L7812cv характеристики схема подключения в автомобиле
Добрый вечер, любители светодиодов. Хочу предложить вам ещё одну простую схему стабилизатора светодиодов, схема собрана на микросхеме L7812 навесным монтажом и отлично подходит для питания как светодиодных лент, так и отдельных светодиодов в автомобиле. Итак, скажу для незнающих для чего она служит… в бортовой сети автомобиля рабочее питание составляет от 13 до 15 Вольт, а бывает и больше, а вот светодиоды рассчитаны на 12 вольт.
Поэтому приходится ставить стабилизатор, который на выходе всегда держит 12 вольт, не зависимо сколько у нас в борт сети автомобиля. Конечно можно подключить и без стабилизатора, но в этом случаи светодиоды прослужат не долго из-за перепадов напряжения автомобиля.
И так, список необходимых компонентов:
- Микросхема L7812
- Конденсатор 330мкф16вольт
- Конденсатор 100мкф16 вольт
- Диод на 1 ампер (1N4001, например, или аналогичный диод Шотки)
- Провода
- Термоусадка 3мм
Вот микросхема крупным планом. Отрезаем ей ногу как на фотографии.
Затем немного добавляем припоя как на фотографии.
Теперь припаиваем к ножкам конденсаторы и диод как на фотографии. При пайке конденсаторов учитывайте полярность, у микросхемы минус посередине.
Теперь лудим провода и одеваем на плюсы термоусадку.
Припаиваем провода как на фотографии
И одеваем термоусадку. Сжать ее можно зажигалкой или феном. Сам я пользуюсь феном паяльной станции. Очень удобно.
Теперь смотрим на расположение проводов относительно микросхемы. Слева вход питания, справа выход к ленте/лампочке.
Подаем питание и хлопаем в ладошки.
На входе мой блок питания выдает 12,3 вольта. На выходе получается 11.10 вольт. При запущенном двигателе в бортовой сети напряжение 13-16 вольт, что обеспечивает 12 вольт на выходе.
Ни для кого не секрет, как собрать блок питания на стабилизаторах 7805, 7809, 7812 и тд. Но не все знают, что на этих же стабилизаторах можно собрать приличный источник тока. Схема источника тока и стала героем этой статьи.
Так выглядит стандартная схема стабилизатора напряжения на микросхемах серии 78xx. Эти микросхемы настолько популярны, что их выпускает каждая, уважающая себя контора. Обычно в разговоре или на схеме даже опускают первые буквы, характеризующие производителя, указывая просто 7815. Ибо нефиг захламлять схему и сразу ясно, что речь о стабилизаторе напряжения.
Для тех, кто мало знаком с подобными стабилизаторми небольшое видео по сборке «на коленках»:
Качество компонентов
В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.
Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.
Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.
Схема источника тока на 78xx
Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.
Выходной ток источника тока на L78
Небольшой неприятностью представляется ток покоя >
В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.
Точность тока и выходное напряжение
При этом нестабильность тока покоя составляет Δ I d = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.
Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.
Сопротивление нагрузки
В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение
V= I*R = 0.1 * 100 = 10 Вольт
Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.
А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.
Заключение
Конечно такой источник тока имеет свои ограничения, однако он может пригодиться для подавляющего числа задач, где не требуется особая точность. Простота схемы и доступность компонентов, позволяет на коленке собрать источник тока.
Стабилизатор – устройство, которое вне зависимости от колебаний входящих характеристик, на выходе всегда выдает стабильное номинальное значения напряжения. И он может понадобиться не только для использования в сетях на 220В, а и в 12В системах. К примеру – в автомобиле, или там, где есть необходимость использовать низковольтное оборудование (освещение во влажных помещениях и т.д.).
К примеру, подключение светодиодной подсветки в автомобиле без микросхемы стабилизатора напряжения 12В чревато быстрым выходом диодов из строя, так как генератор авто не может обеспечить стабильный вольтаж в бортовой сети. Однако не обязательно покупать готовое устройство – такую схему можно собрать и самостоятельно.
Разновидности 12В стабилизаторов
Существует несколько вариаций схем такого устройства для 12 Вольт, но самые распространенные – линейный и импульсный. Чем же они, по сути, отличаются?
- Линейный стабилизатор является по своим свойствам обычным делителем напряжения, который получает входящее напряжение на одно из плеч, а на другом изменяет сопротивление, чтобы в результате на выходе получалось заданное напряжение. Если дельта входа/выхода слишком велика, КПД такого прибора резко падает, так как значительная часть энергии рассеивается в виде тепла — это приводит к необходимости охлаждения.
- В импульсном варианте ток поступает в накопитель (конденсатор или же дроссель) короткими импульсами, сформированными ключом. Когда электронный ключ замыкается, накопленная энергия поступает на нагрузку, при этом значение напряжения остается стабильным. Сам процесс стабилизации происходит контролем длительности импульсов при помощи ШИМ. Такой вариант прибора имеет высокий КПД, однако наводит импульсные помехи на выходе, что не всегда приемлемо.
Также существуют автотрансформаторные и феррорезонансные аппараты, использующиеся преимущественно для переменного тока, но они относительно сложны.
Благодаря наличию множества электронных компонентов и радиодеталей в свободной продаже, любой, даже начинающий радиолюбитель, при необходимости может дома собрать для своих нужд стабилизатор напряжения на 12 Вольт – была бы схема.
Как сделать 12В стабилизатор
Стабилизатор на LM317
Самый простой способ получить в домашних условиях работающий стабилизатор на 12 Вольт – приобрести готовую микросхему, к примеру, LM317, и, добавив резистор, получить готовый выравниватель напряжения. Этот вариант отлично подойдет для запуска светодиодов в условиях постоянно скачущего напряжения.
К готовой микросхеме LM317, а именно к среднему контакту, подпаивается резистор на 120-130 Ом, левый контакт паяется к выходу на нагрузку сразу за сопротивлением, а на правый контакт подается напряжение с источника. Для лучшего понимания все изображено на картинке ниже.
Схема на микросхеме LD1084
Также весьма незатейлив стабилизатор напряжения на 12 Вольт на микросхеме LD1084. Благодаря плавной стабилизации, такое устройство поможет не только при использовании светодиодов, а и, например, для избавления от изменения яркости света в авто, которое всегда присутствует в силу особенностей работы бортовой электросистемы. Схема такого прибора приведена ниже.
Стабилизатор на диодах и плате L7812
Еще одним вариантом исполнения прибора в домашних условиях может служить простая схема на L7812 и диодах Шоттки. Кроме этих деталей понадобится пара конденсаторов, и провода для пайки. Итак, к регуляторной микросхеме подпаиваются диод и конденсаторы согласно схеме. Диод должен быть между + проводом входного питания, и левым контактом микросхемы. Правый контакт платки припаивается к + нагрузки. Средний – к минусам емкостей и минусу источника питания. Таким образом, получается простая и надежная схема стабилизации напряжения.
Самый простой стабилизатор — плата КРЕН
Самым, пожалуй, простым вариантом для изготовления прибора дома является микросхема КРЕН, точнее КР142ЕН8Б (таково ее полное название). Кроме самой платки, понадобится выпрямляющий диод 1n4007. Спаяв эти элементы согласно схеме, приведенной ниже, можно получить самый элементарный, однако очень надежный прибор.
Применив любую из этих схем стабилизации, можно быстро и без особых затрат собрать устройство, которое в силах обеспечить необходимые выходные характеристики в 12В электрических сетях.
Если же ваши познания в электронике не позволяют вам паять и мастерить, то лучшим вариантом будет приобретение заводского устройства, которое собрано в фабричных условиях, обладает подходящим корпусом, системой охлаждения, и собраны из хорошо подобранной и подогнанной друг к другу элементной базы.
Основные моменты, касающиеся изготовления стабилизатора на 12 Вольт, приведены в этом видео:
Периодически возникающая потребность запитать всевозможные устройства, имеющие как правило разные требования к величине питающего напряжения, побудило наконец создать универсальный блок питания на нагрузку до 1,5 А. В инете масса схем подобного рода устройств. Я взял за основу одну простую и подходящую для меня на основе стабилизатора LM317, решил несколько доработать ее и воплотить в жизнь. Дело в том, что в этой схеме регулировка выходного напряжения осуществляется переменным резистором 4,7 ком. Собрав схему на макетной плате, я понял, что такая регулировка уж очень неудобна, — очень сложно точно выставить нужное напряжение вращая движок резистора. Слишком большая чувствительность, и любое прикосновение к ручке вызывает значительное изменение напряжения на выходе. Я его заменил на дискретный галетный переключатель вот такого типа: В результате нужное напряжение выбирается положением этого переключателя, коммутирующего соответствующие постоянные резисторы. Получилась вот такая схема. Линейный регулируемый стабилизатор LM317 позволяет регулировать напряжения в диапазоне от 1,2 до 35 вольт. Мне нужен был следующий ряд — 1,5; 5; 9; 12; 15в. Это было выполнено путем подбора сопротивлений резисторов соответствующих положению переключателя на напряжения этого ряда. Правда один вывод переключателя я оставил не задействованным ( фактически разрыв в управляющей цепи микросхемы). Это я оставил сознательно (пусть будет), так как в этом положении на выходе появляется входное напряжение за минусом незначительного падения на микросхеме. У меня это — 33 вольта. Может когда пригодится. Теперь о питании. У меня применен тороидальный трансформатор ТТП-40 с действующим напряжением вторичной обмотки 25в. После входного фильтра (конденсатор С1) напряжение на входе микросхемы 35в. Это почти предел по входному напряжению данного стабилизатора, больше подавать на него не желательно. При работе микросхемы на нагрузках с низким напряжением на ней выделяется значительное тепло. Поэтому она помещена на ребристый радиатор с площадью поверхности около 300 см2. Но его нужно чем-то охлаждать в закрытом корпусе. Решил поставить вентилятор, не очень злобный, 60х60 мм. Но желательно, чтобы он работал, когда на то есть основания, то есть соответствующая температура радиатора, иначе зачем гонять зря воздух с пылью. Появилась схема управления кулером. Подстроечным резистором Р1 настраивается температура срабатывания реле на включение вентилятора. Я настроил примерно на 40 градусов по замеру пирометром Fluke. Но питание схемы – 12в. . Значит нужно где-то его брать. После диодной сборки выпрямителя и конденсатора фильтра основной схемы блока питания – 35в. Можно конечно его подать на микросхемный стабилизатор типа L7812 и получить на выходе вожделенные 12в, но в таком режиме стабилизатор будет успешно работать еще и нагревателем воздуха, просаживая на себе эту дельту. Что ж городить и под него ацкий радиатор с гектар? Нет конечно. Нужно делать еще одну обмотку на трансформаторе с выходом примерно 15в. А это вторая часть моего марлезонского балета. Трансформатор тороидальный и намотать на него очень не просто. Но начнем. Ибо глаза бояться, а руки чешутся. Для начала нужно определить, сколько витков мотать. Ведь количество витков на первичной обмотке мне не известно. Делаем следующее. Наматываем поверх обмоток 10-20-30 (кто на сколько сподобится) витков любого провода и замеряем напряжение на получившейся новой миниобмотке. Я намотал 10 витков и получил 1, 28в. Следовательно, чтобы получить 15в нужно 15 разделить на 1,28 и умножить на 10. Результат – 117 витков. Это не десять и не двадцать, козьи пляски на лугу гарантированы! Несмотря на предстоящий ужас делаем следующее приспособление, — челнок типа рыбацкого мотовильца. Его я сделал из того, что было под рукой – вырезал из блистерной упаковки и для жесткости примотал изолентой к получившемуся челноку небольшой гаечный ключ (если бы был ключ рожковый с двух сторон, то можно было бы использовать его в качестве челнока). При этом, когда вырезал ножницами по концам блистерного челнока пазы для укладки провода, я не стал отрезать средние части, а просто их загнул, чтобы было за что закрепить начало провода. Длина челнока по средним вырезам получилась 15 см, то есть 30 см – один виток на челноке. Замерил длину одного витка провода на самом трансформаторе. Пересчитал, сколько витков намотать на челнок, чтобы гарантированно хватило намотать на трансформатор 117 витков плюс запас процентов 5, который как известно, что-то там не трет и не делает и того хуже, прости Господи. Это не сложно. Намотал на челнок необходимую длину провода, Рис.4 ( сечение провода рассчитывается из предполагаемой нагрузки на обмотку и мощности трансформатора, я мотал диаметром 0,4 мм). И, собственно, закрепив изолентой начало обмотки, начал аккуратно мотать 117 витков. Вот что получилось. В процессе намотки я решил не доматывать 10 витков, чтобы получить напряжение где-то около 14в, учитывая, что входной фильтр поднимет его до 15-16в, что мне и нужно. Лишние вольты на входе – лишние калории тепла на микросхеме стабилизатора. После намотки закрепил обмотку изолентой, сделал отводы и замерил напряжение – 14,08 вольт. Ок! Не зря старался! Да, забыл. Когда собирал схему, чтобы не искать клеммы Vago ( на фото) дабы соединить щупы тестера и концы обмотки трансформатора, в дурном порыве соединил их зажимами типа «крокодил» от выключенного лабораторного блока питания. Смотрю, что такое?! Напряжение чуть выше 6 вольт и транс начал греться, как конфорка стремительно. Отключил. Секунды чесал репу, а потом догнал, — я же нагрузил его потрохами выключенного лабораторника. Чуть не спалил. Нашел клеммы, соединил, как положено, без дурного фанатизма. Результат на фото. Мораль — никогда не делай быстрее, чем думаешь. Быстро собрал схему стабилизатора на микросхеме L7812 по типовой схеме его включения, установив на входе электролит 2200 мкф 35в, а на выходе 100 мкф 35в, предварительно на макетной плате, чтобы проверить его работу от новой обмотки. В качестве нагрузки подключил 5 ваттный резистор 51 ом. Ток нагрузки в результате получился 235 мА, что примерно соответствует потреблению вентилятора охлаждения. Дальше собрал схему стабилизатора питания блока управления вентилятором на плате и установил в корпус устройства, чтобы проверить работу всего в целом. Универсальный блок питания работал штатно. В качестве нагрузки использовался резистор 25 вт 10 ом. На напряжениях от 9 до 15 вольт ток изменялся от 1 до 1,5А в строгом соответствии с законом Ома. L317-я благополучно грелась в своем седалище на радиаторе, но под контролем блока управления кулером, который включал вентилятор при нагреве в зоне микросхемы свыше 40 градусов и отключал его при остывании ниже оного предела с небольшим гистерезисом. В качестве индикации напряжения и тока я применил цифровой китайский вольтамперметр. Очень удобная фишка. Единственно, что при выставлении переключателя на 1,5в индикация пропадает. Девайс рассчитан на минимальное напряжение 4 в. Предварительно я откалибровал его на лабораторном блоке питания. Для этого в его схеме предусмотрено два подстроечных резистора.
У меня применен стальной корпус. Я не стал крепить тор штатно через центральный болт, дабы не гневить судьбу и не думать, а вдруг верхний торец болта коснется верхней крышки, когда на нее поставишь бутылку или еще чего прижмешь не дай боже ( за нижнюю то ведь он надежно с изумительным контактом закреплен!). Поступил по другому. Просверлил в днище отверстия и закрепил тор четырьмя диаметрально противоположными кабельными полиэтиленовыми хомутами (Рис.9). И держит хорошо, и «козы» не будет. Вот в общем-то и все. Теперь есть и что питать, и чем питать. На переднюю панель корпуса изготовил в программе Front Desinger лицевую часть с учетом расположения элементов, распечатал на бумаге, заламинировал и наклеил. А это готовое изделие. |
Схема источника тока на 7805 и других 78xx стабилизаторах
Ни для кого не секрет, как собрать блок питания на стабилизаторах 7805, 7809, 7812 и тд. Но не все знают, что на этих же стабилизаторах можно собрать приличный источник тока. Схема источника тока и стала героем этой статьи.
Так выглядит стандартная схема стабилизатора напряжения на микросхемах серии 78xx. Эти микросхемы настолько популярны, что их выпускает каждая, уважающая себя контора. Обычно в разговоре или на схеме даже опускают первые буквы, характеризующие производителя, указывая просто 7815. Ибо нефиг захламлять схему и сразу ясно, что речь о стабилизаторе напряжения.
Для тех, кто мало знаком с подобными стабилизаторми небольшое видео по сборке «на коленках»:
Качество компонентов
В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.
Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.
Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.
Схема источника тока на 78xx
Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.
Выходной ток источника тока на L78
Небольшой неприятностью представляется ток покоя Id, который складывается с выходным током. Величина тока покоя указывается в даташите. Для большинства стабилизаторов Id = 8мА. Эта цифра показывает наименьшее значение выходного тока. Т.е. Получить источник тока с величиной тока менее 8 млА не выйдет.
Скачать даташит на L78xx
В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.
Точность тока и выходное напряжение
При этом нестабильность тока покоя составляет ΔId = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.
Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.
Сопротивление нагрузки
В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение
V= I*R = 0.1 * 100 = 10 Вольт
Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.
А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.
Заключение
Конечно такой источник тока имеет свои ограничения, однако он может пригодиться для подавляющего числа задач, где не требуется особая точность. Простота схемы и доступность компонентов, позволяет на коленке собрать источник тока.
CV — схема подключения стабилизатора напряжения 5v
L7805-CV линейный стабилизатор постоянного напряжения
L7805-CV — практически для любого радиолюбителя собрать источник питания со стабилизирующим выходным напряжением на микросхеме 7805 и аналогичных из этой серии, не представляет никакой сложности. Именно об этом линейном регуляторе входного постоянного напряжения пойдет речь в данном материале.
На рисунке выше, представлена типичная схема линейного стабилизатора L7805 с положительной полярностью 5v и номинальным рабочим током 1.5А. Данные микросхемы приобрели такую известность, что за их производство взялись большинство мировых компаний. А вот на снимке ниже, представлена схема немного усовершенствованная, за счет увеличения емкости конденсаторов С1-С2.
Как правило, между радиотехниками и электронщиками этот чип называют сокращенно, не называя впереди стоящих буквенных обозначений указывающих на производителя. Ведь и так понятно для каждого, что это — стабилизатор, последняя цифра, которого указывает его напряжение на выходе.
Кто еще не сталкивался с данными электронными компонентами на практике и мало, что о них знает, то вот вам для наглядности небольшое видео по сборке схемы:
Стабилизатор напряжения 5v! На микросхеме L7805CV
Одно из важных условий — высокое качество компонентов
На самом деле при покупке комплектующих изготовитель играет значительную роль. Когда вы приобретаете любые электронные компоненты, всегда обращайте внимание на бренд детали, а также поинтересуйтесь кто их поставляет. Лично меня устраивает продукция компании «STMicroelectronics», производителя микроэлектронных компонентов.
Безымянные стабилизаторы или от мало известных фирм, как правило всегда стоят дешевле, чем аналогичные от известных брендов. Но и качество таких деталей не всегда на должном уровне, особенно сказывается в их работе существенный разброс напряжения на выходе.
Практически мне много раз попадались микросхемы L7805 выдававшие выходное напряжение в пределах 4,6v, вместо 5v, а другие из этой же серии давали наоборот больше — 5,3v. К тому же, такие образцы частенько могут создавать приличный фон и повышенное потребление мощности.
Схема источника тока выполненная на микросхемах из серии L78xx
Значение выходного тока обусловлено постоянным резистором R*, включенным параллельно с конденсатором 0,1uF, именно это сопротивление в свою очередь создает нагрузку для L7805. Причем, стабилизатор не имеет заземления. На «землю» идет только один вывод сопротивления нагрузки Rн. Принцип действия такой схемы включения обязывает L7805-CV выдавать в нагрузку определенную величину тока, посредством регулирования выходного напряжения.
Величина тока на выходе источника L78хх
Неприятный момент, который можно наблюдать в схеме, это суммирование тока покоя Id с током на выходе. Параметры тока покоя обозначены в документации на микросхему. В основном такие стабилизаторы имеют постоянную величину тока покоя, составляющую 8мА. Это значение является наименьшим током выходной цепи чипа. Следовательно, при попытке создать источник тока, у которого значение будет меньше, чем 8мА, никак не получится.
Здесь можно скачать документацию на микросхему L78xx L78_DataSheet.pdf
В лучшем случае от L7805 можно получить выходные токи в пределах от 8мА до 1А. Впрочем, при работе на токах превышающие значение 750-850 мА, категорически рекомендуем устанавливать микросхему на радиатор. Но и работать на таких токах все же не оправдано. Обозначенный в документации ток в 1А — это его максимальное значение. В фактических условиях чип наверняка выйдет из строя из-за перегрева. Поэтому, оптимальный выходной рабочий ток должен находится в пределах от 20 мА до 750 мА.
Корректность выходного тока и величина напряжения
В тоже время не постоянность тока покоя формируется как ΔId = 0.5мА. Данное значение показывает верность настройки тока в выходном тракте. Соответственно и точность установки выходного тока зависит от сопротивления нагрузки микросхемы R*. В этом случае, желательно применять прецизионные резисторы, обладающие высокой стабильностью и существенной точностью, от ±0,0005% до ±0,5%.
Оптимальное сопротивление нагрузки
Одновременно с этим нужно принять во внимание значение сопротивления нагрузки. Здесь все просто, то есть используя закон Ома можно все высчитать. Например:
V= I*R = 0.1 * 100 = 10 Вольт
Исходя их таких несложных расчетов мы выяснили, какое должно быть напряжение на нагрузке с сопротивлением 100 Ом, чтобы создать выходной ток 100 мА. Согласно эти расчетам получается, что оптимальным вариантом будет использовать микросхему 7812 либо 7815, рассчитанную на 12v и 15v в соответствии, с целью иметь запас.
Заключение
Естественно, в такой схеме источника тока присутствуют ограничительные моменты. Хотя она может быть полезна для большого количества решений, в которых высокая точность не играет особой роли. Отсутствие какой либо сложности в схеме, дает возможность изготовить источник тока практически в любых условиях, тем более комплектующие для нее приобрести не составит труда.