1 ампер сколько это: 1 ампер — это сколько киловатт мощности? Сколько ампер в 1 киловатте?

Содержание

1 ампер сколько квт


Перевести Амперы в Киловатты | Сайт электрика

Всем привет. Сегодня поговорим о том, как перевести Амперы в Киловатты. Этот вопрос интересует многим людей, особенно в тот момент, когда появляется необходимость в ремонте электроприборов или при электромонтаже.
Содержание статьи:
1. Как перевести Амперы в Киловатты в однофазной сети
1 Киловатт сколько это Ампер
2. Как перевести Амперы в Киловатты в трёх фазной сети
Если взять к вниманию все электрические приборы, то обычному человеку в их технических характеристиках и маркировке разобраться довольно тяжело. Например, на автоматах, розетках, вилочках, предохранителях и так далее, маркировка указывается в Амперах. Зачастую пишется максимальный ток, на который рассчитано изделие.

А на самих электроприборах указывают потребляемую мощность, выраженную в Киловаттах или Ваттах. Отсюда появляется проблема с правильностью выбора защитной автоматики для определённых нагрузок.

Очевиден тот факт, что для освещения нужен один автомат, а для подключения бойлера или духовки, совсем другой. Вот тут появляется вопрос с переводом кВт в А.

Надеюсь, вы знаете, что дома у нас в розетках течёт переменный ток с напряжением 220 Вольт. Использую ниже написанные формулы, можно легко всё рассчитать.

Как перевести Амперы в Киловатты в однофазной сети

Вт – это А умноженный на В:

P = I * U

И наоборот – А равен Вт делённый на В:

I = P/U

P – мощность;

I – сила тока;

U – напряжение;

При расчётах, значение P должно браться исключительно в Вт. 1 кВт = 1000 Вт.

1 Киловатт сколько это Ампер

1 кВт = 1000 Вт/220 в = 4,54 А

Таблица подбора автомата по току и мощности.

Реальный пример. Необходимо заменить электрическую вилочку на стиральной машине мощностью 2,2 кВт. Используя формулу, подставляем значения:

I = 2200/220 = 10 А.

Для более долгосрочной и безопасной работы, к полученному числу необходимо прибавить запасу минимум 25%. 10 + 2,5 = 12,5. На такой номинал данное изделие, наверное, не выпускают, и при покупке округлять нужно в большую сторону. Оптимальным вариантом для замены будет вилочка на 16 А.

Как перевести Амперы в Киловатты в трёхфазной сети

Ватт =  √3 * U * I;

√3 = 1,732;

P = √3 * U * I;

Ампер = Вт /(√3 * В)

I = P / √3 * U

Задача. Рассчитать мощность трёхфазного водонагревателя. При его работе токоизмерительные клещи показывают нагрузку 3,8 А.

P = 1,732 * 380 * 3,8 = 2501

Ответ: мощность водонагревателя составляет 2,5 кВт.

Примечание. Цифры могут быть совсем другими, в зависимости от схемы управления нагревателем.

Подведём итоги. Используя выше приведённые формулы, подобрать материалы для ремонта или монтажа, не составит ни какого труда, даже людям, не имеющим электротехнического образования.

Для закрепления информации смотрите видеоролик по теме. Он создан немного старомодно, но зато полезный и познавательный.

Так же читайте: Расчёт мощности трёхфазной сети.

На этом буду заканчивать. Свои вопросы пишите в комментариях. Если статья была полезной, то жмите на кнопки социальных сетей. До новых встреч. Пока.

С уважением Семак Александр!

Читайте также статьи:

Калькулятор перевода силы тока в мощность (амперы в киловатты)

Мощность — энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока — количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.

Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

Таблица перевода Ампер – Ватт:

220 В

380 В

 

100 Ватт

0,45

0,15

Ампер

200 Ватт

0,91

0,3

Ампер

300 Ватт

1,36

0,46

Ампер

400 Ватт

1,82

0,6

Ампер

500 Ватт

2,27

0,76

Ампер

600 Ватт

2,73

0,91

Ампер

700 Ватт

3,18

1,06

Ампер

800 Ватт

3,64

1,22

Ампер

900 Ватт

4,09

1,37

Ампер

1000 Ватт

4,55

1,52

Ампер

Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта.  Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

Перевести киловатты (кВт) в амперы (А): онлайн-калькулятор, формула

Инструкция по использованию: Чтобы перевести киловатты (кВт) в амперы (А), введите мощность P в киловаттах (кВт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).

Калькулятор кВт в А (1 фаза, постоянный ток)

Формула для перевода кВт в А

Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на напряжение U в вольтах (В).

Калькулятор кВт в А (1 фаза, переменный ток)

Формула для перевода кВт в А

Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).

Калькулятор кВт в А (3 фазы, переменный ток, линейное напряжение)

Формула для перевода кВт в А

Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.

Калькулятор кВт в А (3 фазы, переменный ток, фазное напряжение)

Формула для перевода кВт в А

Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).

Перевод ампер в киловатты и киловатт в амперы

Быстрая оценка токов и мощностей

Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.

В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.

Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.

Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.

Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.

Таким образом, получаем простые правила:

  • один кВт соответствует 4,5 А тока;
  • один ампер соответствует мощности 0,22 кВт.

Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.

Как вычислить напряжение и мощность тока

Выше были показаны формулы, по каким можно высчитать какую-либо величину на основании значения известных.

Известна формула для определения мощности, исходя из тока и напряжения. Перед тем, как найти ампер формула должна быть преобразована следующим образом:

I=P/U

Если на устройстве указано, какая потребляемая мощность и сила тока в цепи, то можно определить, на работу с каким напряжением рассчитано устройство:

U=P/I

Также, пользуясь дополнительно законом Ома, можно определить значение сопротивления нагрузки. Чтобы не путаться в формулах, можно воспользоваться мнемонической записью, которая позволяет легко вычислить любое из значений, когда известны любые два других.

Мнемоническая запись электрических величин

Как правильно рассч

Калькулятор перевода силы тока в мощность

Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.

Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.

Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.

Сколько Ватт в 1 Ампере и ампер в вате?

Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:

I = P / U, где

I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.

Корень из трех приблизительно равен 1,73.

То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.

Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.

Таблица перевода Ампер – Ватт:
61224220380Вольт
5 Ватт0,830,420,210,020,008Ампер
6 Ватт1,000,50,250,030,009Ампер
7 Ватт1,170,580,290,030,01Ампер
8 Ватт1,330,670,330,040,01Ампер
9 Ватт1,50,750,380,040,01Ампер
10 Ватт1,670,830,420,050,015Ампер
20 Ватт3,331,670,830,090,03Ампер
30 Ватт5,002,51,250,140,045Ампер
40 Ватт6,673,331,670,130,06Ампер
50 Ватт8,334,172,030,230,076Ампер
60 Ватт10,005,002,500,270,09Ампер
70 Ватт11,675,832,920,320,1Ампер
80 Ватт13,336,673,330,360,12Ампер
90 Ватт15,007,503,750,410,14Ампер
100 Ватт16,678,334,170,450,15Ампер
200 Ватт33,3316,678,330,910,3Ампер
300 Ватт50,0025,0012,501,360,46Ампер
400 Ватт66,6733,3316,71,820,6Ампер
500 Ватт83,3341,6720,832,270,76Ампер
600 Ватт100,0050,0025,002,730,91Ампер
700 Ватт116,6758,3329,173,181,06Ампер
800 Ватт133,3366,6733,333,641,22Ампер
900 Ватт150,0075,0037,504,091,37Ампер
1000 Ватт166,6783,3341,674,551,52Ампер

Зачем нужен калькулятор

Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.

Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.

Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.

Как пользоваться

Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:

  1. Ввести значение напряжения, которое питает источник.
  2. В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
  3. В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).

Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.

Часто задаваемые вопросы

  • Сколько Ватт в Ампере?

    Если речь об автомобильной сети, то в одном ампере 12 Ватт при напряжении 12В. В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.

  • org/Question»>
    12 ампер сколько ватт?

    Сколько ватт мощности при 12 амперах потребления тока будет зависеть от того в сети с каким напряжением работает сам потребитель. Так 12А это может быть: 144 Ватт в автомобильной сети 12V; 2640 Ватт в сети 220V; 7889 Ватт в электросети 380 Вольт.

  • 220 ватт сколько ампер?

    Сила тока потребителя мощностью 220 Ватт будет отличаться зависимо от сети, в которой он работает. Это может быть: 18A при напряжении 12 Вольт, 1A если напряжение 220 Вольт либо 6A, когда потребление тока происходит в сети 380 Вольт.

  • 5 ампер сколько ватт?

    Чтобы узнать сколько Ватт потребляет источник на 5 ампер достаточно воспользоваться формулой P = I * U. То есть если потребитель включен в автомобильную сеть где всего 12 Вольт, то 5А будет 60W. При потреблении 5 ампер в сети 220V означает что мощность потребителя составляет 1100W. Когда потребление пяти ампер происходит в двухфазной сети 380V, то мощность источника составляет 3290 Ватт.

Амперы в киловатты: как рассчитать, таблица

Сегодня для грамотного подсчета суммарного количества используемого электрического оборудования в электроцепи, правильного подбора электросчетчика или измерения изоляции необходимо овладеть техникой перевода амперов в ватты и знать их соотношение. О том, как перевести амперы в киловатты, как это правильно делать в однофазной и трехфазной цепи и сколько ампер в киловатте в цепи 220 вольт — далее.

Соотношение ампер и киловатт

Ампер считается измерительной единицей электротока в международной системе или же силой электротока, проникающей через проводниковый элемент в количестве один кулон за одну секунду.

Определение ампера и киловатта

Киловатт является подъединицей ватта и измерительной мощностной единицей, а также тепловым потоком, потоком звуковой энергии, активной и полной мощностью переменного электротока. Все это скалярные измерительные единицы в международной системе, которые можно преобразовывать.

Обратите внимание! Что касается соотношения данных показателей, то в 1А находится 0,22 кВт для однофазной цепи и 0,38 для трехфазной.

Соотношение измерительных величин

Зачем переводить амперы в киловатты

Многие люди привыкли при работе с электрическими приборами использовать киловатты, поскольку именно они отражаются на считывающих приборах. Однако многие предохранители, вилки, розетки автомата имеют амперную маркировку, и не каждый обычный пользователь сможет догадаться, сколько в ампераже устройства киловаттовой энергии. Именно из-за этих возникающих проблем необходимо научиться делать перевод величин. Также нередко это нужно, чтобы четко пересчитать, сколько и какой прибор потребляет электроэнергии. Иногда это избавляет от лишних трат на электроэнергию.

Подсчет используемого электрооборудования дома как цель перевода

Переводы с амперов в киловатты и наоборот

Осуществлять переводы величин можно тремя способами: универсальной таблицей, онлайн калькулятором или формулой. Что касается использования калькулятора, нужно в соответствующие поля вставить исходные показатели и нажать кнопку. Использовать эту систему удобно в том случае, когда приходится сталкиваться с большими цифровыми значениями.

Обратите внимание! Согласно универсальной таблице и формуле можно узнать, что в одном А находится 0,22 кВт или 0,38 кВт. Сделать перевод величин, используя имеющиеся цифры, можно при помощи калькулятора или умножением на приведенное значение. К примеру, чтобы посчитать, сколько будет 6А в кВт, нужно умножить 0,6 на 0,22. В итоге выйдет 1,32 кВт.

В однофазной электрической цепи

Чтобы вычислить необходимые величины в однофазной сети, где номинальный ток автоматического выключателя, к примеру, равен 10 А и в нормальном состоянии через него не течет энергия выше указанного значения, необходимо вычислить максимальную электромощность. Нужно подставить в формулу нахождения мощности значения напряжения и силы электротока и перемножить их между собой. Получится, что мощность будет равна 220*10=2200 ватт. Для перевода в меньшие значения необходимо цифру поделить на 1000. Выйдет 5,5 кВт. Это вся сумма мощностей, питающихся от автомата.

Перевод в однофазной электроцепи
В трехфазной электрической цепи

Перевод показателей в трехфазной сети, рассчитанной на 380 вольт, можно сделать подобным образом. Разница заключается в формуле. Чтобы определить искомые данные, необходимо подставить корень из трех в произведение напряжения и силы электротока. К примеру, автомат рассчитан на 40 А. Подставив значения, можно получить 26327 Вт. После деления значения на 1000 выйдет 26,3 кВт. То есть выйдет, что автомат сможет выдержать нагрузку.

При известном мощностном показателе трехфазной цепи рассчитывать рабочий ток можно, преобразовав данную формулу. То есть электромощность нужно поделить на корень из 3, умноженный на напряжение. В итоге, если электромощность равна 10 кВт, выйдет значение автомата в 16А.

Перевод в трехфазной электроцепи

Расчет

Для подсчета величин используются специальные формулы. После их подсчета останется только вставить их в приведенные выше формулы. Чтобы отыскать электроток, стоит напряжение поделить на проводниковое сопротивление, а чтобы отыскать мощность, необходимо умножить напряжение на токовую силу или же двойное значение силы тока умножить на сопротивление. Также есть возможность поделить двойное значение напряжения на сопротивление.

Обратите внимание! Нередко все необходимые данные прописаны на коробке или технических характеристиках на сайте производителя. Часто информация указана в кВт и ее посредством конвертора легко можно перевести в ампераж. Еще одним простым вариантом, как определить потребление энергии и ампераж, будет изучение электросчетчика или автоматического выключателя потребителя. Но в таком случае необходимо подключать только один прибор к сети.

Формула расчета

Таблица перевода

На данный момент сделать перевод величин в прямом и обратном порядке можно без особых проблем благодаря специальной таблице с названием «100 ампер сколько киловатт». С помощью нее можно без проблем вычислить необходимые значения. Особо ее удобно использовать, когда нужно подсчитать большие числа. Интересно, что сегодня существуют таблицы, рассчитанные на подсчет ампеража и энергии автоматического выключателя однофазной и трехфазной цепи. Приводятся стандартные данные тех аппаратов, которые сегодня можно приобрести на рынке.

Таблица переводов киловатт и ампер

Чтобы узнать необходимые данные, нужно использовать приведенные выше формулы или применять таблицу переводов. Данные измерительные величины помогут посчитать используемую энергию конкретным аппаратом и произвести другие расчеты в области электрики.

Ампер-часов (Ач) в Киловатт-часы (кВтч) калькулятор преобразования

Преобразуйте ампер-часы в киловатт-часы с помощью калькулятора ниже и введите заряд в Ач вместе с напряжением.

Вы хотите вместо этого перевести кВтч в Ач?

Как преобразовать ампер-часы в киловатт-часы

Ампер-часы , часто выражаемые как А · ч или А · ч, являются мерой электрического заряда. Например, ампер-часы часто используются для измерения заряда аккумулятора.Заряд в один Ач обеспечит один ампер тока на один час.

Киловатт-час , выраженный в кВтч или кВт · час, используются для измерения электрической энергии. Один кВтч равен одному киловатту или тысяче ватт энергии, потребляемой за один час времени.

Чтобы преобразовать электрический заряд в энергию, используйте приведенную ниже формулу вместе с напряжением.

Ач в кВтч Формула преобразования

кВтч = Ач × В1,000

Электрическая энергия в киловатт-часах равна заряду в ампер-часах, умноженному на напряжение, затем деленному на 1000.

Например, преобразует 20 Ач при 120 В в кВтч.

кВтч = (20 Ач × 120 В) ÷ 1000
кВтч = 2400 ÷ 1000
кВтч = 2,4 кВтч

Возможно, вас заинтересует наш калькулятор из миллиампер-часов в ватт-часы.

.

Киловатт (кВт) в ампер калькулятор преобразования электрической энергии

Как преобразовать киловатты в амперы

Для однофазной цепи переменного тока формула преобразования киловатт (кВт) в амперы выглядит так:

амперы = (кВт × 1000) ÷ вольт

Можно найти силу тока в киловаттах, если вы знаете напряжение в цепи, используя закон Ватта. Закон Ватта гласит, что ток = мощность ÷ напряжение. По закону Ватта мощность измеряется в ваттах, а напряжение — в вольтах.Формула найдет ток в амперах.

Сначала начните с преобразования киловатт в ватты, что можно сделать, умножив мощность в кВт на 1000, чтобы получить количество ватт.

Наконец, примените формулу закона Ватта и разделите количество ватт на напряжение, чтобы найти амперы.

Например, , найдите ток в цепи мощностью 1 кВт при 120 вольт.

ампер = (кВт × 1000) ÷ вольт
ампер = (1 × 1000) ÷ 120
ампер = 1000 ÷ 120
ампер = 8.33А

Преобразование киловатт в амперы с использованием коэффициента мощности

Оборудование часто не на 100% эффективно с точки зрения энергопотребления, и это необходимо учитывать, чтобы определить количество доступных ампер. Например, большинство генераторов имеют КПД 80%. КПД устройства можно преобразовать в коэффициент мощности, переведя процент в десятичную дробь, это коэффициент мощности.

Чтобы узнать коэффициент мощности вашей цепи, попробуйте наш калькулятор коэффициента мощности.

Формула для определения силы тока с использованием коэффициента мощности:

амперы = (кВт × 1000) ÷ (PF × вольт)

Например, , найдите ток генератора мощностью 5 кВт с КПД 80% при 120 вольт.

амперы = (кВт × 1000) ÷ (PF × вольт)
ампер = (5 × 1000) ÷ (0,8 × 120)
ампер = 5000 ÷ 96
ампер = 52,1 A

Как найти ток в трехфазной цепи переменного тока

Формула для определения силы тока для трехфазной цепи переменного тока немного отличается от формулы для однофазной цепи:

амперы = (кВт × 1000) ÷ (√3 × PF × вольт)

Например, , найдите ток трехфазного генератора мощностью 25 кВт с КПД 80% при 240 вольт.

Ампер = (кВт × 1000) ÷ (√3 × PF × В)
А = (25 × 1000) ÷ (1,73 × 0,8 × 240
А = 75,18 А

Для преобразования ватт в амперы используйте наш калькулятор преобразования ватт в амперы.

Номинальный ток генератора (трехфазный переменный ток)

Номинальные значения тока генератора основаны на выходной мощности в киловаттах при трехфазном переменном токе 120, 208, 240, 277 и 480 В с коэффициентом мощности 0,8
Мощность Ток при 120 В Ток при 208 В Ток при 240 В Ток при 277В Ток при 480 В
1 кВт 6.014 A 3,47 А 3,007 А 2,605 А 1,504 А
2 кВт 12.028 А 6,939 А 6,014 А 5,211 А 3,007 А
3 кВт 18.042 А 10,409 А 9.021 А 7,816 А 4,511 А
4 кВт 24,056 А 13,879 А 12.028 А 10.421 A 6,014 А
5 кВт 30,07 А 17,348 А 15.035 А 13,027 А 7,518 А
6 кВт 36.084 А 20,818 А 18.042 А 15,632 А 9.021 А
7 кВт 42,098 А 24,288 А 21.049 А 18,238 А 10,525 А
8 кВт 48.113 А 27,757 А 24,056 А 20,843 А 12.028 А
9 кВт 54,127 А 31,227 А 27.063 А 23,448 А 13,532 А
10 кВт 60,141 А 34,697 А 30,07 А 26.054 А 15.035 А
15 кВт 90,211 А 52.045 А 45,105 А 39.081 A 22,553 А
20 кВт 120,28 А 69,393 А 60,141 А 52,107 А 30,07 А
25 кВт 150,35 А 86,741 А 75,176 А 65.134 А 37,588 А
30 кВт 180,42 А 104,09 А 90,211 А 78,161 А 45,105 А
35 кВт 210.49 А 121,44 А 105,25 А 91.188 А 52,623 А
40 кВт 240,56 А 138,79 А 120,28 А 104,21 А 60,141 А
45 кВт 270,63 А 156,13 А 135,32 А 117,24 А 67.658 А
50 кВт 300,7 А 173,48 А 150,35 А 130.27 А 75,176 А
55 кВт 330,77 А 190,83 А 165,39 А 143,3 А 82,693 А
60 кВт 360,84 А 208,18 А 180,42 А 156,32 А 90,211 А
65 кВт 390,91 А 225,53 А 195,46 А 169,35 А 97,729 А
70 кВт 420.98 А 242,88 А 210,49 А 182,38 А 105,25 А
75 кВт 451,05 А 260,22 А 225,53 А 195,4 А 112,76 А
80 кВт 481,13 А 277,57 А 240,56 А 208,43 А 120,28 А
85 кВт 511,2 А 294,92 А 255,6 А 221.46 А 127,8 А
90 кВт 541,27 А 312,27 А 270,63 А 234,48 А 135,32 А
95 кВт 571,34 А 329,62 А 285,67 А 247,51 А 142,83 А
100 кВт 601,41 А 346,97 А 300,7 А 260,54 А 150,35 А
125 кВт 751.76 А 433,71 А 375,88 А 325,67 А 187,94 А
150 кВт 902,11 А 520,45 А 451,05 А 390,81 А 225,53 А
175 кВт 1052,5 А 607,19 А 526,23 А 455,94 А 263,12 А
200 кВт 1 202,8 А 693,93 А 601,41 А 521.07 A 300,7 А
225 кВт 1353,2 А 780,67 А 676,58 А 586,21 А 338,29 А
250 кВт 1 503,5 А 867,41 А 751,76 А 651,34 А 375,88 А
275 кВт 1653,9 А 954,15 А 826,93 А 716,48 А 413,47 А
300 кВт 1 804.2 А 1040,9 А 902,11 А 781,61 А 451,05 А
325 кВт 1 954,6 А 1 127,6 А 977,29 А 846,75 А 488,64 А
350 кВт 2104,9 А 1214,4 А 1052,5 А 911,88 А 526,23 А
375 кВт 2255,3 А 1 301,1 А 1,127.6 А 977.01 А 563,82 А
400 кВт 2405,6 А 1387,9 А 1 202,8 А 1042,1 А 601,41 А
425 кВт 2,556 А 1474,6 А 1 278 A 1 107,3 ​​А 638,99 А
450 кВт 2706,3 А 1561,3 А 1353,2 А 1172,4 А 676.58 А
475 кВт 2 856,7 А 1648,1 А 1428,3 А 1237,6 А 714,17 А
500 кВт 3 007 А 1734,8 А 1 503,5 А 1 302,7 А 751,76 А
525 кВт 3 157,4 А 1821,6 А 1578,7 А 1367,8 А 789,35 А
550 кВт 3 307.7 А 1 908,3 А 1653,9 А 1433 А 826,93 А
575 кВт 3 458,1 А 1 995,1 А 1729 А 1498,1 А 864,52 А
600 кВт 3608,4 А 2081,8 А 1804,2 А 1563,2 А 902,11 А
625 кВт 3758,8 А 2168,5 А 1,879.4 А 1628,4 А 939,7 А
650 кВт 3 909,1 А 2255,3 А 1 954,6 А 1693,5 А 977,29 А
675 кВт 4 059,5 А 2342 А 2029,7 А 1758,6 А 1014,9 А
700 кВт 4209,8 А 2428,8 А 2104,9 А 1823,8 А 1052.5 А
725 кВт 4360,2 А 2515,5 А 2180,1 А 1888,9 А 1090 А
750 кВт 4510,5 А 2 602,2 А 2255,3 А 1 954 А 1 127,6 А
775 кВт 4 660,9 А 2 689 А 2330,5 А 2019,2 А 1165,2 А
800 кВт 4811.3 А 2775,7 А 2405,6 А 2084,3 А 1 202,8 А
825 кВт 4961,6 А 2 862,5 А 2480,8 А 2149,4 А 1240,4 А
850 кВт 5112 А 2949,2 А 2,556 А 2214,6 А 1 278 A
875 кВт 5 262,3 А 3035,9 А 2 631.2 А 2279,7 А 1315,6 А
900 кВт 5 412,7 А 3 122,7 А 2706,3 А 2344,8 А 1353,2 А
925 кВт 5 563 А 3 209,4 А 2781,5 А 2,410 А 1390,8 А
950 кВт 5713,4 А 3296,2 А 2 856,7 А 2475,1 А 1,428.3 А
975 кВт 5863,7 А 3382,9 А 2 931,9 А 2540,2 А 1465,9 А
1000 кВт 6 014,1 А 3469,7 А 3 007 А 2605,4 А 1 503,5 А

Номинальный ток генератора (однофазный переменный ток)

Номинальные значения тока генератора основаны на выходной мощности в киловаттах при однофазном переменном токе 120 и 240 В с коэффициентом мощности.8
Мощность Ток при 120 В Ток при 240 В
1 кВт 10,417 А 5,208 А
2 кВт 20,833 А 10,417 А
3 кВт 31,25 А 15,625 А
4 кВт 41,667 А 20,833 А
5 кВт 52.083 А 26.042 A
6 кВт 62,5 А 31,25 А
7 кВт 72,917 А 36,458 А
8 кВт 83.333 А 41,667 А
9 кВт 93,75 А 46,875 А
10 кВт 104,17 А 52.083 А
15 кВт 156,25 А 78,125 А
20 кВт 208.33 А 104,17 А
25 кВт 260,42 А 130,21 А
30 кВт 312,5 А 156,25 А
35 кВт 364,58 А 182,29 А
40 кВт 416,67 А 208,33 А
45 кВт 468,75 А 234,38 А
50 кВт 520,83 А 260.42 А
55 кВт 572,92 А 286,46 А
60 кВт 625 А 312,5 А
65 кВт 677.08 А 338,54 А
70 кВт 729,17 А 364,58 А
75 кВт 781,25 А 390,63 А
80 кВт 833,33 А 416,67 А
85 кВт 885.42 А 442,71 А
90 кВт 937,5 А 468,75 А
95 кВт 989,58 А 494,79 А
100 кВт 1041,7 А 520,83 А
125 кВт 1 302,1 А 651,04 А
150 кВт 1562,5 А 781,25 А
175 кВт 1822,9 А 911.46 А
200 кВт 2083,3 А 1041,7 А
225 кВт 2343,8 А 1171,9 А
250 кВт 2 604,2 А 1 302,1 А
275 кВт 2 864,6 А 1432,3 А
300 кВт 3,125 А 1562,5 А
325 кВт 3385,4 А 1692,7 А
350 кВт 3 645.8 А 1822,9 А
375 кВт 3906,3 А 1 953,1 А
400 кВт 4 166,7 А 2083,3 А
425 кВт 4 427,1 А 2213,5 А
450 кВт 4687,5 А 2343,8 А
475 кВт 4947,9 А 2474 А
500 кВт 5 208,3 А 2 604.2 А
525 кВт 5468,8 А 2734,4 А
550 кВт 5729,2 А 2 864,6 А
575 кВт 5 989,6 А 2994,8 А
600 кВт 6250 А 3,125 А
625 кВт 6 510,4 А 3 255,2 А
650 кВт 6770,8 А 3385,4 А
675 кВт 7 031.3 А 3515,6 А
700 кВт 7 291,7 А 3645,8 А
725 кВт 7 552,1 А 3776 А
750 кВт 7 812,5 А 3906,3 А
775 кВт 8 072,9 А 4036,5 А
800 кВт 8 333,3 А 4 166,7 А
825 кВт 8 593,8 А 4296.9 А
850 кВт 8 854,2 А 4 427,1 А
875 кВт 9 114,6 А 4557,3 А
900 кВт 9 375 А 4687,5 А
925 кВт 9 635,4 А 4817,7 А
950 кВт 9895,8 А 4947,9 А
975 кВт 10 156 А 5 078,1 А
1000 кВт 10 417 А 5,208.3 А
.

Ампер (А), электрический блок

Определение ампер

Ампер или ампер (обозначение: A) — это единица измерения электрического тока.

Устройство Ampere названо в честь Андре-Мари Ампера из Франции.

Один ампер определяется как ток, протекающий с электрическими заряд одного кулона в секунду.

1 А = 1 К / с

Амперметр

Амперметр или амперметр — это электрический прибор, который используется для измерения электрического тока в амперах.

Когда мы хотим измерить электрический ток на нагрузке, амперметр подключается последовательно к нагрузке.

Сопротивление амперметра близко к нулю, поэтому он не будет влияют на измеряемую цепь.

Таблица префиксов единиц ампер
наименование символ преобразование, пример
микроампер (микроампер) мкА 1 мкА = 10 -6 А I = 50 мкА
миллиампер (миллиампер) мА 1 мА = 10 -3 А I = 3 мА
ампер (амперы) А

I = 10A
килоампер (килоампер) кА 1кА = 10 3 А I = 2кА
Как преобразовать ампер в микроампер (мкА)

Ток I в микроамперах (мкА) равен току I в амперах (А), деленному на 1000000:

I (мкА) = I (A) /1000000

Как преобразовать амперы в миллиампера (мА)

Ток I в миллиамперах (мА) равен току I в амперах (А), деленному на 1000:

I (мА) = I (A) /1000

Как перевести ампер в килоампер (кА)

Ток I в килоамперах (мА) равен току I в амперах (А), умноженному на 1000:

I (кА) = I (A) ⋅ 1000

Как преобразовать амперы в ватты (Вт)

Мощность P в ваттах (Вт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В):

P (W) = I (A) V (V)

Как преобразовать амперы в вольты (В)

Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):

В (В) = P (Ш) / I (A)

Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):

В (В) = I (A) R (Ом)

Как преобразовать амперы в Ом (Ом)

Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):

R (Ом) = В (В) / I (A)

Как перевести амперы в киловатты (кВт)

Мощность P в киловаттах (кВт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В), деленному на 1000:

P (кВт) = I (A) В (В) /1000

Как перевести ампер в киловольт-ампер (кВА)

Полная мощность S в киловольт-амперах (кВА) равна действующему току I RMS в амперах (A), умноженное на действующее значение напряжения V RMS в вольтах (В), деленное на 1000:

S (кВА) = I RMS (A) В СКЗ (В) /1000

Как преобразовать амперы в кулоны (К)

Электрический заряд Q в кулонах (C) равен току I в амперах (A), умноженному на время протекания тока t в секундах (с):

Q (C) = I (A) т (с)


См. Также

.Калькулятор преобразования

Вт / В / А / Ом

Ватт (Вт) — вольт (В) — амперы (А) — калькулятор Ом (Ом).

Рассчитывает мощность / вольтаж / текущий / сопротивление.

Введите 2 значений , чтобы получить другие значения, и нажмите кнопку Calculate :

Калькулятор ампер в ватт ►

Расчет Ом

Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):

Сопротивление R в омах (Ом) равно квадрату напряжения V в вольтах (В), деленному на мощность P в ваттах (Вт):

Сопротивление R в омах (Ом) равно мощности P в ваттах (Вт), деленной на квадрат тока I в амперах (A):

Расчет ампер

Ток I в амперах (A) равен напряжению V в вольтах (V), деленному на сопротивление R в омах (Ω):

Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):

Ток I в амперах (A) равен квадратному корню из мощности P в ваттах (Вт), деленному на сопротивление R в омах (Ом):

Расчет вольт

Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):

Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):

Напряжение V в вольтах (В) равно квадратному корню из мощности P в ваттах (Вт), умноженной на сопротивление R в омах (Ом):

Расчет ватт

Мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A):

Мощность P в ваттах (Вт) равна квадрату напряжения V в вольтах (В), деленному на сопротивление R в омах (Ом):

Мощность P в ваттах (Вт) равна квадрату тока I в амперах (А), умноженному на сопротивление R в омах (Ом):

Калькулятор закона Ома ►


См. Также

.

Ватт (Вт) электрический блок

Ватт разрешения

Ватт — это единица измерения мощности (обозначение: Вт).

Блок ватт назван в честь Джеймса Ватта, изобретателя паровой машины.

Один ватт определяется как расход энергии один джоуль в секунду.

1 Вт = 1 Дж / 1 с

Один ватт также определяется как ток в один ампер при напряжении в один вольт.

1 Вт = 1 В × 1 А

Калькулятор преобразования Ватт в мВт, кВт, МВт, ГВт, дБм, дБВт

Перевести ватт в милливатт, киловатт, мегаватт, гигаватт, дБм, дБВт.

Введите мощность в одно из текстовых полей и нажмите кнопку Convert :

Таблица префиксов единиц ватт

наименование символ преобразование, пример
пиковатт полувт 1пВт = 10 -12 Вт P = 10 полувольт
нановатт nW 1нВт = 10 -9 Вт P = 10 нВт
микроватт мкВт 1 мкВт = 10 -6 Вт P = 10 мкВт
милливатт мВт 1 мВт = 10 -3 Вт P = 10 мВт
ватт Вт P = 10 Вт
киловатт кВт 1кВт = 10 3 Вт P = 2 кВт
мегаватт МВт 1 МВт = 10 6 Вт P = 5 МВт
гигаватт ГВт 1ГВт = 10 9 Вт P = 5 ГВт
Как преобразовать ватт в киловатт

Мощность P в киловаттах (кВт) равна мощности P в ваттах (Вт), деленной на 1000:

P (кВт) = P (Вт) /1000

Как преобразовать ватт в милливатт

Мощность P в милливаттах (мВт) равна мощности P в ваттах (Вт), умноженной на 1000:

P (мВт) = P (Вт) ⋅ 1000

Как преобразовать ватт в дБм

Мощность P в децибел-милливаттах (дБм) равна десятикратному логарифму мощности P в милливатт (мВт), деленному на 1 милливатт:

P (дБм) = 10 ⋅ log 10 ( P (мВт) /1 мВт)

Как перевести ватты в амперы

Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):

I (A) = P (W) / V (V)

Как преобразовать ватты в вольты

Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):

В (В) = P (Ш) / I (А)

Как преобразовать ватты в Ом

R (Ом) = P (Вт) / I (A) 2

R (Ом) = В (В) 2 / P (Вт)

Как преобразовать ватт в BTU / час

P (БТЕ / час) = 3.412142 ⋅ P (Ш)

Как преобразовать ватт в джоули

E (Дж) = P (Ш) т (с)

Как перевести ватты в лошадиные силы

P (л.с.) = P (Вт) /746

Как преобразовать ватт в кВА

Реальная мощность P в ваттах (Вт) равна 1000-кратной полной мощности S в киловольт-амперах (кВА), умноженной на коэффициент мощности (PF) или косинус фазового угла φ:

P (Вт) = 1000 S (кВА) PF = 1000 ⋅ S (кВА) ⋅ cos φ

Как преобразовать ватт в VA

Реальная мощность P в ваттах (Вт) равна полной мощности S в вольтамперах (ВА), умноженной на коэффициент мощности (PF) или косинус фазового угла φ:

P (Вт) = S (ВА) PF = S (ВА) ⋅ cos φ

Потребляемая мощность некоторых электрических компонентов

Сколько ватт потребляет дом? Сколько ватт потребляет телевизор? Сколько ватт потребляет холодильник?

Электрический компонент Типичная потребляемая мощность в ваттах
ЖК телевизор 30..300 Вт
ЖК-монитор 30..45 Вт
ПК настольный компьютер 300..400 Вт
Портативный компьютер 40..60 Вт
Холодильник150..300 Вт (в активном состоянии)
Лампочка 25..100 Вт
Люминесцентный свет 15..60 Вт
Галогенная лампа 30..80 Вт
Динамик 10..300 Вт
Микроволновая печь 100..1000 Вт
Кондиционер 1..2 кВт

Киловатт (кВт) ►


См. Также

.

Калькулятор перевода силы тока в мощность (амперы в киловатты)

Мощность — энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока — количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.

Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

Таблица перевода Ампер – Ватт:

220 В

380 В

 

100 Ватт

0,45

0,15

Ампер

200 Ватт

0,91

0,3

Ампер

300 Ватт

1,36

0,46

Ампер

400 Ватт

1,82

0,6

Ампер

500 Ватт

2,27

0,76

Ампер

600 Ватт

2,73

0,91

Ампер

700 Ватт

3,18

1,06

Ампер

800 Ватт

3,64

1,22

Ампер

900 Ватт

4,09

1,37

Ампер

1000 Ватт

4,55

1,52

Ампер

Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта.  Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Преобразовать мкА в А (микроампер в ампер)

Прямая ссылка на этот калькулятор:
https://www.preobrazovaniye-yedinits.info/preobrazovat+mikroamper+v+amper.php

Сколько ампер в 1 микроампер?

1 микроампер [мкА] = 0,000 001 ампер [А] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования микроампер в ампер.), скобки и π (число пи), уже поддерживаются на настоящий момент.

  • Из списка выберите единицу измерения переводимой величины, в данном случае ‘микроампер [мкА]’.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘ампер [А]’.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘496 микроампер’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микроампер’ или ‘мкА’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический ток’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’85 мкА в А‘ или ’30 мкА сколько А‘ или ’26 микроампер -> ампер‘ или ’36 мкА = А‘ или ’46 микроампер в А‘ или ’63 мкА в ампер‘ или ’26 микроампер сколько ампер‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

    Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(13 * 38) мкА’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 6,753 187 099 039 8×1026. В этой форме представление числа разделяется на экспоненту, здесь 26, и фактическое число, здесь 6,753 187 099 039 8. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 6,753 187 099 039 8E+26. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 675 318 709 903 980 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

    1 вольт сколько ампер


    Сколько в ампере ватт, как перевести амперы в ватты и киловатты

    • Главная
    • Справочник
    • Электротехника
    • Единицы измерений
    • Сколько в ампере ватт, как перевести амперы в ватты и киловатты

    Практически каждый человек слышал про параметры электричества как Вольт, Ампер и Ватты.

    Что такое мощность. Ватт [Вт]

    Ватт, согласно системе СИ – единица измерения мощности. В наши дни используется для измерения мощности всех электрических и не только приборов. Согласно теории физики, мощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с. Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде.

    На сегодняшний день для обозначения мощности электроприборов чаще применяется единица измерения киловатт (сокращенное обозначение – кВт). Несложно догадаться, сколько ватт в киловатте – приставка «кило» в системе СИ обозначает величину, полученную в результате умножения на тысячу.

    Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

    Что такое напряжение. Вольт [В]

    Напряжение — это физическая величина, характеризующая величину отношения работы
    электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах.

    Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана. Величина напряжения стандартизированная и одинаковая для всех квартир, домов и гаражей равная 220 Вольт при однофазном электроснабжении. Также допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт.

    1 Вольт содержит:

    • 1 000 000 микровольт
    • 1 000 милливольт

    Что такое Сила тока. Ампер [А]

    Сила тока это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах.

    1 Ампер содержит:

    • 1 000 000 микроампер
    • 1 000 миллиампер

    Иногда такая задача как перевод ампер в ватты или в киловатты, либо наоборот — ватты и киловатты в амперы, может вызвать затруднение. Ведь редко кто из нас помнит наизусть формулы мо школьной скамьи. Если конечно постоянно не приходится сталкиваться с этим по роду профессии или увлечения.

    На самом деле, в быту знание таких вещей может потребоваться довольно часто. Например, на розетке или на вилке указана маркировка в виде надписи: «220В 6А». Эта маркировка, отражает предельно допустимую мощность подключаемой нагрузки. Что это значит? Какой максимальной мощности сетевой прибор можно включить в такую розетку или использовать с данной вилкой?

    Исходя из этой маркировки мы видим, что рабочее напряжение, на которое расчитано это устройство составляет 220 вольт, а максимальный ток 6 ампер. Чтобы получить значение мощности, достаточно перемножить две эти цифры: 220*6 = 1320 ватт — максимальная мощность для данной вилки или розетки. Скажем, утюг с паром можно будет использовать только на двойке, а масляный обогреватель — только в половину мощности.

    Сколько Вольт содержит 1 Ампер?

    Ответить на этот вопрос довольно сложно. Однако для того чтобы вам было легче разобраться с этим вопросом мы предлагаем вам ознакомиться с таблицами соотношений

    Для постоянного тока

    Вольты Вт : А = А х Омы = √ (Вт х Омы)
    Амперы (Вт : В) = √(Вт : Омы) = В : Омы
    Омы В : А = Вт : (А)2 = (В)2 : Вт
    Ватты А х В = (А)2 х Омы = (В)2 : Омы
       

    Для переменного тока

    Вольты Вт : (А х cos Ψ) = А х Омы х cos Ψ = √(Вт х Омы)
    Амперы Вт: (В х cos Ψ) = 1/cos Ψ х √(Вт : Омы) = В : (Омы х cos Ψ)
    Омы В : (А х cos Ψ) = Вт : (А)2 • cos2 Ψ = (В)2 : Вт
    Ватты В х А х cos Ψ = (А)2 х Омы х cos2 Ψ = (В)2 : Омы
    Сколько Ватт в 1 Ампере?

    Итак, чтобы получить ватты, нужно указанные амперы умножить на вольты:

    P = I × U

    В ней P – Ватт, I – это А, а U – Вольт. То есть ток умножить на напряжение (в розетке у нас примерно 220-230 вольт). Это главная формула для нахождения мощности в однофазных электрических цепях.

    Пример расчета потребляемой мощности- стиральная машина потребляет из розетки 220 Вольт силу тока величиной 10 А, 10 А * 220 В = 2200 Вт или 2.2 Киловатта, т. к. один Киловатт равен 1000 Ватт.

    Переводим ватты в амперы

    Иногда мощность в ваттах нужно перевести в амперы. С такой задачей сталкивается, например, человек, решивший выбрать защитный автомат для водонагревателя.

    Например, на водонагревателе написано «2500 Вт» — это номинальная мощность при напряжении сети 220 вольт. Следовательно, чтобы получить максимальные амперы водонагревателя, разделим номинальную мощность на номинальное напряжение, и получим: 2500/220 = 11,36 ампер.

    Итак, можно выбрать автомат на 16 ампер. 10 амперного автомата будет явно не достаточно, а автомат на 16 ампер сработает сразу, как только ток превысит безопасное значение. Таким образом, чтобы получить амперы, нужно ватты разделить на вольты питания — мощность разделить на напряжение I = P/U (вольт в бытовой сети 220-230).

    Сколько ампер в киловатте и сколько киловатт в ампере

    Бывает часто, что на сетевом электроприборе мощность указана в киловаттах (кВт), тогда может потребоваться перевести киловатты в амперы. Поскольку в одном киловатте 1000 ватт, то для сетевого напряжения в 220 вольт можно принять, что в одном киловатте 4,54 ампера, потому что I = P/U = 1000/220 = 4,54 ампер. Верно для сети и обратное утверждение: в одном ампере 0,22 кВт, потому что P = I*U = 1*220 = 220 Вт = 0,22 кВт.

    Для приблизительных расчетов можно учитывать то, что при однофазной нагрузке номинальный ток I ≈ 4,5Р, где Р — потребляемая мощность и киловаттах. Например, при Р = 5 кВт, I = 4,5 х 5 = 22,5 А.

    Ватты в киловатты

    То есть, 1 кВт=1000 Вт (один киловатт равен тысячи ваттам). Обратный перевод так же прост: можно разделить число на тысячу либо переместить запятую на три цифры левее. Например:

    • мощность стиральной машины 2100 Вт = 2,1 кВт;
    • мощность кухонного блендера 1,1 кВт = 1100 Вт;
    • мощность электродвигателя 0,55 кВт = 550 Вт и т.д.

    Килоджоули в киловатты и киловатт-час

    Иногда полезно знать, как перевести килоджоули в киловатты. Для ответа на этот вопрос, вернемся к базовому отношению ватт и джоулей: 1 Вт = 1 Дж/1 с. Нетрудно догадаться, что:

    • 1 килоджоуль = 0.0002777777777778 киловатт-час (в одном часе 60 минут, а в одной минуте 60 секунд, следовательно в часе 3600 секунд, а 1/3600 = 0.000277778).
    • 1 Вт= 3600 джоуль в час

    Ватты в лошадиные силы

    • 1 лошадиная сила =736 Ватт, следовательно 5 лошадиных сил = 3,68 кВт.
    • 1 киловатт = 1,3587 лошадиных сил.

    Ватты в калории

    • 1 джоуль = 0,239 калории, следовательно 239 ккал = 0.0002777777777778 киловатт-час.
    Измерение величин тока и напряжения

    Для того что бы измерить напряжение необходимо мультиметр переключить в режим измерения переменного напряжения, при этом установите верхний предел как можно выше. Например 400 Вольт. А затем коснуться измерительными щупами ноля и фазы в розетке или клемнике и на экране Вы увидите величину напряжения.

    Ток измерять тяжелее, для его измерения необходимо переключить в режим измерения тока в Амперах и подключиться так, что  бы ток проходил через электроизмерительный прибор, мультиметр необходимо подключить последовательно с источником энергопотребления. Или в более дорогих моделях мультиметров есть сверху два разводных дополнительных щупа, которые необходимо нажатием клавиши развести и пропустить внутрь провод, на котором необходимо измерить величину тока. Здесь два важных момента: заводить только один фазный провод и следить за тем, что бы плотно смыкались электроизмерительные щупы.

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

    Перевести вольты (В) в амперы (А): онлайн-калькулятор, формула

    Инструкция по использованию: Чтобы перевести вольты (В) в амперы (А), введите напряжение U в вольтах (В), мощность P в ваттах (Вт) или сопротивление R в омах (Ω), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).

    Калькулятор В в А (через ватты)

    Формула для перевода В в А

    Сила тока I в амперах (А) равняется мощности P в ваттах (Вт), деленной на напряжение U в вольтах (В).

    Калькулятор В в А (через омы)

    Формула для перевода В в А

    Сила тока I в амперах (А) равна напряжению U в вольтах (В), деленному на сопротивление R в омах (Ω).

    Перевести вольт-амперы (ВА) в амперы (А): онлайн-калькулятор, формула

    Инструкция по использованию: Чтобы перевести вольт-амперы (ВА) в амперы (А), введите полную мощность S в вольт-амперах (ВА), напряжение U в вольтах (В), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (A).

    Калькулятор ВА в А (1 фаза)

    Формула для перевода ВА в А

    Сила тока I в амперах (A) однофазной сети равняется полной мощности S в вольт-амперах (ВА), деленной на напряжение U в вольтах (В).

    Калькулятор ВА в А (3 фазы)

    Формула для перевода ВА в А

    Сила тока I в амперах (A) трехфазной сети равняется полной мощности S в вольт-амперах (ВА), деленной на произведение квадратного корня из трех и напряжения U в вольтах (В).

    Перевести амперы (А) в вольты (В): онлайн-калькулятор, формула

    Инструкция по использованию: Чтобы перевести амперы (А) в вольты (В), введите силу тока I в амперах (А), мощность P в ваттах (Вт) или сопротивление R в омах (Ω), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение напряжения U в В.

    Калькулятор А в В (через ватты)

    Формула для перевода А в В

    Напряжение U в вольтах (В) равняется мощности P в ваттах (Вт), деленной на силу тока I в амперах (А).

    Калькулятор А в В (через омы)

    Формула для перевода А в В

    UВ = IА × RΩ

    Напряжение U в вольтах (В) равняется произведению силы тока I в амперах (А) и сопротивления R в омах (Ω).

    Калькулятор перевода силы тока в мощность, ампер в ватты

    Для расчёта нагрузки на электрическую сеть и затрат электроэнергии можно использовать специальный калькулятор перевода силы тока в мощность. Такая функция появилась недавно, значительно облегчив ручное определение.

    Хотя формулы известны давно, далеко не все хорошо знают физику, чтобы самостоятельно определять силу тока в сети. Калькулятор помогает с этим, поскольку для работы достаточно знать напряжение и мощность.

    Что такое мощность Ватт [Вт]

    Мощность — величина, определяющая отношение работы, которую выполняет источник тока, за определённый промежуток времени. Один ватт соответствует произведению одного ампера на один вольт, но при определении трат на электроэнергию используется величина киловатт/час.

    Она соответствует расходу одной тысячи ватт за 60 минут работы. Именно по этому показателю определяется стоимость услуг электроэнергии.

    В большинстве случаев мощность, которую потребляет прибор, указана в технической документации или на упаковке. Указанное количество производится за один час работы.

    Например, компьютер с блоком питания 500 Вт будет крутить 1 кВт за 2 часа работы.

    Помочь определить силу тока при известной мощности поможет калькулятор, который делает перевод одной физической величины в другую.

    Что такое Сила тока. Ампер [А]

    Сила тока представляет собой скорость, с которой электрический заряд течёт по проводнику. Один ампер равен заряду в один кулон, который проходит через проводник за одну секунду. Один кулон представляет собой очень большой заряд, поэтому в большинстве устройств эта величина измеряется в миллиамперах.

    Сила тока зависит от сечения проводника и его длины. Это необходимо учитывать при планировке сооружений, а также выборе электрических приборов. Хотя большинству не следует задумываться на этот счёт, поскольку это задача инженеров и проектировщиков.

    Сколько Ватт в 1 Ампере?

    Для определения мощности цепи также важно понятие напряжения. Это электродвижущая сила, перемещающая электроны. Она измеряется в вольтах. Большинство приборов имеют в документации эту характеристику.

    Чтобы определить мощность при силе тока в один ампер, необходимо узнать напряжение сети. Так, для розетки в 220 вольт получится: P = 1*220 = 220 Вт. Формула для расчёта: P = I*U, где I — сила тока, а U — напряжение. В трёхфазной сети нужно учитывать поправочный коэффициент, отражающий процент эффективности работы. В большинстве случаев он составляет от 0,67 до 0,95.

    Таблица перевода Ампер – Ватт

    Для перевода ватт в амперы необходимо воспользоваться предыдущей формулой, развернув её. Чтобы вычислить ток, необходимо разделить мощность на напряжение: I = P/U. В следующей таблице представлена сила тока для приборов с различным напряжением — 6, 12, 24, 220 и 380 вольт.

    Помните, что для сетей с высоким напряжением, указанная сила тока отличается в зависимости от коэффициента полезного действия.

    Таблица соотношения ампер и ватт, в зависимости от напряжения.

    12В24В220В380В
    5 Вт0,83А0,42А0,21А0,02А0,008А
    6 Вт1,00А0,5А0,25А0,03А0,009А
    7 Вт1,17А0,58А0,29А0,03А0,01А
    8 Вт1,33А0,66А0,33А0,04А0,01А
    9 Вт1,5А0,75А0,38А0,04А0,01А
    10 Вт1,66А0,84А0,42А0,05А0,015А
    20 Вт3,34А1,68А0,83А0,09А0,03А
    30 Вт5,00А2,5А1,25А0,14А0,045А
    40 Вт6,67А3,33А1,67А0,13А0,06А
    50 Вт8,33А4,17А2,03А0,23А0,076А
    60 Вт10,00А5,00А2,50А0,27А0,09А
    70 Вт11,67А5,83А2,92А0,32А0,1А
    80 Вт13,33А6,67А3,33А0,36А0,12А
    90 Вт15,00А7,50А3,75А0,41А0,14А
    100 Вт16,67А3,33А4,17А0,45А0,15А
    200 Вт33,33А16,66А8,33А0,91А0,3А
    300 Вт50,00А25,00А12,50А1,36А0,46А
    400 Вт66,66А33,33А16,7А1,82А0,6А
    500 Вт83,34А41,67А20,83А2,27А0,76А
    600 Вт100,00А50,00А25,00А2,73А0,91А
    700 Вт116,67А58,34А29,17А3,18А1,06А
    800 Вт133,33А66,68А33,33А3,64А1,22А
    900 Вт150,00А75,00А37,50А4,09А1,37А
    1000 Вт166,67А83,33А41,67А4,55А1,52А

    Используя таблицу также легко определить мощность, если известны напряжение и сила тока. Это пригодится не только для расчёта потребляемой энергии, но и для выбора специальной техники, отвечающей за бесперебойную работу или предотвращающей перегрев.

    Зачем нужен калькулятор

    Онлайн-калькулятор применяется для перевода двух физических величин друг в друга. Перевести амперы в ватты при помощи такого калькулятора — минутное дело. Сервис позволит быстро вычислить необходимую характеристику прибора, определить электроэнергию, которую будет расходовать техника за час работы.

    Как пользоваться

    Чтобы перевести ток в мощность, достаточно ввести номинальное напряжение и указать вторую известную величину. Калькулятор автоматически рассчитает неизвестный показатель и выведет результат.

    Узнать напряжение и стандартную силу тока можно в технической документации устройства. Для приборов бытовой техники обычно указывается мощность, из которой также легко вычислить ток. Для удобства в калькуляторе можно переключать ватты на киловатты, а ампера на миллиамперы.

    Калькулятор перевода силы тока в мощность

    Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.

    Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.

    Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.

    Сколько Ватт в 1 Ампере и ампер в вате?

    Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:

    I = P / U, где

    I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.

    Корень из трех приблизительно равен 1,73.

    То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.

    Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:

    P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

    А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.

    Таблица перевода Ампер – Ватт:
    61224220380Вольт
    5 Ватт0,830,420,210,020,008Ампер
    6 Ватт1,000,50,250,030,009Ампер
    7 Ватт1,170,580,290,030,01Ампер
    8 Ватт1,330,670,330,040,01Ампер
    9 Ватт1,50,750,380,040,01Ампер
    10 Ватт1,670,830,420,050,015Ампер
    20 Ватт3,331,670,830,090,03Ампер
    30 Ватт5,002,51,250,140,045Ампер
    40 Ватт6,673,331,670,130,06Ампер
    50 Ватт8,334,172,030,230,076Ампер
    60 Ватт10,005,002,500,270,09Ампер
    70 Ватт11,675,832,920,320,1Ампер
    80 Ватт13,336,673,330,360,12Ампер
    90 Ватт15,007,503,750,410,14Ампер
    100 Ватт16,678,334,170,450,15Ампер
    200 Ватт33,3316,678,330,910,3Ампер
    300 Ватт50,0025,0012,501,360,46Ампер
    400 Ватт66,6733,3316,71,820,6Ампер
    500 Ватт83,3341,6720,832,270,76Ампер
    600 Ватт100,0050,0025,002,730,91Ампер
    700 Ватт116,6758,3329,173,181,06Ампер
    800 Ватт133,3366,6733,333,641,22Ампер
    900 Ватт150,0075,0037,504,091,37Ампер
    1000 Ватт166,6783,3341,674,551,52Ампер

    Зачем нужен калькулятор

    Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.

    Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.

    Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.

    Как пользоваться

    Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:

    1. Ввести значение напряжения, которое питает источник.
    2. В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
    3. В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).

    Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.

    Часто задаваемые вопросы

    • Сколько Ватт в Ампере?

      Если речь об автомобильной сети, то в одном ампере 12 Ватт при напряжении 12В. В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.

    • 12 ампер сколько ватт?

      Сколько ватт мощности при 12 амперах потребления тока будет зависеть от того в сети с каким напряжением работает сам потребитель. Так 12А это может быть: 144 Ватт в автомобильной сети 12V; 2640 Ватт в сети 220V; 7889 Ватт в электросети 380 Вольт.

    • 220 ватт сколько ампер?

      Сила тока потребителя мощностью 220 Ватт будет отличаться зависимо от сети, в которой он работает. Это может быть: 18A при напряжении 12 Вольт, 1A если напряжение 220 Вольт либо 6A, когда потребление тока происходит в сети 380 Вольт.

    • 5 ампер сколько ватт?

      Чтобы узнать сколько Ватт потребляет источник на 5 ампер достаточно воспользоваться формулой P = I * U. То есть если потребитель включен в автомобильную сеть где всего 12 Вольт, то 5А будет 60W. При потреблении 5 ампер в сети 220V означает что мощность потребителя составляет 1100W. Когда потребление пяти ампер происходит в двухфазной сети 380V, то мощность источника составляет 3290 Ватт.

    Калькулятор преобразования электрического тока

    В в Ампер

    Преобразуйте вольт в амперы, указав напряжение и электрическую мощность в ваттах или сопротивление цепи.

    Преобразование вольт и ватт в амперы

    Преобразование вольт и омов в амперы



    Перевести амперы в вольты

    Как преобразовать вольты в амперы

    Напряжение — это разность потенциалов в электрической цепи, измеряемая в вольтах.Было бы проще представить это как величину силы или давления, проталкивающую электроны через проводник. Чтобы преобразовать вольт в амперы, меру тока, можно использовать формулу, определенную законом Ватта.

    Закон Ватта гласит, что ток = мощность ÷ напряжение. Мощность измеряется в ваттах, а напряжение — в вольтах.

    Таким образом, чтобы найти ампер, подставьте вольт и ватт в формулу:
    Ток (А) = Мощность (Вт) ÷ Напряжение (В)

    Например, найти силу тока 100-ваттной лампочки при 120 вольт.

    А = Вт ÷ В
    А = 100 Вт ÷ 120 В
    А = 0,83 А

    Преобразование вольт в амперы с помощью сопротивления

    Закон Ома предлагает альтернативную формулу для нахождения вольт, если известны ток и электрическое сопротивление. Для расчета ампер разделите напряжение на сопротивление в омах.

    Ток (А) = Напряжение (В) ÷ Сопротивление (Ом)

    Например, давайте найдем ток цепи 12 В с сопротивлением 10 Ом.

    ампер = вольт ÷ ом
    ампер = 12 В ÷ 10 Ом
    ампер = 1,2 A

    Измерения эквивалентных напряжений и ампер

    Эквивалентные значения напряжения и тока для различных номинальных мощностей
    Напряжение Текущий Мощность
    5 В 1 ампер 5 Вт
    5 Вольт 2 А 10 Вт
    5 Вольт 3 А 15 Вт
    5 Вольт 4 А 20 Вт
    5 Вольт 5 ампер 25 Вт
    5 Вольт 6 ампер 30 Вт
    5 Вольт 7 ампер 35 Вт
    5 Вольт 8 ампер 40 Вт
    5 Вольт 9 ампер 45 Вт
    5 Вольт 10 ампер 50 Вт
    5 Вольт 11 ампер 55 Вт
    5 Вольт 12 ампер 60 Вт
    5 Вольт 13 ампер 65 Вт
    5 Вольт 14 ампер 70 Вт
    5 Вольт 15 ампер 75 Вт
    5 Вольт 16 ампер 80 Вт
    5 Вольт 17 ампер 85 Вт
    5 Вольт 18 ампер 90 Вт
    5 Вольт 19 Ампер 95 Вт
    5 Вольт 20 ампер 100 Вт
    12 В 0.4167 ампер 5 Вт
    12 В 0,8333 А 10 Вт
    12 В 1,25 А 15 Вт
    12 В 1,667 А 20 Вт
    12 В 2,083 А 25 Вт
    12 В 2,5 А 30 Вт
    12 В 2.917 ампер 35 Вт
    12 В 3,333 А 40 Вт
    12 В 3,75 А 45 Вт
    12 В 4,167 А 50 Вт
    12 В 4,583 А 55 Вт
    12 В 5 ампер 60 Вт
    12 В 5.417 ампер 65 Вт
    12 В 5,833 А 70 Вт
    12 В 6,25 А 75 Вт
    12 В 6,667 А 80 Вт
    12 В 7,083 А 85 Вт
    12 В 7,5 А 90 Вт
    12 В 7.917 ампер 95 Вт
    12 В 8,333 А 100 Вт
    24 В 0,2083 А 5 Вт
    24 В 0,4167 А 10 Вт
    24 В 0,625 А 15 Вт
    24 В 0,8333 А 20 Вт
    24 В 1.042 Ампер 25 Вт
    24 В 1,25 А 30 Вт
    24 В 1.458 А 35 Вт
    24 В 1,667 А 40 Вт
    24 В 1,875 А 45 Вт
    24 В 2,083 А 50 Вт
    24 В 2.292 ампер 55 Вт
    24 В 2,5 А 60 Вт
    24 В 2.708 А 65 Вт
    24 В 2,917 А 70 Вт
    24 В 3,125 А 75 Вт
    24 В 3,333 А 80 Вт
    24 В 3.542 А 85 Вт
    24 В 3,75 А 90 Вт
    24 В 3.958 А 95 Вт
    24 В 4,167 А 100 Вт
    120 Вольт 0,0417 А 5 Вт
    120 Вольт 0,0833 А 10 Вт
    120 Вольт 0.125 Ампер 15 Вт
    120 Вольт 0,1667 А 20 Вт
    120 Вольт 0,2083 А 25 Вт
    120 Вольт 0,25 А 30 Вт
    120 Вольт 0,2917 А 35 Вт
    120 Вольт 0,3333 А 40 Вт
    120 Вольт 0.375 Ампер 45 Вт
    120 Вольт 0,4167 А 50 Вт
    120 Вольт 0,4583 А 55 Вт
    120 Вольт 0,5 А 60 Вт
    120 Вольт 0,5417 А 65 Вт
    120 Вольт 0,5833 А 70 Вт
    120 Вольт 0.625 ампер 75 Вт
    120 Вольт 0,6667 А 80 Вт
    120 Вольт 0,7083 А 85 Вт
    120 Вольт 0,75 А 90 Вт
    120 Вольт 0,7917 А 95 Вт
    120 Вольт 0,8333 А 100 Вт
    .Калькулятор преобразования

    Вт / В / А / Ом

    Ватт (Вт) — вольт (В) — амперы (А) — калькулятор Ом (Ом).

    Рассчитывает мощность / вольтаж / текущий / сопротивление.

    Введите 2 значений , чтобы получить другие значения, и нажмите кнопку Calculate :

    Калькулятор

    Ампер в ватт ►

    Расчет Ом

    Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):

    Сопротивление R в омах (Ом) равно квадрату напряжения V в вольтах (В), деленному на мощность P в ваттах (Вт):

    Сопротивление R в омах (Ом) равно мощности P в ваттах (Вт), деленной на квадрат тока I в амперах (A):

    Расчет ампер

    Ток I в амперах (A) равен напряжению V в вольтах (V), деленному на сопротивление R в омах (Ω):

    Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):

    Ток I в амперах (A) равен квадратному корню из мощности P в ваттах (Вт), деленному на сопротивление R в омах (Ом):

    Расчет вольт

    Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):

    Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):

    Напряжение V в вольтах (В) равно квадратному корню из мощности P в ваттах (Вт), умноженной на сопротивление R в омах (Ом):

    Расчет ватт

    Мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A):

    Мощность P в ваттах (Вт) равна квадрату напряжения V в вольтах (В), деленному на сопротивление R в омах (Ом):

    Мощность P в ваттах (Вт) равна квадрату тока I в амперах (А), умноженному на сопротивление R в омах (Ом):

    Калькулятор закона Ома ►


    См. Также

    .Калькулятор преобразования электрического тока

    А в Вольт

    Преобразуйте амперы в вольты, введя ток в амперах или миллиамперах и электрическую мощность в ваттах или сопротивление цепи.

    Преобразовать амперы и ватты в вольты

    Преобразование ампер и омов в вольты



    Перевести вольт в амперы

    Как преобразовать амперы в вольты

    Напряжение — это разность потенциалов в электрической цепи, измеряемая в вольтах.Было бы проще представить это как величину силы или давления, проталкивающую электроны через проводник. Чтобы преобразовать амперы в вольты, мы можем использовать простую формулу, определенную законом Ватта.

    По закону Ватта напряжение равно мощности, деленной на ток.

    Напряжение (В) = Мощность (Вт) ÷ Ток (А)

    Например, давайте найдем напряжение устройства, которое потребляет 120 Вт мощности при токе 10 ампер.

    напряжение = ватты ÷ амперы
    напряжение = 120 Вт ÷ 10 A
    напряжение = 12 В

    Преобразование ампер в вольты с помощью сопротивления

    Также возможно преобразовать амперы в вольты, если известно сопротивление, благодаря формуле закона Ома.Используя закон Ома, мы можем утверждать, что напряжение равно электрическому току, умноженному на сопротивление.

    Напряжение (В) = Ток (А) × сопротивление (Ом)

    Например, давайте найдем напряжение в цепи с током 1,2 А и сопротивлением 20 Ом.

    напряжение = амперы × ом
    напряжение = 1,2 A ÷ 20 Ом
    напряжение = 24 В

    Измерения эквивалентных ампер и вольт

    Эквивалентные значения ампер и вольт для различных значений мощности
    Текущий Напряжение Мощность
    1 А 5 Вольт 5 Вт
    1 А 10 Вольт 10 Вт
    1 А 15 Вольт 15 Вт
    1 А 20 Вольт 20 Вт
    1 А 25 Вольт 25 Вт
    1 А 30 Вольт 30 Вт
    1 А 35 Вольт 35 Вт
    1 А 40 Вольт 40 Вт
    1 А 45 Вольт 45 Вт
    1 А 50 Вольт 50 Вт
    1 А 55 Вольт 55 Вт
    1 А 60 Вольт 60 Вт
    1 А 65 Вольт 65 Вт
    1 А 70 Вольт 70 Вт
    1 А 75 Вольт 75 Вт
    1 А 80 Вольт 80 Вт
    1 А 85 Вольт 85 Вт
    1 А 90 Вольт 90 Вт
    1 А 95 Вольт 95 Вт
    1 А100 Вольт100 Вт
    2 А 2.5 Вольт 5 Вт
    2 А 5 Вольт 10 Вт
    2 А 7,5 Вольт 15 Вт
    2 А 10 Вольт 20 Вт
    2 А 12,5 В 25 Вт
    2 А 15 Вольт 30 Вт
    2 А 17,5 В 35 Вт
    2 А 20 Вольт 40 Вт
    2 А 22.5 Вольт 45 Вт
    2 А 25 Вольт 50 Вт
    2 А 27,5 В 55 Вт
    2 А 30 Вольт 60 Вт
    2 А 32,5 В 65 Вт
    2 А 35 Вольт 70 Вт
    2 А 37,5 В 75 Вт
    2 А 40 Вольт 80 Вт
    2 А 42.5 Вольт 85 Вт
    2 А 45 Вольт 90 Вт
    2 А 47,5 В 95 Вт
    2 А 50 Вольт100 Вт
    3 А 1,667 Вольт 5 Вт
    3 А 3,333 Вольт 10 Вт
    3 А 5 Вольт 15 Вт
    3 А 6.667 Вольт 20 Вт
    3 А 8,333 Вольт 25 Вт
    3 А 10 Вольт 30 Вт
    3 А 11,667 Вольт 35 Вт
    3 А 13,333 Вольт 40 Вт
    3 А 15 Вольт 45 Вт
    3 А 16.667 Вольт 50 Вт
    3 А 18,333 Вольт 55 Вт
    3 А 20 Вольт 60 Вт
    3 А 21,667 Вольт 65 Вт
    3 А 23,333 Вольт 70 Вт
    3 А 25 Вольт 75 Вт
    3 А 26.667 Вольт 80 Вт
    3 А 28,333 Вольт 85 Вт
    3 А 30 Вольт 90 Вт
    3 А 31,667 Вольт 95 Вт
    3 А 33,333 Вольт100 Вт
    4 А 1,25 Вольт 5 Вт
    4 А 2.5 Вольт 10 Вт
    4 А 3,75 Вольт 15 Вт
    4 А 5 Вольт 20 Вт
    4 А 6,25 Вольт 25 Вт
    4 А 7,5 Вольт 30 Вт
    4 А 8,75 Вольт 35 Вт
    4 А 10 Вольт 40 Вт
    4 А 11.25 Вольт 45 Вт
    4 А 12,5 В 50 Вт
    4 А 13,75 Вольт 55 Вт
    4 А 15 Вольт 60 Вт
    4 А 16,25 Вольт 65 Вт
    4 А 17,5 В 70 Вт
    4 А 18,75 Вольт 75 Вт
    4 А 20 Вольт 80 Вт
    4 А 21.25 Вольт 85 Вт
    4 А 22,5 В 90 Вт
    4 А 23,75 Вольт 95 Вт
    4 А 25 Вольт100 Вт
    .

    Перевести амперы в вольт / омы — Перевод единиц измерения

    ›› Перевести амперы в вольт / ом

    Пожалуйста, включите Javascript использовать конвертер величин

    ›› Дополнительная информация в конвертере величин

    Сколько ампер в 1 вольт / ом? Ответ: 1.
    Мы предполагаем, что вы конвертируете ампер в вольт / ом .
    Вы можете просмотреть более подробную информацию о каждой единице измерения:
    ампер или Вольт / Ом
    Базовой единицей СИ для электрического тока является ампер.
    1 ампер равен 1 ампера или 1 вольт / ом.
    Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать ампер в вольт / ом.
    Введите ваши собственные числа в форму для преобразования единиц!


    ›› Таблица быстрой конвертации ампер в вольт / ом

    1 ампер в вольт / ом = 1 вольт / ом

    5 ампер на вольт / ом = 5 вольт / ом

    10 ампер на вольт / ом = 10 вольт / ом

    20 ампер на вольт / ом = 20 вольт / ом

    30 ампер на вольт / ом = 30 вольт / ом

    40 ампер на вольт / ом = 40 вольт / ом

    50 ампер на вольт / ом = 50 вольт / ом

    75 ампер на вольт / ом = 75 вольт / ом

    100 ампер на вольт / ом = 100 вольт / ом

    ›› Хотите другие единицы?

    Вы можете выполнить обратное преобразование единиц измерения из вольт / ом в ампер, или введите любые две единицы ниже:

    ›› Преобразователи общего электрического тока

    ампер на тераампер
    ампер на биот
    ампер на сименс вольт
    ампер на микроампер
    ампер на ток Вебера / Генри
    ампер на франклин / секунду
    ампер на наноампер
    ампер на гектампер
    от
    ампер до электромагнитного блока

    ›› Определение: Amp

    В физике ампер (символ: A, часто неофициально сокращенно — ампер) является базовой единицей СИ, используемой для измерения электрических токов.Нынешнее определение, принятое 9-й сессией ГКПМ в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещенных на расстоянии одного метра в вакууме, будет производить между этими проводниками действует сила, равная 2 10 -7 ньютон на метр длины ».


    ›› Метрические преобразования и др.

    ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения.Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    .

    Вольт в милливольты Преобразование (В в мВ)

    Введите ниже напряжение в вольтах, чтобы преобразовать значение в милливольты.

    Как преобразовать вольты в милливольты

    Чтобы преобразовать измерение вольт в милливольт, умножьте напряжение на коэффициент преобразования. Один вольт равен 1000 милливольт, поэтому используйте эту простую формулу для преобразования:

    милливольт = вольт × 1000

    Напряжение в милливольтах равно вольтам, умноженным на 1000.

    Например, вот как преобразовать 5 вольт в милливольт, используя формулу выше.

    5 В = (5 × 1000) = 5000 мВ

    Вольт и милливольт — это единицы измерения напряжения. Продолжайте читать, чтобы узнать больше о каждой единице измерения.

    Напряжение — это измерение электродвижущей силы и разности электрических потенциалов между двумя точками проводника. [1] Один вольт равен разности потенциалов, которая сдвинет один ампер тока на один ом сопротивления.

    Вольт — производная единица СИ для напряжения в метрической системе. Вольт можно обозначить как В ; например, 1 вольт можно записать как 1 В.

    Закон Ома гласит, что ток между двумя точками на проводнике пропорционален напряжению и обратно пропорционален сопротивлению.Используя закон Ома, можно выразить разность потенциалов в вольтах как выражение, используя ток и сопротивление.

    В В = I А × R Ом

    Разность потенциалов в вольтах равна величине тока в амперах, умноженной на сопротивление в омах.

    Один милливольт равен 1/1000 вольт, что представляет собой разность потенциалов, при которой один ампер тока переместится на один ом сопротивления.

    Милливольт — это величина, кратная вольт, которая является производной единицей измерения напряжения в системе СИ. В метрической системе «милли» является префиксом для 10 -3 . Милливольты можно обозначить как мВ ; например, 1 милливольт можно записать как 1 мВ.

    .

    Перевести ом в вольт / ампер — Перевод единиц измерения

    ›› Перевести ом в вольт на ампер

    Пожалуйста, включите Javascript использовать конвертер величин

    ›› Дополнительная информация в конвертере величин

    Сколько Ом в 1 вольт / амперах? Ответ: 1.
    Мы предполагаем, что вы конвертируете Ом в вольт / ампер .
    Вы можете просмотреть более подробную информацию о каждой единице измерения:
    Ом или вольт / ампер
    Производной единицей СИ для электрического сопротивления является ом.
    1 Ом равен 1 вольт / ампер.
    Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать между омами и вольтами / амперами.
    Введите ваши собственные числа в форму для преобразования единиц!


    ›› Таблица преобразования омов в вольт / ампер

    1 Ом в вольт / ампер = 1 вольт / ампер

    5 Ом на вольт / ампер = 5 вольт / ампер

    10 Ом в вольт / ампер = 10 вольт / ампер

    20 Ом на вольт / ампер = 20 вольт / ампер

    30 Ом на вольт / ампер = 30 вольт / ампер

    40 Ом на вольт / ампер = 40 вольт / ампер

    50 Ом на вольт / ампер = 50 вольт / ампер

    75 Ом на вольт / ампер = 75 вольт / ампер

    100 Ом в вольт / ампер = 100 вольт / ампер

    ›› Хотите другие единицы?

    Вы можете выполнить обратное преобразование единиц измерения из вольт / ампер в Ом, или введите любые две единицы ниже:

    ›› Преобразования общего электрического сопротивления

    Ом на пиком
    Ом на тером
    Ом на наном
    Ом на 1 Ом
    Ом на мегом
    Ом на микром
    Ом на статом
    Ом на миллиом
    Ом на килом
    Ом на


    Ом на

    ›› Определение: Ом

    Ом (символ: Ω) — это единица измерения электрического импеданса в системе СИ или, в случае постоянного тока, электрического сопротивления, названная в честь Георга Ома.Он определяется как сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт, приложенная к этим точкам, создает в проводнике ток в 1 ампер, причем проводник не является источником какой-либо электродвижущей силы.


    ›› Метрические преобразования и др.

    ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    .

    Перевести киловатты (кВт) в амперы (А): онлайн-калькулятор, формула

    Инструкция по использованию: Чтобы перевести киловатты (кВт) в амперы (А), введите мощность P в киловаттах (кВт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).

    Калькулятор кВт в А (1 фаза, постоянный ток)

    Формула для перевода кВт в А

    Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на напряжение U в вольтах (В).

    Калькулятор кВт в А (1 фаза, переменный ток)

    Формула для перевода кВт в А

    Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).

    Калькулятор кВт в А (3 фазы, переменный ток, линейное напряжение)

    Формула для перевода кВт в А

    Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.

    Калькулятор кВт в А (3 фазы, переменный ток, фазное напряжение)

    Формула для перевода кВт в А

    Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).

    Сколько ампер в розетке 220В ? — RozetkaOnline.COM

    Чтобы узнать сколько ампер в обычной домашней розетке 220В, в первую очередь вспомним, что в Амперах измеряется сила тока:

    Сила тока «I» – это физическая величина, которая равна отношению заряда «q», проходящего через проводник, ко времени (t), в течении которого он протекал.

    Главное, что нам в этом определении важно — это то, что сила тока возникает лишь когда электричество проходит через проводник, а пока к розетке ничего не подключено и электрическая цепь разорвана, движения электронов нет, соответственно и ампер в такой розетке тоже нет.

    В розетке, к которой не подключена нагрузка, ампер нет, сила тока равно нулю.

     

    Теперь рассмотрим случай, когда в розетку подключен какой-то электроприбор и мы можем посчитать величину силы тока.

     

    Если бы нашу электропроводку не защищала автоматика, установленная в электрощите, и максимальная подключаемая мощность оборудования (как и сила тока), ничем бы не контролировались, то количество ампер в бытовой розетке 220В могло быть каким угодно. Сила тока росла бы до тех пор, пока бы от высокой температуры не разрушились механизм розетки или провода.

    При протекании высокого тока, проводники или места соединений, не рассчитанные на него, начинают нагреваться и разрушаются.  В качестве примера можно взять спираль обычной лампы накаливания, которая, при прохождении электрического тока, раскаляется, но т.к. вольфрам, из которого она сделана – тугоплавкий металл, он не разрушается, чего нельзя ждать от контактов механизма розетки.

    Чтобы рассчитать сколько ампер будет в розетке, при подключении того или иного прибора или оборудования, если под рукой нет амперметра, можно воспользоваться следующей формулой:

     

    Формула расчета силы тока в розетке

     

    I=P/(U*cos ф)  , где I — Сила тока (ампер), P — мощность подключенного оборудования (Вт), U — напряжение в сети (Вольт), cos ф — коэффициент мощности (если этого показателя нет в характеристиках оборудования, принимать 0,95)

    Пример расчета:

    Давайте рассчитаем по этой формуле сколько ампер сила тока в обычной домашней розетке с напряжением (U) 220В при подключении к ней утюга мощностью 2000 Вт (2кВт), cos ф у утюга близок к 1.

    I=2000/(220*1)=9.1 Ампер

    Значит, при включении и нагреве утюга мощностью 2кВт, в сила тока в розетке будет около 9,1 Ампер.

    При одновременном включении нескольких устройств в одну розетку, ток в ней будет равен сумме токов этого оборудования.

    Какая максимальная величина силы тока для розеток

    Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10  или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало.

    Старые, советские розетки, которые еще встречаются в наших квартирах, вообще рассчитаны всего на 6 Ампер.

    Максимум, что вы сможете встретить в стандартной типовой квартире, это силовую розетку для электроплиты или варочной панели, которая способна выдерживать силу тока до 32 Ампер.

    Это гарантированные производителем показатели силы тока, который выдержит розетка и не разрушится. Эти характеристики обязательно указаны или на корпусе розетки или на её механизме.

    При выборе электроустановочных изделий имейте ввиду, что, например, розетка на 16 Ампер выдержит около 3,5 киловатт мощности, а на 10 Ампер уже всего 2,2 Киловатт.
    Ниже представлена таблица, максимальной мощности подключаемого оборудования для розеток, в зависимости от количества ампер, на которые они рассчитаны.

    ТАБЛИЦА МАКСИМАЛЬНОЙ МОЩНОСТИ ОБОРУДОВАНИЯ ДЛЯ РОЗЕТОК, РАССЧИТАННЫХ НА ТОК 6, 10, 16, 32 Ампер

    Чаще всего, всё бытовое электрооборудование, которое включается в стандартные розетки 220В, не превышает по мощности 3,5кВт, более мощные приборы имеют уже иные разъемы для подключения или поставляются без электрической вилки, в расчете на подключение к клеммам или к электрическим вилкам для силовых розеток.

    Я советую всегда выбирать розетки рассчитанные на силу тока 16 Ампер или больше – они надежнее. Ведь чаще всего электропроводку в квартирах прокладывают медным кабелем с сечением жил 2,5 мм.кв. и ставят автомат на розетки на 16 Ампер. Поэтому, если вы выберете розетку, рассчитанную на 10 Ампер и подключите к ней большую нагрузку, то защитная автоматика не сработает, и розетка начнет греться, плавится, это может стать причиной пожара.

    Если же у вас остались вопросы о характеристиках розеток или их выборе, обязательно пишите, постараюсь помочь. Кроме того, приветствуется любая критика, дополнения, мнения — пишите.

    Калькулятор преобразования электрического тока

    А в Вольт

    Преобразуйте амперы в вольты, указав ток в амперах или миллиамперах и электрическую мощность в ваттах или сопротивление цепи.

    Преобразование ампер и ватт в вольты

    Преобразование ампер и омов в вольты



    Перевести вольт в амперы

    Как преобразовать амперы в вольты

    Напряжение — это разность потенциалов в электрической цепи, измеряемая в вольтах.Было бы проще думать об этом как о величине силы или давления, проталкивающей электроны через проводник. Чтобы преобразовать амперы в вольты, мы можем использовать простую формулу, определенную законом Ватта.

    По закону Ватта напряжение равно мощности, деленной на ток.

    Напряжение (В) = Мощность (Вт) ÷ Ток (А)

    Например, давайте найдем напряжение устройства, которое потребляет 120 Вт мощности при токе 10 ампер.

    напряжение = ватты ÷ амперы
    напряжение = 120 Вт ÷ 10 A
    напряжение = 12 В

    Преобразование ампер в вольты с помощью сопротивления

    Также возможно преобразовать амперы в вольты, если известно сопротивление, благодаря формуле закона Ома.Используя закон Ома, мы можем утверждать, что напряжение равно электрическому току, умноженному на сопротивление.

    Напряжение (В) = Ток (А) × сопротивление (Ом)

    Например, давайте найдем напряжение в цепи с током 1,2 А и сопротивлением 20 Ом.

    напряжение = амперы × Ом
    напряжение = 1,2 A ÷ 20 Ом
    напряжение = 24 В

    Измерения эквивалентных ампер и вольт

    Эквивалентные значения ампер и вольт для различных номинальных мощностей
    Текущий Напряжение Мощность
    1 А 5 Вольт 5 Вт
    1 Ампер 10 Вольт 10 Вт
    1 Ампер 15 Вольт 15 Вт
    1 Ампер 20 Вольт 20 Вт
    1 Ампер 25 Вольт 25 Вт
    1 Ампер 30 Вольт 30 Вт
    1 Ампер 35 Вольт 35 Вт
    1 Ампер 40 Вольт 40 Вт
    1 Ампер 45 Вольт 45 Вт
    1 Ампер 50 Вольт 50 Вт
    1 Ампер 55 Вольт 55 Вт
    1 Ампер 60 Вольт 60 Вт
    1 Ампер 65 Вольт 65 Вт
    1 Ампер 70 Вольт 70 Вт
    1 Ампер 75 Вольт 75 Вт
    1 Ампер 80 Вольт 80 Вт
    1 Ампер 85 Вольт 85 Вт
    1 Ампер 90 Вольт 90 Вт
    1 Ампер 95 Вольт 95 Вт
    1 Ампер 100 Вольт 100 Вт
    2 А 2.5 Вольт 5 Вт
    2 А 5 Вольт 10 Вт
    2 А 7,5 Вольт 15 Вт
    2 А 10 Вольт 20 Вт
    2 А 12,5 В 25 Вт
    2 А 15 Вольт 30 Вт
    2 А 17,5 В 35 Вт
    2 А 20 Вольт 40 Вт
    2 А 22.5 Вольт 45 Вт
    2 А 25 Вольт 50 Вт
    2 А 27,5 В 55 Вт
    2 А 30 Вольт 60 Вт
    2 А 32,5 В 65 Вт
    2 А 35 Вольт 70 Вт
    2 А 37,5 В 75 Вт
    2 А 40 Вольт 80 Вт
    2 А 42.5 Вольт 85 Вт
    2 А 45 Вольт 90 Вт
    2 А 47,5 В 95 Вт
    2 А 50 Вольт 100 Вт
    3 А 1,667 Вольт 5 Вт
    3 А 3,333 Вольт 10 Вт
    3 А 5 Вольт 15 Вт
    3 А 6.667 Вольт 20 Вт
    3 А 8,333 Вольт 25 Вт
    3 А 10 Вольт 30 Вт
    3 А 11,667 Вольт 35 Вт
    3 А 13,333 Вольт 40 Вт
    3 А 15 Вольт 45 Вт
    3 А 16.667 Вольт 50 Вт
    3 А 18,333 Вольт 55 Вт
    3 А 20 Вольт 60 Вт
    3 А 21,667 Вольт 65 Вт
    3 А 23,333 Вольт 70 Вт
    3 А 25 Вольт 75 Вт
    3 А 26.667 Вольт 80 Вт
    3 А 28,333 Вольт 85 Вт
    3 А 30 Вольт 90 Вт
    3 А 31,667 Вольт 95 Вт
    3 А 33,333 Вольт 100 Вт
    4 А 1,25 Вольт 5 Вт
    4 А 2.5 Вольт 10 Вт
    4 А 3,75 Вольт 15 Вт
    4 А 5 Вольт 20 Вт
    4 А 6,25 Вольт 25 Вт
    4 А 7,5 Вольт 30 Вт
    4 А 8,75 Вольт 35 Вт
    4 А 10 Вольт 40 Вт
    4 А 11.25 Вольт 45 Вт
    4 А 12,5 В 50 Вт
    4 А 13,75 Вольт 55 Вт
    4 А 15 Вольт 60 Вт
    4 А 16,25 Вольт 65 Вт
    4 А 17,5 В 70 Вт
    4 А 18,75 Вольт 75 Вт
    4 А 20 Вольт 80 Вт
    4 А 21.25 Вольт 85 Вт
    4 А 22,5 В 90 Вт
    4 А 23,75 Вольт 95 Вт
    4 А 25 Вольт 100 Вт

    Преобразование ватт в амперы с помощью простого калькулятора (+ 120 В, диаграмма 220 В)

    Пример: кондиционер работает от 900 Вт. Сколько это ампер? Это 7,5 ампер.

    Чтобы преобразовать электрическую мощность в электрический ток (ватты в амперы), нам нужно использовать уравнение электрической мощности:

    P = I * V

    где:

    • P — электрическая мощность, измеряемая в ваттах (Вт)
    • I — электрический ток или сила тока, измеряемая в амперах (A).
    • В — электрический потенциал или напряжение, измеренное в вольтах (В). Стандартное напряжение для большинства электрических устройств составляет 110-120 В, а для мощных электрических устройств с повышенным напряжением используется 220 В.

    Используя это уравнение, мы можем преобразовать ватты напрямую в амперы, если нам известно напряжение.

    Калькулятор ватт в ампер (от W до A)

    Здесь вы можете легко преобразовать ватты в амперы с помощью этого калькулятора:

    Чтобы продемонстрировать, как ватты можно преобразовать в усилители, мы решили несколько примеров того, сколько ампер составляет 500 Вт, 1000 Вт и 3000 Вт.В конце концов, вы также найдете таблицу ватт-ампер при электрическом потенциале 120 В.

    Вот небольшая полезная информация:

    Сколько ватт в усилителе?

    При 120 В, , 120 Вт составляет 1 ампер. Это означает, что 1 ампер = 120 Вт .

    Сколько ватт в 1 ампер при 220 вольт?

    При 220 В вы получаете 220 Вт на 1 ампер.

    Имея это в виду, давайте рассмотрим 3 примера:

    Пример 1. Сколько ампер в 500 Вт?

    Допустим, у нас есть вилка кондиционера мощностью 500 Вт на напряжение 120 В.

    Вот как мы можем рассчитать, сколько ампер в 500 Вт:

    I = P / V

    Если мы введем P = 500 Вт и V = 120 В, мы получим:

    I = 500 Вт / 120 В = 4,17 А

    Короче говоря, 500 Вт равняются 4,17 А.

    Что делать, если напряжение будет 220В?

    Давайте посчитаем, сколько ампер в 500 Вт при 220 В:

    I = 500 Вт / 220 В = 2,27 А

    При 220 В, 500 Вт потребляет 2.27 ампер.

    Пример 2: Сколько ампер в 1000 Вт?

    Если мы повторим упражнение и спросим себя, сколько ампер равно 1000 Вт, мы получим:

    I = 1000 Вт / 120 В = 8,33 А

    Мы видим, что устройство на 1000 Вт потребляет в два раза больше ампер, чем устройство на 500 Вт.

    Для 220 В мы получаем расчет ватт в ампер:

    I = 1000 Вт / 220 В = 4,55 А

    Короче говоря, 1000 Вт потребляет 8,33 А при 120 В и 4,55 А при 220 В.

    Пример 3: 3000 ватт равняется сколько ампер?

    Устройства мощностью 3000 Вт могут подключаться к сети 120 В или 220 В. В случаях с более высокой мощностью нет ничего необычного в использовании более высокого напряжения 220 В. Это сделано для уменьшения силы тока.

    Например, 3000 Вт равно:

    • 25 Ампер, если вы используете 120 В.
    • 13,64 А, при 220 В.

    Например, для 25 ампер вам уже понадобится автоматический выключатель. Но если воткнуть такое устройство в 220 В, ток будет всего 13.64 А (автоматические выключатели не нужны).

    Пример: Для более крупных многозонных мини-сплит-блоков обычно требуются автоматические выключатели. Вы можете проверить 2-зонную, 3-зонную, 4-зонную и 5-зонную мини-сплит-систему, чтобы узнать, на скольких усилителях они работают.

    Таблица ватт в амперы (при 120 В)

    Ватт: Ампер (при 120 В):
    от 100 Вт до ампер 0,83 А
    200 Вт в ампер 1,67 А
    300 Вт до ампер 2.50 ампер
    400 Ватт в ампер 3,33 А
    500 Ватт в ампер 4,17 А
    600 Вт в ампер 5,00 А
    700 Ватт в ампер 5,83 А
    800 Ватт в ампер 6,67 А
    900 Ватт в ампер 7,50 А
    от 1000 Ватт до Ампер 8,33 А
    1100 Вт в ампер 9.17 ампер
    1200 Ватт в ампер 10,00 А
    1300 Вт в ампер 10,83 А
    1400 Ватт в ампер 11,67 А
    1500 Вт в ампер 12,17 А
    1800 Ватт в ампер 15,00 А
    2000 Ватт в ампер 16,67 А
    2500 Ватт в ампер 20.83 Ампер
    3000 Ватт в ампер 25,00 А

    Таблица ватт в ампер (при 220 В)

    Ватт: Ампер (при 220 В):
    от 100 Вт до ампер при 220 вольт: 0,45 А
    200 Вт в амперы при 220 вольт: 0,91 А
    300 Вт в амперы при 220 вольт: 1,36 А
    от 400 Вт до ампер при 220 вольт: 1.82 Ампер
    500 Вт до ампер при 220 вольт: 2,27 А
    600 Вт в амперы при 220 вольт: 2,73 А
    700 Ватт в ампер при 220 вольт: 3,18 А
    800 Вт в амперы при 220 вольт: 3,64 А
    900 Вт в амперы при 220 вольт: 4,09 А
    от 1000 Вт до ампер при 220 вольт: 4.55 ампер
    1100 Вт в амперы при 220 вольт: 5,00 А
    1200 Вт в амперы при 220 вольт: 5,45 А
    1300 Вт до ампер при 220 вольт: 5,91 А
    1400 Вт в амперы при 220 вольт: 6,36 А
    от 1500 Вт до ампер при 220 вольт: 6,82 А
    1800 Вт в амперы при 220 вольт: 8.18 ампер
    2000 Вт в амперы при 220 вольт: 9,09 А
    2500 Вт до ампер при 220 вольт: 11,36 А
    3000 Вт в амперы при 220 вольт: 13,64 А

    Если у вас есть конкретный вопрос о том, как преобразовать ватты в амперы, вы можете использовать раздел комментариев ниже, и мы постараемся вам помочь.

    Что означают вольт, ампер, ом и ватт?

    Стандартные единицы измерения установлены официальной организацией, которая занимается стандартизацией международных весов и измерений, гарантируя, что во всем мире используются одни и те же стандарты веса и измерения.Французская организация называется Bureau International des Poids et Mesures или BIPM, что в переводе на английский означает Международное бюро мер и весов. Определения на этой странице взяты из официальных определений, которые можно найти в Международной системе единиц BIPM, или SI. Ссылки и ссылки включены для каждого определенного термина, который относится к информации, предоставленной BIPM.

    Пожалуйста, свяжитесь с администратором веб-сайта, если вы считаете, что информация, которую вы видите на этой странице, неточна, чтобы мы своевременно устраняли любые проблемы.Спасибо.

    Что такое вольт?

    «Вольт» — единица электрического потенциала, также известная как электродвижущая сила, и представляет собой «разность потенциалов между двумя точками проводящего провода, по которому проходит постоянный ток в 1 ампер, когда мощность, рассеиваемая между этими точками, равна 1. ватт.» [1] Другими словами, потенциал в один вольт появляется на сопротивлении в один Ом, когда через это сопротивление протекает ток в один ампер. Вольты могут быть выражены в основных единицах СИ следующим образом: 1 В = 1 кг умножить на м 2 умножить на -3 умножить на -1 (килограмм-метр в квадрате на секунду в кубе на ампер), или…

    Что такое напряжение?

    «Напряжение» (В) — это потенциал движения энергии, аналогично давлению воды. Характеристики напряжения подобны характеристикам воды, протекающей по трубам. Это известно как «аналогия с потоком воды», которую иногда используют для объяснения электрических цепей, сравнивая их с замкнутой системой заполненных водой труб или «водяным контуром», который нагнетается насосом. На изображении ниже показано, как работают напряжение и электрический ток…

    Ток (I) — это скорость потока, измеряемая в амперах (A). Ом (R) — это мера сопротивления, аналогичная размеру водопровода. Ток пропорционален диаметру трубы или количеству воды, протекающей при этом давлении.

    Напряжение — это выражение доступной энергии на единицу заряда, которая управляет электрическим током по замкнутой цепи в электрической цепи постоянного тока (DC). Увеличение сопротивления, сравнимое с уменьшением размера трубы в водяном контуре, будет пропорционально уменьшать ток или поток воды в водяном контуре, который движется через контур под действием напряжения, которое сравнимо с гидравлическим давлением в водяном контуре. .

    Соотношение между напряжением и током определяется (в омических устройствах, например, резисторах) законом Ома. Закон Ома аналогичен уравнению Хагена – Пуазейля, поскольку оба являются линейными моделями, связывающими поток и потенциал в своих соответствующих системах. Электрический ток (I) — это скорость потока, измеряемая в амперах (A). Ом (R) — это мера сопротивления, сравнимая с размером водопровода.

    Что такое усилок?

    «Ампер», сокращенно от «ампер», представляет собой единицу электрического тока, которую СИ определяет в терминах других основных единиц путем измерения электромагнитной силы между электрическими проводниками, несущими электрический ток.Ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с пренебрежимо малым круглым поперечным сечением и помещать на расстоянии одного метра в вакууме, создавал бы между этими проводниками силу, равную 2 × 10 −7 ньютонов на метр длины. [2]

    Что такое сила тока?

    «Сила тока» — сила электрического тока, выраженная в амперах.

    Что такое ом?

    Ом — единица электрической цепи, которая определяется как электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов в один вольт, приложенная к этим точкам, вызывает в проводнике ток в один ампер, проводник не являясь местом действия какой-либо электродвижущей силы. [3] Ом выражается как …

    Что такое ватт?

    Ватт — это мера мощности. Один ватт (Вт) — это скорость, с которой выполняется работа, когда один ампер (А) тока проходит через разность электрических потенциалов в один вольт (В). Ватт можно выразить как …

    Как все эти термины относятся к солнечной энергии?

    Важно знать термины и формулы на этой странице, потому что они помогают при расчете количества энергии и размера солнечной энергосистемы, вне зависимости от того, является ли она автономной или подключенной к сети.

    Есть еще формула мощности. В этой формуле P — мощность, измеренная в ваттах, I — ток, измеренный в амперах, и В, — разность потенциалов (или падение напряжения) на компоненте, измеренная в вольтах. это также отображается как W = V * A или ватты равны вольтам, умноженным на амперы.

    Давайте переупорядочим эту формулу для примера:

    • Вт = В * А
    • V ​​= W / A
    • A = W / V

    Этот пример покажет, почему более высокое напряжение постоянного тока лучше всего в больших солнечных системах.

    Допустим, у вас есть 1000 Вт нагрузки для работы. Это равно:

    • 83,3 А при 12 В
    • 41,6 А при 24 В
    • 20,8 А при 48 В
    • 8,3 А при 120 В
    • 4,1 ампера при 240 вольт

    Знание того, какой ток течет к вашей нагрузке, очень важно при выборе правильного провода. Мы принимаем во внимание расстояние, чтобы рассчитать потерю напряжения. В идеале мы не хотим превышать 3% потери напряжения.Другая половина этого расчета — текущая. Вам понадобится провод большего диаметра, чтобы пропустить больше тока. Если у вас есть выбор, лучше всего подойдет более высокое напряжение.

    Эти формулы также полезны при вычислении мощности переменного тока (переменного тока) для определения размера инвертора, который преобразует электричество постоянного тока от солнечной батареи в переменный ток, который затем может использоваться для питания осветительных приборов и приборов в домах и на предприятиях. Приборы имеют лицевую панель, на которой указаны все электрические данные. Предположим, у вас есть микроволновая печь.Производитель указывает требования к току в электрических характеристиках лицевой панели, которая обычно прикрепляется к задней части духовки. Допустим, на лицевой панели указано 8,3 ампер. Чтобы рассчитать ватт, умножьте 8,3 ампера на домашнее напряжение 120 вольт. Это равно 996 Вт.

    Теперь давайте посчитаем, сколько энергии микроволновая печь будет использовать за один день. Если вы используете микроволновую печь 2 часа в день, умножьте количество часов в день на ватты, чтобы получить ватт-часы в день. Итак, у вас есть 996 ватт, умноженные на 2 часа, что равняется 1992 ватт-часам в день.

    При определении размеров солнечной энергосистемы эта формула необходима для определения общей мощности, которую вы используете в день.

    Ватт = Ампер x Вольт

    Вольт = Ватт / Ампер

    Ампер = Ватт / Вольт

    Сноски

    Простой калькулятор (+ Таблица преобразований)

    Амперы (А), вольты (В) и ватты (Вт) — это 3 основные электрические единицы, соединяющие электрический ток, напряжение и мощность. Каждое электрическое устройство — от кондиционеров до стиральных машин и генераторов — включает их в свои спецификации.

    Один из самых распространенных вопросов здесь: Как преобразовать амперы в ватты?

    Чтобы преобразовать амперы в ватты, нам нужно использовать следующую формулу для электрической мощности:

    P (Вт) = I (A) * V (В)

    В простом уравнении это соотношение:

    Ватт = Ампер * Вольт

    Для расчета ватт нам нужны как сила тока, так и напряжение (обычно 120 В или 220 В).

    LearnMetrics подготовил удобный калькулятор усилителей и ватт, который вы можете свободно использовать.Под калькулятором от A до W вы также найдете таблицу с расчетными ваттами от усилителя для систем с напряжением 120 и 220 В. Чтобы проиллюстрировать, как работает расчет ампер и ватт, мы также решили 3 примера (прокрутите вниз).

    Калькулятор ампер в ватт

    Сколько ампер в ватте?

    Для облегчения вычислений очень полезно знать, сколько ампер в ватте. Начнем с исходной формулы для электрической мощности:

    P (Вт) = I (A) * V (В)

    Чтобы вычислить, сколько ампер в ватте, нам нужно указать напряжение.Возьмем базовые 120 В. Вот как мы рассчитываем количество ватт в одном усилителе:

    P (Вт) = 1 А * 120 В = 120 Вт

    Как видим, при 120 В 1 ампер равен 120 Вт.

    Если мы используем напряжение 220 В, мы получим уравнение между амперами и ваттами:

    P (Вт) = 1 A * 120 В = 220 Вт

    При 220 В 1 ампер равен 120 Вт.

    Вот полная таблица преобразования ампер в ватт с решенными примерами ниже:

    Ампер в Ватт Таблица преобразования

    Ампер Вт (при 120 В): Вт (при 220 В):
    Сколько ватт в 1 ампер? 120 Вт 220 Вт
    Сколько ватт в 2 амперах? 240 Вт 440 Вт
    Сколько ватт в 3 амперах? 360 Вт 660 Вт
    Сколько ватт в 4 амперах? 480 Вт 880 Вт
    Сколько ватт в 5 ампер? 600 Вт 1100 Вт
    Сколько ватт в 6 амперах? 720 Вт 1320 Вт
    Сколько ватт в 7 ампер? 840 Вт 1540 Вт
    Сколько ватт в 8 амперах? 960 Вт 1760 Вт
    Сколько ватт в 9 амперах? 1080 Вт 1980 Вт
    Сколько ватт в 10 ампер? 1200 Вт 2200 Вт
    Сколько ватт в 11 амперах? 1320 Вт 2420 Вт
    Сколько ватт в 12 ампер? 1440 Вт 2640 Вт
    Сколько ватт в 13 ампер? 1560 Вт 2860 Вт
    Сколько ватт в 14 амперах? 1680 Вт 3080 Вт
    Сколько ватт в 15 ампер? 1800 Вт 3300 Вт
    Сколько ватт в 16 ампер? 1920 Вт 3520 Вт
    Сколько ватт в 17 ампер? 2040 Вт 3740 Вт
    Сколько ватт в 18 ампер? 2160 Вт 3960 Вт
    Сколько ватт в 19 амперах? 2280 Вт 4180 Вт
    Сколько ватт в 20 ампер? 2400 Вт 4400 Вт
    Сколько ватт в 25 ампер? 3000 Вт 5500 Вт
    Сколько ватт в 30 ампер? 3600 Вт 6600 Вт
    Сколько ватт в 40 ампер? 4800 Вт 8800 Вт
    Сколько ватт в 50 ампер? 6000 Вт 11000 Вт
    Сколько ватт в 60 ампер? 7200 Вт 13200 Вт
    Сколько ватт в 70 амперах? 8400 Вт 15400 Вт
    Сколько ватт в 80 ампер? 9600 Вт 17600 Вт
    Сколько ватт в 90 ампер? 10800 Вт 19800 Вт
    Сколько ватт в 100 ампер? 12000 Вт 22000 Вт
    Сколько ватт в 150 амперах? 18000 Вт 33000 Вт
    Сколько ватт в 200 ампер? 24000 Вт 44000 Вт

    Давайте решим несколько реальных примеров:

    3 ампера в ватт (пример 1)

    Допустим, у нас есть портативный кондиционер на 5000 БТЕ.Это считается очень маленьким кондиционером; он питается всего от 3 ампер.

    Сколько ватт потребляет кондиционер на 3 А? Он подключен к напряжению 120 В, и мы можем использовать калькулятор от верхнего предела ампер к ваттам, чтобы вычислить это, например:

    Короче 3 ампера — это 360 ватт.

    15 ампер в ватт (пример 2)

    Более мощные агрегаты, такие как стиральные машины и мини-сплит-кондиционеры, могут питаться от 15 ампер. Сколько это ватт?

    Вот расчет 15 ампер на ватт при 120 В:

    15 ампер равны 1800 Вт при 120.

    Если бы напряжение было 220 В, 15 ампер равнялись бы 3300 Вт.

    100 Ампер в Вт (Пример 3)

    Более мощные электрические блоки могут потреблять до 100 ампер. Для этих устройств вам уже нужны автоматические выключатели. 5-ти зонные мини-сплит-блоки — хороший пример электрических устройств на 100 ампер.

    Они подключены к 220 В, потому что для 120 В потребуется еще больший ток. Вот преобразование 100 ампер в ватты:

    Это массивное устройство мощностью 22 000 Вт при 100 А.

    Если у вас есть конкретный пример, вы можете опубликовать его в комментариях ниже, и мы вместе решим его.

    Упрощенное преобразование ватт в амперы — простой способ преобразования ампер в ватты

    Как преобразовать ватты в Амперы или амперы в ватты или из вольт в ватты

    Основы

    Вы не можете преобразовать ватты в амперы, поскольку ватты — это мощность, а амперы — кулоны в секунду (например, преобразование галлонов в мили).ОДНАКО, если у вас есть хотя бы два из следующих трех: амперы, вольты или ватты , то недостающий может быть вычислен. Поскольку ватты — амперы, умноженные на вольты, между ними существует простая связь.

    Однако в некоторых инженерных дисциплинирует более или менее фиксированное напряжение, например, в домашней электропроводке, автомобильная проводка, или телефонная проводка. В этих ограниченных областях техники часто есть диаграммы, которые соотносят амперы с ваттами, и это вызывает некоторую путаницу.Эти диаграммы следует назвать «преобразование ампер в ватты при фиксированном значении. напряжение 110 вольт »или« преобразование ватт в амперы при 13,8 вольт »и т. д.

    Некоторые лакомые кусочки информации, которые вам может понадобиться напомнить:
    Чтобы преобразовать мА в А (миллиамперы в амперы) 1000 мА = 1 А
    для преобразования мкА в А (из микроампер в амперы) 1000 000 мкА = 1A
    Для преобразователя мкА в мА (микроампер в миллиампер) 1000 мкА = 1 мА
    Для преобразования мВт в Вт (милливатт в ватт) 1000 мВт = 1 Вт
    Для преобразования мкВт в Вт (микроватты в ватты) 1000000 мкВт = 1Вт

    Следующие уравнения могут использоваться для преобразования между ампер, вольт и ватт.
    Преобразование Ватты в амперы

    Преобразование ватт в амперы при фиксированной напряжение определяется уравнением Ампер = Ватт / Вольт

    Например, 12 Вт / 12 В = 1 ампер
    Преобразование ампер в ватты

    Преобразование Амперы в ватты при фиксированном напряжении регулируются уравнением Ватт = Ампер x Вольт

    Например, 1 ампер * 110 вольт = 110 ватт

    Преобразование ватт в вольты

    Преобразование ватт в вольты при фиксированной силе тока регулируется. по уравнению Вольт = Ватт / Ампер

    Например, 100 Вт / 10 Ампер = 10 вольт

    Преобразование вольт в Ватт

    Преобразование вольт в ватты при фиксированной силе тока регулируется уравнением Ватт = Ампер x Вольт

    Например, 1.5 ампер * 12 вольт = 18 Вт

    Преобразование Из вольт в амперы при фиксированной мощности

    Преобразование из вольт в Ампер, если известна мощность, определяется уравнением Ампер = Ватт / Вольт

    Например, 120 Вт / 110 В = 1,09 А

    Преобразование ампер в вольт при фиксированной мощность

    Преобразование ампер в вольты, если мощность знать регулируется уравнением Вольт = Ватт / Ампер

    Например, 48 Вт / 12 А = 4 В

    Преобразование вольт в амперы при фиксированном сопротивлении

    Если вы знаете вольты и нагрузку сопротивления, амперы найдены по закону Ома: Ампер = Вольт / Сопротивление

    Преобразование ампер в Вольт при фиксированном сопротивлении

    Если вы знаете токи и Сопротивление Закон Ома принимает вид Вольт = Ампер * Сопротивление

    Пояснение

    А — это сколько электронов проходит через определенную точку за второй.18 электронов в секунду. Вольт — это мера силы, которую каждый электрон находится ниже, что мы называем «потенциалом». Мощность (ватты) — это вольты, умноженные на амперы. Немного электроны под большим потенциалом могут поставлять много энергии или много электроны с низким потенциалом могут обеспечивать такую ​​же мощность. Подумайте о воде в шланг. Галлон в минуту (думаю, амперы) просто вытекает, если он ниже низкого давление (подумайте о низком напряжении). Но если ограничить конец шланга, позволяя при повышении давления вода может иметь больше мощности (например, ватт), даже если это все еще всего один галлон в минуту.На самом деле власть может расти до огромных размеров, когда давление нарастает до такой степени, что водяной нож может разрезать лист стекла. Точно так же, как увеличивается напряжение, небольшой ток может превращаются в много ватт.

    Вот почему повышение напряжения не обязательно увеличить доступную мощность. Мощность — это амперы, умноженные на вольт, поэтому, если вы удвоите вольт, вы уменьшите усилитель вдвое, если что-то в вашей цепи не создает мощность, такая как батарея, солнечная панель или атомная электростанция.

    Что такое амперы, ватты, вольт и омы?

    В электрической системе увеличение тока или напряжения приведет к увеличению мощности. Допустим, у вас есть система с лампочкой на 6 вольт, подключенной к батарее на 6 вольт. Выходная мощность лампочки составляет 100 Вт. Используя уравнение I = P / V , мы можем вычислить, какой ток в амперах потребуется, чтобы получить 100 Вт от этой 6-вольтовой лампы.

    Вы знаете, что P = 100 Вт, а V = 6 В. Итак, вы можете изменить уравнение, чтобы найти I и подставить числа.

    I = 100 Вт / 6 В = 16,67 А

    Что произойдет, если вы используете 12-вольтовую батарею и 12-вольтовую лампочку, чтобы получить мощность 100 Вт?

    I = 100 Вт / 12 В = 8,33 ампера

    Итак, последняя система вырабатывает ту же мощность, но с половиной тока. Преимущество заключается в использовании меньшего тока для получения того же количества энергии. Сопротивление в электрических проводах потребляет мощность, а потребляемая мощность увеличивается по мере увеличения тока, проходящего по проводам.Вы можете увидеть, как это происходит, немного изменив два уравнения. Что вам нужно, так это уравнение мощности с точки зрения сопротивления и тока. Давайте изменим первое уравнение:

    I = V / R можно переформулировать как V = I * R

    Теперь вы можете подставить уравнение для V в другое уравнение:

    P = V * I, подставив V, мы получим P = I * R * I, или P = I 2 * R

    Это уравнение говорит вам о том, что мощность, потребляемая проводами, увеличивается, если сопротивление проводов увеличивается (например, если провода становятся меньше или изготовлены из менее проводящего материала).Но он резко возрастает, если ток, протекающий по проводам, увеличивается. Таким образом, использование более высокого напряжения для уменьшения тока может сделать электрические системы более эффективными. КПД электродвигателей также повышается при более высоких напряжениях.

    Это повышение эффективности побудило автомобильную промышленность в 1990-х годах задуматься о переходе с 12-вольтовых электрических систем на 42-вольтовые системы. По мере того, как все больше автомобилей поставлялись с электрическими удобствами — видеодисплеями, обогревателями сидений, «умным» климат-контролем, им требовались толстые пучки проводов для обеспечения достаточного тока.Переключение на систему с более высоким напряжением обеспечит большую мощность при более тонкой проводке.

    Переключения не произошло, потому что автопроизводители смогли повысить эффективность с помощью цифровых технологий и более эффективных электрических насосов на 12 вольт. Но в некоторых новых моделях используются гибридные системы с отдельным 48-вольтовым генератором для питания расширенных функций, таких как отключение на холостом ходу, при одновременном повышении общей эффективности системы.

    Чтобы узнать больше об электричестве и связанных темах, воспользуйтесь ссылками на следующей странице.

    Вольт в ватт, из ватт в ампер, из вольт в ампер Калькулятор преобразования

    Наш онлайн-калькулятор / средство преобразования может преобразовывать ватты в амперы, из вольт в ватты и из вольт в амперы. Калькулятор работает, заполняя любое из двух из трех полей (вольт амперы ватты) для вычисления значения третьего поля. Этот инструмент может преобразовать любое значение, если вы вводите два других значения.


    Пример преобразования

    Пример 1: Чтобы преобразовать вольт в амперы для блока питания 24 В VA50, введите 24 В и 50 Вт.Щелкните Рассчитать.

    Пример 2: Чтобы преобразовать ватты в амперы для блока питания 12 В постоянного тока 500 мА, введите 12 В и 0,5 А. Щелкните Рассчитать.


    Часто задаваемые вопросы (FAQ)

    1. Как перевести из вольт в ватты?
      Формула для преобразования напряжения в ватты: ватт = ампер x вольт.
    2. Как перевести ватты в усилители?
      Формула для преобразования ватт в амперы при фиксированном напряжении: ампер = ватт / вольт.
    3. Как преобразовать вольты в амперы?
      Формула для преобразования вольт в амперы при фиксированной мощности: ампер = ватт / вольт.
    4. Как перевести ампер в ватт?
      Формула для преобразования ампер в ватты при фиксированном напряжении: ватты = амперы x вольт.

    Преобразование ватт в амперы (подробный пример)

    Вот один пример того, как этот калькулятор обычно используется установщиками систем безопасности в качестве калькулятора усилителя. Установщику необходимо рассчитать расстояние, на которое можно проложить кабель питания от видеорегистратора для видеонаблюдения до камеры видеонаблюдения, камеры видеонаблюдения HD и даже одной из новейших камер видеонаблюдения UHD 4K.Сначала им нужно рассчитать, сколько ампер выдает источник питания 24 В переменного тока. Обычно блоки питания 24 В переменного тока имеют номинальные значения ВА (амперы напряжения), а не амперы. Например, источник питания 24VAC50 — это 24 вольт, 50 вольт-ампер (ватты также известны как вольт-амперы). В приведенном выше калькуляторе установщик введет значение 24 в поле вольт и значение 50 в поле ватт.


    Определения электрических терминов

    Вот несколько полезных электрических терминов, относящихся к вычислению вольт в ватт, ватт в ампер и из вольт в амперы.

    • Вольт — единица измерения электрической силы или давления, которая заставляет электрический ток течь в цепи. Один вольт — это величина давления, необходимая для протекания тока в один ампер против одного ома сопротивления. Концепция аналогична напору воды.
    • Ватт — единица измерения прилагаемой электрической мощности в цепи. Ватты также известны как вольт-амперы и представляют собой электрическую единицу измерения, обычно используемую в цепях переменного тока.Ватты рассчитываются путем умножения силы тока (измеренного в амперах) на электрическое давление (измеренное в вольтах).
    • Ампер (Ампер) — единица измерения силы тока в электрической цепи. Один ампер — это величина тока, когда один вольт электрического давления прикладывается к одному ому сопротивления. Амперы используются для измерения расхода электроэнергии аналогично тому, как GPM (галлонов в минуту) используются для измерения объема протекающей воды.
    • Ом — прибор для измерения сопротивления потоку в электрическом токе.Электрические проводники (например, проволока) оказывают сопротивление потоку тока. Это похоже на то, как трубка или шланг оказывает сопротивление потоку воды. Один Ом — это величина сопротивления, которая ограничивает ток до одного ампера в цепи с одним вольт электрическим давлением.
    • Закон Ома — Закон Ома гласит, что когда электрический ток течет по проводнику (например, кабелю), сила тока (амперы) равна движущей его электродвижущей силе (вольт), деленной на сопротивление проводника.

    Онлайн-инструменты и калькуляторы

    Пожалуйста, посетите нашу страницу Калькуляторы, конвертеры и инструменты для дополнительных онлайн-приложений.


    Об этом инструменте

    Этот онлайн-калькулятор был создан Майком Халдасом для профессионалов камер видеонаблюдения.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *