Схема подключения оин 3 фазной сети: Схема подключения оин 1 в трехфазную сеть. Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений

Содержание

Схема подключения оин 1 в трехфазную сеть. Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений


Схема подключения ограничителя импульсных перенапряжений

Ограничитель импульсных перенапряжений

  1. Преимущества в использовании ОПН
  2. Технические характеристики ОПН
  3. Устройство ограничителей импульсных перенапряжений
  4. Защита от импульсных перенапряжений

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

Преимущества в использовании ОПН

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Защита от импульсных перенапряжений

Защита от импульсных перенапряжений.

Ограничитель импульсных перенапряжений

Просмотров 1 856

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты. разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Схема подключения УЗИП к сети TNC и сети TNS

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Защита от импульсных перенапряжений тремя ступенями УЗИП

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита ,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Тоже интересные статьи

Принцип работы стабилизатора напряжения

Скачки напряжения в электросети

Схема подключения реле напряжения

Как выбрать стабилизатор напряжения для дома

Любое электротехническое оборудование создается для работы с определённой электрической энергией, зависящей от тока и напряжения в сети.

Когда их величина становится больше запроектированной нормы, то возникает аварийный режим.

Предотвратить возможность его образования или ликвидировать разрушение электрооборудования призваны защиты. Они создаются под конкретные условия возникновения аварии.

Особенности защит домашней электропроводки от повышенного напряжения

Изоляция бытовой электрической сети рассчитывается на предельное значение напряжения чуть выше одного-полутора киловольт. Если оно возрастает больше, то через диэлектрический слой начинает проникать искровой разряд, который может перерасти в дугу, образующую пожар.

Чтобы предотвратить его развитие создают защиты, работающие по одному из двух принципов:

1. отключения электрической схемы дома или квартиры от повышенного напряжения;

2. отвода опасного потенциала перенапряжения от защищаемого участка за счет быстрого его перенаправления на контур земли.

При незначительном повышении напряжения в сети исправить положение призваны также стабилизаторы различных конструкций. Но, в большинстве своем они создаются для поддержания рабочих параметров электроснабжения в ограниченном диапазоне его регулирования на входе, а не как защитное устройство. Их технические возможности ограничены.

В домашней проводке напряжение может повыситься:

1. на относительно продолжительный срок, когда происходит отгорание нуля в трехфазной схеме и потенциал нейтрали смещается в зависимости от сопротивления случайно подключенных потребителей;

2. кратковременным импульсом.

С первым видом неисправности успешно справляется реле контроля напряжения. Оно постоянно занимается мониторингом входных параметров сети и при достижении ими уровня верхней уставки отключает схему от питания до момента устранения аварии.

Причинами появления кратковременно возникающих импульсов перенапряжения могут быть две ситуации:

1. одновременное отключение нескольких мощных потребителей на питающей линии, когда трансформаторная подстанция не успевает мгновенно стабилизировать систему;

2. ударе грозового разряда молнии в электрооборудование ЛЭП, подстанции или дома.

Второй вариант развития аварии представляют наибо́льшую опасность, чем во всех предыдущих случаях. Сила тока молнии достигает огромных величин. При усредненных расчетах ее принимают в 200 кА.

Она при ударе в молниеприемник и нормальной работе молниезащиты здания протекает по молниеотводу на контур заземления. В этот момент во всех рядом расположенных проводниках по закону индукции наводится ЭДС, величина которой измеряется киловольтами.

Она может появиться даже в отключенной от сети проводке и сжечь ее оборудование, включая дорогостоящие телевизоры, холодильники, компьютеры.

Молния может ударить и в питающую здание воздушную ЛЭП. В этой ситуации нормально работают разрядники линии, гася ее энергию на потенциал земли. Но полностью ликвидировать его они не способны.

Часть высоковольтного импульса по проводам подключенной схемы станет растекаться во все возможные стороны и придет на ввод жилого дома, а с него — ко всем подключенным приборам чтобы сжечь их наиболее слабые места: электродвигатели и электронные компоненты.

В итоге мы получили два варианта повреждения дорогостоящего бытового электрооборудования жилого здания при нормальном ликвидации штатными защитами последствий удара молнии в молниеприемник собственного здания или питающую ЛЭП. Напрашивается вывод: необходимо устанавливать для них автоматическую защиту от импульсных разрядов .

Виды ограничителей перенапряжения для домашней электропроводки

Ассортимент подобных защит создается для работы в разных условиях, отличается конструкцией, применяемыми материалами, технологией работы.

Принципы формирования элементной базы ОПН

При создании защит от перенапряжения учитываются технические возможности различных конструкторских решений. Для газонаполненных разрядников характерно то, что они после окончания прохождения импульса разряда поддерживают протекание дополнительного тока, близкого по величине к нагрузке короткого замыкания. Его называют сопровождающим током.

Разрядники, обеспечивающие ток сопровождения порядка 100÷400 ампер, сами могут стать источником пожара и не обеспечить защиту. Их нельзя устанавливать для защиты изоляции от пробоя между любой фазой, рабочим и защитным нулем. Модели других типов разрядников работают вполне надежно внутри сети 0,4 кВ.

В домашней проводке приоритет в защитах от перенапряжения получили варисторные устройства. При нормальных условиях эксплуатации электроустановки они создают очень маленькие токи утечек до нескольких миллиампер, а во время прохождения высоковольтного импульса напряжения максимально быстро переводятся в туннельный режим, когда способны пропускать до тысяч ампер.

Классы стойкости изоляции домашней электропроводки к импульсным перенапряжениям

Электрооборудование жилых зданий создается по четырем категориям, которые обозначаются римскими цифрами IV÷I и характеризуются предельной величиной допустимого перенапряжения в 6, 4, 2,5 и 1,5 киловольта. Под эти зоны и проектируются защиты от импульсных перенапряжений.

В технической литературе их принято называть «УЗИП». что расшифровывается как устройство защиты от импульсного перенапряжения.

Производители электрооборудования в маркетинговых целях ввели более понятное для простого населения определение — ограничители. В интернете можно встретить и другие названия.

Поэтому, чтобы не запутаться в используемой терминологии, рекомендуется обращаться к техническим характеристикам устройств, а не только к их наименованию.

Основные параметры взаимосвязи категорий стойкости изоляции с зонами опасности здания и применением для них трех классов УЗИП поможет понять приведенный ниже рисунок.

Он демонстрирует, что на участке от трансформаторной подстанции по линии электропередач до вводного щита может прийти импульс в 6 киловольт. Его величину должен снизить ограничитель перенапряжения класса I в зоне 1 до четырех кВ.

В распределительном щитке зоны 2 работает ограничитель класса II, снижая напряжение до 2,5 кВ. Внутри жилой комнаты с зоной 3 УЗИП класса III обеспечивает итоговое снижение импульса до 1,5 киловольта.

Как видим, все три класса ограничителей работают комплексно, последовательно и поочередно снижают импульс перенапряжения до допустимой для изоляции электропроводки величины.

Если хоть один из составных элементов этой цепочки защит окажется неисправным, то откажет вся система и возникнет пробой изоляции на конечном приборе. Использовать их необходимо комплексно, а в процессе эксплуатации требуется проверять исправность технического состояния хотя бы внешним осмотром.

Подбор варисторов для разных классов ограничителей перенапряжений

Производители оборудования устройства УЗИП снабжают моделями варисторов, подобранных по вольт-амперным характеристикам. Их вид и рабочие пределы показаны на соответствующем графике.

Каждому классу защиты соответствует свое напряжение и ток открытия. Устанавливать их можно только на свое место.

Принципы формирования схем включения ограничителей перенапряжения

Для защиты линии электроснабжения квартиры могут использоваться различные принципы подключения УЗИП:

В первом случае выполняется продольный принцип защиты каждого провода от перенапряжений относительно контура земли, а во втором — поперечный между каждой парой проводов. На основе сбора статистических данных обработки неисправностей и их анализа выявлено, что возникающие противофазные импульсные перенапряжения создают бо́льшие повреждения и поэтому считаются самыми опасными.

Комбинированный способ позволяет объединять оба предшествующих метода.

Варианты схем подключения ограничителей перенапряжения для системы заземления TN-S

Схема с электронными УЗИП и разрядниками

В этой схеме УЗИП всех трех классов устраняют импульсы перенапряжений между фазами линии и рабочим нулем N по цепочкам «провод — провод». Функция снижения синфазных перенапряжений возложена на разрядники определённого класса за счет их подключения между рабочим и защитным нулем.

Этот способ позволяет гальванически разъединять PE и N между собой. Положение нейтрали трехфазной сети зависит от симметрии приложенных нагрузок по фазам. Она всегда имеет какой-то потенциал, который может быть от долей до нескольких десятков вольт.

Если в системе работают блоки питания с импульсной нагрузкой, то от них высокочастотные помехи могут передаваться по цепям уравнивания потенциалов и заземления через РЕ-проводник к чувствительным электронным приборам, мешать их работе.

Включение разрядников в этом случае уменьшает воздействие перечисленных факторов за счет лучшей гальванической развязки, чем у электронных ограничителей на варисторах.

Схемы с электронными УЗИП в классах защит I и II

В этой схеме зашита от импульсных напряжений в вводном и распределительном щитах выполняется только электронными ОПН.

Они устраняют все синфазные перенапряжения (любых проводов относительно контура земли).

В классе III работает предыдущая схема с электронным ОПН и разрядником, обеспечивая защиту (провод — провод) для оконечного потребителя.

Особенности использования различных моделей ОПН с учетом очередности работы каскадов

При эксплуатации ступеней защит от импульсного перенапряжения требуется их согласование, координация. Она осуществляется удалением ступеней по кабелю на расстояние более 10 метров.

Объясняется это требование тем, что при попадании в схему высоковольтного импульса с крутой формой волны за счет индуктивного сопротивления жил на них происходит падение напряжения. Оно сразу прикладывается к первому каскаду, вызывает его срабатывание. Если это требование не выполнять, то происходит шунтирование ступеней, когда защита работает неправильно.

По такому же принципу подключаются и последующие каскады защит.

Когда по конструктивным особенностям оборудования оно расположено близко, то в схему искусственно включают дополнительные разделительные дроссели импульсного типа, создающие цепочку задержки. Их индуктивность настраивают в пределах 6÷15 микрогенри в зависимости от типа используемого ввода электропитания в здание.

Вариант такого подключения при близком расположении вводного и распределительного щитов и удаленном монтаже оконечных потребителей показан на схеме.

Монтируя дросселя по такой системе следует учитывать их возможность надежно работать при создаваемых нагрузках, выдерживать их предельные значения.

В целях удобства обслуживания защиты от импульсного перенапряжения вместе с дроссельными устройствами могут быть помещены в отдельный защитный щиток, последовательно связывающий вводное устройство с ГРЩ дома.

Один из вариантов подобного исполнения для здания, выполненного по системе зазамления TN-C-S, показан на схеме ниже.

При таком монтаже можно все три класса ограничителей размещать в одном месте, что удобно при обслуживании. Для этого надо последовательно между ступенями защит смонтировать разделительные дроссели.

Конструктивно вводное устройство, ГРЩ и защитный щиток при таком способе монтажа схемы следует располагать как можно ближе.

Комбинированное расположение УЗИП и дросселей в одном месте — защитном щитке позволяет исключить попадание импульсов перенапряжения уже на оборудование ГРЩ, в котором выполняется разделение PEN проводника.

Подключение силовых кабелей к ГЗЩ имеет особенности: их необходимо прокладывать по кратчайшим путям, избегая совместного соприкосновения для участков защищенной схемы и без защит.

Современные производители постоянно модифицируют свои разработки УЗИП, используя встроенные импульсные разделительные дроссели. Они позволили не только располагать ступени защит на близком расстоянии по кабелю, но и объединять их в отдельном блоке.

Сейчас на рынке, с учетом реализации этого метода, появились конструкции УЗИП комбинированных классов I+II+III или I+II. Различный ассортимент моделей таких разрядников выпускает российская копания Hakel.

Они создаются под разные системы заземления здания, работают без установки дополнительных ступеней защит, но требуют выполнения определенных технических условий монтажа по длине подключаемого кабеля. В большинстве случаев он должен быть менее 5 метров.

Для нормальной работы электронного оборудования и защиты его от помех высокой частоты выпускаются различные фильтры, в которые включают УЗИП класса III. Они нуждаются в подключении к контуру заземления через РЕ проводник.

Особенности защиты сложной бытовой техники от импульсов перенапряжений

Жизнь современного человека диктует необходимость использования различных электронных устройств, обрабатывающих и передающих информацию. Они довольно чувствительны к высокочастотным помехам и импульсам, плохо работают или вообще отказывают при их появлении. Для устранения подобных сбоев используют индивидуальное заземление корпуса прибора, называемое функциональным.

Его электрически отделяют от защитного РЕ проводника. Однако, при ударе молнии в молниезащиту между заземлениями здания или линии и функциональным электронного прибора по контуру земли потечет ток разряда, вызванный приложенным высоковольтным импульсом перенапряжения.

Устранить его можно выравниванием потенциалов этих контуров за счет монтажа специального разрядника между ними, который будет выравнивать потенциалы контуров при авариях и обеспечивать гальваническую развязку в повседневных условиях эксплуатации.

На выпуске подобных разрядников также специализируется копания Hakel.

Дополнительное требование к защите ОПН от коротких замыканий

Все УЗИП включаются в схему для выравнивания потенциалов между различными ее частями в критических ситуациях. При этом необходимо учитывать, что они сами, несмотря на наличие встроенной тепловой защиты варисторов, могут быть повреждены и стать из-за этого источником короткого замыкания, перерастающего в пожар.

Защита на варисторах может отказать при длительном превышении номинального напряжения, связанного, например, с отгоранием нуля в трехфазной питающей сети. Разрядники же, в отличие от электроники, вообще не снабжаются тепловой защитой.

По этим причинам все конструкции УЗИП дополнительно защищаются предохранителями, работающими при перегрузках и коротких замыканиях. Они обладают специальной сложной конструкцией и сильно отличаются от моделей с простой плавкой вставкой.

Применение автоматических выключателей для таких ситуаций не всегда оправданно: они повреждаются от импульсов грозовых разрядов, когда происходит сваривание силовых контактов.

Используя схему защиты УЗИП предохранителями необходимо соблюдать принцип создания ее иерархии методами селективности.

Как видим, чтобы обеспечить надежную защиту домашней электропроводки от импульсных перенапряжений необходимо скрупулезно подойти к этому вопросу, проанализировать вероятность возникновения аварий в проектной схеме с учетом работающей системы заземления и под нее выбрать наиболее подходящие ограничители ОПН.

Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Перепечатка материалов сайта запрещена.

Источники: http://electric-220.ru/news/ogranichitel_impulsnykh_perenaprjazhenij/2015-02-26-841, http://electricavdome.ru/zashhita-ot-impulsnyx-perenapryazhenij.html, http://electrik.info/main/electrodom/1179-ogranichiteli-perenapryazheniya-vidy-i-shemy.html

electricremont.ru

Ограничители импульсных напряжений (ОИН) ОИН1, ОИН2

ОИН1, ОИН2

РМЕА 656111. 011 ТУ Предназначены для защиты электрооборудования и бытовых приборов от грозовых и импульсных перенапряжений. ОИН1 — без индикатора рабочего состояния; ОИН2 — с индикатором рабочего состояния.

Нормативно-правовое обеспечение

  • Отвечают требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», других стандартов и ПУЭ».
  • Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19

Функциональные возможности

ОИН1 — ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети. ОИН2 — ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.

Конструктивные особенности

Ограничитель импульсных напряжений (ОИН) обеспечивает:

  • Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
  • Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
  • Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
  • Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
  • Обеспечивает защиту оборудования от импульсного перенапряжения категории II по ГОСТ Р 50571. 19-2000 (уровень напряжения защиты 2,0 кВ)
  • Выдерживает без повреждений воздействие временного перенапряжения 380 В
  • Классификация по тепловой защите: ОИН1 и ОИН2 — без тепловой защиты.
  • Классификация по наличию индикатора состояния: ОИН1 — без индикатора; ОИН1С (по дополнительному заказу) — со световым индикатором наличия напряжения сети; ОИН2 — со световым индикатором рабочего состояния.
  • Классификация по ремонтопригодности: ОИН1 и ОИН2 — моноблочные (неремонтируемые в условиях эксплуатации).
  • Допускает присоединение проводников сечением от 4 до 16 мм
Наименование характеристики Значение параметров
Номинальное напряжение питающей сети, В 220
Номинальный разрядный ток, кА 5; 10; 20
Максимальный разрядный ток, кА 12,5; 25; 50
Остаточное напряжение при номинальном токе не выше, В 2000
Класс испытаний по ГОСТ Р 51992 II
Степень защиты, обеспечиваемая оболочками не ниже IP20
Температура окружающего воздуха, С от -45 до 55
Габаритные разметы, мм 80 x 17,5 x 65,5
Масса, не более, кг 0,12
Гарантийный срок эксплуатации, лет 3

www. energomera.ru

Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты, разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Схема подключения УЗИП к сети TNC и сети TNS

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА.  Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Защита от импульсных перенапряжений тремя ступенями УЗИП

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии.  Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Тоже интересные статьи

electricavdome.ru

Как организовать защиту от перенапряжения сети в частном доме: схемы, приборы, оборудование

Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.

В данной статье речь пойдёт о практических мерах по защите от перенапряжения, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.

Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации. Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом. На фото ниже показаны ТУ, выданные мне в горэлектросетях.

Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).

Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.

Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.

Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.

Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):

  • на вводе в дом
  • внутри дома, в учётно-распределительном шкафу
  • индивидуальная защита электроприборов внутри помещений дома

Защита от перенапряжения

Что важно учесть при выполнении работ

В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей. Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии. Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.

Теперь о технической стороне вопроса:

Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.

1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) — I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов — ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.

Что важно отметить по данному оборудованию:
  • Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
  • В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
  • В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии. Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.

2. В качестве УЗИП — II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.

Из особенностей данных аппаратов можно отметить следующее:
  • В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
  • В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
  • Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.

3. Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.

Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.

Практическое выполнение работ

Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.

Монтаж ОПН-0,38 на вводе в дом

На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто. Установка ОПН в боксе — мера вынужденная. Бокс должен иметь возможность для пломбировки. Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.

При монтаже ОПН и подключении к ним проводов использование граверных шайб — обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).

Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов. На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском. Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь. При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.

Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.

На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.

Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 — 300 А и до нескольких тысяч ампер. Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый. На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).

Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу

Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.

С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.

Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам. Это показано на схеме подключения в обоих случаях (а и б). Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.

Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как по фазному проводнику (L), так и по проводнику (N).

В нижней схеме (б) нагрузка к аппарату подключается только по одному фазному проводнику (L), а второй провод (N) подключается к нагрузке напрямую, минуя аппарат. Т. е. в случае аварийного срабатывания аппарата он разомкнёт только фазный проводник, а проводник N остаётся подключенным всегда. Исходя из вышесказанного, а также зная, в каком случае допускается разрывать проводник N, а в каком — не допускается, можно сделать следующий вывод:

В случае подключения дома (квартиры) по двухпроводной линии (система TN-C), необходимо подключать аппарат УЗМ-50М по нижней схеме (б), так как в этом случае провод N выполняет две функции (нулевого рабочего проводника и нулевого защитного проводника), и его разрывать ни в коем случае нельзя.

В случае если подключение дома (квартиры) выполнено по трёхпроводной схеме (TN-S), либо аппарат установлен в системе (TN-C-S), на участке после разделения общего (PEN) проводника (на N и PE), то провод N можно разрывать. В этом случае аппарат УЗМ-50М нужно подключать по верхней схеме (а). Почему аппарат, согласно схеме производителя, нужно подключать после счётчика (на рисунке поставил знак вопроса) — мне малопонятно. Я, например, свои аппараты в шкафу подключал до счётчика, что бы они защищали всё оборудование, установленное в доме, в том числе и оборудование, установленное в самом шкафу. Кроме того, поскольку разделение общего PEN выполнено в шкафу (ЩР1) в доме, то подключал аппараты защиты по схеме а, т. е. с отключением как фазных, так и нулевого проводников. Что и показано на фото ниже.

Ещё один важный момент: поскольку данные аппараты не предназначены для использования в многофазной сети то необходимо знать и учитывать следующее.

В случае трёхфазного подключения дома и использования данных аппаратов, если в доме имеются только однофазные электроприёмники, никаких проблем с использованием и работой данных аппаратов быть не должно. Но если в доме имеются трёхфазные потребители, например, трёхфазный электродвигатель, то в случае аварийного срабатывания аппаратов (одного или двух), трёхфазный электроприёмник (например, электродвигатель) может выйти из строя. Таким образом, в данном случае потребуются дополнительные технические мероприятия по отключению трёхфазных потребителей при аварийном срабатывании аппаратов УЗМ.

Использование индивидуальных защитных приборов

Применение ИБП стабилизаторов напряжения для защиты отдельных электроприёмников в доме (телевизор, компьютер и т. д.) настолько стало привычным и распространённым, что какого-либо особого пояснения не требует, поэтому здесь не приводится.

Выводы

1. Опыт эксплуатации показал, что при сильной грозе защита может работать неоднократно, на относительно небольшом промежутке времени. С учётом этого можно смело утверждать, что при сильных грозах и при отсутствии защиты, электрооборудование, установленное в доме, может быть выведено из строя с достаточно высокой степенью вероятности.2. В случае невозможности выполнения аналогичных работ в своём доме, в качестве защитной меры при грозовых разрядах необходимо хотя бы отключать электроприборы от сети, что, кстати, делают далеко не все.

Данный вариант защиты электрооборудования является недорогим бюджетным решением, но вполне работоспособным, надёжным и проверенным на практике. В случае применения аналогичного оборудования импортного производства и приглашения для выполнения работ специалистов цена вопроса может увеличиться в разы, что даже для средне обеспеченной семьи может быть накладно.

www.diy.ru

Трехфазное подключение дома. Что следует учесть

   Если вы столкнулись с проблемой электроснабжение дома, или же просто хотите заменить электропроводку, тогда перед вами представится необходимость сделать выбор, какой тип электрического питания лучше использовать (однофазный или трехфазный). От выбранного типа питания напрямую будет завесить схема электрической сети. И так, сегодня давайте разберемся, что такое трехфазное подключение дома. 

   Решая эти вопросы владелец сталкивается с многочисленными задачами, которые требуется решать техническими и организационными способами.

Сравнение преимуществ и недостатков однофазного и трехфазного подключения дома

   При выборе схемы следует учесть ее влияние на конструкцию проводки и условия эксплуатации, создаваемые разными системами.

   Однофазная сеть
   Трёхфазная сеть
Потребляемая мощность

   Та величина разрешенной мощности, которую вам предоставит организация продающая электроэнергию, станет основой для создания проекта электропроводки. За счет распределения ее по двум проводам в однофазной схеме толщина сечения жил кабеля всегда требуется больше, чем в трёхфазной цепи, где нагрузка равномерно разнесена по трем симметричным цепочкам.

   При одинаковой мощности в каждой жиле трехфазной схемы будут протекать меньшие номинальные токи. Под них потребуются уменьшенные номиналы автоматических выключателей. Несмотря на это их габариты, как и других защит и электросчетчика, все равно будут больше за счет применения утроенной конструкции. Потребуется более емкий распределительный щит. Его размеры могут значительно ограничивать свободное пространство внутри небольших помещений.

Трёхфазные потребители

   Асинхронные электродвигатели механических приводов, электрические нагревательные котлы, другие электроприборы, рассчитанные на эксплуатацию в трехфазной сети, эффективнее, оптимально работают в ней. Чтобы их запитать от однофазного источника необходимо создавать преобразователи напряжения, которые будут потреблять дополнительную энергию. Причем, в большинстве случаев происходит снижение КПД таких механизмов и расход мощности на преобразователе.

   Использование трехфазных потребителей основано на равномерном распределении нагрузки в каждой фазе, а подключение мощных однофазных приборов способно создать пофазный перекос токов, когда часть их начинает протекать по жиле рабочего нуля.

   При большом перекосе токов на перегруженной фазе снижается напряжение: начинают тускло светиться лампы накаливания, наблюдаются сбои электронных устройств, хуже работают электродвигатели. В этой ситуации владельцы трехфазной электропроводки могут перекоммутировать часть нагрузки на ненагруженную фазу, а потребителям двухпроводной схемы требуется эксплуатировать стабилизаторы напряжения или резервные источники.

Условия работы изоляции электропроводки

   Владельцы трехфазной схемы должны учитывать действие линейного напряжения 380, а не фазного 220 вольт. Его номинал представляет бо́льшую опасность для человека и изоляции электропроводки или приборов.

Габариты оборудования

   Однофазная электропроводка и все входящие в нее компоненты более компактны, требуют меньше места для монтажа. На основе сравнения этих характеристик можно сделать вывод, что трехфазное подключение частного дома зачастую может быть в современных условиях нецелесообразным. Его имеет смысл применять в том случае, если существует необходимость эксплуатации мощных трехфазных потребителей типа электрических котлов или станочного оборудования для постоянной работы в определённые сезоны. Большинство же бытовых электрических потребностей вполне может обеспечить однофазная электропроводка.

Как выполнить трехфазное подключение дома

   Когда вопрос трехфазного подключения частного дома стоит остро, то придется:

  1. заниматься подготовкой технической документации
  2. решать технические вопросы
Какие документы необходимо подготовить

   Обеспечить законность трехфазного подключения могут только следующие свидетельства и паспорта:

  1. технические условия от энергоснабжающей организации
  2. проект производства электроснабжения здания
  3. акт разграничения по балансовой принадлежности
  4. протоколы измерений основных электрических параметров собранной схемы подключения дома электротехнической лабораторией (монтаж разрешено выполнять после получения первых трех документов) и акт осмотра электротехнического оборудования
  5. заключение договора с энергосбытовой организацией, дающее право на получение наряда на включение
Технические условия

   Для их получения требуется заранее подать заявку в электроснабжающую организацию, где должны быть отражены требования к абоненту и электроустановке с указанием:

  • способов подключения
  • использования защит
  • мест размещения электроприборов и щитов
  • ограничение доступа посторонних лиц
  • характеристики нагрузки
Проект производства электроснабжения

   Разрабатывается проектной организацией на основе действующих нормативов и правил эксплуатации электроустановок с целью предоставления бригаде электромонтажников подробной информации по технологии монтажа электрической схемы.

   В состав проекта входят:

  1. пояснительная записка с отчетом
  2. исполнительные принципиальные и монтажные схемы
  3. ведомости
  4. требования нормативных документов и предписаний
Акт разграничения по балансовой принадлежности

   Определяются границы ответственности между электроснабжающей организацией и потребителем, указывается разрешенная мощность, категория надежности электроприемника, схема электропитания, некоторые другие сведения.

Протоколы электротехнических замеров

   Они выполняются электрической измерительной лабораторией после полного окончания монтажных работ. В случае получения положительных результатов измерений, отраженных в протоколах, предоставляется акт осмотра оборудования с заключением, дающим право на обращение в электросбытовую организацию.

Договор с энергосбытом

   После его заключения на основе документов от электротехнической лаборатории можно обращаться в электроснабжающую организацию на включение смонтированной электроустановки в работу по специальному наряду.

Трехфазное подключение дома, технические вопросы

   Принцип подвода электрической энергии к отдельно стоящему жилому зданию осуществляется по следующему принципу: от трансформаторной подстанции по линии электропередачи подается напряжение по четырем проводам, включающим три фазы (L1, L2, L3) и один общий нулевой проводник PEN. Подобная система выполняется по стандартам схемы TN-C, которая максимально распространена до сих пор в нашей стране.

   Линия электропередачи чаще всего может быть воздушной или реже кабельной. На обоих конструкциях могут возникнуть неисправности, которые быстрее устраняются у воздушных ЛЭП.

Особенности разделения PEN проводника

   Старые линии электропередач энергетики постепенно начинают модернизировать, переводить на новый стандарт TN-C-S, а строящиеся сразу создают по нормативам TN-S. В нем четвертый проводник PEN от питающей подстанции подается не одной, а двумя разветвленными жилами: РЕ и N. В итоге у этих схем используется уже пять жил для проводников.

   Трехфазное подключение дома по TN-S

   Трехфазное подключение дома основано на том, что все эти жилы подключаются к вводному устройству здания, а от него электроэнергия поступает на электрический счетчик и далее — в распределительный щит для осуществления внутренней разводки по помещениям и потребителям здания.

   Практически все бытовые приборы работают от фазного напряжения 220 вольт, которое присутствует между рабочим нулем N и одним из потенциальных проводников L1, L2 или L3. А между линейными проводами образовано напряжение 380 вольт.

   Внутри вводного устройства, использующего стандарт TN-C-S, делается выделение рабочего нуля N и защитного РЕ из проводника PEN, который соединяют здесь же с ГЗШ — главной заземляющей шиной. Ее подключают к повторному контуру заземлению здания.

   От вводного устройства рабочие и защитные нули идут изолированными цепочками, которые запрещено объединять в любой другой точке схемы электропроводки.

   По старым правилам, действовавшим в схеме заземления TN-C, расщепление проводника PEN не делалась, а фазное напряжение бралось прямо между ним и одним из линейных потенциалов.

   Конечный промежуток линии между ее опорой до ввода в дом прокладывают по воздуху или под землей. Его называют ответвлением. Оно находится на балансе электроснабжающей организации, а не хозяина жилого здания. Поэтому все работы по подключению дома на этом участке должны выполняться с ведома и по решению владельца ЛЭП. Соответственно, законодательно они потребуют согласования и оплаты.

    У подземной кабельной линии ответвление монтируют в металлическом шкафу, который размещают поблизости с трассой, а для воздушной ЛЭП — непосредственно на опоре. В обоих случаях важно обеспечить безопасность их эксплуатации, закрыть доступ посторонних людей и выполнить надежную защиту от повреждения вандалами.

Выбор места расщепления PEN проводника

   Оно может быть выполнено:

  1. на ближайшей опоре
  2. или на вводном щите, расположенном на стене либо внутри дома

   В первом случае ответственность за безопасную эксплуатацию несет электроснабжающая организация, а во втором — владелец здания. Доступ жильцов дома к работам на конце PEN проводника, расположенного на опоре, запрещен правилами.

   При этом надо учесть, что провода на воздушной линии способны обрываться по различным причинам и на них могут возникать неисправности. Во время аварии на питающей ЛЭП с обрывом PEN проводника ее ток потечет через провод, подключенный к дополнительному контуру заземления. Его материал и сечение должны надежно выдерживать такие повышенные мощности. Поэтому их выбирают не тоньше, чем основная жила линии электропередачи.

   Трехфазное подключение дома, обрыв PEN проводника на КТП

   Когда расщепление выполняется прямо на опоре, то к нему и контуру прокладывают линию, называемую повторным заземлением. Ее удобно изготавливать из металлической полосы, заглубленной в землю на 0,3÷1 м.

   Поскольку через нее в грозу создается путь протекания молнии в землю, то ее надо отводить от дорожек и мест возможного размещения людей. Рационально прокладывать ее под забором здания и в подобных труднодоступных местах, а все соединения выполнять сваркой.

    Когда расщепление производится в водном щите здания, то через линию ответвления с подключенными проводами будут протекать аварийные токи, которые могут выдержать только проводники с сечением фазных жил ЛЭП.

Вводное распределительное устройство электроэнергии

   Оно отличается от простого вводного устройства тем, что в его конструкцию внесены элементы, осуществляющие распределение электричества по группам потребителей внутри здания. Его монтируют на вводе электрического кабеля в пристройке или каком-то отдельном помещении.

   ВРУ устанавливают внутри металлического шкафа, куда заводят все три фазы, PEN проводник и шину контура повторного заземления в схеме подключения здания по системе TN-C-S.

   Внутри шкафа вводного распределительного устройства фазные проводники подключаются к клеммам входного автоматического выключателя или силовых предохранителей, а PEN проводник к своей шине. Через нее выполняется его расщепление на PE и N с образованием главной заземляющей шины и ее подключением к повторному контуру заземления.

   Ограничители повышения напряжения работают по импульсному принципу, защищают схему цепей фаз и рабочего нуля от воздействий возможного проникновения посторонних внешних разрядов, отводят их через РЕ проводник и главную защитную шину с контуром заземления на потенциал земли.

   При возникновении высоковольтных импульсных разрядов больших мощностей в питающей линии и прохождении их через последовательную цепочку из автоматического выключателя и УЗИП вполне возможен выход из строя силовых контактов автомата из-за подгорания и даже приваривания их.

   Поэтому защита этой цепочки мощными предохранителями, выполняемая простым перегоранием плавкой вставки, остается актуальной, широко применяется на практике.

   Трехфазный электрический счетчик учитывает расходуемую мощность. После него подключаемые нагрузки распределяются по группам потребления через правильно подобранные автоматические выключатели и устройства защитного отключения. Также на вводе может стоять дополнительное УЗО, выполняющее противопожарные функции у всей электрической проводки здания.

   После каждой группы УЗО может производиться дополнительное деление потребителей по степеням защиты индивидуальными автоматами или обходиться без них, как показано разными участками на схеме.

   На выходные клеммы щита и защит подключаются кабели, идущие к группам конечных потребителей.

Особенности конструкции ответвления

   Чаще всего трехфазное подключение дома на питающей ЛЭП выполняется воздушной линией, на которой может возникнуть короткое замыкание или обрыв. Чтобы их предотвратить следует обратить внимание на:

  • общую механическую прочность создаваемой конструкции
  • качество изоляции внешнего слоя
  • материал токоведущих жил

   Современные самонесущие алюминиевые кабели обладают небольшим весом, хорошими токопроводящими свойствами. Они хорошо подходят для монтажа воздушного ответвления. При трехфазном питании потребителей сечения жилы СИП 16 мм2 будет достаточно для длительного получения 42 кВт, а 25 мм кв — 53 кВт.

   Когда ответвление выполняется подземным кабелем, то обращают внимание на:

  • конфигурацию прокладываемого маршрута, его недоступность для повреждения посторонними людьми и механизмами при работах в грунте
  • защиту выходящих из земли концов металлическими трубами на высоту не меньше среднего человеческого роста

   Лучшим вариантом считается полное размещение кабеля в трубе вплоть до ввода в ВУ и распределительный шкаф.

   Для подземной прокладки используют только цельный кусок кабеля с прочной броневой лентой или выполняют его защиту трубами или металлическими коробами. При этом медные жилы предпочтительнее, чем алюминиевые.

   Технические аспекты трехфазного подключения частного дома в большинстве случаев требуют бо́льших затрат и усилий чем при однофазной схеме.

Видео по сборке трёхфазного щита учёта на дом

 

 

Будем рады, если подпишетесь на наш Блог!

powercoup.by

ремонт квартир в Мурманске — Схемы подключения к трехфазной, однофазной цепи.

04. Схемы подключения к трехфазной, однофазной сети.

     Обычно квартиры запитываются от одно- или трехфазных внешних сетей. Тут, как говорится, кому как повезло. Разумеется, трехфазные сети, как правило, обеспечивают возможность получения большей нагрузки.

     Самый тонкий вопрос — организация заземления и зануления. Мы все привыкли, что в розетках и вилках (однофазных сетей) у нас присутствуют 3 контакта: фаза, ноль и земля. Очень хорошо, если к Вашему дому приходят все эти три провода (при однофазном подключении), либо 5 проводов при трехфазном (3 провода 3 фаз, ноль и земля).

     Сложнее, когда Вы имеете 2 провода при однофазном или 4 провода при трехфазном подключении. В этом случае, если к Вам приходит один провод зануления/заземления (т.н. называемый PEN, Вы можете выделить из него PE (т.е. заземление) и N (т.е. нейтраль или нулевой провод).

     Конечно это будет несколько условно, но достаточно безопасно. А если Вы оборудуете Ваш щиток специальными приборами УЗО (устройство защитного отключения), то Вы можете считать себя в безопасности.Устройства защитного отключения (УЗО) реагируют на ненормативные токи утечки, являющиеся следствием прямого или косвенного касания человеком токоведущих частей, нарушения целостности или возгорания проводки. УЗО в первую очередь спасает человеку жизнь и защищает оборудование от возгорания.

подробнее об УЗО

     Общая рекомендация следующая. На входе коттеджа или квартиры должно стоять так называемое «пожарное УЗО» с током срабатывания 100 или 300 мА. Оно предназначено для отключения сети при возникновении пожара, что очень важно для деревянных домов. Ставить на входе УЗО с токами 30мА не рекомендуется — будут постоянные отключения.

     Итак, через УЗО в 300 мА мы завязываем всю электрическую сеть в доме. А вот, через УЗО 30 мА или 10 мА мы подключаем тех потребителей, где возможны утечки. Прежде всего это помещения, связанные с водою (ванная, туалет, кухня, бойлерная, насосная станция и т.д.). Не помешает вывести на УЗО все розетки — хуже не будет. А вот освещение выводить на УЗО смысла нет, вероятность поражения током мала, наоборот, может получиться только хуже. Представьте, темным вечером у Вас срабатывает УЗО на кухне. Если при этом еще и погаснет свет, то это только усугубит ситуацию.      Обратите внимание на тот факт, что, в отличие от автоматов, на УЗО замыкаются и нулевые провода. Но самое главное — нулевые провода вышедшие из разных УЗО нельзя соединять вместе — сработают эти УЗО, сигнализируя об утечке.

     Так как же работает наше УЗО. Очень просто. Оно представляет собою трансформатор тока: две обмотки, через одну протекает входящий в УЗО ток, а через вторую — ток, прошедший через нагрузку, т.е. выходящий.

     Если все нормально и утечки тока «на сторону» на нагрузке не было, то входящий и выходящий токи равны и УЗО работает в штатном режиме. Если же произошла утечка (например, нулевой кабель замкнут на корпус стиральной машины, а Вы к ней прикоснулись), то часть тока уйдет через Ваше тело и УЗО моментально сработает.

      Схемы подключения к трехфазной, однофазной сети.     

     В интернете можно найти несколько десятков схем подключения домов.

     Приводим три наиболее удачных варианта подключения к трехфазной сети: два варианта для режима раздельного подвода PE и N, и один вариант объединенного подвода PEN (самый дешевый и поэтому самый распространенный вариант). Порядок подключения к однофазной сети аналогичен.

Схемы распределительных щитов 3ф сети.

Вариант 1. Схема группового распределительного щита коттеджа (PE и N раздельны)

В приведенной ниже схеме все группы защищены УЗО с чувствительностью не менее 30 мА. Электрооборудование санузлов, влажных помещений, где ток утечки наиболее опасен, защищается УЗО с отключающим дифференциальным током 10 мА для обеспечения полной безопасности. 1 — Пластиковый или металлический корпус щита. 2 — Соединительные элементы нулевых рабочих проводников. 3 — Соединительный элемент зажимов РЕ проводника, а также проводника уравнивания потенциалов. 4 — Соединительный элемент фазных проводников групповых цепей. 5 — Выключатель дифференциального тока. 6 — Автоматические выключатели. 7 — Линии групповых цепей. 8 – Счетчик.

Вариант 2. Схема группового распределительного щита индивидуального здания (дома или дачи) — (PE и N раздельны)

В приведенной схеме все основные устройства выделены в отдельные группы. Предназначенные для защиты людей устройства дифференциальной защиты с чувствительностью 30 мА установлены на все основные группы потребителей, кроме освещения комнат, где маловероятен контакт человека с токоведущими частями, и климатизатора, который должен быть дополнительно заземлен. 1 — Пластиковый или металлический корпус щита. 2 — Соединительные элементы нулевых рабочих проводников. 3 — Соединительный элемент РЕ проводника, а также проводника уравнивания потенциалов. 4 — Соединительный элемент фазных проводников групповх сетей. 5 — Выключатель дифференциального тока. 6 — Автоматические выключатели. 7 — Линии групповых цепей. 8 — Дифференциальный автоматический выключатель. 9 – Счетчик.

Вариант 3. Схема группового распределительного щита для индивидуального жилого дома (PEN: т.е. PE и N объединены)

На вводе в коттедж устанавливается УЗО с дифференциальным током 300 мА (при установке УЗО с меньшим током утечки возможны ложные срабатывания вследствие большой протяженности электропроводки и высокого естественного фона утечки электрооборудования). Первые три автоматических выключателя предназначены для защиты осветительных цепей от перегрузки,короткого замыкания и токов утечки. Группа из УЗО и трех автоматических выключателей предназначена для защиты розеток. Трехфазный автоматический выключатель и УЗО защищают мощные потребители (например, электроплита). Последняя лини, состоящая из одного УЗО и двух автоматических выключателей предназначена для защиты цепей отдельно стоящего здания (например, подсобного помещения). 1 — Пластиковый корпус щита. 2 — Соединительный элемент нулевых рабочих проводников . 3 — Соединительный элемент зажимов нулевых рабочих проводников, а так же проводника уравнивания потенциалов . 4 — Соединительный элемент входных выводов защитных аппаратов групповых цепей. 5 — Автоматический выключатель дифференциального тока. 6 — Выключатель дифференциального тока. 7 — Автоматические выключатели. 8 — Линии групповых цепей. 9 – Счетчик.

Схемы распределительных щитов 1ф сети.

Вариант 1. Схема группового распределительного щита (PE и N раздельны)

Московские городские строительные нормы МГСН 3.01-01 «Жилые здания»

Схема электроснабжения квартир II категории комфорта:

Схема электроснабжения квартир I категории комфорта:

vg-repair.ru

Ограничитель перенапряжения: разновидности и характеристики

Любое жилое или административное здание оборудовано большим количеством техники, питаемой от электросети. Значительное увеличение значений рабочего напряжения и тока в этой сети может привести к выходу из строя всего этого электрического оборудования. Если защитой от таких явлений в многоквартирных домах, промышленных и административных зданиях занимаются обслуживающие организации, то владельцы частных домов должны сами заботиться о ней. И в этом поможет ограничитель перенапряжения.

Применение

Как следует из названия, ограничитель чрезмерно высокого напряжения (ОПН) служит для защиты электрической техники от напряжения, значительно превышающего номинальные значения. Это высокое напряжение или, другими словами, перенапряжение обычно носит импульсный характер. Поэтому еще одно название для таких устройств — ограничитель импульсных напряжений (ОИН).

Чтобы лучше разобраться с областями применения ОПН, рассмотрим вкратце причины, вызывающие такие скачки напряжения. Импульсы перенапряжения могут быть коммутационными. В этом случае они возникают в результате:

  • переключений (коммутаций) в мощных силовых электроустановках и системах энергообеспечения;
  • при резком изменении нагрузки в распределительных системах;
  • при возникновении повреждений в энергоустановках, вызывающих короткое замыкание.

Эти случаи носят производственный характер и устранением их последствий занимаются профессионалы. В таких цепях устанавливаются промышленные устройства, например, ОПН-110, где число 110 указывает на напряжение сети в кВ. Для нас интереснее будет защита от импульсных перенапряжений частного жилого дома. Обычно эти перенапряжения возникают во время грозы при разряде молнии. При этом импульсы перенапряжения возникают когда:

  • молния ударяет непосредственно в линию электропередач (ЛЭП) за пределами дома;
  • разряд молнии происходит между облаками или в находящийся рядом с домом объект. Возникшее электромагнитное поле индуцирует в электрических цепях мощный импульс;
  • удар молнии происходит в грунт недалеко от дома. Ток разряда, протекающий в земле, может вызвать значительную разность потенциалов.

В этих случаях во внешних воздушных линиях до 380В могут возникать импульсы величиной до 10 кВ, а во внутренней проводке домов — до 6 кВ. Чтобы избежать пагубного влияния таких высоких напряжений на домовую электрическую сеть и бытовые электроприборы существуют простые меры. По Правилам устройства электроустановок (ПУЭ) на входе силового электрического кабеля в дом должны устанавливаться ограничители импульсных напряжений (ОИН). Схема подключения ОИН простая. Устройство включается в цепь между силовым кабелем и заземляющим контуром. На рынке существует достаточно предложений различных производителей, одним из которых является концерн «Энергомера».

Как работают

В основе работы ОПН лежит нелинейная вольтамперная характеристика устройства. Благодаря ей при поступлении на ОПН больших токов высокого напряжения электрическое сопротивление устройства резко падает практически до нуля. В результате импульс напряжения в несколько кВ уходит через заземляющую цепь.

Время срабатывания на уменьшение сопротивления, как и время восстановления в исходное положение, у ОПН очень мало. Поэтому устройство при необходимости готово реагировать на целую серию импульсов.

Видео «Ограничитель высокого напряжения»

Виды и классы

С середины прошлого века до недавнего времени основными ОПН были вентильные разрядники. Но они имели целый ряд недостатков и были вытеснены нелинейными варисторами, созданными на основе металлооксидных материалов. Конструктивно они представляют собой варисторные таблеки, заключенные в укрепленный полимерный корпус. Такое решение позволяет избежать взрыва и разлета осколков устройства в случае поступления на него таких высоких напряжений, на которые оно не рассчитано.

По способам монтажа и крепления ОИН можно обозначить такие виды. Обычный вид, когда в устройство традиционным способом заводятся силовые провода. Специальный вид для крепления на дин-рейку. Этот способ, с креплением на дин-рейку, находит все большее применение благодаря удобству и простоте. По месту установки ОИН и схеме подключения можно выделить такие классы устройств. Условно их можно обозначить буквами латинского алфавита, хотя возможен и другой способ обозначения.

Устройства класса А предназначены для защиты от импульсного перенапряжения при попадании молнии в ЛЭП или разряде возле нее. Устанавливаются в месте соединения ЛЭП с кабелем, идущим в жилое строение. Выдерживают импульсы напряжения до 6 кВ. ОИН класса B монтируется в месте ввода силового кабеля в дом и должен выдерживать напряжение до 4 кВ. Подразумевается, что устройство класса А уже установлено.

Устройства класса C устанавливаются в электрощитах внутри дома и рассчитаны на напряжение 2,5 кВ. Одними из таких устройств являются ОИН-1 и ОИН-2 производства концерна «Энергомера». Первое устройство не содержит индикатор работоспособности, второе имеет такой индикатор.

Ограничители перенапряжения класса D рассчитаны на скачки напряжения до 1,5 кВ. Они предназначены для защиты чувствительной электронной аппаратуры и устанавливаются неподалеку от нее, например, в монтажных коробках. Несмотря на кажущуюся простоту, монтаж таких устройств желательно поручить квалифицированному специалисту.

Видео «Нелинейные ограничители перенапряжения»

Из видео вы узнаете, в чем особенности эксплуатации данных комплектующих и для чего они используются.

otoke.ru

Схема подключения оин 1 в трехфазную сеть

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта «начинка» щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать «фазу», а куда «ноль» можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Также рекомендуется защищать устройства УЗИП с помощью предохранителей.

Думаю тут все понятно.

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Нет постояннее соединения, чем временная скрутка!

Если вы получили технические условия на ул. Карагандинская, 59, значит ваша сетевая компания – это ПАО МРСК «Волги», если договор вы заключили в другом месте, то ищите соответствующую статью на нашем сайте.

В этой статье вы узнаете, как правильно подготовить стройплощадку для подключения к МРСК «Волги». Информация касается только физических лиц, подключающих участки и частные жилые дома, таунхаусы, квартиры. Если вы подключаетесь как юридическое лицо, ваш объект – это производство или минипроизводство, магазин и прочее, условия подключения будут отличаться, уточняйте их по нашему телефону.

По адресу Карагандинская, 59, находится единый центр обслуживания клиентов, который выдаёт ТУ (технические условия на подключение), а непосредственно приёмку и подключение вашей стройплощадки будут производить местные РЭС (районные электросети по прописке, например Дзержинский РЭС, Ленинский РЭС, Зауральный РЭС и т.д.), после выполнения монтажа и лабораторных испытаний.

Общий порядок действий такой: заключается договор с МРСК «Волги», получаются Технические условия, выполняется монтаж, проводятся испытания электролабораторией, открывается лицевой счёт в Энергосбыте, собираются все остальные документы (акты, разрешения), подключается ЩУ под напряжение. не пытайтесь самостоятельно подключать щит учёта под напряжение к опоре, это сделают работники РЭС бесплатно, после сбора всех документов. В технических условиях необходимо найти следующую информацию: напряжение, мощность, тип прибора учёта. Остальные требования ТУ, как правило, неизменны.

Напряжение: тут два варианта, либо 0,23кВ (220В или однофазное подключение), либо 0,4кВ (380В или трёхфазное подключение).

Мощность: измеряется в кВт (киловатты), указывается так: 7кВт. Это значит вам поставили верхний предел потребляемой мощности 7 киловатт. Обычно, в пределах от 5 до 15 кВт

Тип прибора учёта: может быть указан электронный счётчик с классом 2.0, а может быть прописан счётчик РИМ. РИМ-это прибор учёта, который устанавливается на опоре, наверху.

Теперь, когда вы ознакомились с требованиями ТУ, можно комплектовать щит учёта.

Проколы: при подключении вашего вводного кабеля СИП, непосредственно под напряжение к ВЛ (воздушной линии), используют проколы. Когда специалисты РЭС приедут вас подключать, они потребуют проколы. Для 220В потребуется два прокола, для 380В – четыре.

Натяжители: для натяжения вводного кабеля СИП и его крепления к опоре, стойке/стене щита учёта, потребуется два анкерных натяжителя (смотрите фото). Один на опору, один на стойку/стену щита учёта. Некоторые не покупают второй натяжитель, если щиток установлен на временной стойке, но в будущем, при переносе ЩУ на стену дома/гаража, натяжитель всё равно понадобится. Натяжитель для 220/380В один и тот же, в случае 220В используется два входных отверстия из четырёх. Для крепления натяжителя на опору специалисты РЭС привозят с собой ленту. Для крепления к стене дома используется пластиковый дюбель и анкер с кольцом на конце.

Вводной кабель СИП: СИП (самонесущий изолированный провод) поэтому ему не требуются дополнительные несущие металлические тросики. При напряжении 220В приобретайте СИП 2х16, для 380 В покупайте СИП 4х16. Вводной кабель нужно покупать с запасом, так как удлинить его уже не получится. Если, в будущем, вы планируете перенести ЩУ в другое место (например с временной стойки на стену дома), то длину кабеля нужно рассчитывать до дома, запас, временно, будет находится на стойке, смотанный кольцом. Не оставляйте запас кабеля на верхней части опоры, кто потом будет его спускать? И почём? Учтите, также, что к дому кабель крепится в верхней точке (например в месте перехода стены в кровлю), в щит учёта он заходит снизу, поэтому на опуск уходит не менее 2-3 метров. Номер опоры подключения вводного кабеля указан в ТУ, самовольничать нельзя, длину вводного кабеля считайте от указанной опоры.

Корпус щита учёта: В ТУ стандартно прописывают, что щит учёта должен быть антивандальный, иметь смотровое окошко, устанавливаться на наружной стороне дома, гаража, забора. Наружная установка прописана для того, чтобы невозможно было подключится до прибора учёта, чтобы такое подключение было видимо работникам электросетей. В случае применения счётчика РИМ, требование наружной установки не актуально. Итак, требования к корпусу щита учёта: металлический, степень защиты IP54 и выше (обязательно! Это уличное исполнение), с замком, с окошком для счётчика (для РИМ можно без окошка). Обратите внимание: для напряжения 380В щит должен быть просторней, чтобы поместилась вся начинка. Счётчик внутри щитка может крепится на DIN-рейку, может на болты, уточняйте вид крепления ЩУ и счётчика у продавца.

Провод от ЩУ до заземления: используйте ПВ-1 жёлто-зелёной окраски, сечением 10мм2, нужной вам длины. Конец провода, который крепится к полосе заземления, загибается кольцом, и крепится болтовым соединением (полоса заземления поднимается из земли, на небольшую и удобную высоту, наваривается болт, на болт две гайки и две шайбы). Этот контакт должен быть всегда доступен для осмотра и ремонта.

Счётчик: счётчик покупайте однофазный или трёхфазный, как написано в ТУ. Счётчик должен быть электронный класса точности 2.0 и выше, обычно, в наших магазинах, все счётчики класса 1.0. Уточняйте вид креления: болт или DIN-рейка. Если в ТУ прописан счётчик РИМ, то внутрь ЩУ счётчик не ставится. Некоторые абоненты, ставят дублирующий счётчик, для контроля счётчика РИМ. У крышки счётчика, как правило, два винта, один из них с пломбой, его не трогайте при сборке. Не теряйте паспорт от счётчика.

ОИН-1: ограничитель импульсных напряжений должен быть обязательно установлен в щите учёта. Нам часто говорят, что в технических условиях не прописано требование установки ограничителей перенапряжений (не путать с ограничителем мощности). Это не так, в ТУ чёрным по белому написано «установить устройства защиты от замыканий и перенапряжений«. В щит 220в ставится один ОИН, в щит 380В ставится три ОИНа. Какие именно ОИНы покупать: ОИН-1, ОПС, NU-9 решайте сами. Внимание! ОИНы подключаются после вводного автомата (смотрите схему).

Вводной автомат: это обязательное для установки устройство. Он защищает счётчик и внутренние провода от коротких замыканий и перегрузок, позволяет обесточить щит для его обслуживания (замена счётчика, ОИНов, автоматов, УЗО). Кроме того, вводным автоматом в МРСК «Волги», ограничивают потребляемую мощность. Не используйте в качестве вводного автомата УЗО или дифференциальные автоматы! Для 220В покупайте однополюсный автомат, для 380В покупайте трёхполюсный автомат. Номинал вводного автомата выбирайте по следующей формуле:
НОМИНАЛ (220В) = МОЩНОСТЬ / 220.
Например: мощность в ТУ 7кВт, значит НОМИНАЛ=7000/220=31,8А, округляем до 32А. Автомат, в примере, будет однополюсный 32А. Справочно, для напряжения 220В номиналы вводных автоматов: 5кВт – 25А; 7кВт – 32А; 10кВт – 40А; 15кВт – 63А. Для напряжения 380В вводной автомат всегда будет 32А, трёхполюсный. Рекомендуем использовать вводные автоматы со шторками на контактах, такие шторки пломбируются свинцовыми пломбами, а не наклейками, наклейки, имеют нехорошее свойство, отклеиваться.

УЗО: в технических условиях прописана обязательная установка устройств защитного отключения. Для ЩУ 220В ставьте двухполюсное (однофазное) УЗО, для щитков 380В ставьте четырёхполюсное (трёхфазное) УЗО. Вместо устройства защитного отключения можно использовать дифференциальный автомат. УЗО выбирается по номинальному току и току утечки. Номинальный ток должен быть не менее тока вводного автомата (больше можно). Ток утечки должен быть 30мА (тридцать миллиампер). Если вы применяете дифавтомат, то его номинал, теоретически, может быть ниже вводного автомата, и, даже, по условиям селективности, должен быть ниже на одну ступень. Но, мы не рекомендуем понижать номинал дифавтомата, так как вы снижаете максимальную потребляемую мощность. Ставьте дифавтомат, такого же номинала, как и вводной автомат.

Розетка: розетка необязательный элемент, но очень удобный, если планируете подключать переноски и электроинструмент. Розетка для ЩУ должна быть с креплением на DIN-рейку и с заземляющим контактом.

Провод для обвязки: для соединения устройств внутри ЩУ между собой вам понадобится соединительный (обвязочный) провод. Лучше использовать провод марки ПВ-1 (цельножильный), если использовать ПВ-3 (многопроволочный), то неодходимо будет каждый конец опрессовть контактным наконечником. Провода, желательно, применять разных расцветок: синий для обвязки нуля (на схеме синим цветом), жёлто-зелёный для обвязки заземляющих цепей (на схеме зелёный цвет), для фазной обвязки любой другой цвет, кроме синего и жёлто-зелёного (на схеме красный цвет). Хотя, при приёмке, работники электросетей на расцветку проводов внимания не обращают, но не делайте все провода синими или жёлто-зелёными.

Шинки N и PE: N (нулевая шина), PE (шина заземления). В приведённом нами примере, на схеме, используется только шина PE. Шинку удобнее применять с креплением на DIN-рейку, внутренний диаметр винтовых отверстий не менее 10мм2 (для крепления провода от контура заземления), минимальное количество отверстий 6 (в нашем примере на схеме 380В).

Когда все необходимые комплектующие закуплены, можно приступать к монтажным работам. Сборку щита учёта и монтаж заземления можно выполнять самостоятельно, а можно привлечь электриков. Никаких лицензий и допусков СРО для данного вида работ не требуется. Заказать электромонтаж можно в нашей лаборатории. Вам в помощь приведены две схемы сборки ЩУ, однофазного и трёхфазного.

Основные моменты, которые нужно знать при подготовке стройплощадки.

Щит можно временно устанавливать на стойке из дерева или металла. Стойка должна быть надёжно вкопана в землю. Также ЩУ можно прикрепить к опоре ВЛ, с помощью специальных креплений-хомутов (продаются), не нарушая целостность опоры. Некоторые РЭС против размещения щитков на своих опорах, уточняйте этот вопрос у свойх районных электросетей (телефон на оборотной стороне ТУ). Размещать щит учёта на участке нужно так, чтобы он и СИП не мешали вам и транспорту. Учтите, что ЩУ должен быть заземлён от контура заземления, построенный дом также должен быть заземлён от контура. Поэтому, если вы забьёте контур заземления недалеко от дома, разместив рядом ЩУ или вытянув до него полосу заземления, то не придётся забивать контур повторно.

СИП бывает с разноцветными полосками на изоляции, бывает полностью чёрный. Если разноцветный, то в качестве ноля используйте жилу с синей полоской. Обратите внимание, на нашей схеме вводной ноль заходит напрямую в счётчик – это требование некоторых РЭС. Фазные жилы СИП можно заводить снизу автомата, такое допущение прописано в паспортах автоматических выключателей (например фирмы IEK). УЗО и дифференциальные автоматы запитываются только сверху, иначе выходят из строя. Напоминаем, УЗО и ВДТ на вводе не ставятся.

Строго говоря ОИН-1 должен подключаться через отдельный автомат, но если этот отдельный автомат не ставить, то подключение ограничителей производится после вводного автомата (как на наших схемах). Так, в своё время, нам ответил инженер-конструктор фирмы производителя. То есть, если СИП заходит снизу автомата, то ОИНы подключаются сверху, и наоборот.

Щит учёта обязательно должен быть подключен к заземляющему устройству. Без заземления стройплощадку под напряжение не подключат. Как правильно выполнить контур заземления читайте в рубрике «статьи» нашего сайта.

Наличие В наличии

Вес товара: 0.10 кг.

Ограничитель импульсного перенапряжения (ограничитель напряжения) является устройством для защиты от импульсных перенапряжений.

Этот товар не продается отдельно. Вы должны выбрать как минимум 1 количество этого товара

Добавить в Корзину

Предупреждение: Товар заканчивается!

Твит Поделиться Google+ Pinterest

  • Подробнее
  • Характеристики
  • Загрузить
  • Вопросы: (13)
  • Отзывы (0)
Производитель МИРТЕК
Номинальное напряжение 220 В 50 Гц
Диапазон рабочих температур -40 C – +55 C
Степень защиты IP20
Рабочее напряжение 270 В
Максимальный разрядный ток 10 кА
Номинальный разрядный ток 5 кА
Уровень напряжения защиты 1,8 кВ
Неповреждающее временное перенапряжение 380 В

Ограничитель импульсного перенапряжения (ограничитель напряжения) является устройством защиты от импульсных перенапряжений и предназначен для защиты электроустановок зданий от грозовых импульсных перенапряжений.

Ограничитель напряжения может быть применен в качестве встраиваемого комплектующего изделия в низковольтных устройствах с фазным напряжением 220В частотой 50 Гц. Ограничители напряжения рекомендованы для эксплуатации в вводных устройствах, в распределительных щитах, в групповых квартирных и этажных щитках систем типа TN.

К одному выводу ограничителя напряжения подключается фазный проводник, к другому – совмещенный защитный и нулевой рабочий проводник (PEN) или нулевой рабочий N проводник питающей сети.

Подключение фазного проводника ограничителя напряжения допускается производить к выключателю с номинальным током 16-40А, питающему групповую цепь.

Ограничитель напряжения допускает длительное рабочее напряжение 275 В и выдерживает без повреждений временные перенапряжения до 380 В.

ОИН-1 ограничитель импульсных напряжений: схема подключения, принцип работы

На каждой установке с воздушных выводом должны быть ограничители, которые помогают справиться со скачками напряжения. В этой статье говорится о том, как подключить ограничитель, а также приведены несколько схем.

Предназначение и принцип действия ОИН-1

Устройство ограничителя импульсных напряжений необходимо для предохранения сети с показателем 380/220 В. Это классическое напряжение для работы электросетей. Резкие перепады напряжения могут образовываться из-за ударов молний. Из-за грозы также образуется контактная разность в почве.

Как выглядит устройство

Также напряжение может меняться из-за всплеска в электросети. Они образуются при подключении или выключении различных приборов в одну сеть. Резкие скачки могут образовываться при присоединении мощных электрических приборов или каких-нибудь систем.

Принцип действия прибора: изнутри ОИН-1 оснащен варистором. По принципу работы они похожи на разрядники, которые применялись раньше.

УЗИП в щитке

В таком случае устройство будет устанавливаться параллельно предохраняемой электроцепи.

Если же по каким-то причинам величина напряжения в сети станет больше разрешенной, прибор просто замкнет проводку, таким образом предупредив угрозу от включенных за ним бытовых приборов.

Чтобы понять, исправен прибор или нет, необходимо обратить внимание на цвет индикатора. Если он зеленый, то модуль будет в исправном состоянии, а если красный, то его необходимо поменять.

Сфера применения

Ограничитель типа ОИН-1 используется достаточно часто. Его подключают в вводные щитки или для учёта потребителей. Желательно подключать его до счетчика, чтобы обезопасить и его.

Маркировка от производителя

Если необходимо построить дом и подсоединить всю территорию усадьбы к источнику электрической энергии – в техническом плане для такого подключения уже прописана норма установки ОИН-1 для защиты от скачков напряжения. Но это указание выполняется в основном, как прописано в правилах устройства электроустановок – при воздушном вводе провода.

Технические параметры

Таблица основных характеристик ОИН-1:

Стандартное напряжение220 В
Номинальный разрядный ток6
Максимальный РТ13
Остаточное напряжение2200
Уровень защитыне ниже IР21
Температурный режимот -50 до +55
Параметры устройства (размеры)80 × 17,5 × 66,5
Вес0,12 кг
Срок службы3–3,5 года

Схемы подключения прибора

Подключение может быть однофазное и трехфазное. У прибора ОИН-1 есть ряд похожих устройств от различных производителей бытовых приборов, потому все схемы подключения почти похожи. Стандартная схема описана ниже. Ее можно применять под все типы устройств.

ОИН 1 схема подключения

В первом случае подключение выполнено параллельно к цепи, а во втором – последовательно с размыкателем. Проще говоря, в итоге включения ОИН-1 во время скачков напряжения размыкатель будет обрывать цепь питания, чтобы миновать риск возникновения пожара в системе и прохождения тока по электродуге.

Внимание!  Кроме грамотной установки нулевого и фазного проводников, достаточно важную роль играет длина самого кабеля.

От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см.

Что использовать перед УЗИП — автоматы или предохранители

Для постоянного снабжения помещения энергией рекомендуется подключать автоматический выключатель, который будет выключать УЗИП.

После попадания молнии

Подключение этого автомата определяется также тем, что в период отвода импульса образуется, как говорят, сопровождающий ток.

Но гораздо легче приобрести модульные предохранители. Рекомендуется выбирать устройство типа GG.

Они могут защищать весь диапазон сверхтоков. Даже если ток вырос несильно, то предохранитель такого типа все равно его выключит.

Возникновение ошибок при подключении

Одна из популярных ошибок – это подключение УЗИП в щит с неправильным контуром заземления. Смысла от этой защиты вообще не будет. И при первом попадании молнии щиток сгорит.

Вторая ошибка – это неверная установка, исходя из системы заземления. Необходимо следовать техдокументации УЗИП, а получить консультацию у профессионального мастера или просто вызвать электрика на дом.

Типы ограничителей

Третье заблуждение – применение УЗИП неподходящего типа. Существует всего три типа импульсных защитных приборов, и все они должны использоваться, подключаться в свои щитки.

Схему подключения ОИН-1 (ограничитель импульсных напряжений) можно найти на специализированных сайтах для электриков. Там же мастера могут дать полезный совет и рассказать о пошаговом подключении своими руками.

В заключение необходимо отметить, что ограничители импульсных напряжений должны быть в каждой электрической цепи. Это поможет предотвратить замыкания и риск возникновения пожаров. Если у человека нет опыта работа с проводкой, то желательно вызвать профессионального электрика.

Ограничители импульсного перенапряжения: подключение узип

Конструкция

УЗИП изготавливаются по стандартным размерам в модульном исполнении. Поэтому они легко монтируются на обычную ДИН-рейку, шириной 35 мм. В соответствии с классом защиты, в конструкцию прибора может входить от 1 до 4 модулей. Отработанные секции, выполнившие свою защитную функцию, легко заменяются новыми. Для этого центральная часть корпуса оборудована специальными направляющими под новые модули. Таким образом, замена выполняется быстро, поскольку не требуется отключать провода и демонтировать все устройство.

Основным защитным компонентом служит варистор, представляющий собой разновидность полупроводников. Для его изготовления применяется керамическая смесь и окись цинка. К ним добавляются специальные примеси, создающие уникальные запирающие свойства готового элемента, на котором основан принцип действия всего прибора. Кроме того, каждый модуль отдельно защищен от повышенных токовых нагрузок.

На передней панели имеется окно с дисплеем, где отображается состояние и работоспособность устройства. Подключение проводников осуществляется через клеммы, предназначенные для входа и выхода. Надежность контактов повышается за счет насечек, существенно увеличивающих площадь соприкосновения и снижающих сопротивление самих контактов. Подключая провода, нужно обязательно соблюдать полярность. Во избежание путаницы, каждая клемма промаркирована в соответствии со своим предназначением.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Причины и последствия импульсных перенапряжений сети

Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:

  1. Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
  2. Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.

Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.

Как работает защитник от перенапряжений

Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).

Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.

Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.

Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.

В защитных устройствах класса B основным элементом является искровой промежуток. При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.

Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.

Полезное: Электромонтаж проводки в частном деревянном доме

Ограничитель класса C имеет внутри варистор. Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.

Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor, от англ. Vari(able) (Resi)stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO. Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее – площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота – параметры по напряжению.

При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Рис.2

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения – постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал – десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

Рис. 4

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Трехфазная установка

В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:

  • 3-фазные провода
  • 1 нейтральный провод

Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.

Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

  Как подобрать стабилизатор напряжения для частного дома или квартиры?

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Установка УЗИП — ограничители импульсного перенапряжения, правильный монтаж и подключение

Ограничители импульсного перенапряжения — скачкообразное напряжение атмосферного происхождения является основной причиной выхода из строя электронного оборудования и простоев производства. Наиболее опасный тип перенапряжения вызван прямыми ударами молнии.

Фактически, молния создает пики тока, которые генерируют перенапряжения в сети электропередачи и передачи данных, последствия которых могут быть чрезвычайно нежелательными и опасными для систем, сооружений и людей. У разрядников для защиты от перенапряжений есть много применений, от защиты дома до коммунальной подстанции.

Они устанавливаются на автоматических выключателях внутри жилого дома, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях. В данной публикации мы расскажем как правильно подключать ограничители импульсного перенапряжения, и покажем схемы соединения. В частности здесь речь пойдет о конкретном устройстве ОИН-1.

Для чего нужен ОИН-1 и его функциональные возможности

Прибор ограничителя импульсных напряжений в первую очередь нужен для защиты электрической сети переменного тока 380/220v. Скачкообразные, импульсные напряжения, многократно превышающие штатные значения, могут возникать из-за грозовых разрядов.

Кроме этого, действующее сетевое напряжение может изменяться в следствия бросков тока в электросети. Возникают они как правило во время подсоединения к сети либо отключения каких либо мощных электрических устройств.

В схему прибора ОИН-1 включен мощный варистор, выполняющий функции разрядника, которые применялись в устройствах более старшего поколения.

Устройство защиты от импульсных перенапряжений в силовом щитке

В этом варианте прибор подключен к защищаемой электрической цепи по параллельной схеме.

В случае каких либо возникших аварийных ситуаций, когда штатное напряжение начинает периодически «прыгать» до критического уровня, тогда устройство защиты мгновенно сработает.

Принцип действия защиты заключается в следующем. Во время образования в силовой цепи внезапного подъема напряжения, например, от грозового разряда. При этом на варисторе снижается сопротивление, и как следствие возникает короткое замыкание, после чего срабатывает автомат и отключает электрическую цепь. Установленные в этом силовом тракте, после варистора, различные приборы не получат повреждений, благодаря тому, что вовремя сработали ограничители импульсного перенапряжения.

В процессе эксплуатации ОИН-1 он может получить повреждения, чтобы убедится в его исправности, нужно ориентироваться на показание встроенного индикатора. В случае, если индикатор отображается зеленым цветом, то прибор находится в рабочем состоянии, а если индикатор покраснел, тогда устройство защиты подлежит замене.

Область использования

Защитный ограничитель напряжения ОИН-1 очень востребован при монтаже электро сетей, его практически всегда устанавливают в распределительных щитках на входе в помещение. А подключается он в цепь непосредственно перед прибором учета электроэнергии, то есть и сам счетчик будет под защитой от перенапряжения.

Кроме этого, данный прибор используется для защиты от перенапряжений, начиная от жилого дома до коммунальной подстанции. Они устанавливаются на автоматических выключателях внутри жилого помещения, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях.

Технические параметры

Таблица основных характеристик ОИН-1: Значение
1 Стандартное напряжение 220 В
2 Номинальный разрядный ток 6
3 Максимальный РТ 13
4 Остаточное напряжение 2200
5 Уровень защиты не ниже IР21
6 Температурный режим от -50 до +55
7 Параметры устройства (размеры) 80 × 17,5 × 66,5
8 Вес 0,12 кг
9 Срок службы 3–3,5 года

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1 2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Защита проводки возложена на:

  • трехполюсный вводной автоматический выключатель;
  • однополюсные и трехполюсные автоматы отходящих линий;
  • устройство защиты от импульсных перенапряжений комбинированного типа 1 2 3.

Учетом электроэнергии занимается трехфазный электросчетчик. После него в цепях рабочего нуля образована дополнительная шинка N1. От нее запитываются все потребители.

Шинки N и РЕ, модуль УЗИП подключены стандартным образом.

При раздельном использовании защит классов №1, 2, 3 следует распределять их по зонам I, II, III.

В предлагаемой разработке показан не чистый вариант подключения защит под систему заземления TN-C, а рекомендуемая современными требованиями модификация перехода на TN-C-S с выполнением повторного заземления.

Проводник PEN по силовому кабелю от питающей трансформаторной подстанции подается на свою шинку, которая подключается перемычкой к сборке рабочего нуля и шине повторного заземления.

Трехполюсный УЗИП, включенный после вводного автомата, защищает электрический счетчик и все его цепи, включая УЗО, от импульсов перенапряжения. Напоминаю, что он должен монтироваться в отдельном несгораемом боксе.

При отсутствии повторного заземления нижняя клемма модуля УЗИП подключается на шину PEN проводника отдельной жилой, а проводка работает чисто по старой системе TN-C.

Еще одна методика снижения нарастающего фронта броска импульса перенапряжения показана ниже. Здесь работают специальные реактивные сопротивления — дросселя LL1-3 с индуктивностью от 6 до 15 микрогенри, подбираемые расчетным путем.

Их монтируют в отдельном защитном щитке совместно с УЗИП. Так проще выполнять настройки и периодические обслуживания, профилактические работы.

Считаю, что необходимо указать еще на один вариант использования ограничителей перенапряжения и разрядников, которым иногда пренебрегают владельцы сложной электронной техники.

В отдельных ситуациях, как было у меня в электротехнической лаборатории на подстанции 330 кВ. Настольный компьютер подвергался различным видам облучения электромагнитных полей с частотами низкого и высокого диапазонов. Это сказывалось на отображении информации и даже быстродействии.

Однако при ударе молнии в рядом расположенную почву или молниезащиту такой путь может стать источником опасности. Исправить ситуацию позволяет метод создания дополнительной гальванической развязки.

Ее создают подключением разрядника. У меня использовалась разработка компании Hakel, как показано на картинке выше.

Технические характеристики ОПС-1

ОПС-1 — серия коммутационных ограничителей импульсных перенапряжений, которые защищают сети от вредоносных импульсов. В конструктивном плане имеют стандартные модули с 18 миллиметровой шириной под установку на монтажный тип рейки. Содержат твердотельные композитные варисторы из карбидового цинка и механизмы, отвечающие за визуальный контроль изнашиваемости варистора и аварийного предохранителя. Благодаря карбиду цинка снижают сопротивление в 1000 раз во время появления на сменном модуле напряжения, значение которого превышает предельно допустимое.

ОПС 1

Каждый ОПС-1 имеет количество модулей от 1 до 4 штук в однофазной и трехфазной сети. Есть класс, номинальное напряжение, рабочее протекторное напряжение (500-1000 вольт), номинальное количество тока ограничителя (5-10 ампер), ток, который разрядник принимает при атмосферном разряде (40-65 килоампер) и напряжение, до которого уменьшается значение при разрыве (от 0,25 до 1,2 киловатт).

Обратите внимание! Бывает четыре класса защиты. Первый класс устройств не применяется в бытовых установках, а нужен только для того, чтобы защитить линию электрической передачи

Второй класс используется, чтобы защитить высоковольтные скачки напряжения, которые вызваны ударом молнии к линии электрической передачи.

Третий класс нужен, чтобы защищать от перенапряжений с низкими сетевыми значениями. Защитные устройства ставятся в бытовом распределительном устройстве. Четвертый класс используется, чтобы защищать электрические устройства, которые чувствительны к импульсным помехам и всплескам в однофазной сети. Они монтируются в распределительном типе щитка, за розеткой в электрокоробке или около защищаемого устройства.

Технические характеристики

Ограничитель импульсных перенапряжений

  1. Преимущества в использовании ОПН
  2. Технические характеристики ОПН
  3. Устройство ограничителей импульсных перенапряжений
  4. Защита от импульсных перенапряжений

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

Преимущества в использовании ОПН

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Ограничители перенапряжения в домашней электропроводке

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники. Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате перенапряжения в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН). Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, принцип работы ОПН построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

https://youtube.com/watch?v=Xp-bwkpuQBA

Виды ОПН

Вы уже поняли, что конструкция бывает совершенно разных типов в зависимости от способов применения, но всё-таки со всеми устройствами так и не ознакомились. Как выбрать ограничитель перенапряжения для дома вы узнаете ниже, узнав в деталях все возможные видовые особенности.

Различаются ОПН по следующим характеристикам:

  • Изоляционный тип (полимерный или фарфорный)
  • Количество колонок
  • Величина стандартного напряжения
  • Установочное место прибора

Можно потом углубиться в конкретные особенности и отличия трехфазных и однофазных приборов. Есть к тому же и классификация, которая относится к месту установки – делятся на B, C и D. Но нам куда важнее разобраться с техническими свойствами.

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на din-рейку, либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.

Читайте далее:

Устройство защиты от импульсных перенапряжений

УЗИП – устройство защиты от импульсных перенапряжений

Защита от перенапряжения сети

Ограничитель импульсных перенапряжений

Защита от скачков напряжения

Молниезащита дома: устройство и монтаж

Классификация устройств

Стандартом предусмотрена классификация устройств по следующим параметрам:

  • числу вводов;
  • по способу осуществления защитных функций;
  • по месту расположения;
  • по способу монтажа;
  • по набору защитных функций;
  • по степени защиты наружной оболочки;
  • по роду тока питания.

Так выглядят устройства для защиты от грозовых и коммутационных перенапряжений.

Читайте еще: что такое узо и зачем нужен автоматический выключатель тока?

По признаку количества вводов приборы защиты делятся на одновводные, то есть, имеющие один ввод и двухвводные. Защита может осуществляться различными способами, существуют устройства коммутирующего типа, приборы, осуществляющие ограничение напряжения, а также аппараты комбинированного типа. Место установки защиты зависит от вида защищаемого оборудования. Установка может осуществляться как наружно, так и внутри помещений. Способ установки аппаратов может быть стационарным либо переносным. Виды защит, содержащиеся в приборе, могут составлять комбинации из схем различных типов:

  • защиты теплового типа;
  • защиты, реагирующей на появление токов утечки;
  • защиты от сверхтока.

Степень защиты по IP должна соответствовать условиям эксплуатации. Приборы могут питаться переменным или постоянным током.

Правила и особенности установки

Установку устройств защиты от перенапряжения регламентируют Правила устройства электроустановок (ПУЭ), являющиеся основным нормативным документом в вопросах безопасного обслуживания электрических установок. Согласно требованиям ПУЭ, устройства защиты от перенапряжения подлежат обязательной установке на объектах с предусмотренной системой молниезащиты, а также в домах, электроснабжение которых осуществляется по проводам воздушных линий, в регионах, с годовой продолжительностью грозовых периодов, превышающих 25 часов.

Необходимость подключения УЗИП на объектах в районах, где грозы не являются частым явлением, носит рекомендательный характер, однако, учитывая, к каким разрушительным последствиям может привести прямой удар молнии, целесообразно выполнить все необходимые мероприятия для защиты от данного вида стихии даже для негрозоопасной местности.

Защита от импульсных напряжений промышленных и административных зданий, многоквартирных домов входит в сферу деятельности электромонтажных организаций. Установка и подключение УЗИП в частном доме или в квартире ложится на плечи хозяина жилья, поэтому каждому домовладельцу необходимо, хотя бы в общих чертах, знать основные правила обустройства защиты от импульсных перенапряжений, а также как установить и как подключить необходимое для этого оборудование.

Монтаж УЗИП необходимо выполнить соблюдая требования технических нормативов, которые предусматривают 3 уровня защиты. В качестве первого уровня защиты находят применение вентильные разрядники, которые относятся к категории УЗИП 1 класса. Они обеспечивают защиту от непосредственных грозовых воздействий на линии электропередач и устанавливаются в ВРУ (вводных распределительных устройствах). Дополнительная защита от удара молний и коммутационных процессов в понижающих трансформаторных подстанциях обеспечивается защитными аппаратами 2 класса, которые устанавливаются и подключаются в распределительных щитах дома или квартиры. Для защиты электроники и электротехники, чувствительной даже к незначительным импульсным перенапряжениям служат УЗИП 3 класса, подключение которых производится в щитке питания потребителей в непосредственной близости от них.

Как установить оборудование для того, чтобы обеспечить трехступенчатую защиту от импульсных перенапряжений, показано на схеме:

Более доступное объяснение:

Виды УЗИП и принципы работы

Все приборы УЗИП имеют одно назначение, защиту оборудования в электросетях от импульсного перенапряжения. Достижение этой цели осуществляется разными путями, поэтому изделия отличаются по принципу работы и конструкции.

На графиках справа показано как УЗИП срезает импульс перенапряжения

Искровые разрядники – работают по принципу искрового разряда в промежутках между проводниками фазы и заземления.

В перемычку между этими линиями ставится разрядник с разрывом цепи, воздушный зазор рассчитан на пороговое значение перенапряжения. При превышении установленного порога, воздушный зазор пробивается, ток с фазного проводника уходит в контур заземления, не доходя до бытовой техники и другого оборудования.

Вентильные разрядники – работают по такому же принципу, но с одной стороны воздушного зазора находится сопротивление, которое рассеивает энергию импульса напряжения.

Модели УЗИП на разрядном принципе имеют большие габариты, используются в сетях высокого напряжения на участках между ЛЭП и трансформаторных подстанций, это старые, но надежные конструкции. Постепенно их вытесняют ОПН (Ограничители напряжения).

Ограничители перенапряжения — в данном случае в качестве перемычки ставят варисторы обладающие свойствами нелинейного резистора. Для не посвященных, варисторы обладают уникальными вольт — амперными характеристиками для пропускания больших токов высокого напряжения.

Основой состава варистора является оксид цинка с добавлением окисей разных металлов, в такой смеси создается структура последовательности p-n переходов. Пропорции состава примесей и концентрация определяют пороговое напряжение, при котором p-n переходы открываются и ток устремляется в заземляющий контур. После снижения напряжения до установленной нормы p-n переходы закрываются, ток снижается до нулевого значения. Таким образом, импульсы перенапряжения отводятся от цепи потребителей.

Виды малогабаритных варисторов

Преимущество последней технологии в том, что она позволяет изготовить приборы компактные приборы в широком диапазоне величин напряжения, которые можно устанавливать в РЩ квартир и частных домов.

Недостаток приборов на варисторах в том, что элементы тепловой защиты после срабатывания подлежат замене, это снижает ресурс работы до 20 срабатываний. Для быстрого извлечения и установки УЗИП в цепи предусматривают специальные съемники.

Защитные устройства

Можно выделить несколько разновидностей устройств защиты. Отличаются они выполнением разных функций и разной стоимостью.

Сетевой фильтр является самым простым и недорогим средством защиты бытовой техники с небольшой мощностью. Он превосходно справляется с бросками, достигающими 450 В.

Основным элементом защиты сетевика является варистор – полупроводник, способный менять сопротивление в зависимости от возникающего напряжения. Именно этот элемент фильтра возьмет на себя удар при серьезном скачке.

Кроме того, фильтр способен защитить технику от помех высокой частоты. Помимо указанных защитных узлов фильтр оснащен плавким предохранителем, который сработает при коротком замыкании.

В качестве защиты электросети на разных ее уровнях – от перехода с воздушной линии на кабельную до конкретных приборов внутри дома – используют модульные ограничители перенапряжения. Являясь по сути разрядником для защиты от перенапряжений, ограничитель в качестве главного рабочего органа имеет все тот же варистор.

Стабилизатор способен выровнять скачущее напряжение в соответствии с номинальным. Если установить рамки, к примеру, в диапазоне от 200 до 250 В, то качественное устройство будет выдавать необходимые 220 В до тех пор, пока напряжение не выйдет за пределы указанного диапазона. Прибор отключит подачу питания до тех пор, пока напряжение не вернется в заданные границы.

Для сельской местности монтаж стабилизатора иногда является единственным средством повышения напряжения до необходимых значений. Стабилизаторы бывают двух видов:

  • линейные – к ним можно подключить несколько бытовых приборов;
  • магистральные – монтируются на входе электрической сети в дом или квартиру.

Источники бесперебойного питания продолжают подачу напряжения к подключенным приборам даже после срабатывания защитной системы или отключения электроэнергии. Время работы будет зависеть от аккумулятора и мощности потребителей.

Зачастую к ним подключают компьютеры с целью избежать потери данных во время внезапного сбоя. Среди современных устройств зарекомендовали себя модели, способные через USB-порт контролировать редактор текстов (например, сохранить файл) в случае возникновения внештатной ситуации.

Устройства защиты от импульсных перенапряжений в отличие от вышеперечисленных средств превосходно справляются с высоким напряжением. На основе таких устройств можно организовать защиту всех внутренних линий электропередачи частного дома.

Импульсы, которые могут возникнуть из-за грозы, превосходят способности этого устройства. Поэтому сфера применения реле защиты от перенапряжения – электрическая сеть внутри дома.

Для защиты частного дома от скачков напряжения устанавливаются специальные устройства, выбор которых велик. Будет лучше, если работу выполнят профессионалы, поскольку в домашних условиях вряд ли позволят настроить разработанную схему подключения защиты от перенапряжения и тем более провести ее тест в режиме критической ситуации.

Следует также помнить, что все операции с щитком, проводкой и приборами нужно проводить строго при выключенном электропитании.

Виды ОПН

Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:

  1. Типу изоляции (фарфор или полимер).
  2. Конструктивному исполнению (одна или несколько колонок).
  3. Величине рабочего напряжения.
  4. Месту установки ограничителя.

Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:

Длительные перенапряжения и провалы из-за недостатка напряжения

Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.

Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.

Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.

В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Часто задаваемые вопросы

  1. Есть ли смысл устанавливать плавкий предохранитель на линию нейтрали?

Да, при обрыве линий ЛЭП фаза часто попадает на нейтраль или заземление, в этом случае на розетку могут прийти две разные фазы это 380В. В нейтральную жилу или в заземление может попасть молния это сотни тысяч вольт.

  1. Если через УЗИП при скачке напряжения проходит сотни тысяч вольт, какого сечения провода надо ставить?

Провода устанавливаются с расчетным сечением для всего дома на вводной автомат, если УЗИП ставится на отдельную группу освещения или розеток, то сечение такое же, как и в проводах этой группы. На вводе обычно 10 -16 мм2,

Группы освещения 07-1,5 мм2, розетки 2.5 – 4 мм2.

Варианты подключения

Одним из важнейших вопросов является, как подключить УЗИП в щитке. Практически все варианты подключения идентичны и указаны в техническом паспорте изделия. Способы монтажа приборов защиты могут отличаться, в зависимости, где они будут установлены, в однофазной или трехфазной сети, также в зависимости от системы заземления.

Самой современной и отвечающая всем требованиям безопасности является система заземления tn-s, при которой нулевой рабочий (N) и нулевой защитный (PE) провод во всей системе энергоснабжения работают раздельно. Система tn-c-s представляет комбинированный вариант, при котором N и PE от источника питания до ВРУ дома объединены в один провод, после которого начинается разделение нулевого и защитного проводника. Следует помнить, что данная схема не будет работать без заземления, поэтому необходимо обязательно произвести его обустройство. Система tn-c наиболее простая и распространенная в устаревшем жилом фонде система заземления, при которой роль нулевого и рабочего проводника выполняет один провод (PEN).

Ниже на схеме показано, как подключить УЗИП класса II в однофазной сети, установленного в щитке квартиры или частного дома с двумя вариантами системы заземления. Для такого варианта подключения необходимо подобрать простейший одноблочный защитный аппарат, с соответствующим рабочим напряжением.

Схема подключения с системой заземления tn-c:

Если предусмотрена система заземления tn-s, в данном случае потребуется установка и подключение УЗИП, состоящего из двух модулей, конструкцией которого предусмотрены отдельные клеммы, для подключения фазного, нулевого рабочего и защитного проводов, обозначенные соответствующей маркировкой.

Подключение УЗИП в трехфазной сети осуществляется так, как показано на фото:

При монтаже УЗИП следует предусмотреть средства защиты сети в случае короткого замыкания в приборе и произвести его подключение через автомат или через предохранитель. Установку аппарата можно производить до и после счетчика, во втором случае прибор учета электроэнергии останется не защищенным от импульсного перенапряжения.

На видео ниже наглядно демонстрируется, как подключить данный аппарат в щитке:

Вот мы и рассмотрели, как должно выполняться подключение УЗИП в щитке. Надеемся, предоставленная схема, видео и фото примеры пригодились вам и помогли понять, как подключить данный защитный аппарат.

Будет полезно прочитать:

  • Как сделать заземление в доме
  • Для чего нужно УЗО в квартире
  • Как сделать громоотвод своими руками
  • Схемы подключения реле напряжения

Модульные ограничители перенапряжения

Для защиты электросетей на распределительных подстанциях, а также непосредственно на воздушных линиях электропередач применяются нелинейные ограничители перенапряжений, так называемые ОПН. Основной конструктивный элемент данных защитных устройств – варистор, элемент с нелинейными характеристиками. Нелинейность характеристик заключается в изменении сопротивления варистора в зависимости от величины приложенного к нему напряжения.

   Модульный ограничитель перенапряжения

В нормальном режиме работы электросети, когда напряжение находится в пределах номинальных значений, ограничитель напряжения имеет большое сопротивление и не проводит ток. В случае возникновения импульса перенапряжения, который возникает при попадании молнии в провода электрической сети, сопротивление варистора ОПН резко снижается до минимальных значений и нежелательный импульс уходит в заземляющий контур, к которому подсоединен ограничитель перенапряжения.

Таким образом, ОПН ограничивает скачки напряжения до безопасного уровня. Тем самым защищая оборудование и потребителей от повреждения и других негативных последствий перенапряжений.

Для реализации защиты от перенапряжений в домашней электропроводке существуют компактные модульные ограничители перенапряжений. Такое защитное устройство устанавливается в домашний распределительный щиток и не занимает много места.

Модульный ОНП имеет такой же принцип работы, как и ограничители, применяемые в электросетях. Соответственно он будет работать только при наличии рабочего заземления электропроводки. В противном случае установка модульного ОПН будет бесполезна, так как в случае возникновения перенапряжения в сети опасный импульс не будет ограничен.

   Ограничитель импульсных перенапряжений ОПС1-С

То есть для реализации защиты домашней электропроводки от грозовых перенапряжений при помощи модульного ограничителя перенапряжений обязательным условием должно быть наличие работоспособного заземления.

Как подключить ОИН-1 в щитке

У этого устройства есть ряд функциональных аналогов от всех популярных производителей электротехники, поэтому и схемы их подключения в принципе аналогичны. В официальной документации схема подключения не слишком очевидна, она представлена в двух вариантах и выглядит следующим образом:

Обратите внимание первый вариант – подключение параллельно защищаемой цепи, а второй – последовательно с разъединителем. То есть в результате срабатывания ограничителя импульсных напряжений разъединитель должен разорвать цепь питания, чтобы избежать возгорания изделия и протекания тока по электрической дуге

Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат. Поэтому ознакомьтесь с несколькими примерами подключения УЗИП в электросеть.

На рисунке ниже изображена типовая схема из условий для подключения 3 фаз. Здесь более наглядно изображено подключение ограничителей напряжения до счётчика. В трёхфазной цепи с системой заземления TN-S или TN-C-S его подключают между фазами, нулём и землёй. Но подключение ОИН-1 после счетчика тоже допустимо как дополнительная ступень защиты.

Монтажная схема на примере подключения в двухпроводной электросети:

И напоследок рассмотрим схемы для четырёх разных схем электроснабжения (1 фаза, 3 фазы, объединённый и разъединённый защитные проводники), которые встречаются наиболее часто:

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

Ограничитель импульсных перенапряжений: принцип работы, схемы подключения

В промышленных и бытовых электрических сетях устанавливается оборудование, которое работает в заданных пределах силы тока и напряжения. Однако на питающих трансформаторных подстанциях, мощных силовых электродвигателях приходится периодически менять режимы работы. Переходной процесс характеризуется резким импульсным повышением электрических параметров сети. Наиболее опасными являются атмосферные разряды в виде молний, где импульсный скачок перенапряжения достигает критической величины способной вывести из строя электрическое оборудование. Для предотвращения таких аварийных ситуаций используется ограничитель импульсных напряжений.

Принцип работы

В импульсных переходных процессах изменение напряжения происходит значительно быстрее, чем силы тока. Поэтому классические всем известные защитные автоматы по току здесь будут неэффективны. Наличие в составе ограничителя с полупроводниковым элементом, имеющим нелинейную вольтамперную характеристику, обеспечивает приборы электрической сети защитой от высокого импульса напряжения.

Как видно из графика, при номинальном значении напряжения сопротивление полупроводника (его называют варистором) достаточно большое и ток, проходящий через него практически нулевой (зона 1). При действии на варистор высоковольтных импульсов (зона 2) сопротивление его резко уменьшается, приближаясь к почти нулевому значению (зона 3). В таком варианте варистор ограничителя будет выступать в качестве шунтирующего соединения воспринимающего на себя всю токовую нагрузку, которая направляется на заземляющий контур.

Конструкция

Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.

В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.

  • Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
  • Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.

На изображении цифрами обозначены следующие конструктивные элементы:

  • 1 — корпус;
  • 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
  • 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
  • 4 — индикатор, показывающий текущий ресурс работы устройства;
  • 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.

Технические характеристики

Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.

  • Максимальное рабочее напряжение, которое действует на ОПН неограниченно долго, не нарушая его работоспособности.
  • Максимальное напряжение, действующее на ОПН в течение заданного производителем времени не вызывая в нем никаких повреждений.
  • При приложении к концам ОПН рабочего напряжения измеряется ток, проходящий через изоляцию. Этот параметр называется током утечки. Величина его в исправном состоянии ограничителя стремится к нулю.
  • Разрядный ток — его величина определяет принадлежность ограничителя перенапряжения в защите от различных факторов вызывающих скачок напряжения: грозовые, электромагнитные, коммутационные.
  • Способность выдерживать работу в аварийном режиме сохраняя целостность всех конструктивных элементов.

Виды

Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:

  • от замыканий на высокой стороне низковольтных сетей;
  • от воздействия грозовых разрядов и скачков напряжений, вызванных переключением промышленных электроустановок;
  • от возможных перенапряжений, вызванных электромагнитными факторами.

В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.

  • Класс напряжения. Ограничители защищают цепи рабочее напряжение которых варьируется от меньше, чем 1 кВольт до значительно больших значений. Существуют, например, ОПН на классы напряжения 0.38 кВольт и 0.66 кВольт, ОПН на классы напряжения 3, 6, 10 кВольт и другие.
  • Материал изоляционной рубашки. Наибольшее распространение получили фарфор и полимеры.

Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.

Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.

  • Класс защищенности. От герметичного изготовления корпуса ОПН зависит возможность его установки на открытом воздухе или внутри помещения, что собственно определяет этот показатель.
  • Одноколонковые ОПН. Состоят из одного модульного блока варисторов с различным набором дисков из защитного полупроводникового элемента, рассчитанных на все классы напряжений.
  • Многоколонковые ОПН. Состоят из нескольких модульных блоков. Отличаются большей надежностью, чем одноколонковые конструкции.

Что означает аббревиатура УЗИП

УЗИП расшифровывается, как устройство защиты от импульсных перенапряжений. В перечень входящих в УЗИП приборов кроме ограничителей перенапряжения входят уже устаревающие вентильные и искровые разрядники. Последние применяются в сетях высокого напряжения (ЛЭП).

Применение в качестве материала варисторов полупроводников, позволило сделать габариты УЗИП настолько компактными, что стало возможным применение в качестве защиты от импульса напряжения в частных домах и квартирах.

Как подключить УЗИПы в домашних условиях

Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН  1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.

Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.

На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.

В схеме:

  • фаза — обозначена черным проводом;
  • нулевой — обозначен синим проводом;
  • зеленый — защитный заземляющий провод.

На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.

В схеме:

  • черный провод — первая из трех фаз;
  • красный провод — вторая из трех фаз;
  • коричневый — третья фаза;
  • синий — нулевой заземляющий провод;
  • зеленый — защитный провод заземления.

Рекомендации по монтажу

Если следовать рекомендациям по установке и подключению ограничителя импульсных перенапряжений, устройство будет гарантировать безопасную работу бытового оборудования.

  • Важно иметь очень надежное заземление. Защита с ненадежным контуром заземления даже при не очень большом скачке импульса напряжения приведет к аварийной ситуации в виде сгоревших электроприборов и самого щитка.
  • Необходимо соблюдать соответствие класса защищенности УЗИП с местом установки щитка. Если щиток находится на улице, а устройство предназначено для работы в помещении то в лучшем случае оно выйдет из строя, в худшем нанесет вред домашней электросети.
  • Для обеспечение надежной защиты в некоторых случаях требуется установка УЗИП разных классов защищенности.
  • Не всякое защитное устройство подходит к конкретному виду заземления домашней электросети. Следует внимательно изучить техническую документацию приобретаемого устройства, чтобы не выбрасывать на ветер деньги на достаточно дорогое устройство.
  • Важно правильно подключить схему, без нарушений. В случае отсутствия навыков электрика не стоит браться за работу. Квалифицированный специалист выполнит ее правильно, без особых затруднений.

Удары молнии, обрывы линий электропередач или аварии на трансформаторных подстанциях предсказать невозможно. Установка ОПН защитит от непредвиденных неприятностей.

Видео по теме

Как подключить УЗО в трехфазной сети правильно

3-х фазное УЗО, как правило, имеет 4 полюса и занимает ширину 4 стандартных модулей на din-рейке. Обычно такие устройства не используются в квартирах. В основном они находят свое применение на дачах, в частных домах или гаражах. Этот аппарат устанавливается в распределительном щитке. В его функции входит защита проводки от воспламенения или замыкания. Порог срабатывания аппарата рассчитан на большие токи. В практике он используется и при подключении электродвигателя.

Как подключить УЗО в трехфазной сети: нюансы

Перед началом установки устройства важно ознакомиться с цветовым обозначением проводов. Согласно ПУЭ, маркировка бывает такой, как показано на картинке ниже.

УЗО может подключаться, в зависимости от схемы, с использованием 3-х или 4-х полюсов. Первый вариант применяется в основном при подсоединении электродвигателя. В крайне редких случаях возможно использование и 2-х полюсов. Оборудование, которое будет впоследствии устанавливаться может быть 3-х фазным или однофазным. Для этого случая реализуются различные схемы подключения.

Как правильно подключить трехфазное УЗО по «треугольнику»

Вначале разберем, как подключить УЗО 3-фазное с использованием 3-х полюсов. Выше упоминалось, что такая схема применяется при установке электродвигателей. Этот тип подключения дает полный контроль утечек тока на корпус. Как показано ниже, нейтральная клемма оказывается незадействованной. В схеме «треугольник» используются только фазные провода. Принцип работы трехфазного УЗО ничем не отличается от однофазного.

Как правильно подключить УЗО на 3 фазы с 4-мя полюсами 

Второй вариант подключения устройства применяется в жилых или нежилых помещениях с напряжением 380 В. Также может использоваться и для защиты некоторых электродвигателей. Неплохо в данном случае зарекомендовал себя Legrand DX3-E УЗО 4P 25A 30MA.

Отличие схемы подключения трехфазного УЗО от однофазного заключается в численности подключаемых и отходящих проводов. Чтобы произвести монтаж и правильно подсоединить проводники к нужным клеммам особых знаний не требуется, но все же необходимы элементарные навыки в этой сфере (умение отличить фазу от нейтрали). Нулевой подключается к специально предназначенной для него клемме, которая обычно располагается чуть выше рычага взведения.

Провода, выходящие из противоположных клемм, подсоединяются к распределительной системе. Каждая фаза в сочетании с нулевым проводом, может обеспечивать группу однофазных потребителей (220 В). В такой сети нужно предусмотреть монтаж соответствующих УЗО. В этом случае будет логичен вопрос: как подключить 3 УЗО на 3 фазы. Ниже приведена схема, которая реализует данную задумку. Обычно они устанавливаются в местах повышенной влажности или в комнатах с большим числом электроприборов.

Монтаж трехфазного УЗО проводится в щитке на дин-рейке, после счетчика. Один такой аппарат способен контролировать ток в трех однофазных сетях. Одно важное напоминание: эксплуатация устройства возможна только в системах TN-S. В такой схеме проводки предусматривается нулевой защитный и рабочий проводник. Как правило, отечественные электросети функционируют по системе TN-C, где нет PE. Перед тем как купить УЗО, важно знать, что подключение четырехполюсного аппарата по такой схеме категорически запрещено. В этом случае ПУЭ разрешает использовать трехфазное устройство защиты, если предусмотрено заземление дома. Для этого, нужно обустроить контур «земли», который позволит перейти на систему TN-C-S. Надеемся, что наша статья помогла вам решить вопрос относительно того, как подключить трехфазное УЗО.

Всем желающим приобрести электротовары предлагаем ознакомиться с продукцией, представленной в нашем Интернет-магазине. Здесь цена на УЗО IEK в Москве одна из самых привлекательных.

Анализ цепей трехфазной системы — сбалансированное состояние

Электрическая система бывает двух типов: однофазная система и трехфазная система. Однофазная система имеет только один фазный провод и один обратный провод, поэтому она используется для передачи малой мощности.

Трехфазная система имеет три провода под напряжением и один обратный путь. Трехфазная система используется для передачи большого количества энергии. Трехфазная система делится в основном на два типа.Одна представляет собой сбалансированную трехфазную систему, а другая — несбалансированную трехфазную систему.

Состав:

Система балансировки — это система, в которой нагрузка равномерно распределяется по всем трем фазам системы. Величина напряжения остается одинаковой во всех трех фазах и разделена углом 120º.

В системе дисбаланса величина напряжения во всех трех фазах становится разной.

Анализ симметричной трехфазной цепи

Сбалансированные трехфазные цепи всегда лучше решать на основе каждой фазы.Когда трехфазное напряжение питания дается без привязки к линейному или фазному значению, тогда во внимание принимается линейное напряжение.

Следующие шаги приведены ниже для решения симметричных трехфазных цепей.

Шаг 1 — Прежде всего нарисуйте принципиальную схему.

Шаг 2 — Определите X LP = X L / фаза = 2πf L .

Шаг 3 — Определите X CP = X C / фаза = 1 / 2πf C .

Шаг 4 — Определить X P = X / фаза = X L — X C

Шаг 5 — Определить Z P = Z / фаза = √R 2 P + X 2 P

Шаг 6 — Определите cosϕ = R P / Z P ; коэффициент мощности отстает, когда X LP > X CP , и опережает, когда X CP > X LP .

Шаг 7 — Определите фазу V.

Для соединения звездой V P = V L / √3 и для соединения треугольником V P = V L

Шаг 8 — Определите I P = V P / Z P .

Шаг 9 — Теперь определите линейный ток I L .

Для соединения звездой I L = I P и для соединения треугольником I L = √3 I P

Шаг 10 — Определите активную, реактивную и полную мощность.

Анализ несимметричной трехфазной цепи

Анализ трехфазной несимметричной системы немного затруднен, и нагрузка подключается по схеме звезды или треугольника. Эта тема подробно обсуждается в статье «Преобразование звезды в треугольник и преобразование из дельты в звезду».

Подключение трехфазной системы

В трехфазном генераторе переменного тока три обмотки. Каждая обмотка имеет два вывода (начало и конец). Если к каждой фазной обмотке подключена отдельная нагрузка, как показано на рисунке ниже, то каждая фаза питается как независимая нагрузка через пару проводов.Таким образом, для подключения нагрузки к генератору потребуется шесть проводов. Это сделает всю систему сложной и дорогостоящей.

Следовательно, для уменьшения количества линейных проводов трехфазные обмотки генератора переменного тока соединяются между собой. Соединение обмоток трехфазной системы может быть выполнено двумя способами:

Соединение звездой или звездой (Y) См. Также: Соединение звездой в трехфазной системе

Соединение по схеме «сетка» или «треугольник» (Δ). См. Также : Соединение треугольником в 3-фазной системе

Подключение трехфазных нагрузок в трехфазной системе

Поскольку трехфазное питание подключается по схеме звезды и треугольника. Точно так же трехфазные нагрузки также подключаются либо по схеме звезды, либо по схеме треугольника. Трехфазная нагрузка, подключенная в звезду, показана на рисунке ниже:

Подключение трехфазных нагрузок по схеме треугольник показано на рисунке ниже:

Трехфазные нагрузки могут быть сбалансированными или несбалансированными, как описано выше.Если три нагрузки Z 1 , Z 2 и Z 3 имеют одинаковую величину и фазовый угол, тогда трехфазная нагрузка называется сбалансированной. При таких подключениях все фазные или линейные токи и все фазные или линейные напряжения равны по величине.

Трехфазная сеть: расчет мощности, схема подключения

Не каждый обыватель понимает, что такое электрические цепи. В квартирах они на 99% однофазные, где по одному проводу ток течет к потребителю, а по другому (нулю) возвращается.Трехфазная сеть — это система передачи электрического тока, которая протекает по трем проводам с обратным током по одному. Здесь обратный провод не перегружен из-за сдвига фазного тока. Электричество вырабатывается генератором с внешним приводом.

Увеличение нагрузки в цепи приводит к увеличению силы тока, проходящего через обмотки генератора. В результате магнитное поле более устойчиво к вращению приводного вала. Число оборотов начинает уменьшаться, и регулятор управления скоростью дает команду на увеличение мощности привода, например, путем подачи большего количества топлива в двигатель внутреннего сгорания.Количество витков восстанавливается, и вырабатывается больше электроэнергии.

Трехфазная система представляет собой 3 контура с ЭДС одинаковой частоты и фазовым сдвигом 120 °.

Особенности подключения питания к частному дому

Многие считают, что трехфазная сеть в доме увеличивает энергопотребление. Фактически лимит устанавливается энергоснабжающей организацией и определяется факторами:

  • возможностями поставщика;
  • количество потребителей;
  • линейное состояние и оборудование.

Для предотвращения скачков и перекоса напряжения они должны быть загружены равномерно. Расчет трехфазной системы является приблизительным, так как невозможно точно определить, какие устройства будут подключены в данный момент. Наличие импульсных устройств теперь приводит к увеличению энергопотребления при их запуске.

Распределительный щит с трехфазным питанием Подключение больше, чем для однофазного питания. Возможны варианты с установкой небольшой открывающейся заслонки, остальные — из пластика для каждой фазы и для хозяйственных построек.

Подключение к трассе осуществляется подземным способом и по воздуху. Предпочтение отдается последнему из-за небольшого объема работ, невысокой стоимости подключения и удобства ремонта.

Теперь подключение воздуха удобно делать самонесущим изолированным проводом (СИП). Минимальное сечение алюминиевой жилы — 2 16 мм, чего с большим запасом хватит для частного дома.

СИП крепится на опоры и стену дома с помощью анкерных кронштейнов с хомутами.Подключение к магистральной воздушной магистрали и кабелю ввода в электрощит дома осуществляется путем врезки в пробивные хомуты. Кабель берется с негорючей изоляцией (BBGG) и проводится по металлической трубе, вставленной в стену.

Воздушное подключение трехфазного электроснабжения дома

При удалении от ближайшей опоры более 15 м потребуется еще один столб. Это необходимо для уменьшения нагрузки, приводящей к провисанию или обрыву провода.

Высота точки подключения 2.75 м и выше.

Электрораспределительный шкаф

Подключение к трехфазной сети осуществляется по проекту, где потребитель разделен на группы внутри дома:

  • освещение;
  • розетки
  • ;
  • отдельных мощных аппаратов.

Некоторые нагрузки можно отключить для ремонта, в то время как другие работают.

Мощность потребителей рассчитывается для каждой группы, где выбирается провод необходимого сечения: 1.5 мм 2 — на подсветку, 2,5 мм 2 — на розетки и до 4 мм 2 — на мощные устройства.

Электропроводка защищена от короткого замыкания и перегрузки автоматическими выключателями.

Электросчетчик

Любая схема подключения требует наличия прибора учета потребления электроэнергии. Трехфазный счетчик может быть подключен непосредственно к сети (прямое подключение) или через трансформатор напряжения (полупрямой), где показания прибора умножаются на коэффициент.

Важно соблюдать процедуру подключения, где нечетные числа — еда, а четные — нагрузки. Цвет проводов указан в описании, а схема размещена на задней крышке устройства. Вход и соответствующий выход трехфазного счетчика обозначены одним цветом. Самый распространенный порядок включения, когда сначала идут фазы, а последний провод — ноль.

Трехфазный прямой выключатель для дома обычно рассчитан на мощность до 60 кВт.

Перед тем, как выбрать многотарифную модель, согласовать вопрос с энергосбытовой компанией.Современные устройства с тарификаторами позволяют рассчитывать плату за электроэнергию в зависимости от времени суток, регистрировать и фиксировать значения мощности во времени.

Температурные характеристики приборов выбираются максимально широко. В среднем они колеблются от -20 до +50 ° С. Срок службы приборов достигает 40 лет с межповерочным интервалом 5-10 лет.

Счетчик подключается после входного трех- или четырехполюсного выключателя.

Трехфазная нагрузка

Потребителями являются электрические котлы, асинхронные электродвигатели и другие электрические приборы.Преимущество их использования — равномерное распределение нагрузки на каждой фазе. Если трехфазная сеть содержит неравномерно подключенные однофазные мощные нагрузки, это может привести к перекосу фаз. При этом начинают выходить из строя электронные устройства, а лампы подсветки тускло светятся.

Схема подключения трехфазного двигателя к трехфазной сети

Работа трехфазных электродвигателей отличается высокой производительностью и экономичностью. Нет необходимости в дополнительных пусковых установках.Для нормальной работы важно правильно подключить устройство и соблюдать все рекомендации.

Схема подключения трехфазного двигателя к трехфазной сети создает вращающееся магнитное поле с тремя обмотками, соединенными звездой или треугольником.

У каждого метода есть свои достоинства и ограничения. Схема звезды позволяет плавно запускать двигатель, но его мощность снижается до 30%. Эти потери отсутствуют в схеме треугольника, но при запуске токовая нагрузка намного больше.

Двигатели имеют соединительную коробку, в которой расположены выводы обмоток. Если их три, то цепь подключается только звездой. Если выводов шесть, мотор можно подключать любым способом.

Потребляемая мощность

Арендодателю важно знать, сколько энергии потребляется. Легко рассчитывается по всем электроприборам. Сложив все мощности и разделив результат на 1000, получим общее потребление, например 10 кВт. Для бытовых электроприборов достаточно всего одной фазы.Однако значительно возрастает потребление тока в частном доме, где есть мощная техника. Одно устройство может иметь 4-5 кВт.

Важно спланировать энергопотребление трехфазной сети на этапе проектирования, чтобы обеспечить симметрию напряжений и токов.

Дом подключен четырехпроводным проводом к трем фазам и нейтрали. Напряжение в электрической сети составляет 380/220 В. Между фазами и нулевым проводом подключаются электроприборы на 220 В. Кроме того, возможна трехфазная нагрузка.

Расчет мощности трехфазной сети производится по частям. Вначале желательно рассчитать чисто трехфазные нагрузки, например электрокотел на 15 кВт и асинхронный электродвигатель на 3 кВт. Суммарная мощность составит P = 15 + 3 = 18 кВт. В фазном проводе протекает ток I = Px1000 / (√3xUxcosφ). Для бытовых электросетей cosφ = 0,95. Подставляя в формулу числовые значения, получаем значение тока I = 28,79 А.

Теперь необходимо определить однофазные нагрузки.Пусть фазы будут P A = 1,9 кВт, P B = 1,8 кВт, P C = 2,2 кВт. Смешанная нагрузка определяется суммированием и составляет 23,9 кВт. Максимальный ток будет I = 10,53 А (фаза C). Комбинируя это с током от трехфазной нагрузки, мы получаем I C = 39,32 A. Токи в остальных фазах будут I B = 37,4 кВт, I A = 37,88 A.

При вычислении мощности трехфазной сети удобно использовать таблицы мощности с учетом типа подключения.

Им удобно подбирать защитные устройства и определять сечение проводки.

Заключение

При правильном проектировании и обслуживании Трехфазная сеть идеально подходит для частного дома. Он позволяет равномерно распределить нагрузку по фазам и подключить дополнительную мощность к потребителям электроэнергии, если позволяет сечение проводки.

Разница между Дельтой и звездой

В наши дни электричество необходимо для освещения зданий и домов, для работы кондиционеров и для электропоездов.Фактически, электричество приводит в действие почти все, например компьютеры, радиоприемники, телевизоры, медицинские устройства и постоянно увеличивающееся разнообразие устройств, которые продолжают улучшать качество жизни миллионов людей во всем мире. В основе всей этой электроэнергетической системы лежит трехфазное электроснабжение. Трехфазное соединение является основой распределения электроэнергии, и мощность генерируется в трех различных фазах, каждая с одинаковой частотой и напряжением, но со смещением напряжения на 120 градусов между любыми двумя фазами.

Трехфазная система является наиболее популярной системой распределения, используемой на практике. Существует ряд уникальных особенностей трехфазных цепей, которых нет в однофазных цепях. Трехфазные цепи могут иметь конфигурацию треугольником или звездой. Дельта-конфигурация названа так из-за ее сходства с греческим символом «Δ». Они популярны в промышленных энергосистемах. Конфигурация звезда (Y), как следует из названия, также называется цепью «Y», а иногда и цепью «звезда».Схема треугольника — это трехпроводная схема, а схема звезды может быть трехпроводной или четырехпроводной. Они различаются тем, как связаны между собой определенным образом.

Что такое Delta Connection?

Соединение треугольником — это трехпроводная схема, используемая в трехфазной электрической системе, в которой три элемента напоминают треугольное расположение электрических трехфазных обмоток. Дельта-соединение, также известное как соединение сетки, названо так из-за его сходства с греческим символом «Δ» и образуется путем соединения одного конца обмотки с начальным концом другого, и соединение продолжается, образуя замкнутый контур.

Клемма питания вынута из трех точек соединения. Короче говоря, все три катушки соединены последовательно, образуя замкнутую цепь или сетку, которая напоминает треугольник. У них нет нейтрального кабеля.

Что такое соединение «звезда»?

Соединение «звезда» (Y), также известное как соединение «Y», представляет собой трехфазную цепь, в которой все три нагрузки подключены к одной нейтральной точке. В отличие от соединения треугольником, системы, соединенные звездой, имеют четвертый нейтральный проводник, часто заземленный, но иногда оставляемый плавающим (незаземленная система звезды).

В конфигурации «звезда» нагрузки неуравновешены в конфигурации Y, и нейтральный кабель подключается там, где три фазы встречаются в центре. Эта центральная точка образует электрическую нейтральную точку, которая обозначена буквой «N» и может быть заземлена. В отличие от соединения треугольником, это трехфазная четырехпроводная система (3-фазная, 4-проводная), что означает, что она может быть трехпроводной или четырехпроводной.

Разница между соединением треугольником и звездой

  1. Конфигурация Delta Vs.Звезда

— Трехфазные цепи могут иметь конфигурацию треугольником или звездой. Дельта-соединение также известно как сетчатое соединение и названо так из-за его сходства с греческим символом «Δ». В конфигурации «треугольник» вся однофазная нагрузка сосредоточена на одной фазе, тогда как в конфигурации «звезда» вся однофазная нагрузка распределяется на каждой из трех фаз. В конфигурации «треугольник» используются только трехфазные проводники, тогда как в системах, соединенных звездой, используется четвертый нейтральный проводник, который часто заземляется, но иногда остается плавающим.В отличие от соединения треугольником, все три нагрузки подключаются к одной нейтральной точке при соединении звездой.

  1. Подключение Delta Vs. Звезда

— Соединение «звезда» представляет собой трехфазную четырехпроводную схему, используемую в трехфазной электрической системе, которая образуется путем соединения основных или клеммных концов всех трех обмоток вместе. Эта общая точка называется нейтральной точкой, которая обозначается буквой «N». Нейтральный кабель подключается там, где три фазы встречаются в центре.Соединение треугольником, с другой стороны, представляет собой трехфазную цепь, образованную путем соединения одного конца обмотки с исходным концом другого, и соединения продолжают образовывать замкнутый контур, напоминающий треугольник.

  1. Стоимость

— Конфигурация «треугольник» дешевле, если учесть движущуюся мощность, поскольку для нее требуются только три проводника, а не четыре, что снижает стоимость оборудования и строительства. Хотя падение напряжения и потери эквивалентны, по крайней мере, если поток мощности уравновешен.Однако линии, соединенные звездой, приводят к менее дорогой распределительной системе, потому что трансформаторы, устройства повторного включения и молниеотводы для систем, соединенных звездой, стоят меньше по сравнению с их эквивалентами в системах, соединенных треугольником. Для однофазного рабочего трансформатора требуется только один высоковольтный ввод для звездообразных систем, тогда как для треугольных систем требуется два.

  1. Приложение

— Дельта-конфигурация в основном используется в распределительных сетях, тогда как конфигурация «звезда» используется как в передающих, так и в распределительных сетях.Дельта-системы в основном используются в приложениях, где требуется высокий пусковой крутящий момент, тогда как звездообразные соединения идеально подходят для приложений, требующих меньшего пускового тока. Соединение треугольником используется для более коротких расстояний, тогда как соединение звездой используется для сетей передачи электроэнергии на большие расстояния. Delta в основном использовалась на небольших промышленных предприятиях, которые имели относительно большую нагрузку двигателя (240 В переменного тока), но лишь небольшую потребность в розетках и освещении.

Delta vs.Соединение звездой: сравнительная таблица

Резюме Delta Vs. Звезда

Для конфигурации «треугольник» требуется только три проводника, поэтому оборудование и конструкция становятся ниже. Однако системы, соединенные звездой, составляют менее дорогую систему распределения, поскольку трансформаторы, устройства повторного включения и грозозащитные устройства стоят меньше в системах звездой по сравнению с их эквивалентами в системах треугольника. Схема треугольника — это трехпроводная схема, тогда как схема звезды может быть трехпроводной или четырехпроводной.В конфигурации «звезда» нагрузки неуравновешены в конфигурации «Y».

Сагар Хиллар — плодовитый автор контента / статей / блогов, работающий старшим разработчиком / писателем контента в известной фирме по обслуживанию клиентов, базирующейся в Индии. У него есть желание исследовать разноплановые темы и разрабатывать высококачественный контент, чтобы его можно было лучше всего читать. Благодаря его страсти к писательству, он имеет более 7 лет профессионального опыта в написании и редактировании услуг на самых разных печатных и электронных платформах.

Вне своей профессиональной жизни Сагар любит общаться с людьми из разных культур и происхождения. Можно сказать, что он любопытен по натуре. Он считает, что каждый — это опыт обучения, и это приносит определенное волнение, своего рода любопытство, чтобы продолжать работать. Поначалу это может показаться глупым, но через некоторое время это расслабляет и облегчает начало разговора с совершенно незнакомыми людьми — вот что он сказал ».

Последние сообщения Сагара Хиллара (посмотреть все)

: Если вам понравилась эта статья или наш сайт.Пожалуйста, расскажите об этом. Поделитесь им с друзьями / семьей.

Cite
APA 7
Хиллар, С. (24 июня 2019 г.). Разница между Дельтой и Уай. Разница между похожими терминами и объектами. http://www.differencebetween.net/science/difference-between-delta-and-wye/.
MLA 8
Хиллар, Сагар. «Разница между Дельтой и Уай». Разница между похожими терминами и объектами, 24 июня 2019 г., http: // www.разница между.net/science/difference-between-delta-and-wye/.

Трехфазная проводка

Потребность в трехфазном питании или обслуживании возникает, когда присутствует тяжелое оборудование, такое как большие двигатели (двигатели мощностью более 5 л.с.), потому что такое крупное оборудование требует высоких пусковых и рабочих токов.

Большие здания, заводы и офисы имеют более высокие требования к электроэнергии, чем мощность, используемая в бытовых установках. Поэтому, как правило, они часто устанавливаются с трехфазной проводкой или трехфазным питанием.

Трехфазное питание обычно используется для оборудования с высокой номинальной мощностью, такого как большие кондиционеры, высокопроизводительные насосные агрегаты, воздушные компрессоры и двигатели с высоким крутящим моментом.

Таким образом, он редко используется в домашних условиях, но обычно используется в коммерческих зданиях, офисах и промышленных установках.

Трехфазное питание переменного тока

Трехфазное питание переменного тока вырабатывается трехфазным генератором переменного тока (также называемым генераторами переменного тока) на электростанциях.

В генераторе переменного тока три обмотки статора (или, скажем, три независимых катушки) обычно разделены некоторым числом градусов вращения, и, следовательно, ток, производимый этими катушками, также разделен на несколько градусов вращения, которые обычно составляют 120 градусов.

Эта трехфазная мощность от генераторов переменного тока далее передается в распределительный конец по линиям передачи.


Трехфазное питание от трансформатора распределительной линии подается в дом или точку обслуживания здания.Большинство промышленных и коммерческих услуг состоит из трехфазных систем, которые обычно работают при 415 В между фазами и 230 В между фазами.

Трехфазная система состоит из трех проводов, в отличие от одножильных в однофазной системе, за исключением нейтрального проводника. Помимо трех фаз, для трехфазной четырехпроводной системы требуется дополнительный нейтральный провод.

Трехфазные системы могут быть трехфазными трехпроводными или трехфазными четырехпроводными. Трехфазное трехфазное соединение состоит из трех фазных проводов и используется только там, где нет необходимости подключать фазу к нулевой нагрузке.

Эти соединения могут быть звездой или треугольником в зависимости от вторичной обмотки распределительного трансформатора.

Трехфазная 4-проводная система — это наиболее часто используемое соединение, которое состоит из трех фазных проводов и одного нейтрального проводника.

В этой трехфазной проводке, освещение, малые бытовые нагрузки и розетки часто подключаются между фазой и нейтралью, в то время как более крупное оборудование, такое как кондиционеры и электрические обогреватели, подключаются между двумя фазами (т.е., от фазы к фазе).

В основном трехфазное 4-проводное соединение звездой является предпочтительным для эффективного и сбалансированного подключения как однофазных, так и трехфазных нагрузок.

Это соединение позволяет подключать фазу к нейтрали для небольших нагрузок. Трехфазное 4-проводное соединение треугольником используется только там, где фаза-нейтраль очень мала по сравнению с трехфазной нагрузкой.

Трехфазные цепи могут обеспечивать квадратный корень в 3 (1,732) раза большей мощности по сравнению с однофазной мощностью с тем же током.Таким образом, трехфазная система экономит затраты на электромонтаж за счет уменьшения размера кабеля и размеров связанных электрических устройств.

Мы можем легко наблюдать трехфазные цепи, глядя на линию электропередачи во время движения по дорогам. Даже для большой системы передачи электроэнергии это трехфазные линии передачи, если они не имеют постоянного тока.

Большие отели, рестораны, большинство заводов, офисных зданий и продуктовых магазинов с мощными холодильными системами имеют трехфазное обслуживание.

Трехфазное распределение питания для промышленных предприятий

На промышленных предприятиях или фабриках установлено трехфазное питание для подключения тяжелой техники и оборудования.По шинам передается трехфазное питание, от которого через кабели выводятся отдельные соединения с отдельными нагрузками. На рисунке ниже показана принципиальная схема промышленной трехфазной проводки.

Трехфазное питание от инженерных сетей подключается к главному выключателю через трехфазный счетчик электроэнергии. Затем питание главного выключателя передается на различные шины.

Эта панель также поставляется с измерительным устройством для отображения таких параметров, как ток, напряжение, энергия и мощность.На рисунке ниже показано распределение мощности от главной панели к машинам и осветительным нагрузкам.


Электропитание от главного распределительного щита распределяется на тяжелое машинное оборудование, а также на осветительные щиты с розетками. Мощность, распределяемая через одно- и трехфазные субсчетчики, показана на рисунке ниже.

Трехфазное распределение электроэнергии в дома или офисы необходимо, если нагрузка не может быть удовлетворена с помощью однофазного источника питания.Эффективное использование трехфазной мощности зависит от балансировки распределения нагрузки на каждой фазе трехфазного источника питания.

Таким образом, однофазные нагрузки в офисах или домах должны быть подключены к каждой фазе так, чтобы было достигнуто максимально возможное выравнивание нагрузки.

Основные компоненты трехфазной проводки, ведущей к дому, зданию или офису, показаны на рисунке ниже.
В этом случае проводники служебного входа подключены к трехфазной входной панели. Эта панель имеет трехфазный главный выключатель, а иногда и три отдельных патронных предохранителя.

Этот трехфазный выключатель состоит из трех входных наконечников для питания трех вертикальных шин. Этот главный выключатель имеет одну рукоятку, так что все нагрузки отключаются одновременно, а также в случае электрических неисправностей он отключает или отключает все нагрузки одновременно.

Питание от этой главной панели подключается к параллельным цепям. Главная панель может состоять из однополюсных, двухполюсных или трехполюсных выключателей для этих ответвленных цепей, в которых соединены фаза-земля, фаза-фаза или трехфазные нагрузки.

На приведенном выше рисунке мощность от полюса электросети подключается к подсхемам через трехфазный счетчик энергии, трехфазный выключатель (3-полюсный 60A), двухполюсный УЗО, двухполюсный MCB и однополюсный MCB.

Подключение однофазных и трехфазных нагрузок к трехфазному источнику питания показано на рисунке ниже. Мы можем подключать однофазные нагрузки к трехфазным подсхемам через переключатели или автоматические выключатели.

Но для трехфазных нагрузок, таких как двигатели, необходимо подключать к трехфазному источнику питания через контактор или автоматический выключатель.


Трехполюсный выключатель с соответствующим номинальным током используется для подключения трехфазного двигателя. Следует соблюдать осторожность при подключении трех фазных проводов к двигателю, потому что направление вращения можно изменить, просто поменяв местами любой из двух проводов трехфазной системы.

Схема подключения трехфазного двигателя к источнику питания вместе с проводкой управления показана на рисунке ниже. Это схема кнопочного управления пуском-остановом, которая включает контактор (M), реле перегрузки, управляющий трансформатор и кнопки.

Контактор содержит большие нагрузочные контакты, которые предназначены для обработки большого количества тока. Реле перегрузки защищают двигатель от состояния перегрузки, отключая питание катушки контактора.

Приведенная выше информация и диаграммы проиллюстрированы только для того, чтобы дать общее представление о распределении трехфазного электропитания в домах и на производстве.

Вместо того, чтобы концентрироваться на стоимости различного оборудования или номинальных характеристиках автоматических выключателей и других размерах кабелей, мы просто дали краткое представление об этой теме.Пожалуйста, свяжитесь с нами, если вам потребуется дополнительная помощь по теме трехфазной проводки.

Напряжение, ток и мощность в трехфазном соединении звездой

Напряжение, ток и мощность в трехфазном соединении звездой:

Трехфазное соединение звездой — На рисунке 9.21 показана сбалансированная трехфазная система с соединением звездой. Напряжение, индуцированное в каждой обмотке, называется фазным напряжением (В фаза ). Аналогично, V RN , V YN и V BN представляют среднеквадратичные значения наведенных напряжений в каждой фазе.Напряжение, доступное между любой парой клемм, называется линейным напряжением L ). Аналогично, V RY , V YB и V BR известны как линейные напряжения . Обозначение с двойным нижним индексом специально используется для обозначения напряжений и токов в многофазных цепях. Таким образом, V RY указывает напряжение V между точками R и Y, при этом R является положительным по отношению к точке Y во время ее положительного полупериода.

Аналогично, V YB означает, что Y положителен по отношению к точке B в течение своего положительного полупериода; это также означает, что V RY = -V YR .

Отношение напряжения:

Векторы, соответствующие фазным напряжениям, составляющим трехфазную систему, могут быть представлены векторной диаграммой, как показано на рис. 9.22.

Из рис. 9.22, учитывая линии R, Y и R, линейное напряжение V RY равно векторной сумме V RN и V NY , которая также равна разности векторов V RN. и V NY (V NY = -V YN ).Следовательно, V RY находится путем пересчета V RN и V YN в обратном порядке. Чтобы вычесть V YN из V RN , мы инвертируем вектор V YN и находим его векторную сумму с V RN , как показано на рис. 9.22. Два вектора, V RN и -V YN , равны по длине и разнесены на 60 °.

Аналогично, линейное напряжение V YB равно разности векторов V YN и V BN и равно √3 V Ph. Линейное напряжение V BR равно разности векторов V BN и V RN и равно √3 V Ph . Следовательно, в сбалансированной трехфазной системе соединения звездой

  • Напряжение сети = √3 В Ф.
  • Все линейные напряжения равны по величине и смещены на 120 °, а
  • Все линейные напряжения на 30 ° опережают их соответствующие фазные напряжения (из рис. 9.22).

Текущие отношения:

Рисунок 9.24 (а) показана сбалансированная трехфазная система, соединенная звездой, с указанием фазных и линейных токов. Стрелки, расположенные рядом с токами I R , I Y и I B , протекающими в трех фазах, указывают направления токов, когда они предполагаются положительными, а не направления в данный конкретный момент. Векторная диаграмма фазных токов относительно их фазных напряжений показана на рис. 9.24 (b). Все фазные токи смещены на 120 ° относительно друг друга, «Φ» — это фазовый угол между фазным напряжением и фазным током (предполагается запаздывающая нагрузка).Для сбалансированной нагрузки все фазные токи равны по величине. Из рис. 924 (а) видно, что каждый линейный провод соединен последовательно со своей отдельной фазной обмоткой. Следовательно, ток в линейном проводе такой же, как и в фазе, к которой подключен линейный провод.

Из Рис. 9.24 (b) видно, что угол между линейным (фазным) током и соответствующим линейным напряжением составляет (30 + Φ) ° для отстающей нагрузки. Следовательно, если нагрузка является опережающей, то угол между линейным (фазным) током и соответствующим линейным напряжением будет (30 — Φ) °.

Питание в сети, соединенной звездой:

Полная активная мощность или истинная мощность трехфазной нагрузки — это сумма мощностей трех фаз. Для сбалансированной нагрузки мощность каждой нагрузки одинакова; следовательно, общая мощность = 3 x мощность в каждой фазе

Обычно трехфазную мощность выражают в линейных величинах следующим образом.

или √3 В L I L cos Φ — активная мощность в цепи.

Общая реактивная мощность равна

Полная полная мощность или вольт-амперы

N-фазная звездная система:

Следует отметить, что звезда и сетка — общие термины, применимые к любому количеству фаз; но звезда и треугольник являются частными случаями звезды и сетки, когда система является трехфазной системой. Рассмотрим n-фазную сбалансированную звездообразную систему с двумя соседними фазами, как показано на рис. 9.25 (a). Его векторная диаграмма представлена ​​на рис.9.25 (б).

Угол разности фаз между соседними фазными напряжениями составляет 360 ° / n. Пусть E Ph будет напряжением каждой фазы. Напряжение сети, то есть напряжение между A и B, равно E AB = E L = E AO + E OB . Сложение векторов показано на рис. 9.25 (c). Очевидно, что линейный ток и фазный ток одинаковы.

Рассмотрим параллелограмм OABC.

Приведенное выше уравнение является общим уравнением для линейного напряжения, например, для трехфазной системы n = 3 E L = 2 E ph sin 60 ° = √3 E ph .

токов короткого замыкания | 3-фазный VS 1-фазный — PAC Basics

Введение

Расчеты короткого замыкания выполняются по нескольким причинам. В исследованиях короткого замыкания обычно используются разные характеристические значения тока короткого замыкания, например рассчитываются пиковый ток короткого замыкания ( i p ), эквивалентный тепловой ток короткого замыкания ( I th ) и т. д. Также часто возникает необходимость в расчете различных типов токов короткого замыкания e.грамм. симметричный или несимметричный. Каждое приложение использует разные значения тока короткого замыкания в качестве входных. Например, при расчетах заземления ясно, что входное значение представляет собой ток короткого замыкания между одной линией и землей. Напротив, для выбора автоматического выключателя генератора и анализа распространения гармоник требуются значения трехфазного короткого замыкания в качестве входных данных.

Исходя из этих соображений, может быть довольно сложно определить размеры электрических устройств с учетом теплового и динамического воздействия токов короткого замыкания.Для этих целей проектировщику-электрику необходимо использовать максимальные значения токов короткого замыкания. Как правило, значение трехфазного тока короткого замыкания является наивысшим значением. Но так бывает не всегда. Очень важно, чтобы проектировщик электротехники понимал, какое значение тока короткого замыкания следует принять для определения размеров электрических устройств. Основная цель этой статьи — указать на тонкую дилемму выбора правильного значения тока короткого замыкания для определения размеров электрического оборудования.Теоретический вывод сделан на очень простом примере схемы.

Трехфазный ток короткого замыкания

Предположим простую сеть в соответствии с рисунком 1. Полное сопротивление трансформатора на единицу было рассчитано по следующим базовым значениям: S база = 100 МВА и В база = 110 кВ.

Рисунок 1. Однолинейная схема электрической сети.

Трансформатор T1 питает распределительную нагрузку. Предположим далее, что сеть 110 кВ эксплуатируется как глухозаземленная.На рисунке 2 показана эквивалентная схема для случая трехфазного короткого замыкания в точке F:

. Рисунок 2. Схема эквивалентной последовательности для трехфазного короткого замыкания.

Трехфазное короткое замыкание симметрично, поэтому компоненты обратной и нулевой последовательности отсутствуют. Сеть эквивалентной последовательности состоит только из сети прямой последовательности. Решетка для тока короткого замыкания,

, где индекс 1 используется для обозначения положительной последовательности

Расчет тока короткого замыкания даст,

Однофазный ток короткого замыкания

Теперь предположим возникновение однофазного (однолинейного) короткого замыкания в точке F.Величина тока короткого замыкания зависит от включения нулевой последовательности трансформатора T1 (что определяется типом трансформатора и подключением его обмотки).

Рассмотрим трансформатор оболочечного типа. Согласно [2], [3] трансформаторы кожухового типа имеют отношение нулевой последовательности к прямой последовательности в диапазоне X 0 / X 1 = 1:10 в зависимости от соединения обмоток трансформатора. Рассмотрим, например, отношение нулевой последовательности к прямой последовательности, X 0 / X 1 = 1.Это означает, что полное сопротивление нулевой последовательности трансформатора равно его импедансу прямой последовательности, Z T0 = Z T1 . Эквивалентная диаграмма показана на следующем рисунке.

Рисунок 3. Схема эквивалентной последовательности для однофазного короткого замыкания.

Поскольку все три импеданса последовательности равны, Z T1 = Z T2 = Z T0 , мы можем рассчитать ток короткого замыкания, как показано ниже.

Величина однофазного тока короткого замыкания в этом случае равна трехфазному току короткого замыкания.

Во втором случае рассмотрим трансформатор с сердечником (T1) с импедансом нулевой последовательности, Z T0 = 0,85 Z T1 . Решетка для тока короткого замыкания,

В этом случае величина однофазного короткого замыкания больше, чем трехфазный ток короткого замыкания.Такая ситуация может возникнуть в случае «близких» неисправностей на глухозаземленных трансформаторах или заземляющих трансформаторах. Это особенно актуально для трансформаторов со следующими подключениями обмоток:

, где y или z заземлены со стороны низкого напряжения.

В технической литературе можно найти, что токи однофазного короткого замыкания могут в 1,5 раза превышать токи трехфазного короткого замыкания.

В сетях с глухим заземлением электрические устройства должны быть рассчитаны на большее значение тока короткого замыкания.

В незаземленных сетях (изолированные) или в резонансных сетях с заземлением через сопротивление / реактивное сопротивление однофазное короткое замыкание не может произойти (вместо этого в этих сетях происходит замыкание на землю). Следовательно, в этом типе сети значение трехфазного тока короткого замыкания всегда самое высокое.

Список литературы

[1] IEC 60909 — 0: Токи короткого замыкания в трехфазном переменном токе. системы. Часть 0: Расчет токов. Действительно с 1.10.2016.

[2] IEC 60909 — 2: Электрооборудование.Данные для расчета тока короткого замыкания в соответствии с IEC 60909. Действительно с 1.8.2000.

[3] Шлаббах Дж .: Токи короткого замыкания. Институт электротехники и технологий. Лондон, Великобритания, 2005 г.

Как это:

Like Loading …

Простая схема трехфазного инвертора

В посте обсуждается, как сделать схему трехфазного инвертора, которую можно использовать в сочетании с любой обычной схемой однофазного инвертора прямоугольной формы.Схема была запрошена одним из заинтересованных читателей этого блога.


ОБНОВЛЕНИЕ : Ищете дизайн на базе Arduino? Вы можете найти это полезным:

3-фазный инвертор Arduino


Принципиальная схема

3-х фазная нагрузка может работать от однофазного инвертора, используя следующие поясненные этапы схемы.

В основном задействованные каскады можно разделить на три группы:

На первой диаграмме ниже показан каскад генератора ШИМ, его можно понять по следующим пунктам:

Осциллятор и каскад ШИМ

Схема подключения микросхемы IC 4047 стандартный триггерный выходной генератор со скоростью желаемой частоты сети, установленной VR1 и C1.

Двухтактный ШИМ с заданными размерами теперь доступен на переходе E / C двух транзисторов BC547.
Эта ШИМ подается на вход трехфазного генератора, описанного в следующем разделе.

Следующая схема показывает простую схему трехфазного генератора, которая преобразует указанный выше входной двухтактный сигнал в 3 дискретных выхода, сдвинутых по фазе на 120 градусов.

Эти выходы дополнительно делятся на отдельные двухтактные каскады, сделанные из каскадов НЕ вентилей.Эти 3 дискретных, сдвинутых по фазе на 120 градусов, двухтактных ШИМ теперь становятся питающими входными сигналами (HIN, LIN) для заключительного трехфазного каскада драйвера, описанного ниже.

В этом генераторе сигналов используется один источник питания 12 В, а не два источника питания.

Полное объяснение можно найти в этой статье о генераторе трехфазных сигналов.

На схеме ниже показан каскад схемы с трехфазным инвертором и инвертором, использующий конфигурацию H-мостовых МОП, которая принимает ШИМ с фазовым сдвигом из вышеприведенного каскада и преобразует их в соответствующее высокое напряжение. Выходы переменного тока для работы с подключенной трехфазной нагрузкой, обычно это трехфазный двигатель.

Высокое напряжение 330 в отдельных секциях драйверов МОП-транзисторов получается от любого стандартного однофазного инвертора, встроенного в показанные стоки МОП-транзисторов для питания желаемой трехфазной нагрузки.

Трехфазный мостовой каскад драйвера

В приведенной выше схеме трехфазного генератора (вторая последняя диаграмма) использование синусоидальной волны не имеет смысла, потому что 4049 в конечном итоге преобразует ее в прямоугольные волны и, более того, в микросхемы драйвера. в последней конструкции используются цифровые ИС, которые не реагируют на синусоидальные волны.

Следовательно, лучше использовать трехфазный генератор прямоугольных сигналов для питания последнего каскада драйвера.

Вы можете обратиться к статье, в которой объясняется, как сделать схему 3-фазного солнечного инвертора, чтобы понять работу ступени генератора 3-фазных сигналов и детали реализации.

Использование IC IR2103

Относительно более простая версия вышеупомянутой схемы трехфазного инвертора может быть изучена ниже с использованием ICS драйвера полумоста IC IR2103. В этой версии отсутствует функция выключения, поэтому, если вы не хотите включать функцию выключения, вы можете попробовать следующий более простой дизайн.

Упрощение вышеперечисленных схем

В описанной выше схеме трехфазного инвертора каскад трехфазного генератора выглядит излишне сложным, и поэтому я решил поискать альтернативный более простой вариант замены этой конкретной секции.

После некоторых поисков я нашел следующую интересную схему трехфазного генератора, которая выглядит довольно простой и понятной с ее настройками.

Поэтому теперь вы можете просто полностью заменить описанную ранее микросхему IC 4047 и секцию операционного усилителя и интегрировать эту конструкцию с входами HIN, LIN в схему 3-фазного драйвера.

Но помните, что вам все равно придется использовать вентили N1 —- N6 между этой новой схемой и полной мостовой схемой драйвера.

Создание схемы солнечного трехфазного инвертора

До сих пор мы узнали, как сделать базовую схему трехфазного инвертора, теперь мы увидим, как солнечный инвертор с трехфазным выходом может быть построен с использованием очень обычных ИС и пассивных компонентов. .

Концепция в основном та же, я только что изменил каскад трехфазного генератора для приложения.

Основное требование к инвертору

Для получения трехфазного выхода переменного тока от любой однофазной или постоянного тока нам потребуются три основных каскада схемы:

  1. Трехфазная схема генератора или процессора
  2. Трехфазная схема силового каскада драйвера.
  3. Схема повышающего преобразователя
  4. Солнечная панель (с соответствующим номиналом)

Чтобы узнать, как совместить солнечную панель с батареей и инвертором, вы можете прочитать следующее руководство:

Расчет солнечных панелей для инверторов


В этой статье можно изучить один хороший пример, который объясняет простую схему трехфазного инвертора

В настоящий проект мы также включаем эти три основных этапа, давайте сначала узнаем о схеме процессора трехфазного генератора из следующего обсуждения:

Как это Работает

На схеме выше показана базовая схема процессора, которая выглядит сложной, но на самом деле это не так.Схема состоит из трех частей: IC 555, который определяет 3-фазную частоту (50 Гц или 60 Гц), IC 4035, который разделяет частоту на необходимые 3 фазы, разделенные фазовым углом 120 градусов.

R1, R2 и C должны быть соответствующим образом выбраны для получения частоты 50 Гц или 60 Гц при рабочем цикле 50%.

8 номеров НЕ вентилей от N3 до N8 можно увидеть включенными просто для разделения сгенерированных трех фаз на пары высоких и низких логических выходов.

Эти шлюзы НЕ могут быть получены от двух ИС 4049.

Эти пары высоких и низких выходов на показанных вентилях НЕ становятся важными для питания нашего следующего трехфазного силового каскада драйвера.

В следующем пояснении подробно описывается схема драйвера трехфазного МОП-транзистора от солнечной батареи

Примечание: вывод выключения должен быть подключен к линии заземления, если он не используется, иначе схема не будет работать

Как видно из приведенного выше На рисунке эта секция построена на трех отдельных микросхемах драйверов полумоста, использующих IRS2608, которые предназначены для управления парами МОП-транзисторов с высокой и низкой стороны.

Конфигурация выглядит довольно простой, благодаря этой сложной микросхеме драйвера от International Rectifier.

Каждый каскад ИС имеет свои собственные входные контакты HIN (высокий вход) и LIN (низкий вход), а также соответствующие контакты питания Vcc / заземления.

Все Vcc должны быть соединены вместе и подключены к линии питания 12 В первой цепи (контакты 4/8 IC555), чтобы все каскады схемы стали доступны для источника питания 12 В от солнечной панели.

Точно так же все контакты и провода заземления должны быть объединены в общую шину.

HIN и LIN должны быть объединены с выходами, генерируемыми вентилями NOT, как указано на второй диаграмме.

Вышеупомянутая схема обеспечивает трехфазную обработку и усиление, однако, поскольку трехфазный выход должен быть на уровне сети, а солнечная панель может быть рассчитана максимум на 60 В, мы должны иметь схему, которая позволила бы повысить это низковольтная солнечная панель 60 вольт до необходимого уровня 220 или 120 вольт.

Использование понижающего / повышающего преобразователя на основе IC 555

Это можно легко реализовать с помощью простой схемы повышающего преобразователя на базе микросхемы 555, как можно изучить ниже:

Опять же, показанная конфигурация повышающего преобразователя с 60 В на 220 В выглядит не так сложны и могут быть построены с использованием самых обычных компонентов.

IC 555 сконфигурирован как нестабильный с частотой приблизительно от 20 до 50 кГц. Эта частота подается на затвор переключающего МОП-транзистора через двухтактный BJT-каскад.

Сердце схемы повышения напряжения сформировано с помощью компактного трансформатора с ферритовым сердечником, который принимает частоту возбуждения от МОП-транзистора и преобразует входное напряжение 60 В в требуемый выход 220 В.

Это 220 В постоянного тока, наконец, присоединяется к ранее объясненному каскаду драйвера МОП-транзистора через стоки трехфазных МОП-транзисторов для достижения трехфазного выходного напряжения 220 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *