Контактор схема подключения кми – как сделать своими руками? — Интернет-магазин инструмента. — yato-tools.ru. Электротовары и инструмент.

Содержание

Схема Подключения Кми — tokzamer.ru

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения. На них попадает напряжение В, если сама катушка рассчитана на такое напряжение.


Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение.

Схема подключения трехфазного двигателя через пускатель на В Как видите, схема практически не изменилась.
подключение КМИ-11860

Неподвижные контакты.

Пример такой схемы приведен ниже.

Это так называемый кнопочный пост. Когда происходит отключение нагрузки, может возникнуть повышенное образование искр.


При этом, управляющая кнопка подключена по аналогичной схеме как в однофазном случае. Кнопки могут быть в одном корпусе или в разных С отдельными кнопками все понятно — у них есть по два контакта.


Кроме того, эти приборы обеспечивают дистанционное переключение устройств вентиляционных систем, осветительных приборов, насосов и других агрегатов.

Подключение магнитного пускателя по принципу ,,пуск—стоп,,

Виды и классы контакторов

Сюда можно подать питание для катушки Если к этим контактам подключить шнур с вилкой как на фото , устройство будет находится в работе после того, как вилку вставите в розетку. Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. Четвертый символ Х указывает на количество дополнительных контактов.


Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. Обычно схему применяют с асинхронным двигателем.

Например если катушка магнитного пускателя на вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз. Для обеспечения удержания штока во время работы используется схема самоподхвата.

Источник питания подключают к контактам, находящимся ниже на корпусе.


Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами например, фазы B и C. То есть, управляющий элемент располагается в непосредственной близости от оператора, а массивный коммутатор можно разместить в любом удобном месте.

Кроме контактов в коммутационном блоке расположены камеры для гашения электрической дуги.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного например пропадания фазы — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.
магнитный пускатель для чайников

Как работает

В большинстве случаев, вышеперечисленные задачи успешно решаются применением электромагнитных контакторов. Она предназначена для пуска нагрузки, в данном случае двигателя, от контактора катушка которого рассчитана на Вольт переменного напряжения.


Иногда прибор начинает гудеть и создавать повышенный уровень шума. При этой схеме большое значение имеет номинальное напряжение катушки. Изменений по фазе А не происходит.

Нажатие на кнопку включения замыкает цепь катушки. Для этого применяют схему с нейтральным проводником.

С увеличением этих показателей возрастает и степень износа контактов. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.

Как подключить контактор на 3 фазы, с обмоткой пускателя V? Автоматическое включение контактора также возможно, для этих целей кнопку заменяют или дублируют параллельным включением концевиков или датчиков. В зависимости от конструкции он может быть рассчитан на разные напряжения как постоянного, так и переменного тока.

Поиск на сайте


Четвертый символ Х указывает на количество дополнительных контактов. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам. Чтобы понять, как подключить магнитный пускатель, изобразим комбинированную схему, с изображением деталей: В нашем случае используется однофазный источник питания V , разнесенные кнопки управления, защитное термореле, и собственно магнитный пускатель.

Выводы и полезное видео по теме Подробности об устройстве и подключении контактора: Практическая помощь в подключении МП: По приведенным схемам можно подключить магнитный пускатель своими руками как к сети , так и В. Применять ее целесообразно в случае соединения обмоток двигателя треугольником. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя.

Третий символ Х означает особенности конфигурации контактора. Его форма делается либо П-, либо Ш-образной, в зависимости от конструкции этого коммутационного изделия.

Схемы управления магнитным пускателем

Принципиальное устройство

На них попадает напряжение В, если сама катушка рассчитана на такое напряжение. Но двигатели — это не единственные потребители электроэнергии, с которыми контакторы могут использоваться.

На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. Когда срабатывает КМ2, передислоцируются фазы В и С.

Когда усилие на ней В, двигателя В, в случае соединения в звезду, такая схема не подходит. Третий символ Х означает особенности конфигурации контактора.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. В основном, это асинхронные электрические двигатели с короткозамкнутым ротором , а также различные типы нагрузок с малой индуктивностью. Слева: питание катушки отключено, силовые контакты разомкнуты.

Дистанционное расположение управляющих элементов позволяет расположить аварийную кнопку в удобном месте, что повышает безопасность эксплуатации. При обрыве какой-либо фазы и возникновении перегрузок, данный прибой срабатывает и защищает цепь. Энергетический узел обеспечивает формирование электромагнитного поля, достаточного для получения определенной однонаправленной силы. Однако контактор или магнитный пускатель такой защиты не имеют.

Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено. Например, цифра 1 соответствует аппарату без оболочки и без реверса. Также обратите внимание, что провод от кнопки включения вправо или влево подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Особенности монтажа пускателя Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Современные устройства серии КМИ обладают неплохими показателями надёжности и предназначены для общепромышленного применения.

Конструктивные элементы

Похожие статьи:. Как видите, схема подключения силовой части предельно проста: контактор коммутирует фазные линии, рабочий ноль собирается на общей шине или кросс-модуле. Контакты Схемы подключения магнитного пускателя Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься. Упрощенная схема без защитных устройств и термореле на иллюстрации: В этом случае управление соленоидом соответственно и силовыми контактными группами осуществляется двумя кнопками вручную. Производителем IEK выпускаются устройства в широком ассортименте с различными параметрами и возможностью использования в различных электрических цепях.

При отсутствии подачи питания металлический сердечник под действием пружины возвращается в исходное положение, а цепь оказывается разомкнутой. При токе свыше 40 А устанавливаются две отдельные контактные группы — замыкающая и размыкающая. Диэлектрический держатель подвижных контактов.
Подключение электромагнитного пускателя часть№3

Устройство контактора. Разбираем ИЭК КМИ-11210

Эксплуатация большинства электроприборов напрямую связана с необходимостью их коммутации — включения и отключения в нужный момент времени. Если в быту мы имеем дело с относительно небольшими (условно безопасными) электрическими токами и напряжениями, и, например, для коммутации лампы накаливания достаточно обычного бытового выключателя, то в промышленных масштабах дело зачастую обстоит иначе.

При коммутации больших мощностей, остро встает вопрос безопасности оператора и электроприборов; работа с многофазными сетями электропитания требует от коммутирующего устройства быстрого и синхронного (одновременного) включения и отключения фаз; автоматизация производственных процессов, средства активной защиты и контроля требуют наличия возможности удаленного управления электрооборудованием с применением отдельных сигнальных линий с малыми токами. В большинстве случаев, вышеперечисленные задачи успешно решаются применением электромагнитных контакторов. Рассмотрим принцип действия электромагнитного низковольтного контактора (пускателя) на примере модели КМИ-11210 фирмы ИЭК (IEK).

По сути, электромагнитный контактор представляет собой электромагнитное реле, при подаче напряжения на катушку электромагнита (цепь управления), происходит притягивание одних контактов к другим, и силовая цепь замыкается. При этом, в цепи управления могут действовать гораздо меньшие токи и/или напряжения, чем в силовой цепи. С использованием контактора (или цепи из нескольких контакторов), можно, например, тем же бытовым выключателем удаленно и безопасно коммутировать многофазные нагрузки почти неограниченных мощностей. Обратной стороной удобства от применения контакторов (кроме бистабильных) является необходимость в постоянной трате небольшой энергии (питание катушки электромагнита) для поддержания контактора во включенном состоянии.


Устройство электромагнитного контактора (показан трёхполюсный контактор с нормально разомкнутыми контактами).
1.

Катушка. 2. Неподвижная часть сердечника. 3. Подвижная часть сердечника. 4. Неподвижные контакты. 5. Подвижные контакты. 6. Диэлектрический держатель подвижных контактов.


Работа электромагнитного контактора.
Слева: питание катушки отключено, силовые контакты разомкнуты.
Справа: питание к катушке подключено, подвижная часть сердечника притянута к неподвижной, силовые контакты сомкнуты.
 

Контактор ИЭК КМИ-11210 является типичным представителем широко используемых на производстве электромагнитных контакторов, имеет четыре группы нормально разомкнутых контактов (3+1 полюса). Основные характеристики контактора можно видеть в таблицах ниже.

 

Таблицы основных технических характеристик контактора
ИЭК КМИ-11210.

Характеристики силовой цепи Значение
Номинальное рабочее напряжение переменного тока 230, 400, 660 В
Номинальный рабочий ток, категории применения AC-3** 12 А
Условный тепловой ток, категории применения AC-1* 25 А
Номинальная коммутируемая мощность по AC-3 для 230 В 3 КВт
Номинальная коммутируемая мощность по AC-3 для 400 В 5,5 КВт
Номинальная коммутируемая мощность по AC-3 для 660 В 7,5 КВт

Характеристики цепи управления Значение
Номинальное напряжение катушки управления 24, 36, 110, 230, 400 В
Потребляемая мощность катушки управления в момент срабатывания 60 ВА
Потребляемая мощность катушки управления в состоянии удержания 7 ВА
Время замыкания контактов 12-22 мс
Время размыкания контактов 4-16 мс
Мощность рассеяния катушки управления 3 Вт

* AC-1 — неиндуктивные или слабоиндуктивные нагрузки (нагревательные элементы, лампы накаливания и т.п.).
** AC-3 — двигатели с короткозамкнутым ротором (запуск, отключение).

Таким образом, контактор ИЭК КМИ-11210 способен коммутировать трехфазную нагрузку мощностью до 7,5 КВт (по AC-3), потребляя при этом менее десяти вольт-ампер для удержания контактов. В случае, если стандартный набор напряжений пинания катушки не устраивает, её можно перемотать на нужное напряжение вручную, так как корпуса контакторов серии КМИ являются разборными, извлечение катушки выполняется легко с применение крестовой отвертки. Фотографии с пояснениями процесса вскрытия контактора представлены ниже.



Контактор ИЭК КМИ-11210 с разных сторон.
На правой нижней фотографии видно крепление на DIN-рейку.


Габаритные и установочные размеры ИЭК КМИ-11210 (фото слева).
Обозначение контактора ИЭК КМИ-11210 на схемах (фото справа).


Снимаем декоративно-защитные накладки (фото слева).
Хрупкая пластмасса легко ломается (фото справа).


Корпус разбирается путем откручивания двух винтов.
На фото справа видна большая пружина, обеспечивающая размыкание силовых контактов при снятии напряжения с катушки.


Катушка крупным планом.
Как правило, катушку к разборным электромагнитным контакторам можно приобрести отдельно.


Достаем катушку, неподвижную часть сердечника и пружину (фото слева).
Неподвижная часть сердечника крупным планом (фото справа).


Перед извлечением подвижной части сердечника необходимо демонтировать все контакты: выкручиваем винт, вынимаем контакт (фото слева).
Подвижная часть сердечника с подпружиненными контактами (фото справа).


Демонтированные контакты. Все четыре группы контактов идентичны по конструкции и площади контакта (фото слева).
Диаметр контактной напайки 4 мм (фото справа).


Контактор без корпуса, без неподвижных контактов и пружины (фото слева).
ИЭК КМИ-11210 в разобранном виде. Все детали контактора (фото справа).

Похожие статьи:

Контактор КМИ: маркировка, назначение, принцип работы

Содержание:

  1. Назначение и особенности малогабаритных контакторов
  2. Основные конструктивные элементы
  3. Технические характеристики и типы КМИ
  4. Особенности эксплуатации малогабаритных КМИ

Контакторы КМИ применяется для запуска, остановки и реверса асинхронных электрических двигателей, работающих при напряжении до 660 вольт. Кроме того, эти приборы обеспечивают дистанционное переключение устройств вентиляционных систем, осветительных приборов, насосов и других агрегатов. Использование контакторов этого типа делает управление электродвигателями удобным и безопасным.


Назначение и особенности малогабаритных контакторов

Частая перемена тока в электрических сетях при включении и отключении электрооборудования приводит к аварийным ситуациям. Для их предотвращения используется контактор КМИ, работающий дистанционно под управлением слабыми электрическими токами. Название расшифровывается как контактор малый. Устройство известно также под названием контактор КМЭ, то есть, электромагнитный. Он выполняет замыкание и размыкание электрических цепей, находящихся в обычном режиме. Данные приборы не защищают от коротких замыканий, как автоматы, а лишь осуществляют связку номинальных токов на различных линиях.

Малогабаритный контактор КМИ рассчитан на токовую нагрузку в пределах 9-95 А. В основном, это асинхронные электрические двигатели с короткозамкнутым ротором, а также различные типы нагрузок с малой индуктивностью. Устройства, работающие с токовой нагрузкой до 40 А, оборудованы одной группой контактов замыкания-размыкания. При токе свыше 40 А устанавливаются две отдельные контактные группы – замыкающая и размыкающая.

Данные приборы коммутируют трехфазные конденсаторные батареи, а также первичные обмотки в трехфазных низковольтных трансформаторах. Точно такие же функции выполняет контактор малогабаритный КМЭ – электромагнитный.

Аппаратура такого типа обладает несомненными преимуществами:

  • Серия КМИ – IEK выпускается в широком ассортименте, существенно превышающем количество аналогов на отечественном рынке электроприборов.
  • Совместно с контакторами идет большое количество дополнительных устройств – контактных приставок, электротепловых реле, приставок выдержки времени и другой полезной аппаратуры. Они защищают электродвигатель от максимальных токовых перегрузок, перекосов и асимметрии фаз, затяжного пуска и заклинивания ротора.
  • Все устройства КМИ — IEK свободно устанавливаются на DIN-рейку, шириной 35 мм, в отличие от отечественных изделий, для которых подобные крепления устанавливаются лишь под заказ.
  • Приборы КМИ – IEK позволяют делать реверс при помощи специального блокирующего механизма.
  • Конструкция крышки позволяет устанавливать дополнительные контакты, используя для этого специальную приставку.

Конструктивные элементы

Каждый контактор КМИ оборудуется катушкой или электромагнитом, составляющим основу прибора. Питание данного компонента осуществляется в широком диапазоне напряжений – 12-380 вольт. Перед подключением нужно точно установить рабочий ток электромагнита, указанный в паспорте или в боковой части корпуса катушки.

Следующий важный элемент конструкции – сердечник. Он представляет собой сборную конструкцию с металлическими пластинами, пропитанными лаком. Сердечник состоит из неподвижной и подвижной частей. Первая часть служит для размещения катушки, а другая часть – подвижная – предназначена для расположения подвижных контактов. Крепление неподвижных контактов выполняется с помощью винтов к пластмассовому корпусу прибора. Подвижные – крепятся к сердечнику специальным изоляционным держателем. В наконечники полюсов неподвижной части запрессованы короткозамкнутые кольца из алюминия, устраняющие эффект детонации.

Площадь соприкосновения контактных напаек в разных конструкциях ИЭК может отличаться. Она зависит от рабочего тока силовых цепей, который может быть пропущен контактором. В связи с этим, каждый тип прибора имеет свою величину – первую, вторую, третью и т.д. Большинство из них оборудовано четырьмя контактными парами: три предназначены для силовой цепи, а один – является дополнительным и выполняет различные функции. Он блокирует цепь управления, включает звуковую или цветовую сигнализацию, частично обеспечивает автоматическую релейную защиту управления электроустановок.

Соединение проводников осуществляется при помощи специальных соединительных контактов. Они имеют овальную форму, благодаря которой повышается надежность фиксации. Для небольших проводов используются закаленные тарельчатые шайбы, а под проводники большого сечения предусмотрена зажимная скоба. Насечки на контактах еще больше повышают надежность фиксации, увеличивают площадь контакта и снижают нагрев проводов.

Когда на катушку поступает питание, это приводит к появлению электромагнитного эффекта. Под его влиянием металлический цилиндр начинает двигаться вверх, после чего происходит замыкание контакта. Цепь, подающая питание к катушке, считается управляющей, а напряжение в ней достаточно низкое, в пределах 24 вольт. Другая цепь, которая замыкает контакт является силовой, поскольку по ней проходит ток с напряжением, достигающим 660 вольт. При отсутствии подачи питания металлический сердечник под действием пружины возвращается в исходное положение, а цепь оказывается разомкнутой.


Технические характеристики и типы КМИ

Стандартный контактор КМИ представляет собой электромагнитное устройство переменного тока, обеспечивающее коммутацию электроустановок и оборудования с силовыми цепями.

Каждая модель имеет условное обозначение КМИ-Х-ХХ-Х-Х, которое расшифровывается следующим образом:

  • Первый символ Х означает пределы рабочего тока, которые составляют 1-9, 12, 12 А, 2-25, 32 А, 3-40, 50 А, 4-65, 80, 95 А и соответствуют конкретным группам приборов.
  • Второй символ ХХ соответствует номинальному току категории АС-3 и означает несколько групп малогабаритных пускателей. 1-я группа – 9, 12 и 18 А, 2-я группа – 25 и 32 А, 3-я группа – 40 и 50 А, 4-я группа – 65, 80 и 95 А.
  • Третий символ Х означает особенности конфигурации контактора. Например, цифра 1 соответствует аппарату без оболочки и без реверса.
  • Четвертый символ Х указывает на количество дополнительных контактов. Цифра 0 – это 1 замыкающий контакт, цифра 1 – 1 размыкающий контакт. Цифра 2 соответствует 1-му замыкающему и 1-му размыкающему контакту.

В качестве основных параметров и технических характеристик можно отметить следующие:

  • Величина номинального рабочего напряжения – 230, 400 и 660 вольт.
  • Значение номинального напряжения изоляции – 660 В.
  • Показатель номинального импульсного напряжения – 6 кВ.
  • Номинальный рабочий ток – 9-95 А.
  • Величина условного теплового тока – от 25 до 125 А.
  • Показатели максимальной кратковременной нагрузки в течение менее 1 с для разных приборов составляют от 162 до 1710 А.

Существуют и другие характеристики устройств, указанные в технической документации, которые следует учитывать при выборе изделия.

Производителем IEK выпускаются устройства в широком ассортименте с различными параметрами и возможностью использования в различных электрических цепях. Среди них можно отметить три основные группы:

  • Малогабаритные устройства ИЭК переменного тока 9-95 А. Используются для дистанционного управления различных промышленных электроустановок, в системах освещения и т.д.
  • Контактор малогабаритный КМИ имеющий в конструкции тепловой рычаг. Он помещается в металлический или пластиковый корпус и применяется для коммутации трехфазных двигателей, работающим с напряжением до 400 вольт. При обрыве какой-либо фазы и возникновении перегрузок, данный прибой срабатывает и защищает цепь.
  • Контактор КМИ, в котором имеется катушка, управляющая постоянным током. Используется в системах автоматического ввода резерва, на электростанциях и распределительных пунктах, в электрических сетях железных дорог и метро. В управляющей катушке нет пускового тока срабатывания.

Особенности эксплуатации малогабаритных КМИ

Прежде всего следует отметить, что контакторы КМИ в нормальных условиях могут длительное время работать, не требуя каких-либо регулировок и технического обслуживания. Самое главное – чтобы соблюдались правила эксплуатации и отсутствовали аварийные ситуации. Со временем контакты все равно изнашиваются, что непосредственно связано с индуктивностью нагрузки и величиной коммутируемого тока. С увеличением этих показателей возрастает и степень износа контактов.

В связи с этим, необходимо правильно выбирать параметры того или иного контактора в соответствии с условиями эксплуатации. Не следует экономить и выбирать прибор с заниженными показателями. Рекомендуется поступать наоборот и приобретать аппаратуру с характеристиками, превышающими номиналы коммутируемого оборудования.

Когда происходит отключение нагрузки, может возникнуть повышенное образование искр. В таких случаях не следует доводить ситуацию до аварийной, а принять своевременные меры по выявлению и устранению неисправностей. Чаще всего причина заключается в возвратных пружинах, с течением времени теряющих свои качества. В некоторых случаях оказывается загрязненной контактная группа, при отключении нагрузки возникает перенапряжение и другие причины технического характера.

Иногда прибор начинает гудеть и создавать повышенный уровень шума. Как правило, он возникает из-за крепления магнитопровода, которое становится слабым под влиянием многочисленных циклов включения-отключения, нагрева и остывания, вибрации и других факторов. Чаще всего для устранения достаточно всего лишь подтянуть винты крепления.

Кми 22560 схема подключения

  • Сертификат ТР ТС
  • Письмо разъяснение
  • Сертификат ТР ТС
  • Сертификат ТР ТС
  • Схема подключения
  • Схема подключения

Низкий уровень шума. Высокая электрическая износостойкость. Широкий ассортимент.

Контакторы КМИ с электротепловым реле в защитной оболочке

Контакторы КМИ в сборе с электротепловым реле в защитной оболочке являются комплектным устройством, состоящим из малогабаритного контактора КМИ, теплового реле РТИ. оболочки с сальниками и кнопок управления. Предназначены для дистанционного пуска непосредственным подключением к сети и остановки трехфазных асинхронных электродвигателей с коротко-замкнутым ротором на напряжение переменного тока до 400 В. а также для защиты электро-двигателей от перегрузок недопустимой продолжительности и сверхтоков, возникающих при обрыве одной из фаз. При применении контакторов КМИ 10910…КМИ 23211 используется пластиковая оболочка, контакторов КМИ 34012…КМИ 49512 — металлическая оболочка.

Оболочка со степенью защиты IP54 позволяет использовать контактор на строительных площадках, в лакокрасочных, термических и гальванических цехах (при условии помещения аппаратуры под защитный навес). Заводская схема управления позволяет избежать ошибок при подключении на месте и сокращает время монтажа, которое ограничено только присоединением линейных питающих проводников.

Дополнительно по теме

При управлении активными нагрузками (нагревательные цепи, цепи освещения), которые используют нулевой провод, рациональнее применять схему управления на 220 В.

В качестве нагрузки в большинстве случаев выступают асинхронные трехфазные двигатели с напряжением 380 В. С целью снижения денежных затрат и экономии рабочего времени рекомендуется применять данную систему управления, так как исключается необходимость использования четвертого нулевого рабочего проводника, его разделки и монтажа.

Номинальный рабочий ток, А

Номинальное напряжение катушки управления, В

Схема подключения магнитного пускателя (малогабаритного контактора «КМ») не представляет сложности для опытных электриков, но для новичков может вызвать немало трудностей. Поэтому это статья для них.

Цель статьи максимально просто и наглядно показать сам принцип действия (работы) магнитного пускателя (далее МП) и малогабаритного контактора (далее КМ). Поехали.

МП и КМ являются коммутационными аппаратами, которые осуществляют управление и распределение рабочих токов по подключенным к ним цепям.

МП и КМ в основном используются для подключения и отключения асинхронных электродвигателей, а также их реверсивного переключения используя дистанционное управление. Они применяются для дистанционного управления группами освещения, нагревательными цепями и другими нагрузками.

Компрессоры, насосы и кондиционеры, тепловые печи, ленточные конвейера, цепи освещения вот где и не только можно встретить МП и КМ в системах их управления.

Чем отличаются магнитный пускатель и малогабаритный контактор, по принципу действия — ничем. По сути, это электромагнитные реле.

Найденное различие у контактора – мощность — определяется габаритами, а у пускателя величинами, а предельная мощность МП бывает больше чем у контактора.

Наглядные схемы МП и КМ

Условно МП (или КМ) можно разделить на две части.

В одной части силовые контакты, которые выполняют свою работу, а в другой части электромагнитная катушка, которая включает и отключает эти контакты.

  1. В первой части находятся силовые контакты (подвижные на диэлектрической траверсе и неподвижные на диэлектрическом корпусе), они то и осуществляют подключение силовых линий.

Траверса с силовыми контактами прикреплена к подвижному сердечнику (якорю).

В нормальном состояние эти контакты разомкнуты и по ним не протекает ток, нагрузка (в данном случае лампы) находится в состоянии покоя.

Удерживает их в таком состоянии возвратная пружина. Которая изображена змейкой во второй части ( 2 )

  1. Во второй части мы видим электромагнитную катушку, на которую не подается ее рабочее напряжение, вследствие чего, она находится в состоянии покоя.

При подаче напряжения на обмотку катушки в ее контуре создается электромагнитное поле, образуя ЭДС (электродвижущую силу), которая притягивает к себе подвижный сердечник (подвижная часть магнитопровода — якорь) с закреплёнными на нем силовыми контактами. Они, соответственно, замыкают подключенные через них цепи, включая нагрузку (рис. 2).

Естественно, если прекратить подачу напряжения на катушку, то пропадет электромагнитное поле (ЭДС), якорь перестаёт удерживаться и под действием пружины (вместе с закрепленными к нему подвижными контактами) возвращается в исходное состояние, размыкая цепи силовых контактов (рис. 1).

Из этого видно, что пускатель (и контактор) управляются подачей и отключением напряжения на их электромагнитной катушке.

Схема МП

  • Силовые контакты МП
  • Катушка, возвратная пружина, дополнительные контакты МП
  • Кнопочный пост (кнопки пуск и стоп)

к оглавлению ↑

Принципиальная схема подключения МП

Схема привязки основных элементов принципиальной схемы с МП

Как видно из рисунка 5 со схемой в состав МП входят и дополнительные блок контакты, которые бывают нормально разомкнутыми и нормально замкнутыми они могут использоваться для управления подачи напряжения на катушку, а также для других действий. Например, включать (или выключать) схему сигнальной индикации, которая будет показывать режим работы МП в целом.

Схема подключения по факту с привязкой контактных групп к принципиальной схеме МП

Рис. 6 Увеличить рис. 6 Фазное подключение (220 В; ноль — фаза)

На схеме (рис. 6) через перемычки мы берем напряжение, подаваемое на силовые контакты МП для дальнейшего его использования в управлении катушкой через кнопочный пост.

Данный кнопочный пост имеет две клавиши: «Пуск» (контакты которой нормально разомкнуты) и клавиши «Стоп» (контакты которой нормально замкнуты).

При нажатии кнопки «Пуск» питание попадает на катушку напрямую, при этом она срабатывает, притягивая якорь с траверсой, на котором расположены силовые контакты, цепи силовых контактов замыкаются.

А также замыкается дополнительный блок контакт, к которому подключена катушка.

На другой стороне дополнительного контакта подключен провод, который соединен с контактом кнопки «Стоп» (контакты которой нормально замкнуты).

После возвращения кнопки «Пуск» в исходное положение (нормально разомкнутая), через нее перестает подаваться напряжение на катушку, но оно (это же напряжение) начинает дублироваться через замкнутый дополнительный контакт и подключенный нему провод, который подключен к кнопке «Стоп».

И только после нажатия кнопки «Стоп» цепь с питающим напряжением на катушку МП разрывается и полностью обесточивает катушку. Вследствие чего пропадает её электромагнитное поле, якорь перестает удерживаться и под воздействием возвратной пружины размыкает силовые контакты, а также дополнительный (нормально разомкнутый) контакт.

Схема КМ

  • Силовые контакты МП
  • Катушка, возвратная пружина, дополнительные контакты МП
  • Кнопочный пост (кнопки пуск и стоп)

к оглавлению ↑

Принципиальная схема подключения КМ

Схема привязки основных элементов принципиальной схемы с КМ

Схема подключения по факту с привязкой контактных групп к принципиальной схеме КМ

Рис. 10 Увеличить рис. 10 Фазное подключение (220 В; ноль — фаза)

Принцип действия КМ и его катушки (на данной схеме рис. 10) аналогичный описанному выше. Одно из конструктивных отличий то, что дополнительный контакт расположен на траверсе в одном ряду с силовыми контактами.

Обратите внимание, что напряжение катушек на схемах — 220 и 380 вольт. Это значит, что катушки должны быть подключены согласно их номинальному напряжению.

Фазное подключение (фаза, нейтраль — проще ноль) соответствует 220 В, линейное подключение (фаза, фаза) 380 В.

Есть также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

Наглядные электрические схемы подключения электродвигателя с использованием магнитного пускателя (либо малогабаритного контактора)

Схема подключения МП (или КМ) с катушкой на 380 В

  • Кн «СТОП» – кнопка «Стоп»
  • Кн «ПУСК» – кнопка «Пуск»
  • КМП – катушка МП (магнитного пускателя)
  • Кн МП – силовые контакты МП
  • БК – блок контакт МП
  • Тр – нагревательный элемент теплового реле
  • КТР – контакт теплового реле
  • М – электродвигатель

к оглавлению ↑

Схемы подключения МП (или КМ) с катушкой на 220 В

  • Кн «СТОП» – кнопка «Стоп»
  • Кн «ПУСК» – кнопка «Пуск»
  • КМП – катушка МП (магнитного пускателя)
  • Кн МП – силовые контакты МП
  • БК – блок контакт МП
  • Тр – нагревательный элемент теплового реле
  • КТР – контакт теплового реле
  • М – электродвигатель

Схема подключения электродвигателя (рекомендуемый тип подключения обмоток треугольник) на 220 В

Обозначение элементов аналогично на сх. Выше

Обратите внимание, в схеме участвует тепловое реле, которое через свой дополнительный контакт (нормально замкнутый) дублирует функцию кнопки «Стоп» в кнопочном посте.

Принцип действия магнитного пускателя и малогабаритного контактора + Видео пояснение

Важно , на схемах для наглядности магнитный пускатель показан без дугогасящей крышки, без которой его эксплуатация – запрещена!

Иногда возникает вопрос, зачем вообще использовать МП или КМ, почему просто не использовать трехполюсной автомат?

  1. Автомат рассчитан до 10 тысяч отключений – включений, а у МП и КМ этот показатель измеряется миллионами
  2. При скачках напряжений МП (КМ) отключит линию, сыграв роль защиты
  3. Автоматом невозможно управлять, дистанционно применяя небольшое напряжение
  4. Автомат не сможет выполнять дополнительные функции включения и отключения дополнительных цепей (например, сигнальных) из–за отсутствия у него дополнительных контактов

Одним словом автомат отлично справляется со своей основной функцией защиты от коротких замыканий и перенапряжений, а МП и ПМ со своей.

На этом все, думаю, что принцип действия МП и КМ понятен, более наглядное пояснение смотрите в видео.

Удачного и безопасного вам монтажа!

В дополнение к статье прилагаю техническую документацию контакторов серии КМИ

Контакторы серии КМИ

Нормативная и техническая документация

По своим конструктивным и техническим характеристикам контакторы серии КМИ соответствуют требованиям российских и международных стандартов ГОСТ Р 50030.4.1,2002, МЭК60947,4,1,2000 и имеют сертификат соответствия РОСС CN.ME86.B00144. Контакторам серии КМИ по Обще- российскому классификатору продукции присвоен код 342600.

Условия эксплуатации

Категории применения: АС,1, АС,3, АС,4. Температура окружающей среды
– при эксплуатации: от –25 до +50 °С (нижняя предельная температура –40 °С) ;
– при хранении: от –45 до +50 °С .
Высота над уровнем моря, не более: 3000 м .
Рабочее положение: вертикальное, с отклонением ±30° .
Вид климатического исполнения по ГОСТ 15150,96: УХЛ4 .
Степень защиты по ГОСТ 14254,96: IP20 .

Структура обозначения

При подборе контакторов КМИ обращайте внимание на структуру условного обозначения

Основные технические характеристики

Технические характеристики силовой цепи

Технические характеристики цепи управления

Присоединение силовой цепи

Присоединение цепи управления

ПараметрыЗначения
Гибкий кабель, мм21—4
Жесткий кабель, мм21—4
Крутящий момент при затягивании, Нм1,2

Технические характеристики встроенных дополнительных контактов

ПараметрыЗначения
Номинальное напряжение Uе , Вперем. токадо 660
пост. тока
Номинальное напряжение изоляции Ui , В660
Ток термической стойкости (t°≤40°) Ith , А10
Минимальная включающая способностьUmin , В24
Imin , мА10
Защита от сверхтоков — предохранитель gG, А10
Максимальная кратковременная нагрузка (t ≤1 с), А100
Сопротивление изоляции, не менее, МОм10

к оглавлению ↑

Электрические схемы

Типовые электрические схемы

Контакторы серии КМИ могут применяться для создания типовых электрических схем.

Электрическая схема реверсирования

Данная схема собирается из двух контакторов и механизма блокировки МБ 09,32 или МБ 40,95 (в зависимости от типоисполнения), предназначенного для исключения одновременного включения контакторов.

Электрическая схема «звезда — треугольник»

Данный способ пуска предназначен для двигателей, номинальное напряжение которых соответствует соединению обмоток в «треугольник». Пуск «звезда — треугольник» может быть использован для двигателей, пускающихся без нагрузки, или с пониженным моментом нагрузки (не более 50% от номинального момента). При этом пусковой ток при соединении в «звезду» составит 1,8–2,6 А от номинального тока. Переключение со «звезды» на «треугольник» должно производиться после того, как двигатель выйдет на номинальную частоту вращения.

Особенности конструкции и монтажа

Присоединительные зажимы обеспечивают надежное фиксирование проводников:
– для габаритов 1 и 2 – с закаленными тарельчатыми шайбами;
– для габаритов 3 и 4 – с зажимной скобой, позволяющей подсоединить контакт большего сечения.

Существуют два способа монтажа контакторов:

  1. Быстрая установка на DIN,рейку:

КМИ от 9 до 32 А (габариты 1 и 2) – 35 мм;
КМИ от 40 до 95 А (габариты 3 и 4) – 35 и 75 мм.

  1. Монтаж при помощи винтов.

Контакторы серии КМИ 3,го и 4,го габарита позволяют осуществлять крепление на 75 мм DIN рейку.

Контакторы серии КМИ 3,го и 4,го габарита снабжены отверстием для заземляющего болта.

Габаритные размеры

ТипоисполнениеРазмер, мм
ВСD
КМИ 10910. КМИ 10911747945
КМИ 11210, КМИ 11211748145
КМИ 11810, КМИ 11811748145
КМИ 22510, КМИ 22511749355

КМИ 23210, КМИ 23211

КМИ 34010, МИ 34011, КМИ 35012, КМИ 46512

КМИ 48012, КМИ 49512

Установочные размеры

Габаритные и установочные размеры контакторов КМИ при монтаже на 35 мм DIN рейку

ТипоисполнениеРазмер, мм
СBD
КМИ 10910, КМИ 10911827445
КМИ 11210, КМИ 11211827445
КМИ 11810, КМИ 11811877445
КМИ 22510, КМИ 22511957455
КМИ 23210, КМИ 232111008355

ТипоисполнениеРазмер, ммСDКМИ 34010, КМИ 3401113174КМИ 3501213174КМИ 4651213174КМИ 4801214284КМИ 4951214284

Габаритные и установочные размеры контакторов КМИ при установке на монтажную панель или монтажный профиль

Схема подключения контактора

Содержание:

  1. Различия между коммутирующими устройствами
  2. Общее устройство средств коммутации
  3. Порядок работы коммутационного устройства
  4. Подготовка к подключению
  5. Схема подсоединения контакторного устройства на 220 вольт
  6. Подсоединение на 380 В
  7. Коммутация цепи кнопочным постом

Запуск трехфазных электродвигателей и управление ими в процессе работы осуществляется при помощи специального коммутационного оборудования. В первую очередь, это различные виды контакторов и электромагнитных пускателей, выполняющих определенные функции. Например, схема подключения контактора предполагает возможные действия по запуску, выключению и реверсивному движению. Все операции совершаются дистанционно, а расстояние до коммутационного устройства зависти от места расположения двигателя.

Варианты работы через контактор позволяют работать и с другими нагрузками, если их параметры соответствуют конкретному потребителю. Конструктивно, контактор считается разновидностью обычного пускателя и лишь незначительно отличается от него некоторыми техническими характеристиками.


Различия между коммутирующими устройствами

Основная функция обоих коммутирующих приборов заключается в приведении в движение контактов в высоковольтных и обычных сетях. Основой каждого прибора служит электромагнит. Все типы подобной аппаратуры могут работать с постоянным (10-440 В) или переменным током (до 660 В).

Во всех устройствах имеются силовые или рабочие контакты, обеспечивающие подачу напряжения к подключенному оборудованию. В управляющих, сигнальных и блокировочных цепях выполняется дополнительный монтаж вспомогательных контактов.

Однако, между этими устройствами все равно имеются некоторые различия. Прежде всего, у них разная степень защиты. Контакторы оборудуются мощными камерами для гашения дуги, поэтому у них получается очень большая масса и габаритные размеры. Они должны выполнять определенные действия в высоковольтных цепях с высокими значениями токов. Коммутация цепей со слабыми токами осуществляется исключительно посредством магнитных пускателей.

Имеются и другие различия, присущие каждому аппарату. Все магнитные пускатели помещаются в корпус из прочного пластика, а снаружи находятся лишь площадки контактных подвижных групп. Большинство контакторов, наоборот, выпускаются без корпуса, их монтаж производится в местах, защищенных от попадания пыли, загрязнений и влаги на открытые токоведущие части. Обеспечивается и защита от неосторожных касаний опасных зон.

Коммутационные устройства отличаются своим предназначением. С помощью контактора малой мощности или же магнитных пускателей, приводятся в рабочее положение трехфазные электродвигатели, поэтому они оборудованы тремя парами основных контактов, позволяющих соединяться с тремя фазами. Пара со вспомогательной функцией обеспечивает энергией агрегат после отключения кнопки запуска. Благодаря своим свойствам, магнитные пускатели совместно применяются не только с электродвигателями, но и в освещении, а также с прочей аппаратурой и оборудованием. Из-за минимального количества различий, на рынке электротоваров пускатели получили название малогабаритных контакторов.


Общее устройство средств коммутации

Вся конструкция контактора вобрала в себя следующие узлы – энергетический, силовой и коммутационный.

С участием энергетического узла формируется поле с электромагнитными свойствами, которое, в дальнейшем, создает определенное направленное усилие. Оно возникает после того как электричество начинает проходить сквозь катушку с металлическим сердечником. Форма данного элемента бывает в виде буквенных символов Ш или П, исходя из конструктивных особенностей конкретного прибора.

Силовой узел создан из движущегося подпружиненного якоря, притягивающегося к сердечнику, установленному на неподвижной основе. Концентрация силовых линий магнитного поля происходит максимально близко к сердечнику, поэтому весь узел расположен таким образом, чтобы он мог наиболее эффективно взаимодействовать с энергетической и коммутационной частями. Усилие, возникающее под влиянием магнитного поля, становится более равномерным, благодаря специальному короткозамкнутому витку катушки. Он служит своеобразным демпфером, при котором контакты перестают дребезжать с частотой, равной 50 Гц. В случае подключения катушки к постоянному току, ее сердечник оборудуется диэлектрической прокладкой, чтобы намагниченные детали не слипались.

Энергия, передаваемая якорем на сердечник, поступает на коммутационный узел, оборудованный контактами. У разных моделей контакторов их количество может отличаться. Чаще всего устанавливается не более 3-4 контактов с одинаковыми характеристиками. Дополнительно производится монтаж вспомогательных контактов малой мощности, используемые в управлении всей схемой. По их расположению можно отличить пускатель от контактора. В первом устройстве они располагаются сбоку, а во втором – выполняется монтаж вместе с основной контактной группой. Здесь же, в коммутационном узле, находятся камеры, где гасится электрическая дуга.


Порядок работы коммутационного устройства

Действие всех коммутационных устройств осуществляется по одной и той же схеме. При отсутствии напряжения, пружина, расположенная в силовом узле, обеспечивает разомкнутое состояние контактов и удерживает их в этом положении.

После появления напряжения создается магнитное поле, направляющее усилие якоря на преодоление упругости пружины. В результате, начинается движение силового и коммутационного узла. Якорь сжимает пружину и в это же время перемещает контакты, приводя их в замкнутое положение. Электромагнитный сердечник катушки удерживает якорный элемент действием своего поля пока в цепь поступает напряжение. Когда ток уже не подходит к катушке, влияние поля заканчивается, и якорь совместно с контактами, усилием пружинного механизма приходит в начальное состояние.

Чтобы магнитный контактор нормально функционировал, к катушечным клеммам должно поступать напряжение, ограниченное строгими рамками. Чаще всего используется 220 вольт для одной фазы и 380 вольт для трех фаз. При использовании сети с тремя фазами большое значение имеет правильное подсоединение контакторной катушки. При номинальном показателе контакторного устройства 220 вольт, ее возможно соединить с любой фазой на выбор, а при 380 В схема подключения трехфазного устройства выполняется к линейному напряжению, между двумя любыми фазами.

Управлять контакторным прибором можно с применением специальной станции с кнопочными переключателями пуска нормально-разомкнутого вида и выключения – нормально-замкнутого вида. Дополнительное подключение еще одного контакта осуществляется параллельным способом с пусковой кнопкой, и по данной цепочке электричество попадает на катушку. Нажатие этой кнопки приводит к замыканию катушечной цепи, якорный элемент начинает свое движение и контакты тоже становятся замкнутыми. Когда контактор срабатывает, кнопка запуска отпускается, поскольку питание катушки обеспечивается посредством дополнительного контакта. При этом, положение всего устройства остается неизменным, то есть, магнитный контактор будет включен.

Контакты кнопочного выключения находятся в соединенном положении и пропускают ток. Путем нажатия на нее цепь, питающая катушку, разрывается. Одновременно выключается и вспомогательный контакт.


Подготовка к подсоединению

Схема подключения контактора находится в прямой зависимости от оборудования, с которым ему предстоит действовать. Помимо двигателей, в этом качестве выступают всевозможные вентиляторы и насосы, компрессоры, элементы нагревательных приборов и прочие устройства. Следует учесть специфику контакторного аппарата, который, по сравнению с автоматами, не оборудован какой-либо защитой. Поэтому, при разработке сетей, задействованных для подключения оборудования, обязательно учитываются факторы, влияющие на токовые показатели и степень нагрева.

Дополнительно необходимо продумать защитные мероприятия на случай коротких замыканий и нагрузок, многократно превышающих номинал контактора. Данная проблема решается путем установки предохранителей. В эту категорию входит автоматический выключатель, а также тепловые реле, защищающие оборудование от длительных превышений токовых номиналов и перегрева.

Перед подключением нужно выяснить, какие контакты являются основными, а которые из них выполняют вспомогательную функцию. Каждая катушка включения отличается собственными номинальными токами и напряжениями, указанными в маркировке.

Отдельные особенности существуют при установке и соединении модульного аппарата, представляющего разновидность обыкновенного коммутационного прибора. Такой контактор на схеме применяется для включения и отключения на расстоянии аппаратуры, установленной в распределительных щитках, в том числе и АВВ. Отсюда следует, что при вводе в действие модульного контактора питание поступает к определенной группе автоматов, подключенных к определенным цепям. Устройства этого типа успешно функционируют со всеми видами токов.


Схема подсоединения контакторного устройства на 220 вольт

При подсоединении к однофазной сети пускового устройства на 220 В, электричество к магнитной катушке (КМ 1) будет проходить через ряд клемм и тепловое реле. Они соединяются в единую кнопочную цепь с кнопочным устройством включения (SB2) и кнопкой остановки (SB1).

При запуске коммутационного аппарата энергия вначале попадает на катушку. Одновременно происходит втягивание якорного элемента сердечником пускового прибора. Как следствие, силовые движущиеся контакты оказываются замкнутыми и напряжение поступает непосредственно к оборудованию.

Затем контакт с кнопкой оказывается отпущен, но цепь остается замкнутой и продолжает проводить ток, благодаря параллельному соединению дополнительного контакта (КМ1). Его магнитный контакт пребывает в замкнутом виде. Подобная схема включения обеспечивает поступление на катушечный элемент напряжения с какой-либо фазы (L3). Далее, нажатием кнопки СТОП выполняется отключение энергии с возвращением движущихся контактов в начальное состояние. Напряжение прекращает поступление, и оборудование отключается. По такому же принципу работает тепловое реле (Р), подключаемое в разрыв нуля (N), подводящего электричество к катушке.


Подсоединение на 380 В

Подключение контактора, работающего с сетями 380 вольт, почти не имеет отличий от предыдущей схемы. Все различие заключается в поставке электричества на катушку. В первоначальном варианте эта задача решалась путем задействования фазы (L3) и нуля (N), а в 3-х фазном варианте подсоединение производится к двум фазам L2 и L3.

На выполненной схеме хорошо просматривается энергообеспечение катушки пускового устройства (КМ1), подключенной к фазам L2 и L3. Первая проложена через тепловое реле (Р), а вторая – через кнопочный элемент запуска (SB2) и торможения (SB1) и контакт вспомогательного назначения (КМ 1), объединенные друг с другом в последовательной цепи.

Действие данной схемы осуществляется в определенной последовательности. Когда выполнено нажатие на пусковое кнопочное устройство, электричество с одной из фаз подходит к катушке. Под воздействием поля с магнитными свойствами, сердечник втягивается, что вызывает замыкание всей контактной группы на подключенную нагрузку. Напряжение тока, при этом, составляет 380 В. Отпущенная кнопка ПУСК не прерывает питание цепи, которое осуществляется за счет дополнительного подвижного контакта, замкнутого в момент втягивания сердечника.

При возникновении аварийной ситуации срабатывает тепловое реле. Происходит разрыв фазы, отключение питания и обесточивание катушки. Под действием пружин магнитный сердечник возвращается в исходное положение. После размыкания контактов, напряжение на аварийном участке снимается.


Коммутация цепи кнопочным постом

Представленная схема, рассматривающая, как подключить контактор, дополнена вспомогательными кнопочными элементами с функциями пуска и отключения. Обе пусковые кнопки подключаются параллельно, а кнопки остановки – последовательно. При таком соединении коммутация может выполняться с какого угодно поста.

Как правило, в этих кнопках используются две пары контактов – нормально-замкнутого и нормально-разомкнутого типа. Работа данной системы происходит следующим образом. Питание на кнопки поступает с силовых контактов прибора (1). Далее, через кнопку СТОП (2) по нормально замкнутому контакту и перемычке напряжение подходит на кнопку ПУСК (3). После нажатия на нее происходит замыкание нормально-разомкнутого контакта (4). Напряжение доходит до катушки (5) и после ее срабатывания начинается втягивание сердечника. Силовые контакты начинают двигаться и соединяются друг с другом.

Шунтирование контактов пусковой кнопки (4) осуществляется при помощи подсоединения вспомогательного блок-контакта (6). За счет этого магнитный контактор остается включенным, даже если пусковая кнопка отпущена. После нажатия кнопки остановки (7), напряжение с катушки снимается и устройство отключается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *