществ перед традиционными батареями, включая их долговечность, небольшой вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Главный недостаток использования суперконденсаторов заключается в том, что они вырабатывают меньшее количество удельной энергии (энергии на единицу веса), имеют низкое номинальное напряжение и большой саморазряд.

В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

Электромобиль A2B производства Университета Торонто. Общий вид

В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

Электромобиль A2B производства Университета Торонто. Под капотом

В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

Поверхностные емкостные сенсорные экраны

Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.

Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий уровень прозрачности — до 90%. Из-за своих преимуществ емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

Проекционные емкостные сенсорные экраны

Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

Эту статью написали Сергей Акишкин, Татьяна Кондратьева

Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести фарад [F] в кулон на вольт [C / V] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при варке , Конвертер модуля упругости ЮнгаПреобразователь энергии и рабочего времениПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращения Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания Конвертер температур (на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер коэффициентов объемного расходаКонвертер массового расходаМолярный преобразователь скорости потока Конвертер массового потока Конвертер массового расхода ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптическая сила pter) в увеличение (X) преобразовательПреобразователь электрического зарядаПреобразователь линейной плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБм, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Конвертер молярной массы Периодическая таблица

Экран сенсора этого планшета выполнен с использованием технологии проекции емкости

Обзор

Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.

Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:

C = Q / ∆φ

Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, в то время как емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

Поскольку один фарад — это такая большая величина, используются меньшие единицы, такие как микрофарад (мкФ), что равно одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — в ней сантиметры, граммы и секунды используются в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.

Использование емкости

Конденсаторы — электронные компоненты для накопления электрических зарядов

Электронные символы

Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

Немного истории

Ученые смогли создать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд около одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули в ужасе, почувствовав толчок.

«Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий учредил Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

Примеры конденсаторов

Конденсаторы электролитические в блоке питания.

Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

Обычно емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, потому что их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении цепей обычно используются конденсаторы, номинальное напряжение которых в два раза превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, если увеличение не станет вдвое больше нормы.

Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

Маркировка конденсаторов

Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы путем короткого замыкания их выводов с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

3-секционный воздушный конденсатор переменной емкости

Переменные конденсаторы: емкость этих конденсаторов может быть изменена механически, регулируя электрическое напряжение или изменяя температуру.

Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

Есть и другие типы конденсаторов.

Суперконденсаторы

Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды были угольными и пористыми. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

Суперконденсаторы используются в электрических цепях как источник электроэнергии. У них много преимуществ перед традиционными батареями, включая их долговечность, небольшой вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Главный недостаток использования суперконденсаторов заключается в том, что они вырабатывают меньшее количество удельной энергии (энергии на единицу веса), имеют низкое номинальное напряжение и большой саморазряд.

В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

Электромобиль A2B производства Университета Торонто. Общий вид

В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

Электромобиль A2B производства Университета Торонто. Под капотом

В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

Поверхностные емкостные сенсорные экраны

Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.

Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий уровень прозрачности — до 90%. Из-за своих преимуществ емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

Проекционные емкостные сенсорные экраны

Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

Эту статью написали Сергей Акишкин, Татьяна Кондратьева

Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести фарад [F] в кулон на вольт [C / V] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при варке , Конвертер модуля упругости ЮнгаПреобразователь энергии и рабочего времениПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращения Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания Конвертер температур (на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер коэффициентов объемного расходаКонвертер массового расходаМолярный преобразователь скорости потока Конвертер массового потока Конвертер массового расхода ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптическая сила pter) в увеличение (X) преобразовательПреобразователь электрического зарядаПреобразователь линейной плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБм, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Конвертер молярной массы Периодическая таблица

Экран сенсора этого планшета выполнен с использованием технологии проекции емкости

Обзор

Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.

Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:

C = Q / ∆φ

Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, в то время как емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

Поскольку один фарад — это такая большая величина, используются меньшие единицы, такие как микрофарад (мкФ), что равно одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — в ней сантиметры, граммы и секунды используются в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.

Использование емкости

Конденсаторы — электронные компоненты для накопления электрических зарядов

Электронные символы

Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

Немного истории

Ученые смогли создать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд около одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули в ужасе, почувствовав толчок.

«Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий учредил Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

Примеры конденсаторов

Конденсаторы электролитические в блоке питания.

Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

Обычно емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, потому что их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении цепей обычно используются конденсаторы, номинальное напряжение которых в два раза превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, если увеличение не станет вдвое больше нормы.

Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

Маркировка конденсаторов

Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы путем короткого замыкания их выводов с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

3-секционный воздушный конденсатор переменной емкости

Переменные конденсаторы: емкость этих конденсаторов может быть изменена механически, регулируя электрическое напряжение или изменяя температуру.

Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

Есть и другие типы конденсаторов.

Суперконденсаторы

Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды были угольными и пористыми. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

Суперконденсаторы используются в электрических цепях как источник электроэнергии. У них много преимуществ перед традиционными батареями, включая их долговечность, небольшой вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Главный недостаток использования суперконденсаторов заключается в том, что они вырабатывают меньшее количество удельной энергии (энергии на единицу веса), имеют низкое номинальное напряжение и большой саморазряд.

В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

Электромобиль A2B производства Университета Торонто. Общий вид

В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

Электромобиль A2B производства Университета Торонто. Под капотом

В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

Поверхностные емкостные сенсорные экраны

Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.

Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий уровень прозрачности — до 90%. Из-за своих преимуществ емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

Проекционные емкостные сенсорные экраны

Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

Эту статью написали Сергей Акишкин, Татьяна Кондратьева

Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести фарад [F] в кулон на вольт [C / V] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при варке , Конвертер модуля упругости ЮнгаПреобразователь энергии и рабочего времениПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращения Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания Конвертер температур (на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер коэффициентов объемного расходаКонвертер массового расходаМолярный преобразователь скорости потока Конвертер массового потока Конвертер массового расхода ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптическая сила pter) в увеличение (X) преобразовательПреобразователь электрического зарядаПреобразователь линейной плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБм, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Конвертер молярной массы Периодическая таблица

Экран сенсора этого планшета выполнен с использованием технологии проекции емкости

Обзор

Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.

Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:

C = Q / ∆φ

Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, в то время как емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

Поскольку один фарад — это такая большая величина, используются меньшие единицы, такие как микрофарад (мкФ), что равно одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — в ней сантиметры, граммы и секунды используются в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.

Использование емкости

Конденсаторы — электронные компоненты для накопления электрических зарядов

Электронные символы

Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

Немного истории

Ученые смогли создать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд около одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули в ужасе, почувствовав толчок.

«Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий учредил Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

Примеры конденсаторов

Конденсаторы электролитические в блоке питания.

Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

Обычно емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, потому что их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении цепей обычно используются конденсаторы, номинальное напряжение которых в два раза превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, если увеличение не станет вдвое больше нормы.

Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

Маркировка конденсаторов

Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы путем короткого замыкания их выводов с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

3-секционный воздушный конденсатор переменной емкости

Переменные конденсаторы: емкость этих конденсаторов может быть изменена механически, регулируя электрическое напряжение или изменяя температуру.

Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

Есть и другие типы конденсаторов.

Суперконденсаторы

Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды были угольными и пористыми. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

Суперконденсаторы используются в электрических цепях как источник электроэнергии. У них много преимуществ перед традиционными батареями, включая их долговечность, небольшой вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Главный недостаток использования суперконденсаторов заключается в том, что они вырабатывают меньшее количество удельной энергии (энергии на единицу веса), имеют низкое номинальное напряжение и большой саморазряд.

В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

Электромобиль A2B производства Университета Торонто. Общий вид

В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

Электромобиль A2B производства Университета Торонто. Под капотом

В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

Поверхностные емкостные сенсорные экраны

Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.

Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий уровень прозрачности — до 90%. Из-за своих преимуществ емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

Проекционные емкостные сенсорные экраны

Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

Эту статью написали Сергей Акишкин, Татьяна Кондратьева

Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Электрические блоки

Ампер —

A

Ампер — это ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с пренебрежимо малым круглым поперечным сечением, и помещенный на расстоянии 1 метра в вакууме, будет производить между Эти проводники имеют силу, равную 2 x 10 -7 Ньютон на метр длины.

Электрический ток равен количеству электричества в движении или количеству в единицу времени:

I = Q / t (1)

, где

I = электрический ток (ампер, A)

Q = количество электричества (кулон, C)

t = время (с)

  • 1 ампер = 1 кулон в секунду.

Ампер можно измерить «амперметром», включенным последовательно с электрической цепью.

Кулон —

C

Стандартная единица измерения в электрических измерениях. Это количество электричества, передаваемое за одну секунду током, создаваемым электродвижущей силой в один вольт, действующей в цепи с сопротивлением в один Ом, или количеством, передаваемым одним ампером за одну секунду.

Q = I t (2)

  • 1 кулон = 6.24 10 18 электронов

Фарад —

F

Фарад — это стандартная единица измерения емкости. Приведенный к основным единицам СИ, один фарад эквивалентен амперам мощности в квадрате от одной секунды до четвертой на килограмм на квадратный метр ( с 4 A 2 / кг м 2 ).

Когда напряжение на конденсаторе 1 F изменяется со скоростью один вольт в секунду ( 1 В / с, ), возникает ток 1 A, .Емкость 1 F дает 1 V разности потенциалов для электрического заряда 1 кулон (1 C) .

В общих электрических и электронных схемах используются единицы микрофарад мкФ (1 мкФ = 10 -6 Ф) и пикофарад пФ (1 пФ = 10 -12 Ф) .

Ом —

Ом

Производная единица измерения электрического сопротивления в системе СИ — сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт между ними создает ток 1 ампер .

Генри —

H

Генри — это единица измерения индуктивности. В единицах СИ один генри эквивалентен один килограмм-метр на секунду в квадрате на квадратный ампер (кг · м 2 с -2 A -2 ) .

Индуктивность

Катушка индуктивности — это пассивный электронный компонент, который накапливает энергию в виде магнитного поля.

Стандартная единица индуктивности — Генри , сокращенно H .Это большая единица измерения, и чаще всего используются единицы микрогенри , сокращенно мкГн (1 мкГн = 10 -6 H) и миллигенри , сокращенно мГн (1 мГн = 10 -3 H) . Иногда используется наногенри , сокращенно нГн (1 нГн = 10 -9 Гн) .

Джоуль —

Дж

Единица энергии, работа или количество тепла, произведенное, когда сила ньютон на н прикладывается к перемещению один метр . Один джоуль эквивалентен одному ватту, мощности, излучаемой или рассеиваемой в течение одной секунды .

В британских единицах измерения Британская тепловая единица (Btu) используется для выражения энергии. Один британских тепловых единиц эквивалентен примерно 1055 джоулей .

Siemens —

S

Единица электропроводности S = A / V

Ватт

Ватт используется для определения скорости рассеивания электрической энергии или скорости излучения электромагнитной энергии. , абсорбируется или рассеивается.

Единица мощности Вт или джоуль в секунду

Weber — Wb

Единица магнитного потока.

Поток, который при соединении цепи с одним витком создает электродвижущую силу — ЭДС — 1 вольт , поскольку она уменьшается до нуля с постоянной скоростью за одну секунду .

  • 1 Weber эквивалентно 10 8 Maxwells

Tesla —

T

Единица плотности магнитного потока Tesla равна 1 Weber на квадратный метр площади цепи .

Вольт

Вольт — В, — это международная стандартная единица измерения электрического потенциала или электродвижущей силы. Потенциал в один вольт появляется на сопротивлении один ом, , когда через это сопротивление протекает ток один ампер, .

Преобразовано в базовые единицы СИ,

1 (В) = 1 (кг · м 2 / с 3 A)

«Вольтметр» может использоваться для измерения напряжения и должен быть подключен параллельно часть цепи, напряжение которой требуется.{c} \)

\ (a_ {b} \)

\ (\ sqrt {a} \)

\ (\ sqrt [b] {a} \)

\ (\ frac {a} { b} \)

\ (\ cfrac {a} {b} \)

\ (+ \)

\ (- \)

\ (\ times \)

\ (\ div \)

\ (\ pm \)

\ (\ cdot \)

\ (\ amalg \)

\ (\ ast \)

\ (\ barwedge \)

\ (\ bigcirc \)

\ ( \ bigodot \)

\ (\ bigoplus \)

\ (\ bigotimes \)

\ (\ bigsqcup \)

\ (\ bigstar \)

\ (\ bigtriangledown \)

\ (\ bigtriangleup \)

\ (\ blacklozenge \)

\ (\ blacksquare \)

\ (\ blacktriangle \)

\ (\ blacktriangledown \)

\ (\ bullet \)

\ (\ cap \)

\ (\ cup \)

\ (\ circ \)

\ (\ circledcirc \)

\ (\ dagger \)

\ (\ ddagger \)

\ (\ diamond \)

\ (\ dotplus \)

\ (\ lozenge \)

\ (\ mp \)

\ (\ ominus \)

\ (\ oplus \)

\ (\ oslash \)

\ (\ otimes \)

\ (\ setminus \)

\ ( \ sqcap \)

\ (\ sqcup \)

\ (\ square \)

\ (\ star \)

\ (\ треугольник \)

\ (\ triangledown \)

\ (\ треугольник влево \)

\ (\ Cap \)

\ (\ Cup \)

\ (\ uplus \)

\ (\ vee \)

\ (\ veebar \)

\ (\ wedge \)

\ (\ wr \)

\ (\ следовательно \)

\ (\ left (a \ right) \)

\ (\ left \ | a \ right \ | \)

\ (\ left [a \ right] \)

\ (\ left \ {a \ right \} \)

\ (\ left \ lceil a \ right \ rceil \)

\ (\ left \ lfloor \ right \ rfloor \)

\ (\ left (a \ right) \)

\ (\ vert a \ vert \)

\ (\ leftarrow \)

\ (\ leftharpoondown \)

\ (\ leftharpoonup \)

\ (\ leftrightarrow \)

\ (\ leftrightharpoons \)

\ (\ mapsto \)

\ (\ rightarrow \)

\ (\ rightharpoondown \)

\ (\ rightharpoonup \)

\ (\ rightleftharpoons \)

\ (\ to \)

\ (\ Leftarrow \)

\ (\ Leftrightarrow \)

\ (\ Rightarrow \ )

\ (\ overset {a} {\ leftarrow} \)

\ (\ overset {a} {\ rightarrow} \)

\ (\ приблизительно \)

\ (\ asymp \)

\ (\ cong \)

\ (\ dashv \)

\ (\ doteq \)

\ (= \)

\ (\ Equiv \)

\ (\ frown \)

9000 2 \ (\ geq \)

\ (\ geqslant \)

\ (\ gg \)

\ (\ gt \)

\ (| \)

\ (\ leq \)

\ (\ leqslant \)

\ (\ ll \)

\ (\ lt \)

\ (\ models \)

\ (\ neq \)

\ (\ ngeqslant \)

\ (\ ngtr \)

\ (\ nleqslant \)

\ (\ nless \)

\ (\ not \ Equiv \)

\ (\ overset {\ подмножество {\ mathrm {def}} {}} {=} \)

\ (\ parallel \)

\ (\ perp \)

\ (\ prec \)

\ (\ prevq \)

\ (\ sim \)

\ (\ simeq \)

\ (\ smile \)

\ (\ succ \)

\ (\ successq \)

\ (\ vdash \)

\ ( \ in \)

\ (\ ni \)

\ (\ notin \)

\ (\ nsubseteq \)

\ (\ nsupseteq \)

\ (\ sqsubset \)

\ (\ sqsubseteq \)

\ (\ sqsupset \)

\ (\ sqsupseteq \)

\ (\ subset \)

\ (\ substeq \)

\ (\ substeqq \)

\ (\ supset \)

\ (\ supsete q \)

\ (\ supseteqq \)

\ (\ emptyset \)

\ (\ mathbb {N} \)

\ (\ mathbb {Z} \)

\ (\ mathbb {Q} \)

\ (\ mathbb {R} \)

\ (\ mathbb {C} \)

\ (\ alpha \)

\ (\ beta \)

\ (\ gamma \)

\ (\ delta \)

\ (\ epsilon \)

\ (\ zeta \)

\ (\ eta \)

\ (\ theta \)

\ (\ iota \)

\ ( \ kappa \)

\ (\ lambda \)

\ (\ mu \)

\ (\ nu \)

\ (\ xi \)

\ (\ pi \)

\ (\ rho \)

\ (\ sigma \)

\ (\ tau \)

\ (\ upsilon \)

\ (\ phi \)

\ (\ chi \)

\ (\ psi \)

\ (\ omega \)

\ (\ Gamma \)

\ (\ Delta \)

\ (\ Theta \)

\ (\ Lambda \)

\ (\ Xi \)

\ (\ Pi \)

\ (\ Sigma \)

\ (\ Upsilon \)

\ (\ Phi \)

\ (\ Ps i \)

\ (\ Omega \)

\ ((a) \)

\ ([a] \)

\ (\ lbrace {a} \ rbrace \)

\ (\ frac {a + b} {c + d} \)

\ (\ vec {a} \)

\ (\ binom {a} {b} \)

\ ({a \ brack b} \)

\ ({a \ brace b} \)

\ (\ sin \)

\ (\ cos \)

\ (\ tan \)

\ (\ cot \)

\ (\ sec \)

\ (\ csc \)

\ (\ sinh \)

\ (\ cosh \)

\ (\ tanh \)

\ (\ coth \)

\ (\ bigcap {a} \)

\ (\ bigcap_ {b} ^ {} a \)

\ (\ bigcup {a} \)

\ (\ bigcup_ {b} ^ {} a \)

\ (\ coprod {a} \)

\ (\ coprod_ {b} ^ {} a \)

\ (\ prod {a} \)

\ (\ prod_ {b} ^ {} a \)

\ (\ sum_ { a = 1} ^ b \)

\ (\ sum_ {b} ^ {} a \)

\ (\ sum {a} \)

\ (\ underset {a \ to b} \ lim \)

\ (\ int {a} \)

\ (\ int_ {b} ^ {} a \)

\ (\ iint {a} \)

\ (\ iint_ {b} ^ {} a \)

\ (\ int_ {a} ^ {b} {c} \)

\ (\ iint_ {a} ^ {b} {c} \)

\ (\ iiint_ {a} ^ { b} {c} \)

\ (\ oint {a} \)

\ (\ oint_ {b} ^ {} a \)

Преобразование фарада в кулон / вольт — Преобразование единиц измерения

›› Перевести фарады [международные] в кулоны на вольт

Пожалуйста, включите Javascript для использования конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько фарад в 1 кулон / вольт? Ответ 1.0004

2177.
Мы предполагаем, что вы конвертируете фарад [международный] и кулон / вольт .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
фарад или кулон / вольт
Производной единицей в системе СИ для емкости является фарад.
1 фарад равен 1 кулону на вольт.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать фарады в кулоны на вольт.
Введите свои числа в форму для преобразования единиц!


›› Таблица конвертации фарадов в кулон на вольт

1 фарад в кулон / вольт = 0,99951 кулон / вольт

5 фарад в кулон / вольт = 4,99755 кулон / вольт

10 фарад в кулон / вольт = 9,9951 кулон / вольт

20 фарад в кулон / вольт = 19.9902 кулон / вольт

30 фарад в кулон / вольт = 29,9853 кулон / вольт

40 фарад в кулон / вольт = 39,9804 кулон / вольт

50 фарад в кулон / вольт = 49,9755 кулон / вольт

75 фарад в кулон / вольт = 74,96325 кулон / вольт

100 фарад в кулон / вольт = 99,951 кулон / вольт



›› Хотите другие юниты?

Вы можете произвести обратное преобразование единиц измерения из кулон / вольт в фарад, или введите любые две единицы ниже:

›› Преобразование общей емкости

фарад в декафарад
фарад в мегафарад
фарад в терафарад
фарад в гектофарад
фарад в пикофарад
фарад в гигафарад
фарад в абфарад
фарад в миллифарад из
фарад в миллифарад
фарад в миллифарад
фарад в миллифарад
фарад в миллифарад
фарад в миллифарад

›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *