Схема подключения УЗИП — 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.
Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).
Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.
УЗИП или реле напряжения
Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.
Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.
Также не забывайте, что любая ВЛ устаревает.
Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.
Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.
Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?
Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.
Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”
Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!
Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.
Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.
Поэтому оба устройства РН и УЗИП дополняют друг друга.
Защита дома от грозы
Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.
Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.
Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники.
Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.
Сюда входят как силовые цепи так и слаботочка:
- интернет
- TV
- видеонаблюдение
- охранная сигнализация
Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.
Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.
Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.
Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.
Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.
Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.
На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.
Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.
После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.
Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.
Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.
Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:
То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.
Третий модуль защищает уже непосредственно конкретного потребителя.
Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.
Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.
Схема электрощита с УЗИП
Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.
На вводе перед счетчиком — вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.
Между счетчиком и вводным автоматом — УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.
В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.
Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.
После прибора учета находятся:
- реле напряжения УЗМ-51 или аналог
- УЗО 100-300мА – защита от пожара
- УЗО или дифф. автоматы 10-30мА – защита человека от токов утечки
- простые модульные автоматы
Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?
На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.
Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.
Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.
Схемы подключения
Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:
Здесь самое главное не перепутать место подключения вставного картриджа N-PE.
Схема трехфазного УЗИП в системе TT или TN-S:
Схема подключения 3-х фазного устройства в системе TN-C:
На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.
От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!
А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:
Трехфазная схема:
Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.
Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.
В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.
Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.
Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.
Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.
Принцип действия
Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.
Определить состояние устройства защиты достаточно просто:
- зеленый индикатор – модуль рабочий
- красный – модуль нужно заменить
При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.
УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!
Автоматы или предохранители перед УЗИП
Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.
Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.
В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.
Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.
Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.
При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.
Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.
Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.
Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.
Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.
Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.
Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.
Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.
Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.
Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.
Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:
Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.
И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.
Ошибки при подключении
1Самая распространенная ошибка — это установка УЗИП в электрощитовую с плохим контуром заземления.Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.
2Не правильное подключение исходя из системы заземления.Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.
3Использование УЗИП не соответствующего класса.Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.
Статьи по теме
Схема подключения УЗИП
Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.
Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.
Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта «начинка» щитка у вас может быть совсем другая.
1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.
На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать «фазу», а куда «ноль» можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.
Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.
Также рекомендуется защищать устройства УЗИП с помощью предохранителей.
Думаю тут все понятно. ..
Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.
2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.
На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.
Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.
3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.
Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.
На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.
Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.
Улыбнемся:
Нет постояннее соединения, чем временная скрутка!
схема подключения защиты от импульсных перенапряжений
В любой цепи могут случиться скачки напряжения. При большом значении тока возможен выход оборудования из строя. Чтобы предотвратить это, используется УЗИП.
Что это такое
Приборы для защиты от перенапряжений сетей и электрооборудования с напряжением до 1 кВ называются УЗИП. Они предназначены для предотвращения порчи электрооборудования при скачках напряжения, а также в различных непредвиденных ситуациях. Они используются для ограничения переходных перенапряжений и устранения импульсов тока, чтобы снизить величину перенапряжений до уровня, который безопасен для электрических приборов. УЗИП используются на промышленных предприятиях и
в гражданском строительстве.
Основным российским положением, дающим определение УЗИП, является ГОСТ Р 51992-2002 «Оборудование для предотвращения скачков напряжения в низковольтных распределительных сетях».
SPD стремится обеспечить молниезащиту для систем молниеотводов и заземления зданий (сооружений) или воздушных линий электропередачи (LEP) для защиты высокочувствительного оборудования и устройств от скачков напряжения и скачков импульсного напряжения. Широкий ассортимент УЗИП с возможностью быстрого монтажа, который можно установить на DIN-рейку.
Принцип работы
Принцип действия данных приборов может быть основан на возникновении искрового разряда между двумя проводниками при прохождении тока высокого напряжения. Также имеются устройства, которые собраны на основе нелинейных резисторов. Оба варианты защищают оборудование от перенапряжения путем перенаправления тока в цепь заземления.
Виды
В зависимости от устройства и принципа действия УЗИП делятся на несколько видов.
Коммутирующие защитные аппараты
Также называются искровыми разрядниками. Принцип работы разрядника основан применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, которая соединяет каждую из линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении. Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником обеспечивает резистор, на котором подавляются импульсы высокого напряжения. В большинстве случаев разрядники используются в высоковольтных сетях.
УЗИП-разрядникОграничители сетевого перенапряжения (ОПН)
Эти устройства заменили устаревшие, громоздкие разрядники. Чтобы понять принцип работы ограничителя, необходимо рассмотреть характеристики нелинейного резистора, так как принцип работы разрядника основан на его вольтамперной функции. Варисторы используются в качестве нелинейных резисторов в данных устройствах. Основным материалом для изготовления варистора является оксид цинка. В смеси с другими оксидами металлов образуется компонент, образующий p-n-переход с вольтамперными характеристиками. Когда напряжение в сети соответствует номинальному параметру, ток в цепи варистора близок к нулю. Когда в p-n-переходе возникает перенапряжение, ток резко увеличивается, что приводит к падению напряжения до номинального значения. После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.
ОграничителиКомбинированные УЗИП
Комбинированные приборы работают по принципу разрядника, но также имеют в конструкции резистор. С помощью данной конструкции напряжение не только заземляется, но и параллельно стабилизируется в основной цепи.
Классы
Такие устройства которые можно разделить на несколько категорий:
- Класс I. Предназначен для предотвращения прямого воздействия молнии. Эти устройства должны быть оснащены входным распределительным оборудованием (АСУ) для административных и промышленных зданий и жилых многоквартирных домов.
- Класс II. Они обеспечивают защиту распределительной сети от перенапряжений, вызванных процессом переключения, и выполняют функцию вторичной защиты, чтобы предотвратить воздействие ударов молнии. Они установлены и подключены к сети в щитке.
- Класс III. Они используются для защиты оборудования от импульсов напряжения, вызванных остаточными скачками и асимметричным распределением напряжения между фазовой и нейтральной линиями. Такие устройства также могут работать в режиме фильтра высокочастотных помех. Наиболее удобным для частных домов или квартир является то, что они подключены и установлены непосредственно потребителями. Особенно популярным является изготовление устройства в виде модуля, который можно быстро монтировать на DIN-рейку, или конфигурации с сетевой розеткой или штепсельной вилкой.
Как выбрать
При выборе УЗИП с любым рабочим элементом (варистор, искровой разрядник, пробойный диод) следует учитывать следующие факторы:
- Параметры сети (номинальный ток, напряжение, параметры передачи), эффекты защиты (пропускная способность и уровень напряжения защиты).
- Факторы, влияющие на установку (конструкция, условия подключения).
Принцип защиты силовой цепи заключается в установке УЗИП в соответствии с концепцией области, и при выборе типа важно надежно оценить его текущую нагрузку. Система защиты цепи управления и измерения основана на типе защищаемого сигнала и выборе УЗИП. Сначала необходимо определить параметры защищаемой цепи. В соответствии с номинальным выдерживаемым напряжением, сеть низкого напряжения 380/220 В подразделяется на 4 категории (I — IV) с нормированными значениями 1,5; 2,5; 4,0 и 6,0 кВ. Класс УЗИП соответствует уровню защиты: уровень I-≤4 кВ; уровень II-1,3 … 2,5 кВ; уровень III-0,8 … 1,5 кВ. Уровень защиты выбранного УЗИП не должен превышать выдерживаемое напряжение электросети.
Помимо этого, устройство имеет следующие параметры:
- Номинальное напряжение.
- Максимальное непрерывное рабочее напряжение (рабочее напряжение сети в течение длительного времени).
- Амплитуда импульсного тока, который может пройти, по крайней мере, один раз без повреждений цепи и устройства защиты (для класса I).
- Амплитуда импульса составляет 8/20 мкс, SPD, по крайней мере, один раз неразрушающий (для класса II).
- Амплитуда импульса тока, протекающего через УЗИП, который устройство защиты от перенапряжений может выдерживать многократно.
- Верхний уровень напряжения защиты — характеризует УЗИП, ограничивая напряжение на клемме при протекании тока.
- Допустимый сопутствующий ток (для разрядников).
- Время срабатывания.
Определение системы заземления
Тип системы заземления, используемой в доме, может быть определен тем, как разделены проводники PEN. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из главного распределительного щита дома, а для однофазной цепи только три провода. PEN-проводники разделяются на PE и N компоненты.
На заметку! Если он не разделен, проводка будет работать в соответствии с системой TN-C, с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита.
Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.
Значение защищаемого оборудования
Защищаемые объекты делятся на несколько классов:
- Специальные (критические) объекты вредные для окружающей среды, жизни человека и животных. Примеры: химическая и нефтехимическая продукция, биохимические и бактериологические центры, производство взрывчатых веществ, атомные электростанции и др. Надежность защиты от молниевого удара достигает 0,98 (для отдельных предметов в зонах категории A она может быть установлена на более высоком уровне 0,995). Негативные последствия ударов молнии: пожары, взрывы, выбросы токсичных веществ, повышение радиации на больших площадях, экологические катастрофы, повлекшие за собой непоправимые материальные и человеческие жертвы
- Виды специальных объектов, которые представляют опасность для окружающей среды. Примеры: нефтепереработка, АЗС, мукомольные заводы, деревообрабатывающие заводы, производство изделий из пластмасс и др.
Надежность защиты гарантированно будет равна 0,95. Негативное воздействие ударов молнии: пожары, взрывы в районе и вокруг него. Стены и потолки могут рухнуть, получить серьезные травмы и даже смерть сотрудников и посетителей. В этом случае значительные финансовые потери будут зафиксированы. - Объект — специальная критическая инфраструктура. Типы объектов: предприятия связи и ИКТ, трубопроводный транспорт, линии электропередачи, оборудование центрального отопления, транспортная инфраструктура и др. Надежность защиты от удара гарантирована — 0,9. Негативные последствия ударов молнии: нарушение связи, частичная или полная потеря контроля, прерывание воды и отопления, временное снижение качества жизни и потеря материала.
- Общие, промышленные и гражданские объекты и связанная с ними инфраструктура. Примеры: жилые дома, промышленные здания (до 60 м высотой), дома и хижины в селах, объекты социально-культурного назначения, учебные заведения, больницы и музеи, храмы, церкви. Гарантия от ударов молнии −0,8. Негативные последствия ударов молнии: сильные пожары, повреждения зданий, нарушение транспорта, нарушение систем связи, возможная потеря исторического и культурного наследия. Значительные материальные и финансовые потери. Может привести к травмам или смерти людей.
На заметку! Из приведенной выше системы классификации видно, что любой тип защищаемого объекта отличается от другого с точки зрения характеристик и цели молниезащиты установки и типа заземляющего устройства, его конструкция определяется назначением и расположением конструкции.
Риск воздействия объекта
Подключение УЗИП различной классности совместно с системой заземления снижает риск поломки оборудования из-за скачка напряжения в сети или удара молнии на 80-99%.
Подключение в частном доме
Подключение в частном доме может производиться в однофазную и трехфазную сеть. При этом могут для УЗИП схема подключения может быть различной.
Однофазная электрическая схема (TN-S)
На рисунке показан прибор серии Easy9 от Schneider Electric. Следующие проводники подключены: фаза, нулевой проводник и нулевой для защиты. Здесь он устанавливается сразу после включения автомата. Все контакты для подключения на любом приборе указаны. Следовательно, легко определить, где «фаза», а где «ноль». Зеленая отметка на корпусе указывает на хорошее состояние, а красная отметка указывает на неисправность.
УЗИП схема включения TN-SПредоставленное оборудование относится к классу 2. Одно это устройство не может предотвратить прямые удары молнии. Также рекомендуется защитить оборудование с помощью предохранителя.
Схема включения TN-S с общим УЗОСхема трехфазного сетевого подключения (TN-S)
На этой схеме также показаны устройство серии Easy9, производимые Schneider Electric, но использовавшиеся в трехфазных сетях. На рисунке показано 4-полюсное устройство с нулевым рабочим проводником.
Существует также 3-полюсный прибор той же серии. Используется в системах заземления TN-C. Нет контактов для подключения нейтрального провода.
Защита от импульсных перенапряжений схема подключения TN-S в трехфазную сетьСхема трехфазного сетевого подключения (TN-C)
На рисунке показан переход от TN-C к системе заземления TN-C-S, что требуется по современным стандартам. На первом рисунке показан 4-полюсный входной автоматический выключатель, а на втором — 3-полюсный вход.
Четырехполюный разрядник для защиты от перенапряжений схема подключения TN-CУЗИП — устройство необходимое для полноценной защиты электрического оборудования.
Схема подключения трехполюсного прибораКонструкция может быть собрана на основе резисторов или использовать метод искровых промежутков. Подключение производится по различным схемам к одно- и трехфазной сети.
Устройство защиты от импульсного перенапряжения (УЗИП)
Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.
Причины появления ИП
Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.
Назначение УЗИП
Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).
В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.
Виды УЗИП
По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.
По типу нелинейного элемента делятся на:
● УЗИП коммутирующего типа;
● УЗИП ограничивающего типа;
● УЗИП комбинированного типа.
- УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
- УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
- Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.
Классы УЗИП
УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.
УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.
УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.
Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.
Схемы подключения УЗИП в частном доме
УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.
Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.
По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.
Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.
разновидности перенапряжений, классификация устройств, установка в частном доме
Для предохранения электрического и электронного оборудования от удара молнии предназначена система устройств защиты от импульсных перенапряжений (УЗИП). Схема подключения в частном доме осуществляется с целью безопасности или бесперебойности ее работы. В первом случае происходит полное отключение потребителей, а во втором — обеспечивается безопасная их работа.
Типы импульсных перенапряжений
Напряжение молнии исчисляется десятками, а иногда сотнями тысяч вольт. Поэтому за короткий период она наносит немалый вред, выводя из строя бытовую технику. У холодильников ломается компрессорный двигатель, в блоках питания выгорает первичная цепь преобразователя и т. д.
Большую опасность представляет в этот момент перенапряжение в электрической цепи, так как появляется высокая вероятность возникновения пожара. Причины возникновения скачков напряжения:
- Молнию характеризует стремительный импульс, который пробивает сеть, так как его мощность в несколько раз превышает значение у проводников. Он попадает в электрическую линию, а затем и оборудование внутри дома, и выражается отношением амплитуды напряжения в 10 кВ к длительности ее протекания — 350 мкс.
- К перенапряжению приводят неисправности в электрических цепях, вызванные коммутационными процессами. Это может быть результатом аварии на электростанции или при переключении с одного генератора на другой. В этот момент во вторичной сети может возникнуть мощный импульс, который наносит вред, соизмеримый с молнией.
Перенапряжение характеризуется как аварийное состояние системы во время генерации электрической энергии. Поэтому чтобы защитить электрооборудование от возникновения негативных импульсов, устанавливают УЗИП для частного дома.
Первичные средства
Монтаж устройств защиты от импульсных перенапряжений считается только частью процедуры по защите от возникновения очагов пожара или выхода из строя электрического оборудования. Предварительно следует обеспечить первичные средства защиты от воздействия молнии. В их число входят:
- Вокруг частного дома следует провести металлическую шину и замкнуть ее, что послужит в качестве заземления по всему периметру.
- К пластинам подключаются молниеотводы по краям дома.
- На крыше монтируется основной громоотвод. Если конструкция получается чересчур большой, то громоотводы разделяются на несколько элементов.
- Особенно это касается частных домов с металлической крышей, если рядом с ней проходит электрическая сеть.
Кроме воздействия импульсов от молний, следует учесть другие возможности проникновения помех внутрь дома. Резкое повышение напряжения может произойти в период подключения высоковольтных устройств на подстанции.
Импульс проникает через телевизионный кабель и попадает в телевизор, который скорей всего выйдет из строя. Такая же ситуация может возникнуть с интернет-кабелем, перенапряжение по которым приводит в негодность персональный компьютер. В сложных ситуациях может возникнуть очаг возгорания.
Чтобы воспрепятствовать этим негативным явлениям, следует все линии и оборудование подключить к заземляющему контуру, а во время молний полностью их обесточивать. Вручную это обеспечить практически невозможно, поэтому существует автоматическая защита низковольтных сетей.
Классификация УЗИП
Существует 3 класса разновидности устройств защиты от импульсных перенапряжений. Класс 1 обладает способностью пропустить через себя и выдержать всю энергию от молнии. Устанавливаются такие приборы в сельской местности с воздушными электрическими линиями. Кроме того, рекомендуется их монтаж в домах с громоотводами или зданиях, расположенных рядом с высокими объектами. В квартирах или административных помещениях такие устройства не устанавливаются.
Прибор 2 класса не применяется без первого устройства, так как он не способен выдержать мощность удара молнии. Его эффективность проявляется только при совместном применении.
Устройство 3 класса не используется без двух предыдущих приборов и устанавливается оно непосредственно перед потребителем. К такому типу относится сетевой фильтр или защита в блоках питания некоторых бытовых агрегатов.
Схемы подключения
Для защиты низковольтных сетей существует несколько схем подключения УЗИП. Идеальным вариантом считается комплексное применение устройств, так как удар молний абсолютно не прогнозируем.
Внешняя система
Внешний элемент защиты принимается из расчета, что по его компонентам возможно протекание максимального тока. Защитное устройство устанавливается с возможностью выдержать 100 кА. Чтобы негативный импульс не причинил много бед, его следует отвести по пути наименьшего сопротивления.
Для этого в электрическом щите устанавливается комплексный УЗИП, включающий в себя три степени защиты. Это устройство обладает большой мощностью и скоростью срабатывания, предохраняя оборудование общей мощностью до 20 кВт.
Непосредственно схема его подключения зависит от типа контура заземления.
Если это разделенное на два участка заземление, то в щитке монтируются две отдельные шины: нулевая, заземляющая. Между ними устанавливается перемычка, которая считается дополнительной защитой.
Установка защиты на ответвлении
Возможна установка УЗИП не в распределительном щитке, а непосредственно на ответвлении электрической сети. Например, где воздушная линия расходится на два соседних дома, а контур заземления не обладает молниеотводами.
Иногда устройство устанавливается перед входом в дом и применение УЗИП с 3 классом защиты нерационально. Монтируются приборы, обладающие 1 и 2 классом. Если расстояние от столба до дома превышает 60 м, то в электрическом щитке устанавливается дополнительное устройство со 2 классом защиты.
Отличается способ установки защиты, если дом подключен к подземному кабелю. Аварийная ситуация возникает от других внешних источников, поэтому длительность импульсных помех будет намного меньше. Для защиты достаточно будет установить в распределительный щит УЗИП 2 класса.
Кроме электрических линий, перенапряжение может возникнуть в телевизионных сетях. Часто высоковольтные помехи генерируются на антенных приемниках в домах, где нет молниеотводов. Возникновение кратковременного высокого напряжения в антенном кабеле приводит к выходу из строя селектора телевизора.
Устройство защиты представляет собой антенный переходник с заземляющим устройством. Существуют два типа приборов: для аналогового, спутникового или цифрового телевидения. Различить их можно по соответствующим надписям на корпусе: Radio/TV, SAT.
Сетевой кабель интернет также обладает защитным устройством, которое устанавливается при вводе провода в здание.
Схемы подключения УЗИП к однофазной и трехфазной сетям
Когда требуется подключение УЗИПУстройства защиты от импульсных перенапряжений используются для защиты бытовой техники, сетей и оборудования в частных домах, коттеджах и зданиях. УЗИП необходимы для объектов, питаемых воздушными линиями ВЛ или ВЛЗ. Прибор предназначен для снижения влияния грозы и молнии на напряжение в линиях.
Защитные аппараты различаются по классам, устанавливаются в распределительных щитках дома, или квартиры.
Как выбрать схему подключенияПодбор типа и схемы установки УЗИП зависит от показателей напряжения в сети 220В (одна фаза) и 380В (три фазы).
Задачи, которые выполняют устройства защиты:
- Бесперебойность. В приоритете не допускать перебоя снабжения потребителей. Подразумевает краткосрочное отключение молниезащиты и стабилизацию напряжения в сети.
- Безопасность. В приоритете безопасность сетей и оборудования. Молниезащита не отключается ни на секунду, поэтому возможно прерывание снабжения.
Схема установки и способ монтажа приборов зависит от системы заземления объекта.
Схема подключения к однофазной сетиСистема заземления tn-s соответствует современным требованиям безопасности. Нулевой рабочий (N) и нулевой защитный (РЕ) работают раздельно.
В схеме требуется установить УЗИП, состоящий из двух модулей с двумя отдельными клеммами для подключения фазного, нулевого и защитного проводов.
Система заземления tn-c-s считается комбинированной. Нулевой рабочий (N) и нулевой защитный (РЕ) объединены от источника питания до вводно-распределительного устройства, далее разделены.
Система tn-c самая простая и устаревшая. При ней один провод (PEN) является и нулевым и рабочим проводником одновременно. При подключении УЗИП требуется подобрать простейший защитный аппарат с соответствующим напряжением.
Схема подключения к трехфазной сети
Подразумевает подключение через автомат или предохранитель. Установку УЗИП можно производить до и после установки счетчика. Второй вариант предпочтительнее, так как устройство защитит прибор учета от импульсного перенапряжения при коротком замыкании.
Выбор, установка и подключение УЗИП — зона ответственности собственников индивидуальных домов. Данный прибор поможет сохранить сети, оборудование и всю бытовую технику при ударах молнией вблизи дома. Поэтому пренебрегать УЗИП неразумно.
Сомневаетесь в выборе УЗИП, подходящего для проекта? Обратитесь за консультацией к инженерам компании ЕЗЕТЕК!
назначение, принцип работы выбор по классу и установка по схеме
С началом грозы принято отключать дорогостоящие бытовые приборы из розетки, а ethernet кабели от компьютеров. Это нужно, чтобы защитить их от неожиданного удара молнии в ЛЭП и выхода из строя из-за перенапряжения. Но есть способ гораздо удобнее — установить на ввод в квартиру устройство защиты от импульсных перенапряжений.
Причины и последствия импульсных перенапряжений сети
Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:
- Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
- Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.
Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.
Для чего нужно УЗИП
Задача УЗИП состоит в защите электроприборов от перенапряжения. Устройство оберегает бытовую сеть от скачков тока в следующих случаях:
- неполадки на трансформаторной подстанции и замыкания ВВ проводов на НВ линию;
- прямое попадание грозового разряда в ЛЭП;
- разряд молнии вблизи воздушных линий электроснабжения или жилых зданий.
Строение и принцип работы УЗИП
Принцип работы УЗИП основан на зависимости его сопротивления от приложенного к контактам напряжения. Например, если вольтаж в сети равен типичным 220 В, то сопротивление устройства составляет порядка 1-100 Мом. Если напряжение возрастает до критического уровня, то УЗИП резко снижает сопротивление до единиц ом и шунтирует квартиру от чрезмерно высоких токов.
Внутри устройства имеется полупроводниковый элемент — варистор. Именно он за несколько микросекунд сбрасывает сопротивление до минимальных значений.
Дополнительная информация. Варистор — это круглая, светло-синяя или черная радиодеталь с двумя ножками. Ее диаметр составляет от 7 до 30 мм. Варистор часто встречается в бытовой технике. Он включается между фазным и нулевым проводами электроприбора или впаивается в его плату. В случае с домашней техникой варистор также служит для защиты от перенапряжения, только не всей квартиры, а конкретного бытового прибора, в котором он установлен.
Виды УЗИП
Существующие УЗИП отличаются по быстроте срабатывания. Различия объясняются неодинаковыми конструкциями и принципами работы приборов. Поэтому принято выделять 3 вида устройств молниезащиты:
- Искровые промежутки (разрядники). Представляют собой воздушный зазор между электродами.
- Варисторные ограничители перенапряжения (ОПН). Полупроводниковые устройства. Резко снижают сопротивления при возрастании напряжения. Встречаются в УЗИП, устанавливаемых в квартирные щитки, на платах бытовой техники и на опорах ЛЭП.
- Комбинированные устройства. Сочетают в себе оба из перечисленных типов устройств.
Искровые промежутки (разрядники)
Наиболее старый и простой тип защиты от перенапряжения. Как правило, разрядники используются в трансформаторных подстанциях и распределительных устройствах. На таких объектах возможны резкие скачки напряжения при коммутационных процессах.
Имеется 2 электрода. Один подключается к заземлению. Второй к защищаемой линии. Пока разность потенциалов между электродами находится в пределах нормы, разрядник обладает большим сопротивлением воздуха. Как только напряжение между электродами превышает заданный уровень, происходит пробой воздушного промежутка (пролетает искра). Разрядник на доли секунды сбрасывает сопротивление.
УЗИП на основе искровых разрядниковНапряжение срабатывания разрядника регулируется расстоянием между электродами. Чем оно больше, тем выше вольтаж, при котором произойдет пробой воздушного промежутка.
Важно! Если долго проходить в помещении в синтетической куртке, а потом прикоснуться к чему-то металлическому, то между пальцем и железным предметом пролетит искра. Произойдет пробой воздушного промежутка между заряженной от трения курткой и железным предметом. Разрядники работают по аналогичному принципу.
Варисторные ограничители перенапряжения
Низковольтный вариант данного устройства применяется в квартирных электрощитах. Для этого на корпусе предусмотрено стандартное крепление под DIN-рейку. Прибор работает с напряжениями 220/380 В и предохраняет от перенапряжения отдельную квартиру или трехфазного потребителя.
Высоковольтный вариант устанавливается на линии 10 кВ и выше. Обладает сравнительно большими размерами и мощным керамическим корпусом белого или коричневого цвета. Данный ограничитель импульсных перенапряжений еще называют вентильным разрядником (не путать с искровым промежутком).
Ограничитель импульсных напряжений на варисторахКомбинированные устройства
Комбинированные УЗИП сочетают достоинства от вышеперечисленных защитных устройств. Основные из них таковы:
- Низкое напряжение срабатывания варисторных ОПН. Как следствие, высокая чувствительность к самым незначительным превышениям напряжения.
- Большая рассеиваемая мощность искровых разрядников. Некоторые модели способны пропускать токи в десятки килоампер.
Классы УЗИП
Различные модели УЗИП отличаются по типу защищаемого потребителя, месту установки и техническим требованиям. Поэтому их принято разделять на 3 класса.
Класс УЗИП | Назначение устройства | Технические требования | Предельный импульсный ток, кА |
---|---|---|---|
1-й (B) | Защита от прямых ударов молнии, бросков напряжения при КЗ. | Необходима защита от прямого прикосновения человека к частям устройства. Отсутствиериска возгорания УЗИП при его неисправности или КЗ в системе электроснабжения. | От 0,5 до 50 кА при импульсном токе в течение 350 мкС. |
2-й (C) | Для защиты ЛЭП и подстанций от перенапряжений при переключениях. Как дополнительные мерызащиты при ударе молнии. | Аналогичные1 классу. Защита от прямого прикосновения. Отсутствие риска возгорания при КЗв сети или неисправности защитного устройства. | 5 кА при импульсе в 20 мкС. |
3-й (D) | Для гашения остаточных сетевых помех и скачков напряжения. | Защита от низковольтного перенапряжения между фазой и нулем. От прямого прикосновения ивозгорания. | До 1,5 кА при 20 мкС |
Маркировка защитного устройства
Для правильного выбора и установки устройства необходимо ознакомиться с его маркировкой. Она представлена в буквенно-цифровом виде и находится на корпусе УЗИП. Расшифровка обозначений приведена ниже.
- L/N — винтовые клеммы для подключения кабелей защищаемой сети;
- символ «земля» — клемма для подключения нулевого защитного проводника;
- зеленый флажок на корпусе — указывает на исправность прибора;
- Un — номинальное рабочее напряжение защищаемой сети;
- Umax — предельное допустимое напряжение;
- 50 Гц — частота тока;
- In — номинал разрядного тока;
- Imax — предельный разрядный ток, который способны выдержать устройство;
- Uр — напряжение срабатывания УЗИП.
Схемы подключения
Для подключения защитного устройства недостаточно ознакомления с его характеристиками. Дополнительно следует учесть и параметры питающей сети. В странах СНГ наиболее распространены такие ее виды:
- однофазная, TN-S;
- однофазная, TN-C;
- трехфазная, TN-S;
- трехфазная, TN-C;
УЗИП с однофазным питанием и системе TN-S
На картинке ниже представлена схема подключения. УЗИП включается после вводного автоматического выключателя. Как фазный, так и нулевой провод, на защитное устройство поступает с автомата. Заземляющий же проводник идет с PE клеммника.
УЗИП с однофазным питанием по системе TN-C
Применяется однополюсной прибор. Заземляющий проводник отсутствует. Поэтому устройство защиты от перенапряжений подключается между фазным и нулевым. При критическом скачке напряжения в L проводе лишний ток, минуя квартиру, потечет в N провод.
УЗИП с трехфазным питанием и по системе TN-S
Устройство защиты устанавливается после вводного автомата. Если поставить его после счетчика, то в случае удара молнии дорогой прибор учета выйдет из строя. Все 3 фазы поступают на УЗИП в соответствии с маркировкой его клемм. При таком подключении стабильность напряжения контролируется не только между фазой и землей, но и между отдельными фазами.
УЗИП с трехфазным питанием по системе TN-C
В трехфазной сети желательно использовать модульное устройство защиты на 3 полюса. Но при необходимости допустимо воспользоваться и 3 однофазными УЗИП. Независимо от комплектации уровень напряжения будет контролироваться между всеми фазными проводниками и нулем.
Автоматы или предохранители перед УЗИП
На вводе в любую квартиру в обязательном порядке монтируется устройство защиты от КЗ или перегрузки по току. Раньше применялись пробки (плавкие вставки). Сейчас в ходу автоматические выключатели.
УЗИП монтируется после этих устройств. При превышении напряжения оно замыкает свои контакты. Далее возникает огромный ток короткого замыкания. Если перед УЗИП стоит плавкая вставка, то она перегорит. Ее необходимо будет заменить новой. Если автоматический выключатель, то он сработает, и его достаточно будет просто включить.
В контексте ОИН специалисты рекомендуют именно плавки вставки. Объясняется это простотой их устройства и меньшими рисками перекрытия высоким напряжениям. То есть если под превышенным потенциалом окажется автомат, то есть риск, что внутри него образуется дуга, и он не выполнит защитную функцию. С плавким предохранителем такая опасность минимальна. Однако они обладают меньшей быстротой действия чем автоматы.
Важно! Не следует ремонтировать пробки и изготавливать так называемые «жучки». Это быстро, дешево и просто, но периодически приводит к серьезным последствиям. В идеале лучше иметь пробки на запас или установить автоматические выключатели.
Ошибки монтажа УЗИП
При правильной установке защитное устройство гарантирует безопасность бытовых электроприборов. Распространенные примеры ошибок при монтаже УЗИП следующие:
- Монтаж УЗИП в щиток с неисправным заземлением. Для работы устройство требует надежной земли. Поэтому перед установкой необходимо убедиться в исправности заземления.
- Неправильное подключение с нарушением схемы. Корректно подключить УЗИП может только человек, разбирающийся в электрике. В случае затруднений следует обратиться к типовым схемам в технической документации на устройство.
- Применение защитного аппарата, не подходящего по классу. При ударе молнии такое устройство в лучшем случае выйдет из строя. В худшем оно пропустит высокое напряжение в квартирную электрическую сеть.
В подавляющем большинстве случаев УЗИП защитит ваш дом от импульсных перенапряжений. Они возникают в результате ударов молнии вблизи ЛЭП или аварий на трансформаторных подстанциях. Подобные вещи невозможно предсказать заранее, поэтому защита от перенапряжений пойдет на пользу любому электрощиту.
Независимо от того, приобретается УЗИП для частного дома или квартиры, следует обратить внимание на его класс. Другие важные параметры — это минимальное напряжение срабатывания, предельный импульсный ток КЗ и количество защищаемых фаз. Не менее значимо правильно выбрать схему подключения прибора к сети.
Устройство защиты от импульсных перенапряжений (УЗИП): назначение, принцип работы выбор по классу и установка по схеме
Правильная установка проводного устройства защиты от перенапряжения
Очень важно следовать инструкциям производителя по установке. Обратите особое внимание на требования к предохранителям или прерывателям, а также на длину проводов.
Также важно, чтобы электрическая распределительная система была заземлена и соединена в соответствии с Национальным электрическим кодексом®. Невыполнение этого требования может привести к повреждению SPD.
На характеристики подключенных параллельно устройств защиты от переходных процессов влияют соединительные провода.Как размер провода, так и длина, используемые для подключения SPD, будут влиять на его работу.
Соединительные провода:
Переходные процессы имеют быстрорастущие волновые фронты. Обычно скорость нарастания тока (di / dt), связанного с скачками, может составлять 100 ампер в микросекунду или быстрее. Самоиндукция (L) соединительной проводки значительна (0,1 мкГн на фут) и может препятствовать подавлению высоких напряжений во время прохождения волнового фронта.
Падение напряжения (V = L di / dt) на соединительных выводах добавляется к напряжению на элементах подавления, что ухудшает характеристики SPD из-за увеличения остаточного напряжения.
Рис. 1. Характеристики SPD зависят от длины соединительного провода.
Самоиндукция проводки пропорциональна как ее длине, так и логарифму ее толщины. Уменьшение длины соединительных проводов вдвое приводит к уменьшению индуктивности вдвое, но для достижения того же эффекта необходимо увеличить толщину в десять раз. Многожильные провода имеют большую эффективную толщину, чем сплошные проводники эквивалентного размера из-за скин-эффекта на общую площадь поверхности.
Толстые короткие многожильные соединительные провода обеспечивают наилучшие характеристики SPD.Однако короткая длина намного важнее, чем большой размер провода.
Рисунок 2. Пример процедуры установки
Пример процедуры установки производителя:
Расположите SPD как можно ближе к защищаемой панели.
Просверлите и пробейте отверстие в корпусе SPD, чтобы минимизировать длину соединительных проводов от наконечников SPD до автоматического выключателя в соседней панели (или наконечников разъединителя с предохранителями).
По возможности используйте соединение с закрытыми ниппелями, при этом провода идут непосредственно к первому выключателю в верхней части панели. Это обеспечивает оптимальную защиту всех подключенных к панели нагрузок.
Используйте многожильный провод AWG # 10 или большего размера (который легко доступен и легко устанавливается) для соединения между SPD и панелью выключателя. Избегайте резких изгибов и чрезмерной длины проводки. Аккуратные и аккуратные установки не обязательно являются самыми эффективными. Лучше всего короткие прямые соединения.
УЗИПследует подключать через автоматический выключатель соответствующего номинала, а не в основные проушины панели. Если автоматические выключатели недоступны или непрактичны, следует использовать выключатель с предохранителем для подключения к линиям и облегчения обслуживания SPD.
ПРИМЕЧАНИЕ: Этот пример представляет один из многих допустимых способов установки проводных SPD. Обратитесь к производителю за предлагаемыми процедурами установки.
Обзор защиты от перенапряжения Скачок Кратковременный всплеск перенапряжения или нарушение в линии питания переменного тока, длительностью несколько миллисекунд или меньше. |
Скачок
протекторы изнашиваются: устройства защиты от перенапряжения используются постоянно. Есть 3 типа всплесков: Разрушающий входит в электронику и вызывает неисправность логики и блокировку. Диссипативный повторяется, пульсирует короткой продолжительностью, вызывая преждевременное прекращение оборудование. Разрушительный это энергия высокого уровня, которая вызывает немедленный отказ оборудования. Устройства защиты от перенапряжения используются постоянно. Они изнашиваются. Скачок — это переходная волна напряжения или тока.Продолжительность
не строго определен, но обычно составляет менее нескольких миллисекунд. |
Скачок
защита защитит: -защита от большинства, но не всех ближайших молний ударов за 100 футов… как в воздухе, так и с земли. -защита от большинства скачков напряжения в сети, вызванных трансформатором энергокомпании Варианты -защищают от большинства скачков напряжения в сети, вызванных ударами молнии в электросеть поблизости … у местного трансформатора есть предохранитель / грозовой разрядник, который отключения открываются, но скачок напряжения все еще может перескочить на соседние провода. -защита от скачков напряжения, вызванных возобновлением подачи электроэнергии после отключения электроэнергии. Скачок защита НЕ защитит: -от молнии удары в пределах 100 футов: установить громоотвод: подключить все заземление провода и заземляющие стержни в единый массив для защиты от перенапряжения и защитить автоматические выключатели. -от под напряжением провода, которые превышают допустимое значение перенапряжения — перегорели или низкое напряжение: установите фазовый монитор — могут не защитить домашние устройства от повторяющиеся перенапряжения, создаваемые оборудованием, таким как настольная пила или неисправный двигатель и т. д. Выключатели освещения, двигатели и воспламенитель печи могут быть генераторы перенапряжения: проверить защиту от перенапряжения на предмет периодической замены Купить: Целом домашние устройства защиты от перенапряжения на Amazon |
Разница
между: всплеск, затухание, земля
неисправность, линейный шум Скачок: слишком много электронов движется по проводу: Причина: неисправность сети, моторы, молнии и т. д.Результат: моторы, электроника, станки, таймеры, приборы и т. д. могут перестать работать или перегореть. Решение: установить сетевой фильтр, описанный на этой странице. Brownout: есть слишком мало электронов на проводе: пониженное напряжение для обычного дома обычно напряжение ниже 85% от номинального. Результат: лампочки тусклый, электроника перестает работать до восстановления нормального питания, двигатели тормозить и перегревать. Чтобы защитить двигатели и систему отопления, вентиляции и кондиционирования воздуха от перебоев, поверните выключенный мощность. Установить фазовый монитор Также читайте про компрессор defender Phase флуктуации: слишком мало или слишком много электронов на одном проводе и а не другой провод (а).Результатом является несимметричное напряжение, которое приводит к тому, что двигатели насосы и HVAC для замедления, перегрева и сгорания. Для защиты двигателей и HVAC. Установить фазовый монитор Земля неисправность: электроны неконтролируемо устремляются на землю. Также называется короткий. Сработает автоматический выключатель. Высокий риск поражение электрическим током, если ваше тело — это путь, по которому следуют электроны. Земля провод необходим для всех электроустановок. Зачем нужен заземляющий провод. GFCI мгновенно отреагирует на замыкание на землю, намного быстрее, чем автоматический выключатель.Установите выключатели и розетки GFCI для более опасных зон: ванная комната, кухня, прачечная, на открытом воздухе и т. д. Подробнее о GFCI Line Noise: электроны ведут себя хаотично, а не движутся предсказуемо: скачок защита не предназначена для фильтрации линейных помех … если только указано. Результат: Устройства и процессы воздействия линейного шума, которые требуется «чистая» электроэнергия. Производство микропроцессоров требует очень чистая электроэнергия. Сетевые фильтры уменьшают высокие частоты линия распространение шума на бытовые провода из-за использования копировального аппарата, дуги сварщик, диммер. В современных электронных устройствах есть фильтры, а в некоторых нет. Например, некоторые цифровые таймеры могут не иметь фильтра. Линейный шум будет искажаться программирование таймера, в то время как скачок напряжения может полностью уничтожить функциональность таймера. Нажмите и удерживайте кнопку сброса, чтобы видишь ли, если функция возвращается. Купить по моей партнерской ссылке: Line фильтр шума |
Электрооборудование
сноски: — Множественный скачок протекторы на одной линии или в нескольких местах полезны, и защитит лучше по мере увеличения расстояния… потому что всплеск, например молния, может попасть в провода где угодно. -Несколько автоматических выключателей и предохранителей в одной линии или в нескольких локации защитят электрическую систему. — Все устройства должны быть заземлены, и все заземления должны быть соединены вместе в единый массив для поглощения скачков напряжения, защиты от поражения электрическим током и увеличить ожидаемый срок службы автоматического выключателя. Сюда входят заземляющие провода для электрическое, спутниковое ТВ, кабельное ТВ, интернет-телефония и т. д. -Несколько GFCI на одной линии вызовут отключение и неисправность. |
Как установить устройство защиты от перенапряжений Intermatic
Как установить устройство защиты от перенапряжений Intermatic — INYOPools.com- Дом
- Как руководить
- Как установить устройство защиты от перенапряжений Intermatic
Чтобы обеспечить максимальное удобство работы на нашем веб-сайте, мы требуем, чтобы в вашем браузере был включен JavaScript.
Вот инструкции, как включить JavaScript в вашем веб-браузере.
После включения Javascript обновите эту страницу.
Или позвоните нам по телефону 407-834-2200, и мы будем рады принять ваш заказ по телефону.
Типичный бассейн может иметь несколько единиц дорогостоящего оборудования, подключенного к коробке автоматического выключателя, которое может быть повреждено из-за скачка напряжения.Устройство защиты от перенапряжения (SPD) Intermatic, модель PS3000 может быть легко установлено для защиты этих частей оборудования. В этом руководстве показано, как установить устройство защиты от перенапряжения Intermatic на стороне нагрузки сервисной панели. Примечание. Это устройство не защищает от прямых ударов молнии или от ударов поблизости. Рекомендуется, чтобы это устройство установил квалифицированный лицензированный электрик в соответствии со всеми государственными и местными электротехническими нормами.
Copyright © 2021 INYOpools Все права защищены
AC 220V / 120V Схемы защиты от перенапряжения
Скачки напряжения иногда могут быть большой помехой с точки зрения безопасности различных электронных устройств.Давайте узнаем, как сделать простые схемы сетевого фильтра переменного тока в домашних условиях.
Что такое устройство защиты от перенапряжения
Устройство защиты от перенапряжения — это электрическое устройство, предназначенное для нейтрализации незначительных скачков напряжения и переходных процессов, которые обычно возникают в электросетях. Обычно они устанавливаются в чувствительное и уязвимое электронное оборудование, чтобы предотвратить его повреждение из-за этих внезапных беспрецедентных скачков и колебаний напряжения.
Они работают, мгновенно закорачивая любое избыточное высокое напряжение, которое может появиться в сети переменного тока на длительное время.
Эта продолжительность обычно длится в микросекундах. Все, что превышает этот период времени, может вызвать возгорание или повреждение самого ограничителя перенапряжения.
Что такое скачок напряжения
Внезапный скачок напряжения — это, по сути, резкое повышение напряжения, продолжающееся не более нескольких миллисекунд, но достаточное, чтобы вызвать повреждение к нашему драгоценному оборудованию практически мгновенно.
Таким образом, становится необходимым остановить или заблокировать их от проникновения в уязвимые электронные устройства, такие как наши персональные компьютеры.
Коммерческие устройства для защиты от шипов, хотя и доступны довольно легко и дешево, им нельзя доверять и, кроме того, в них нет системы проверки надежности, так что это становится просто «предполагающей» игрой, пока все не закончится.
Рабочий проект
Схема простого устройства защиты от перенапряжения сети переменного тока, показанная ниже, которая показывает, как сделать простое самодельное устройство защиты от высокого тока сети переменного тока, основана на очень простом принципе «скоростного отключения» начального толчка через компоненты, которые хорошо оборудован в поле.
Простого стального резистора и комбинации MOV более чем достаточно для обеспечения необходимой защиты.
Здесь R1 и R2 представляют собой 5 витков железной проволоки (толщиной 0,2 мм) над воздушным сердечником диаметром 1 дюйм, за каждым из которых следует подключенный к ним варистор соответствующего номинала или MOV, чтобы стать полноценной системой защиты от шипов.
Внезапно высокий переменный ток, поступающий на вход шипа, эффективно устраняется, «жало» поглощается соответствующими частями, и безопасная и чистая сеть проходит через подключенную нагрузку.
Расчеты и формулы варистора на основе оксида металла (MOV)
Расчет энергии во время приложения такого импульса дается формулой:
E = (Vpeak x I peak) x t2 x K
где:
Ipeak = пиковый ток
Vpeak = напряжение при максимальном токе
β = задано для I = ½ x Ipeak до Ipeak
K является константой, зависящей от t2, когда t1 составляет от 8 мкс до 10 мкс
Низкое значение β соответствует низкому значению Vpeak, а затем до низкого значения E.
Устройство защиты от переходных процессов с использованием индукторов и MOV
Вопрос относительно предотвращения скачков напряжения в электронном балласте
Привет, swagtam, я нашел ваш адрес электронной почты в вашем блоге.Мне действительно нужна твоя помощь. На самом деле у моей компании есть заказчик в Китае, мы производим УФ-лампы и используем для них электронный балласт. Теперь проблема в Китае из-за перенапряжения, балласт перегорел, поэтому я разработал схему, которая находится в приложении, которая тоже не помогает?
, поэтому я нашел вашу идеальную схему защиты от высокого / низкого напряжения, которую я хочу построить. или вы можете сказать мне обновление, если я могу сделать в моей схеме, что будет здорово. извините, если я вас обоих. но мне действительно нужна твоя помощь, чтобы спасти мою работу, спасибо, Кришна Шах
Решение
Привет, Кришна, По моему мнению, проблема может быть не в колебаниях напряжения, а скорее из-за внезапных скачков напряжения ваш контур балласта.Схема, показанная вами, может оказаться не очень эффективной, потому что в ней нет резистора или какого-либо барьера с MOV. Вы можете попробовать следующую схему, введя ее в точку входа в схему балласта.
Надеюсь, что это сработает:
Примечание. Резисторы на 10 Ом должны иметь размерность в соответствии с током нагрузки. Формула для их расчета: R1 + R2 = Supply V — Load V / Load CurrentИспользование NTC и MOV
На следующем изображении показано, как два разных устройства подавления внезапного высокого напряжения могут быть связаны с линией электросети для достижение обоюдоострой безопасности.
NTC здесь обеспечивает начальное включение тока при защите от бросков, предлагая более высокое сопротивление из-за его начальной более низкой температуры, но в ходе этого действия его температура начинает повышаться, и он начинает пропускать больший ток для прибора до нормальной работы достигнутые условия.
MOV на другой стороне дополняет выход NTC и гарантирует, что в случае, если NTC не может правильно остановить натиск повышающего всплеска, он сам включается, замыкая остаточное высокое переходное содержание на землю и, как результат, устанавливает максимально безопасный питание подключенной нагрузки или прибора.
Схема сетевого фильтра и подавления перенапряжения радиочастотных помех
Если вы ищете схему сетевого фильтра переменного тока с комбинированной защитой от подавления радиочастотных помех (RFI) и контролем скачков напряжения, то следующая конструкция может оказаться весьма удобной.
Как мы видим, входная сторона защищена NTC и MOV. MOV заземляет любой мгновенный скачок напряжения, в то время как NTC ограничивает скачок максимального тока.
Следующий каскад представляет собой линейный фильтр радиопомех, состоящий из небольшого ферритового трансформатора и нескольких конденсаторов.Трансформатор задерживает и блокирует прохождение любых входящих или исходящих радиопомех по линии, в то время как конденсаторная сеть усиливает эффект, заземляя остаточную высокочастотную составляющую по линии.
Трансформатор построен на небольшом ферритовом стержне, имеющем две идентичные обмотки, намотанные одна на другую, и одно из концевых соединений обмотки, переставленное местами между входной / выходной нейтралью.
ПРИНЦИП И КОНСТРУКЦИЯ ЦЕПИ ЗАЩИТЫ ОТ НАПРЯЖЕНИЯ
Схема защиты от перенапряжения — это та, которую многие называют защитой от скачков напряжения в линиях сети переменного тока; однако это не ограничивается конкретно линиями сети переменного тока.Устройство защиты от перенапряжения или устройство защиты от перенапряжения — это устройство, которое обеспечивает подавление перенапряжения или скачков напряжения, чтобы чувствительные устройства не были повреждены.Устройство защиты от перенапряжения может выдерживать скачки напряжения до нескольких киловольт (в зависимости от типа устройства защиты от перенапряжения). Существуют также ограничители перенапряжения, рассчитанные только на несколько сотен вольт, и так далее. Хотя устройство защиты от перенапряжений спроектировано так, чтобы выдерживать скачки высокого напряжения в течение короткого периода времени, оно не рассчитано на работу с высокими напряжениями в течение длительного времени.
Что такое скачок?Всплеск в целом — это внезапное увеличение уровня или величины от нормального или стандартного значения. В электричестве скачок напряжения часто используется для описания переходного процесса напряжения, скачка напряжения или скачков напряжения. Скачок или скачок напряжения или переходный процесс не являются постоянным событием. Это происходит только в течение короткого периода времени, но более чем достаточно для уничтожения устройств, если нет контрмер.
Скачок напряжения присутствует не только в линиях электропередач, но и в цепях с индуктивными свойствами.Однако скачок напряжения в линиях электропередач является наиболее разрушительным, поскольку может достигать нескольких киловольт.
На рисунке ниже показан скачок напряжения в сети переменного тока.
Устройство защиты от перенапряжения для переходных процессов в сети переменного тока обычно устанавливается в домах, офисах и зданиях, чтобы предотвратить повреждение приборов или устройств. Он должен быть установлен в том разделе, где все устройства или устройства получают свои источники. Таким образом, все устройства будут защищены от скачков и скачков напряжения в сети.Такой подход называется универсальной защитой от перенапряжения . Универсальный сетевой фильтр может не понадобиться, если все приборы или устройства имеют свою локальную схему защиты от перенапряжения.
Две основные категории схем защиты от перенапряжения, используемых в линиях электропередач1. Первичный ограничитель перенапряжения
Устройство первичной защиты от перенапряжения устанавливается на вводе электропроводки дома, офиса или здания. Он защитит все устройства или устройства, которые подключаются к линии после точки входа.В общем, первичный сетевой фильтр очень мощный; однако он огромный и громоздкий, а также дорогой.
2. Вторичный ограничитель перенапряжения
Вторичный сетевой фильтр не такой эффективный и мощный, как первичный.
Однако он портативен и удобен в использовании. В основном, этот тип устройства защиты от перенапряжения легко подключается к розеткам. Он обеспечивает защиту только устройствам, которые получают питание от розетки, к которой установлен вторичный сетевой фильтр.
На схеме ниже показано, как в здании устанавливаются первичные и вторичные устройства защиты от перенапряжения.
Общие типы вторичных цепей защиты от перенапряженияИзвестно несколько вторичных схем защиты от перенапряжения. Один из них — это так называемые удлинители . Разветвители питания легко подключаются к розетке. Помимо этого, он поставляется с несколькими розетками, к которым могут подключаться несколько устройств и устройств, которые защищены от скачков напряжения.Наиболее важной особенностью удлинителя является возможность отключения питания в случае скачка напряжения.
Другой известный тип вторичного устройства защиты от перенапряжения — это хорошо известный ИБП или источник бесперебойного питания . Некоторые сложные ИБП имеют встроенное устройство защиты от перенапряжения, обеспечивающее те же функции безопасности, что и удлинитель.
Как работает сетевой фильтр?Есть разновидность устройства защиты от перенапряжения
, который может отключить питание при скачке напряжения.Этот тип устройства защиты от перенапряжения сложнее, сложнее и, конечно, дорого. Основными компонентами этого типа являются датчик напряжения , контроллер и схема фиксации / разблокировки . Датчик напряжения будет следить за линейным напряжением, контроллер считывает измеренное напряжение и решает, когда сигнализировать о прекращении напряжения в цепи фиксации / разблокировки. Схема фиксации / разблокировки представляет собой управляемый силовой контактор или выключатель питания, который может подключать или отключать сетевое напряжение.
Существует также устройство защиты от перенапряжения, которое не обеспечивает отключение напряжения, а просто ограничивает переходные процессы напряжения и поглощает энергию. Этот тип защиты от перенапряжения обычно используется как встроенная защита от перенапряжения, например, в импульсных источниках питания. Этот тип защиты эффективен до нескольких тысяч вольт. Этот тип защиты от перенапряжения лучше всего описать в схеме, показанной на рисунке ниже.
Устройство защиты от перенапряжения 1 в ЛИНИИ 1 и 2 переменного тока называется подавлением перенапряжения в дифференциальном режиме.В то время как оба устройства защиты от перенапряжений 2 и 3 называются синфазным подавлением перенапряжения. Подавление скачков напряжения в дифференциальном режиме ограничивает любые скачки напряжения на ЛИНИИ 1 и 2 переменного тока. Он называется дифференциальным, потому что он устанавливается поперек двух проводов под напряжением. С другой стороны, общий режим — это термин, используемый для устройств защиты от перенапряжения 2 и 3, поскольку оба являются ограничением переходных процессов напряжения на отдельном горячем проводе по отношению к земле или земле. В не столь жестких требованиях к перенапряжению устройства защиты от перенапряжения 1 уже достаточно, чтобы соответствовать стандарту.Однако
Для очень строгих требований, таких как повышенное импульсное напряжение, добавляются устройства защиты от перенапряжения 2 и 3.
Существует несколько факторов, вызывающих скачок напряжения. Это может быть из-за молнии, переключения энергосистемы, например, конденсаторных батарей, резонансных цепей с переключающими устройствами, неисправной проводки, а также внезапного включения и выключения переключателей, электродвигателей и других высокоиндуктивных приборов и устройств. Скачки напряжения в сети переменного тока присутствуют в любой точке мира.Поэтому рекомендуется защитить устройства и приборы от этого разрушительного события.
Некоторая распространенная среда перенапряженияЭто распространенный путь, по которому скачки напряжения или скачки напряжения могут попасть в устройства или устройства, использующие его.
Линии электропередач — это среда номер один для перенапряжения, поскольку все электрические и электронные устройства используют энергию от линии переменного тока. Скачки напряжения в сети переменного тока распространены во всем мире.
РЧ линии — включая антенну.Антенна восприимчива к ударам молнии. Молния способна вызвать очень высокий всплеск напряжения за короткое время. Когда молния ударяет в антенну, она проникает в РЧ-приемник.
Автомобильный генератор — В автомобильной электронике также определяется скачок напряжения. Это связано с тем, что генератор переменного тока может создавать выбросы высокого напряжения во время сброса нагрузки.
Индуктивные цепи / нагрузки — любые индуктивные цепи или нагрузки всегда создают импульсное напряжение.Чаще всего этот выброс называют индуктивной отдачей.
Стандарт перенапряжения, определенный IECIEC 61000-4-5 определяет стандарт для перенапряжения в линиях питания переменного тока. В таблице ниже даны конкретные объяснения классов и уровней напряжения. Таблица взята из ссылки ниже
В соответствии с этим стандартом максимальное переходное напряжение, которое устройство должно выдерживать и выдерживать, составляет 4 кВ для класса 4 (хотя есть класс 5, но он по-прежнему называется классом 4).
Переходное напряжение, определенное стандартом IEC 61000-4-5 , смоделировано с помощью рисунка ниже.Он имеет нарастание на 1,2 мсек при ширине импульса 50 мксек. Таблица взята из ссылки ниже
AN4275 компании STMicroelectronics.
IEC 61000-4-5 также определяет формы тока короткого замыкания, как показано на рисунке ниже. Он имеет нарастание 8 мксек и ширину импульса 20 мксек. Таблица взята из AN4275 компании STMicroelectronics.
В таблице ниже указан соответствующий уровень импульсного тока или тока короткого замыкания для каждого класса. Наихудшее значение — 2000 А. Таблица взята из AN4275 компании STMicroelectronics.
Что это за ток короткого замыкания согласно IEC 61000-4-5? Чтобы ответить на этот вопрос, позвольте мне начать с того, что все оборудование, подключенное к линиям электропередач, должно иметь защиту от перенапряжения. Защита от перенапряжения работает путем ограничения переходных процессов напряжения до более безопасного уровня. Как только схема защиты от перенапряжения сработает, произойдет короткое замыкание от источника к устройству защиты и обратно к заземлению источника.
Как разработать схему защиты от перенапряженияСпроектировать устройство защиты от перенапряжения несложно.Фактически, встроенная защита от перенапряжения для некоторого электронного оборудования может быть только одним устройством. Это может быть MOV, металлооксидный варистор или ограничители переходных напряжений TVS. Предположим, что на приведенном ниже рисунке устройства защиты от перенапряжения с 1 по 3 могут быть MOV или TVS.
Иногда устройства защиты от перенапряжения между линиями переменного тока достаточно, чтобы соответствовать стандарту IEC. В некоторых случаях требуется схема защиты от перенапряжения между линией и землей. Это особенно важно при более высоких требованиях к импульсному напряжению (4 кВ и выше).
Использование MOV в качестве устройства защиты от перенапряжения Основные свойства
- MOV — Металлооксидный варистор; обычно используется защита от перенапряжения в линиях электропередач
- MOV — резистор, зависящий от напряжения
- MOV Принцип работы похож на диод, который имеет нелинейные и неомические характеристики тока и напряжения, но двунаправленный
- Его работу также можно сравнить с двунаправленным ограничителем переходного напряжения TVS .
- Когда напряжение зажима не достигается, происходит разрыв цепи
Ниже представлена вольт-амперная кривая MOV.Как видите, он имеет почти постоянное напряжение в квадрантах 1 и 3, что делает его двунаправленным устройством. ZnO и SiC обозначают оксид цинка и карбид кремния соответственно. Это два распространенных материала, из которых изготавливается MOV.
Выбор устройстваДля универсальной линии 90–264 В переменного тока обычное номинальное напряжение MOV будет 300 В среднеквадратического значения. 300Vrms — это среднеквадратичное значение или постоянное приложенное напряжение, которое может выдержать MOV. Это еще не напряжение зажима. Например, мы собираемся использовать предохранитель TMOV14RP300ML2B7 от Littel, его номинальное напряжение переменного тока составляет 300 В переменного тока, но его напряжение фиксации составляет 775 В при пиковом токе 50 А, в соответствии с таблицей данных.
Следующее, что нужно проверить, это то, что номинальный импульсный ток MOV способен выдерживать уровень, указанный в таблице 2 выше (с учетом максимального уровня). Основываясь на выбранной таблице данных MOV ниже, при 2000 А и длительности импульса 20 мкс, MOV способен обрабатывать более 15 ударов, но менее 100 ударов. Я нанес пунктирную линию на графике устройства, оценивая 2000А.
Хотя в таблице данных указано напряжение зажима, оно может больше не действовать при 2000 А. График ниже показывает соответствующее напряжение ограничения при 2000 А с использованием выбранного MOV.Пересечение желтых линий — это напряжение зажима. Обратите внимание, что оно уже больше 1000 В. Убедитесь, что все устройства, используемые в оборудовании, могут выдерживать этот уровень напряжения. В противном случае рассмотрите другой MOV с более низким напряжением ограничения.
MOV Идеальное место для защиты от скачков напряжения в линии электропередачMOV, который действует как устройство защиты от перенапряжения, должен быть установлен в непосредственной близости от предохранителя, как показано на рисунке ниже. При таком подключении, когда импульсный ток становится слишком большим, чтобы его мог обработать MOV, предохранитель выйдет из строя и разомкнет цепь и предотвратит возможный катастрофический отказ.
Подавление перенапряжения в автомобилестроенииКак упоминалось выше, скачки напряжения происходят не только в линиях электропередачи переменного тока. Скачки напряжения также очень распространены в автомобильных системах. В автомобильной системе используется только свинцово-кислотная батарея с типичным напряжением полной зарядки около 12,9 В для 6 последовательно соединенных ячеек с напряжением 2,15 В на каждую ячейку. В расчетах часто используется максимальное напряжение батареи 14 В. Этот уровень не является разрушительным, и устройств с рейтингом 30 В более чем достаточно, чтобы выжить в долгосрочной перспективе.Однако такое восприятие верно только в установившемся режиме, но не во время так называемого «сброса нагрузки». Сброс нагрузки — это термин, используемый для описания внезапного отключения аккумуляторной батареи во время ее зарядки генератором переменного тока. Для системы с напряжением 12 В сброс нагрузки может привести к скачку напряжения до 120 В, что более чем достаточно для разрушения устройств, если не принять во внимание.
Чтобы противодействовать этому сценарию сброса нагрузки, часто используется схема защиты от перенапряжения, такая как варистор.
В автомобилестроении форма сигнала сброса нагрузки определяется стандартом ISO 7637, как показано на рисунке ниже.Пиковое напряжение составляет максимум 125 В. Нарастание и длительность импульса (T1 и T) больше по сравнению со стандартом, определенным в IEC 61000-4-5.
Идеальное расположение ограничителей перенапряжения в автомобилестроении Пример выбора варистора для низкого напряжения постоянного тока, например для автомобильных систем Требования к конструкцииВход: 24 В постоянного тока
Форма волны тока для скачка напряжения 8/20 мкс; напряжение равно 1.2/50 мкс
Пиковый импульсный ток: 800A
Должен пережить 40 скачков
Чувствительные устройства для защиты рассчитаны на 250 В максимум
Определите напряжение постоянного тока варистора
Для системы на 24 В также не выбирайте варистор с номинальным напряжением 24 В. Вместо этого включите не менее 20% запаса прочности. Однако не следует также преувеличивать запас, поскольку он будет соответствовать физически большому варистору и более высокому напряжению ограничения.
Итак,
Напряжение варистора = 24 В x 1.2 = 28,8 В
На основании списка низковольтных варисторов Littelfuse, я бы предпочел использовать часть с напряжением 31 В постоянного тока
рейтинг.
Выберите деталь, которая соответствует импульсному току и количеству импульсов
Вышеуказанные части с номиналом 31 В постоянного тока являются кандидатами. Однако есть еще несколько критериев, которым необходимо удовлетворить. Рассмотрим пиковый импульсный ток и количество импульсов и выберем ту часть, которая сможет удовлетворить его с запасом.
Ниже приведена длительность импульса в микросекундах в сравнении с допустимым пиковым импульсным током в амперах для детали диаметром 14 мм, указанной в таблице выше. Судя по графику, при 800А 14-миллиметровая деталь не может выдержать необходимое количество импульсов. Поэтому не выбирайте эту часть.
Ниже приведен график для детали диаметром 20 мм. При пиковом импульсном токе 800 А устройство может гарантировать более 40 импульсов. Поэтому выбирайте деталь размером 20мм.
Из приведенной выше таблицы есть две части размером 20 мм.Мы рассмотрим первый V20E25P. Как упоминалось ранее, мы не можем выбирать часть, потому что она будет соответствовать более высокому напряжению зажима.
Проверка напряжения зажима
Последний шаг — проверка напряжения зажима. Все, что мы сделали до сих пор, будет бесполезно, если максимальное напряжение фиксации превышает требуемое. Ниже указано максимальное напряжение зажима для деталей диаметром 20 мм. Судя по графику, V20E25P — идеальное устройство для защиты от перенапряжения.
СвязанныеКак установить сетевой фильтр
Хорошо известно, что устройства защиты от перенапряжения, устанавливаемые на панели, обеспечивают гораздо более высокий уровень безопасности для бытовой техники в вашем доме, но эти устройства далеко не так удобны в использовании. В то время как автономные устройства защиты от перенапряжения — это буквально «подключи и работай», решения для монтажа на панели требуют, чтобы вы открыли коробку выключателя и изменили первичный источник питания.
Многие потребители опасаются выполнять эту установку самостоятельно.И это правильно! Работа в силовых цепях большой емкости может быть опасной, если вы не знаете, что делаете, и многие производители рекомендуют нанять электрика для выполнения установки.
При этом установка вашего собственного устройства защиты от перенапряжения может быть безопасной для . Вам просто нужно соблюдать правильную процедуру безопасности. В этом руководстве мы покажем вам все, что вам нужно знать, прежде чем выламывать отвертку, чтобы вы могли быстро и легко защитить свой дом.
Прежде чем вы начнете, вам понадобится несколько разных вещей.В качестве инструментов вам понадобится отвертка с плоской головкой, пара инструментов для зачистки проводов, плоскогубцы и небольшая изолента. Мы также рекомендуем захватить фонарик или лампу с батарейным питанием, так как вы отключите питание перед началом работы.
Шаг 1. Подготовка панели
Найдите главный выключатель в своем доме. Прежде чем идти дальше, вам нужно щелкнуть выключателем главного выключателя. Это отключит все электричество в вашем доме. Открывать панель, которая находится под напряжением, может быть опасно, поэтому этот шаг очень важен.Мы настоятельно рекомендуем использовать детектор напряжения, чтобы убедиться, что панель полностью обесточена. Просто прикоснитесь концом детектора к трем основным проводам питания. Если детектор загорается, ваша панель все еще находится под напряжением.
Затем вам нужно открыть корпус и найти пустую заглушку. Это должен быть пробойник на металлической задней панели. Отодвиньте ограждение назад и от панели, чтобы создать точку крепления для вашего сетевого фильтра.
Шаг 2: Установите сетевой фильтр
После того, как вы создали отверстие для сетевого фильтра, вы можете пропустить его провода через это отверстие.Пока вы можете вывести эти провода из передней части панели, так как рекомендуется изолировать кабели до тех пор, пока вы не будете готовы к подключению.
У большинства устройств защиты от перенапряжения есть несколько винтов, которые необходимо затянуть снизу. У других есть резьбовое крепление, которое ввинчивается в вашу панель. Обратитесь к специальным инструкциям, прилагаемым к вашему устройству, если ваша система крепления выглядит не так, как мы описали. Есть много видов!
Сетевой фильтр может быть установлен как внутри панели, так и снаружи.Поскольку у этих устройств ограниченный срок службы, мы рекомендуем устанавливать их снаружи. У большинства моделей есть индикатор на передней панели, подтверждающий правильную работу. Установив головку вне панели, вы сможете проверить ее, не открывая панель.
Вы выбрали правильный сетевой фильтр?
Если вы уже приобрели сетевой фильтр для всего дома, вы можете просто перейти к следующему шагу. Но если вы изучаете будущую покупку, найдите время, чтобы убедиться, что вы выбрали правильную модель для своего дома.Щелкните ниже, чтобы просмотреть полное руководство по выбору и настройке устройств защиты от перенапряжения.
The Best Whole House Surge Protector (& How to Choose)
Шаг 3. Подключите провода
Устанавливаемые на панель устройства защиты от перенапряжений имеют четыре провода, которые необходимо подключить. Зеленый — это земля, белый — нейтраль, и, наконец, у вас есть два черных провода для замыкания цепи.
Перед тем, как подключить эти провода, необходимо удалить с конца изоляцию, чтобы оголить провод.Ваши устройства для зачистки проводов должны иметь несколько отверстий разного размера. Убедитесь, что вы используете часть стриппера 14 AWG. Электрический ток проходит по внешней стороне провода. Если вы используете слишком маленький размер, вы повредите кабель и снизите эффективность устройства защиты от перенапряжения.
После зачистки проводов можно начинать с подключения самых простых проводов. По обе стороны от панели выключателя вы найдете две большие металлические полосы. В этих полосках по горизонтали проделаны отверстия с винтом наверху.Вы можете пропустить проволоку через отверстие, а затем затянуть винт, чтобы зафиксировать ее. Ваш зеленый провод подключается к шине заземления справа, а нейтраль идет справа со всеми остальными белыми проводами.
Два черных провода необходимо подключить к двухполюсному выключателю. Это трехфазный источник питания, обеспечивающий питание как 240 В, так и 120 В. Неважно, какой провод к какому терминалу подключен. Просто вставьте их в порт на стороне прерывателя и затяните концевой винт.
Шаг 4: Соберите панель заново
Осторожно снимите крышку панели и удерживайте ее на месте. При этом будьте осторожны, стараясь не перевернуть выключатели. Сначала вы должны установить винты в каждом из четырех углов, чтобы удерживать его на месте.
После этого можно пройти и затянуть все остальные. Убедившись, что панель плотно прилегает и нет зазоров, вы можете перевернуть главный выключатель.
Шаг 5: Подтвердите операцию
Последнее, что вам нужно сделать, это перевернуть двойной выключатель, который вы подключили на шаге 3.Теперь вы должны увидеть светящиеся индикаторы на передней панели устройства защиты от перенапряжения. Обратитесь к руководству пользователя, чтобы убедиться, что фильтр для защиты от перенапряжения полностью исправен. Если он не загорается, вам нужно снова выключить питание и убедиться, что дипольный прерыватель установлен правильно.
Советы после установки
Устройства защиты от перенапряжения имеют конечную мощность. Каждый раз, когда они подвергаются скачку напряжения, эта емкость падает. Хотя один удар молнии может использовать всю мощность вашего сетевого фильтра за один выстрел, такие события редки.На самом деле, десятки мелких побуждений могут медленно израсходовать ваш сетевой фильтр в течение нескольких лет. Возьмите за привычку ежемесячно проверять индикаторы, чтобы убедиться, что ваш дом по-прежнему защищен.
Также важно убедиться, что у вас есть сетевые фильтры подходящего типа для вашего дома. Модель целого дома защитит от серьезных повреждений, но мы по-прежнему рекомендуем вам установить недорогой автономный сетевой фильтр на всю наиболее ценную электронику в вашем доме, такую как компьютер, телевизор и мобильный телефон.
Привет читателям ShedHeads! Меня зовут Джеймс Кеннеди, и мне определенно понравилось писать о моем любимом снаряжении для активного отдыха на протяжении многих лет. Хотя я веду этот блог только с 2017 года, я всю жизнь увлекался отдыхом на природе. И хотя мне, безусловно, нравится делиться своим мнением со всеми вами, мне еще больше нравится, когда я слышу ваши отзывы! Если вы хотите связаться со мной по поводу того, что я написал, свяжитесь со мной на Facebook или на нашей странице контактов вверху!
Последние сообщения Джеймса Кеннеди (посмотреть все) Схема подключения трехфазного устройства защиты от перенапряженияSPD
Обзор
Основная информация.
Модель NO. | AL420-I-40T |
Форма | Кубоид |
Материал | ZnO |
Сертификация | ISO9001, CE |
Марка | Hykl |
UC | 420VAC |
хромая | 40ка |
дюйм | 40ка |
вверх | 1.8кв |
Стандарт испытаний | IEC61643.1 |
Время ответа | 25 с |
Имя1 | SPD |
Имя2 | Устройство защиты от перенапряжения |
Имя3 | Ограничитель перенапряжения |
Имя4 | Устройство защиты от перенапряжения |
ГБ | ГБ18802.1 |
Товарный знак | HYKL |
Транспортная упаковка | Коробка |
Спецификация | 54 * 60 * 90 мм |
Происхождение | Шаньдун |
Код ТН ВЭД | 8536300000 |
Описание продукта
Устройства защиты от перенапряжения серииAL12VAC / DC-1500VAC / DC подходят для новых систем солнечной энергетики с рабочим напряжением 12-1500 В и обычных систем защиты от грозовых разрядов и перенапряжения переменного тока.Место установки — во всей системе электропитания цепи постоянного / переменного тока для защиты от воздействия непрямого тока молнии, постоянного тока молнии или других переходных перенапряжений и переходных скачков напряжения.
Параметр возможностей продукта | |||
Модель продукта | AL750-40T | AL1000-PV-20T | AL420-I-40T |
Полюс | 1 полюс, 2 полюса, 3 полюса, 4 полюса | 1 полюс, 2 полюса, 3 полюса, 4 полюса | 1 полюс, 2 полюса, 3 полюса, 4 полюса |
Максимальное продолжительное рабочее напряжение Uc | 750 В | 1000 В | 420 В |
Уровень защиты по напряжению Up | <2.4 кВ | <3,6 кВ | <2,2 кВ |
Неустойчивый (10/350) | — | 20KA | 40KA |
Номинальный ток разряда In (8/20 мкс) | 20 кА | 10 кА | 20 кА |
Максимальный ток разряда Imax (8/20 мкс) | 40 кА | 20 кА | 40 кА |
Материал оболочки | Огнестойкий армированный нейлон | ||
Рекомендуемая площадь заземляющего провода | 16 мм 2 многожильный гибкий провод | ||
Максимальный резервный предохранитель | 80 A gL | ||
Воздушный зазор и путь утечки | > 25 мм | ||
Степень защиты | IP20 | ||
Нормальная рабочая температура | -40ºC ~ 80ºC |
Модель | AL1000-PV-20T, AL420-I-40T, AL750-40T |
Цвет | Белый и синий / красный |
Сертификация | SGS, CE, ISO |
Назначение | Устройства защиты от перенапряжения серии AL12VAC / DC-1500VAC / DC подходят для новых систем производства солнечной энергии с рабочим напряжением 12-1500 В и обычных систем защиты от молний и перенапряжения переменного тока.Место установки — во всей системе электропитания цепи постоянного / переменного тока для защиты от воздействия непрямого тока молнии, постоянного тока молнии или других переходных перенапряжений и переходных скачков напряжения. |
Функция | Для шунтирования и давления для ограничения непрямого тока молнии, постоянного тока молнии или других мгновенных перенапряжений. И для защиты от разрушительного воздействия мгновенных скачков высокого напряжения, вызванных переменным током. |
Характеристика | 1. Устройство защиты от перенапряжения, вилка. 2. Цвет визуального окна в указанном рабочем состоянии протектора; зеленый (нормальный), красный (неисправный). 3. Двойная защита от течения расплава. 4. Интерфейс удаленной связи конфигурации, может осуществлять дистанционное управление. |
Основные характеристики продукта | 1. Безопасный сверхширокий электрический интервал и длина пути утечки, выдерживаемое высокое напряжение, соответствует требованиям к использованию на большой высоте. 2. Ток холостого хода не учитывается; Конструкция вилки и вытягивания, может заряжаться замена, проста в обслуживании. 3. Встроенная технология цепи управления температурой, высокая безопасность, отсутствие остаточного потока. 4. Указывает, что зеленый цвет окна нормальный, а красный цвет указывает на сбой. Ясный и легко различимый. 5. Дополнительный интерфейс удаленного мониторинга можно использовать для удаленного мониторинга. 6. Высокое рабочее напряжение, высокая пропускная способность, высокая безопасность и стабильность. |
Преимущество | 1. Более 10 лет опыта в производстве и переработке 2. Более быстрое обновление продукции, специализация производства, своевременная доставка 3. Строгая процедура проверки качества |