Лб 40 схема подключения: характеристики, схема подключения, светодиодный аналог

Содержание

характеристики, схема подключения, светодиодный аналог

Люминесцентные линейные лампы считаются морально устаревшими источниками света, но тем не менее используются довольно широко даже сегодня. В этой статье мы поговорим о лампе ЛБ 40: узнаем ее характеристики, научимся подключать и выясним, как такой источник света заменить на светодиодный аналогичных размеров.

Размеры и технические характеристики

Для начала разберемся с конструкцией лампы ЛБ 40 и ее возможностями. Конструктивно прибор представляет собой стеклянную колбу, в концы которой впаяны по два электрода с подключенными к ним спиралями из тугоплавкого материала (обычно вольфрам). Внутренняя поверхность колбы покрыта порошкообразным люминофором, сама колба заполнена инертным газом с добавлением небольшого количества ртути или амальгамы и герметизирована. Снаружи выводы электродов оснащены двухконтактными цоколями G13.

Линейная люминесцентная лампа

При включении лампы в колбе возникает тлеющий разряд, который заставляет молекулы ртути излучать в ультрафиолетовом спектре. Свет, попадая на люминофор, вызывает  его яркое свечение, но уже в видимом спектре, а сам поглощается тем же люминофором и стеклом лампы. Таким образом, прибор излучает только видимый свет. Маркировка ЛБ 40 расшифровывается следующим образом:

  • Л – линейная люминесцентная лампа;
  • Б – белый свет;
  • 40 – мощность прибора в ваттах.

Что касается габаритов этого источника света:

Маркировка

Длина, мм

Диаметр, мм

Цоколь

ЛБ 40120038 или 25.4G13

Теперь взглянем на основные характеристики ЛБ 40:

Характеристика

Параметр

Напряжение питания, В220 или 127
Потребляемая мощность, Вт40
Световой поток, лм2800
Цветовая температура, К3500
Индекс цветопередачи (RA или CRI)60-69%
Ресурс, ч10000
к содержанию ↑

Схема подключения

В электрическую сеть все люминесцентные лампы включаются через специальную пускорегулирующую аппаратуру – электромагнитную (ЭмПРА) или электронную (ЭПРА). В первом случае, кроме электромагнитного дросселя (балласта), необходим неоновый стартер.

В состав электромагнитного пускорегулирующего аппарата входят электромагнитный балласт и стартер

ЭПРА представляет собой самостоятельный прибор и в дополнение ничего не требует.

Электронный пускорегулирующий аппарат

Включение через ЭмПРА

Рассмотрим приведенную ниже типовую схему включения линейных люминесцентных ламп ЛБ 40, рассчитанных на работу в сети 220 В, через электромагнитный балласт.

Типовая схема включения лампы ЛБ 40

После подачи на светильник питания напряжение через балласт поступает на спирали лампы. Вторые выводы спиралей соединены через стартер. Пока спирали холодные, сопротивление газового промежутка в колбе велико и разряда нет. Все напряжение приложено к стартеру – и он тут же срабатывает, его контакты замыкаются. Через спирали начинает течь ток, разогревая их.

Примерно через 1 секунду контакты стартера размыкаются, ток через спирали и балласт прекращается. Последний благодаря обратной самоиндукции формирует на катодах лампы импульс напряжения величиной порядка 1 кВ. Происходит пробой газового промежутка, и через колбу начинает течь ток – лампа зажигается.

Балласт сразу же переходит в режим ограничения тока, поддерживая его на уровне, необходимом для работы ЛБ 40. Стартер теперь отключен и далее в процессе работы светильника участия не принимает. Если по каким-либо причинам лампа не зажглась, то процесс запуска повторяется.

Поскольку балласт является, по сути, дросселем, он обладает большим индуктивным сопротивлением, увеличивающим реактивную составляющую потребления электроэнергии и снижающим КПД всего устройства. Этот недостаток частично устраняется включением параллельно схеме компенсационного конденсатора, уменьшающего реактивную составляющую. Такой метод запуска ЛБ 40 называется горячим, поскольку перед розжигом источника света его спирали-катоды подогреваются.

Важно! В данной схеме использованы лампа и стартер, рассчитанные на рабочее напряжение 220 В, а дроссель имеет мощность, соответствующую мощности лампы (40 Вт).

Включение через ЭПРА

Если с ЭмПРА все ясно и однозначно – все они включаются по одной схеме и отличаются только мощностью, то с ЭПРА дело обстоит несколько иначе. Выпускается великое множество модификаций этих устройств, способных обслуживать разное количество ламп – от 1 до 4.

Но и тут не все так плохо, поскольку схемы их включения довольно просты и всегда нанесены прямо на корпус пускорегулирующего устройства. Дополнительно эти схемы есть и в сопроводительной документации.

Эти ЭПРА могут обслуживать одну (сверху) и две лампы одновременно

Единственное, выбирая электронный прибор, необходимо обращать внимание на мощность ламп, с которыми они могут работать. На фото выше, к примеру, ЭПРА рассчитаны на работу с лампой 58 Вт (вверху) и 2 х 18 Вт.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Дополнительно нужно обращать внимание на метод поджига лампы – холодный или горячий. Про горячий мы уже говорили выше, а при холодном лампа запускается высоковольтным импульсом без предварительного разогрева спирали. Включение лампочки в этом случае происходит практически мгновенно, но ресурс источника света существенно сокращается.

к содержанию ↑

Современные аналоги

Сегодня линейные люминесцентные лампы ЛБ 40 практически не выпускаются, но производится множество светильников, рассчитанных на работу с ними. Как быть, если штатная лампочка перегорела? Выход прост – заменить ее современным аналогом, которым является ЛБ 36. Лампы этого типа имеют аналогичные характеристики, но их мощность на 4 Вт ниже, чем у оригинальных ЛБ 40. Эта разница слишком мала, чтобы существенно повлиять на работу светильника, поэтому ставим смело. При замене лампы ЛБ 40 на ЛБ 36 ничего в светильнике и в самой схеме менять не нужно. Старую снял, новую поставил.

На сегодняшний день ЛБ 36 выпускаются и отечественными производителями, но в продаже чаще можно встретить продукцию зарубежных компаний. К примеру, Osram L 36W/640 или Philips TL-D 36W/33-640.

Полезно! Лампочки зарубежных производителей несколько отличаются по цветовой температуре, которая составляет 4000 К против 3500 К у ЛБ 36. Но разница эта несущественна, и на глаз цветовые температуры практически неразличимы.

к содержанию ↑

Светодиодные аналоги — как заменить и схема подключения

Светодиодные источники света завоевывают все большую популярность и уверенно вытесняют лампы другого типа, включая и люминесцентные. Можно ли без особых затрат заменить люминесцентное освещение на светодиодное? К примеру, светильники под те же ЛБ 40 практически вечны и все еще установлены во многих организациях и заведениях – зачем под светодиодные покупать новые?

Действительно, незачем. Такой светильник может работать и со светодиодными лампами. Ведь существуют светодиодные аналоги ЛБ 40. Аналоги – имеется в виду по габаритам и конструкции: те же длина, диаметр и цоколи G13.

По габаритам и типу цоколя эта светодиодная лампа Т8 – полный аналог ЛБ 40

Принцип работы у них, конечно, иной – ведь они светодиодные. Так что в конструкции самого светильника менять ничего не придется, достаточно просто изменить его электрическую схему, ориентируясь на стандартную схему подключения линейной светодиодной лампочки Т8 с напряжением питания 220 В.

Схема включения светодиодной лампы Т8 на 220 В

Важно! Покупая светодиодные лампочки Т8, необходимо убедиться, что они имеют встроенный драйвер и предназначены для работы в сети 220 В. Поскольку существуют низковольтные модели, которые внешне отличить от нужных нам невозможно.

Светильник с ЭмПРА

Изначально схема светильник с ЭмПРА и одним источником света выглядит так:

Схема люминесцентного светильника с ЭмПРА и одним источником света

Доработку производим по следующему алгоритму:

  1. Вынимаем стартер (он имеет цоколь и вставлен в патрон).
  2. Накоротко замыкаем балласт, на снятие которого можно не тратить время.
  3. Откусываем компенсационный конденсатор.
Необходимые доработки в светильнике

Конечная схема должна выглядеть следующим образом:

Доработанная схема светильника

Светильник с ЭмПРА и двумя лампами

Изначально схема светильник с ЭмПРА и двумя источниками света выглядит так:

Схема люминесцентного светильника с ЭмПРА и двумя источниками света

Доработку производим по следующему алгоритму:

  1. Вынимаем стартеры.
  2. Накоротко замыкаем балласты.
  3. Откусываем компенсационный конденсатор.
  4. Изменяем схему соединения ламп, чтобы в итоге получилось следующее:
Доработанная схема светильника

Светильник с ЭПРА

Изначально схема светильник с ЭПРА и одним источником света выглядит так:

Схема люминесцентного светильника с ЭПРА

Отсоединяем ЭПРА, а провода, ранее подключенные к нему, соединяем по этой схеме (на рисунке отмечены красным). Остальные два изолируем и оставляем свободными.

Необходимые доработки в светильнике

Конечная схема должна выглядеть следующим образом:

Доработанная схема светильника с ЭПРА

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Прежде чем начать доработку светильника, необходимо полностью обесточить помещение на вводном щите, повесить на него запрещающий плакат «Не включать, работают люди!» и убедиться в отсутствии напряжения при помощи указателя напряжения (индикатора). Ограничиваться щелчком обычного выключателя недопустимо и опасно!

Вот мы и познакомились с линейными люминесцентными лампами ЛБ 40. Теперь мы знаем, что они собой представляют, какими характеристиками обладают и как правильно подключаются. Ну а при необходимости мы легко сможем заменить их на светодиодные того же типоразмера.

Предыдущая

ЛюминесцентныеВиды люминесцентных ламп с цоколем G13 и их характеристики

Следующая

ЛюминесцентныеЧто такое кольцевые люминесцентные лампы и чем отличаются от линейных

Спасибо, помогло!Не помогло

3 схемы подключения люминесцентной лампы без дросселя и стартера.

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

  • сама люминесцентная лампочка

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из наиболее серьезных проблем — это вышедший из строя дроссель.

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Как запустить лампу дневного света без дросселя

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от «нитей накала» колбы. Они обычно идут в виде штырьков.

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Как выбрать мощность энергосберегающей лампы

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает — это качество товаров из поднебесной не соответствует «железобетонным» советским гостам.

2 схемы бездроссельного включения ламп дневного света

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант — это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания.

Вот схема такой сборки.

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

Для трубок мощностью 18Вт подойдут следующие компоненты:

  • диодный мост GBU408
  • конденсатор 2нФ (до 1кв)
  • конденсатор 3нФ (до 1кв)
  • лампочка накаливания 40Вт

Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить.  Все элементы соединяются вот таким образом.

После чего схемка подключается к лампе дневного света.

Вот еще одна подобная бездроссельная схема.

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

Зажигаем сгоревшую лампу

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.

Весь процесс выглядит следующим образом:

  • первоначально в колбе разряд отсутствует
  • затем на концы подается умноженное напряжение
  • свет внутри за счет этого моментально зажигается
  • далее загорается лампочка накаливания, которая своим сопротивлением ограничивает максимальный ток
  • в колбе постепенно стабилизируется рабочее напряжение и ток
  • лампочка накаливания немного тускнеет

Недостатки подобной сборки:

  • низкий уровень яркости
  • повышенная пульсация

А еще при питании люминесцентных ламп постоянным напряжением, вам придется очень часто менять полярность на крайних электродах колбы. Проще говоря, перед каждым новым включением переворачивать лампу.

В противном случае пары ртути будут собираться только возле одного из электродов и светильник без периодического обслуживания долго не протянет. Это явление называется катафорез или унос паров ртути в катодный конец светильника.

Там где подключен «плюс», яркость будет меньше и этот край начнет чернеть значительно быстрее.

Особенно это заметно при монтаже светильников ЛБ в холодных помещениях — гараж, сарай, коридор, подвал. Если колба не прогрета, она может даже не запуститься.

В этом случае стоит до нее дотронуться теплой рукой и она тут же начинает гореть.

Поэтому запомните — люминесцентная лампа это источник света переменного тока. Постоянный ей противопоказан и убивает лампу. Особенно импортные дохнут очень быстро.

Еще один минус подобных диодных схем, про который мало кто говорит — итоговый ток потребления из розетки. Для 40Вт ЛБ лампочки при не идеально подобранных компонентах, ток потребления из сети 220В может доходить до 1А.

А это даже превышает нагрузку обычной лампы накаливания в 200Вт. Вот это экономия у вас получится!

Поэтому какой из способов подойдет именно вам, решайте сами, исходя из имеющихся под рукой запчастей и познаний в электронике.

Схема ЭПРА для ЛБ-40

на главную

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети ~220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.


на главную
.

Схема Подключения Лампы Дневного Света

Эти ЛДС неприхотливы к потреблению электроэнергии, а также благодаря трансформаторным преобразователям эти лампы способны работать от 12 вольт, что дает возможность запустить лампу подсоединением к авто аккумулятору в условиях отсутствия электроснабжения.


Схема подключения двух ламп от одного дросселя При необходимости в подключении двух люминесцентных ламп к одному дросселю необходимо к торцевым штырям источников света подключить параллельно стартеры. По такой схеме источник света сможет проработать еще какое-то время.

В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. В современных люминесцентных светильниках применяют бездроссельную и безстартерную схему.
Подключение двух люминесцентных ламп через один дроссель.

В результате была разработана схема электронного балласта. Но эти приборы тяжелые, для включения светильника требуется 3 секунды, дроссель достаточно шумный, потребляет сравнительно большое количество энергии, эффективность работы снижается при минусовой температуре, светильник мерцает, что оказывает отрицательное воздействие на .

Внутри находится одна печатная плата, на которой собрана вся схема. Он предназначен для защиты лампы дневного света от перегрева.

Имеется стробоскопический эффект мигания лампочки.

В одной из веток может ставиться фазосдвигающий конденсатор для уменьшения общего мерцания — лампы мерцают поочередно и суммарно имеем более стабильное свечение.

Один из электронных балластов — ЭПРА Выглядит электронный балласт как небольшой блок с выведенными клеммами. Ее установка производится в патроны, через которые подается напряжение на электроды.

как подключить люминесцентный светильник (ЛБ -20, 40, 60, 80)

Принцип работы

Нагрузкой служит тороидальный трансформатор с обмотками W1 , W2 , W3 , две из них включены противофазно. По мере износа устройства звук нарастает. Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик.

Компактные лампы Представляют собой светильники дневного света с изогнутой трубкой.

Колба всегда выполняется в виде цилиндра с диаметром см.

На вход подают электропитание.

Через осветительный прибор идет ток, который уменьшается вдвое, так как напряжение на дросселе сокращается.

Эти параметры отображены трехзначным значением на колбе устройства. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. Оставшийся контакт следует подсоединить к нулю ввода.
Схема включения люминесцентных ламп дневного света через электромагнитный дроссель и стартер.

Как работает экономка

Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему.

Цилиндр не всегда прямой может иметь различную форму , но всегда имеет на концах стеклянные ножки с электродами, изготовленными из вольфрама.

Чтобы составить схему включения двух лампочек, установленных в одном осветительном приборе, необходим общий дроссель. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от вольтной сети. Лампу дневного света без дросселя невозможно запустить.

К лампочкам параллельно подключаются конденсаторы. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются.

На эти штырьки подается напряжение. Термоэлектронная эмиссия электродов с катода создает поддержку электрической дуги в ЛДС.

Как работает люминесцентная лампа


Оно превращается в видимое люминофорами. Кроме того, светильники мерцают из-за низкой частоты напряжения питания. Запуск происходит быстро и мягко, что увеличивает срок службы лампы. Контакты должны выйти через отверстия в держателях.

Соответственно, схемы отличаются. Третий шаг. Лампа работает.

На вход подают электропитание. В западных странах в последние годы стали преобладать лампы с трубкой последнего поколения Т5 диаметром 16 мм. Один из электронных балластов — ЭПРА Выглядит электронный балласт как небольшой блок с выведенными клеммами.
Подключение сгоревшей лампы дневного света. Вторая жизнь люминесцентных ламп. Схема подключения

Устройство люминесцентных ламп

От качества света и цветовой температуры зависит качество освещения. После того как электроды стартера размыкаются, дроссель выдает накопленную ЭДС импульсом на концы лампы.

Термоэлектронная эмиссия электродов с катода создает поддержку электрической дуги в ЛДС. Часть тока начинает течь по цепи: В — дроссель — 1-й электрод — 2-й электрод — В. Второй контакт группы направляется на второй стартер.

Можно избежать включения, как балласта, так и стартера. О том, как реализовать схему, рассказывается в видео.

Варианты схем подключения Лампы дневного света требуют установки в цепочку устройства для запуска. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети. В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды. Когда трубка повернута на 90 градусов, опускаем ее вниз.

Эти ЛДС неприхотливы к потреблению электроэнергии, а также благодаря трансформаторным преобразователям эти лампы способны работать от 12 вольт, что дает возможность запустить лампу подсоединением к авто аккумулятору в условиях отсутствия электроснабжения. Ток подается на стартер, где напряжения достаточно для появления тлеющего разряда. При подсоединении двух ламп до одного дросселя, к работе нужно отнестись повнимательнее.

На картинке внизу показано бездроссельное подключение. Схема используется в случае перегорания у ламп нитей накала. Вы ознакомились с особенностями разных схем подключения ламп люминесцентного типа и теперь сможете самостоятельно справиться с установкой и заменой таких осветительных приборов. Газовая смесь внутри колбы подобрана таким образом, чтобы снижать затраты энергии, необходимые на поддержку процесса ионизации. Для работы больше никаких устройств не надо.

Запрещено включать ЭПРА без нагрузки в виде люминесцентных ламп. А энергосберегающие компактные лампы не всем могут быть по карману, да и современные люстры требуют большого их количества, что ставит под сомнение экономию средств. Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет.

Что позволяет добиться нестандартный вариант соединения Изменение обычного способа соединения компонентов электросети в люминесцентных светильниках проводится для того, чтобы минимизировать риск поломки прибора. Через некоторое время ртуть собирается вокруг одного из электродов, и яркость свечения падает.
Лампа дневного света без дросселя

Как зажечь лампу дневного света без дросселя: практические нюансы

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принцип действия лампы дневного света

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Газ.
  9. Нити накала лампы.
  10. Ультрафиолетовое излучение.
  11. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Принцип действия ЭПРА

Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.

Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.

Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины:
1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.

Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.

Рис. 6. Структурная схема подключения ЛДС без дросселя

Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.

Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Заключение

При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.

Подключение люминесцентной лампы | Power-room.ru

Стандартная схема включения люминесцентной лампы

Как уже упоминалось в предыдущем разделе, в отличие от широко распространённых в быту ламп накаливания разрядные лампы используют в своей работе другой принцип генерации излучения. Однако вместе со всеми преимуществами применение современного освещения в быту сдерживает относительно сложная схема включения ламп в электросеть. Это вполне естественно, так как более грамотные технические решения обычно осуществляются за счёт более совершенного оборудования.

Наибольшее разнообразие схем включения породили самые экономичные и разнообразные люминесцентные лампы. Наиболее простой (и чаще всего встречающийся в стандартных светильниках) вариант схемы изображён на рисунке. По причинам, описанным ранее, для включения в сеть любого газоразрядного устройства, в том числе и подобной лампы, обязательно требуется ограничитель тока, без которого произойдёт лавинное нарастание тока в колбе лампы и, возможно, взрыв (!!!). Если даже этого не случится, лампа всё равно будет мгновенно испорчена. Для сети переменного тока в качестве ограничителя тока подходитобыкновенный дроссель со специальным сердечником. Тип дросселя должен соответствовать типу включаемой лампы, иначе лампа может оказаться перегружена и перегорит намного раньше своего срока.

Выбрать подходящий для конкретной лампы балласт очень просто. Для этого нужно всего лишь уточнить мощность лампы (обычно она написана на колбе). Мощность обычно указывается после указания класса или типа лампы, буква «W» или буквы «Вт» либо ставятся, либо не ставятся, например:

  • ЛБ 40 — люминесцентная лампа мощностью 40 Вт;
  • ЛД 20 W — люминесцентная лампа мощностью 20 Вт;
  • L 18 W/25 — люминесцентная лампа мощностью 18 Вт;
  • TLD 36 W/33 — люминесцентная лампа мощностью 36 Вт и так далее.

 

Во-вторых, необходимо сверить мощность лампы с обозначением на корпусе балласта (иногда она содержится только в типе ПРА и отдельно не указана). Отечественные баласты маркируются одним из двух способов:

Обозначения иностранных балластов разнообразны и зависят от фирмы-производителя, но основную информацию так же можно увидеть без труда:

  • L 7/9/11.141 — дроссель для одной компактной люминесцентной лампы 7, 9 или 11 Вт;
  • BTA 58 L131 — дроссель для одной люминесцентной лампы 58 Вт;
  • LXG 40 — дроссель для одной люминесцентной лампы 40 Вт и так далее.

Параллельно с лампой и ПРА (правая часть схемы) обычно включают два конденсатора -помехоподавляющий C1 ёмкостью порядка 0,05 мкФ и компенсирующий C2 (левая часть схемы), ёмкость которого зависит от типа люминесцентной лампы. В принципе, можно обойтись и без этих конденсаторов, однако без C1 схема может излучать радиопомехи (в первую очередь, в телевизионном диапазоне), а без C2 нерационально используется электросеть, так как через провода люминесцентного светильника течёт удвоенный ток, сдвинутый по фазе относительно напряжения сети на 90°. Конденсатор C2, таким образом, позволяет «вернуть» амплитуду и фазу тока к их необходимым значениям.

Зачем это нужно? Дело в том, что без конденсатора C2 люминесцентная лампа мощностью, например, 50 ватт, потребляет из сети такой же ток, как лампа накаливания мощностью 100 ватт. Это означает, что максимально возможная токовая нагрузка на сеть сокращается, хотя нагрузки по мощности нет — потребитель платит лишь за реально потребляемую мощность (50 ватт). Кстати, если Вы используете люминесцентные лампы со схемами без конденсаторов, это обязательно нужно учитывать при расчете электропроводки. Если конденсатор (включённый последовательно либо параллельно остальной схеме) всё же используется, в целях электробезопасности параллельно его выводам должен быть подключен резистор 1 МОм.

Для зажигания лампы применяется специальный пускатель — стартер (SF), представляющий собой герметично запаянный биметаллический контакт. В нормальном состоянии он разомкнут и начинает замыкаться только, если на схему подано питание, а лампа EL не горит. Как только лампа зажигается, напряжение на стартере снизится примерно в 2 — 4 раза, и он возвратится в исходное («холодное») состояние. Именно стартеры служат причиной знакомого всем раздражающего «мигания» люминесцентных ламп. Если лампа перегорела и уже не зажигается от напряжения сети, стартер начинает непрерывно срабатывать, вызывая «мигания» лампы. Существует два основных типа стартеров, рассчитанных на напряжение сети 127 и 220 В. Несмотря на то, что напряжение сети 127 В уже давно не используется, стартеры на 127 В находят свое применение в так называемых «тандемных», или последовательных схемах включения люминесцентных ламп.

В этой категории нет товаров.

Схемы подключения люминесцентных ламп дневного света



Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер) Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.




Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

Схемы подключения

Описание Серия Схема подключения
Котел XP XB / XW 1000–1700 321302
Котел XP XB / XW 2000 — 3400 321303
Один нагреватель / бойлер, один насос, Cert-Temp 80 с системой IID или без нее HW-120M — HW-670 A055.0
Один нагреватель / бойлер, один насос, Cert-Temp 80 с системой IID или без нее HW-200M — HW-670 A057.0
Два нагревателя / котла, два насоса, Cer-Temp HW-300 — HW-670 A059.0
Схема электрических соединений HW-120M — Восстановление бустера HW-670 / Shure Temp AOSDG65100
Схема подключения LB / LW-500-1000 А063.0
Схема электрических соединений Dura-Max DW-720 — DW-1810 AOSDG65101
Схема подключения нескольких устройств Dura-Max DW-720 — DW-1810 AOSDG65102
Условные обозначения Схема электрических соединений Отсечка и аварийный сигнал при низком уровне воды фунт / длина 500-1000 A064.1
Два — со смесительным клапаном или без него / Два подогревателя с ускорителями COF А309.0
Трубопроводы обычных систем HW-300 — HW-670 E107.0
1 и 2 котла с обратным возвратом ДБ-720 — 1810 E109.0
Три котла с обратным возвратом DB-720 — DB-1810 E109.2
1 и 2 котла с обратным возвратом LB-500, 750 и 1000 E110.0
Три котла с обратным возвратом LB-500, LB-750, LB-1000 E110.2
Метод трубопровода для низкотемпературных систем отопления фунтов 500, 750, 1000 E112.0
Низкотемпературная система DB-710 — 1810 E112.2
Низкотемпературная система ЛБ-500, 750, 1000 E112.3
Genesis Первичный, Вторичный трубопровод ГБ-200-750 E112.4
Система Linear-Temp ™ DB-720 — DB-1810 E115.0
Linear Temp ™ первичный, вторичный трубопровод ГБ-200-750 E115.5
Система Linear-Temp ™ LB-500, LB-750, LB-1000 E116.0
Линейная температура HW 300 — 670 E117.0
Один нагреватель с системой IID или без нее HW-300 — HW-670 E121.0
Четыре нагревателя с системой IID или без нее HW-300 — HW-670 E124.1
Типовая схема подключения — несколько переключателей задержки насоса теплового балансира E125.0
TJERNLUNCH Индукторы тяги AOSCG66000
Схема электрических соединений котла XP XB XWH 1000-1700 324888
Схема электрических соединений котла XP XB XWH 2000-3400 324889

% PDF-1.4 % 955 0 объект > эндобдж xref 955 113 0000000016 00000 н. 0000003863 00000 н. 0000004036 00000 н. 0000004080 00000 н. 0000004107 00000 п. 0000004156 00000 н. 0000004214 00000 н. 0000004694 00000 н. 0000005268 00000 н. 0000005786 00000 н. 0000005836 00000 н. 0000005886 00000 н. 0000005936 00000 н. 0000005986 00000 н. 0000006064 00000 н. 0000006419 00000 н. 0000011930 00000 п. 0000012429 00000 п. 0000012804 00000 п. 0000014309 00000 п. 0000015773 00000 п. 0000015829 00000 п. 0000015906 00000 п. 0000017356 00000 п. 0000018340 00000 п. 0000019794 00000 п. 0000021154 00000 п. 0000022535 00000 п. 0000023835 00000 п. 0000024416 00000 п. 0000025236 00000 п. 0000026056 00000 п. 0000026876 00000 п. 0000027696 00000 п. 0000027772 00000 п. 0000027911 00000 н. 0000029928 00000 н. 0000030187 00000 п. 0000030551 00000 п. 0000043683 00000 п. 0000043722 00000 п. 0000083468 00000 п. 0000083507 00000 п. 0000305312 00000 н. 0000366408 00000 н. 0000685708 00000 н. 0000740948 00000 н. 0000741009 00000 н. 0000741140 00000 н. 0000741267 00000 н. 0000741312 00000 н. 0000741463 00000 н. 0000741601 00000 н. 0000741752 00000 п. 0000741884 00000 н. 0000742033 00000 н. 0000742183 00000 п. 0000742332 00000 н. 0000742482 00000 н. 0000742631 00000 н. 0000742871 00000 н. 0000743016 00000 н. 0000743150 00000 н. 0000743282 00000 н. 0000743407 00000 н. 0000743553 00000 п. 0000743695 00000 н. 0000743827 00000 н. 0000743957 00000 н. 0000744091 00000 н. 0000744237 00000 н. 0000744351 00000 н. 0000744491 00000 н. 0000744783 00000 н. 0000745131 00000 п. 0000745297 00000 н. 0000745471 00000 н. 0000745651 00000 н. 0000745829 00000 н. 0000746017 00000 н. 0000746167 00000 п. 0000746347 00000 н. 0000746535 00000 н. 0000746737 00000 н. 0000746911 00000 н. 0000747055 00000 н. 0000747201 00000 н. 0000747367 00000 н. 0000747519 00000 п. 0000747673 00000 н. 0000747829 00000 н. 0000747991 00000 н. 0000748205 00000 н. 0000748409 00000 н. 0000748613 00000 н. 0000748877 00000 н. 0000749123 00000 н. 0000749291 00000 н. 0000749497 00000 н. 0000749695 00000 н. 0000749893 00000 н. 0000750111 00000 н. 0000750237 00000 н. 0000750353 00000 н. 0000750517 00000 н. 0000750627 00000 н. 0000750741 00000 н. 0000750843 00000 н. 0000750977 00000 н. 0000751133 00000 н. 0000751241 00000 н. 0000751341 00000 н. 0000002556 00000 н. трейлер ] / Назад 4104227 >> startxref 0 %% EOF 1067 0 объект > поток hV [LWfv + * XL5XPaAEaA-w / Bm !> hL ‘& 5iSlh ڤ 6 P س> 6_ Ϝ

Преобразователи частоты 9000X Руководство пользователя-MN04001004E

% PDF-1.6 % 712 0 объект > эндобдж 747 0 объект > поток 11.08.51362018-11-23T01: 52: 32.548-05: 00 Acrobat Distiller 9.4.2 (Macintosh) e707f6ee99362442d46962f85c148dad098b64142722025Частотно-регулируемый привод | Энергоэффективность | РуководстваПриложение Acrobat Distiller 9.4.2 (Macintosh) / pdf

  • Частотно-регулируемый привод | Энергоэффективность | Руководства
  • 2018-11-23T01: 53: 32.779-05: 00
  • Преобразователи частоты 9000X Руководство пользователя-MN04001004E
  • uuid: 6b699ed2-924e-4f42-a430-4644d76418a7uuid: f01440eb-c203-4381-8310-9347007346f22018-11-23T10: 06: 50.000 + 05: 302018-11-22T23: 36: 50.000-05: 002011-05-20T11: 59: 19.000-04: 00
  • eaton: таксономия продукции / датчики управления-приводы-автоматизация / частотно-регулируемые приводы / SVX-частотно-регулируемые приводы
  • eaton: страна / северная америка / сша
  • eaton: ресурсы / технические ресурсы / инструкции по установке
  • eaton: language / en-us
  • конечный поток эндобдж 691 0 объект > эндобдж 693 0 объект > эндобдж 694 0 объект > эндобдж 705 0 объект > эндобдж 706 0 объект > эндобдж 707 0 объект > эндобдж 708 0 объект > эндобдж 709 0 объект > эндобдж 434 0 объект > эндобдж 437 0 объект > эндобдж 440 0 объект > эндобдж 443 0 объект > эндобдж 446 0 объект > эндобдж 449 0 объект > эндобдж 450 0 объект > поток hZr} ẈFsKO ‘{fv AI.E, S «} zY» QmQ + `& Z’Ȱ * pZiSr ~ s a! &;! _ Ep ⲓ @ l9aQ Т ,, $ ˶. ִ% # 8 ]

    Как подключить спа — Электропроводка для гидромассажных ванн на 120 и 240 В

    В этом руководстве показано, как подключить большинство джакузи на 240 вольт и переносных домашних спа. Мы включили фотографии, пошаговый видеоролик и электрические схемы гидромассажной ванны.

    Эта информация предоставлена, чтобы помочь вам стать более информированным потребителем. Мы советуем нанять лицензированного электрика для подключения и установки спа.

    Если вы не уверены или недостаточно квалифицированы для выполнения электромонтажа, вы можете провести подготовительные работы к установке, чтобы сократить расходы.Мы проведем вас через типичный проект, чтобы показать, что в него входит.

    Перейти к: Гидромассажные ванны 120 В


    ВНИМАНИЕ: Электромонтажные работы и ремонт могут быть опасными, особенно вблизи воды. Существует риск поражения электрическим током или поражения электрическим током, что может привести к серьезным травмам или смерти. Мы настоятельно рекомендуем передать электропроводку гидромассажной ванны квалифицированному электрику. Требования местных норм к электромонтажу различаются и могут отличаться от образовательных примеров на этом веб-сайте.Необходимо соблюдать местные правила, получать разрешения и проводить проверки. Установщик должен прочитать и следовать руководству пользователя гидромассажной ванны, а также руководствам и инструкциям по эксплуатации соответствующих электрических компонентов.

    Отключите электропитание гидромассажной ванны или бассейна с помощью сервисной панели перед любыми проверками или работами. Неправильная проводка может привести к повреждению оборудования и аннулированию гарантии производителя спа.

    Заявление об ограничении ответственности


    Ваша электрическая служба

    Перед установкой такого крупного бытового прибора, как гидромассажная ванна, определите, сможет ли электрическая сеть справиться с дополнительной нагрузкой.Обычно это не проблема, так как большинство домов, построенных за последние 30-40 лет, рассчитаны на ток не менее 100 ампер. 150-200A часто встречается в большинстве новых домов. Номинальные параметры панели обычно указываются рядом с главным выключателем вверху.

    Обычно неправильно понимают, что суммарный ток всех установленных автоматических выключателей не должен превышать номинальный ток, указанный сервисной панелью. Это неверно. — мощность определяется расчетом нагрузки, а не размером или количеством выключателей.

    Основы подключения гидромассажной ванны — системы на 240 В

    Мы начнем с обзора электрических требований к электропроводке СПА, проиллюстрированных нашими интерактивными электрическими схемами.Спа-ванна на 240 В должна питаться от цепи, которая соответствует требованиям к нагрузке (силе тока), указанным в руководстве пользователя.

    Это означает, что прерыватель фидера (на панели обслуживания дома) должен быть указанного размера. Кроме того, прерыватель GFCI в панели отключения должен быть не меньше этого размера, а GFCI должен быть защищен в целях безопасности.

    В нашем примере мы используем типичную портативную домашнюю спа-установку на открытом воздухе.

    В этом проекте задействованы три электрических узла:

    • Панель автоматического выключателя в доме
    • Блок GFCI с внешним отключением *
    • Блок системы управления спа

    MW Spa GFCI Центр нагрузки / панель отключения для гидромассажных ванн до 50 А с дополнительным расширением отводной цепи 120 В

    * Национальный электротехнический кодекс (NEC) определяет установку утвержденного устройства ручного отключения.Он должен быть рядом с гидромассажной ванной, на расстоянии не менее 5 футов и в пределах прямой видимости.

    NEC также требует розетки на 120 В на расстоянии 10-20 футов от спа.


    Установка нашего Backyard Spa

    Теперь давайте посмотрим на типичную установку на заднем дворе. В нашем видео ниже мы уже залили ровную цементную плиту и поставили на нее нашу гидромассажную ванну.

    Согласно руководству пользователя, для нашей гидромассажной ванны требуется 4-проводное электрическое подключение 240 В, 50 А с использованием медного провода AWG # 6.Электрик прокладывает всю подземную проводку в жестком кабелепроводе из серого ПВХ Sch-40 диаметром 1 дюйм. Требования к проводам см. В руководстве пользователя.

    Выберите вкладки ниже, чтобы следить за проектом от «Планирование до подключения»:

    Электрические системы спа с 3 и 4 проводами

    Для большей части изготавливаемых сегодня СПА на 240 В требуется 4-проводное электроснабжение на 50 А. Некоторые гидромассажные ванны имеют требования к нагрузке 30A или 40A, а некоторые даже 60A.Эти требования соответствуют размеру нового автоматического выключателя питания, установленного в служебной панели дома. Номинальный ток панели Disconnect GFCI может быть равен или больше, чем у выключателя питания на главной панели.

    Для гидромассажных ванн со смешанным напряжением (например, озонатор на 120 В и нагреватель на 240 В) требуются 4-проводные системы. Это означает, что им требуется электрическая цепь с (2) проводами под напряжением, (1) нейтралью и (1) заземляющим проводом. Ознакомьтесь с руководством по эксплуатации.

    Две горячие ножки (черный + красный) обеспечивают 240 вольт (120 В + 120 В).Одна горячая нога с нейтральным (белым) проводом обеспечивает 120В. Заземляющий провод (зеленый) не пропускает ток, кроме случаев короткого замыкания на массу. Это приводит к срабатыванию автоматического выключателя при перегрузке (не путать с функцией безопасности GFCI).

    Перейти к: Гидромассажные ванны 120 В


    Многие старые СПА на 240 В и некоторые новые используют 3-проводную установку. Они состоят всего из 2-х проводов под напряжением и заземляющего провода без нулевого провода.

    Как 3-проводные, так и 4-проводные источники питания должны иметь защиту GFCI. 4-проводную гидромассажную ванну нельзя подключать к 3-проводной сети. Также важно правильное заземление.

    В любом случае панель отключения должна быть снабжена 4-проводным подключением для правильной работы GFCI. Сечение провода и т. Д. См. В руководстве пользователя гидромассажной ванны.

    Примечание: Некоторые модели спа-салонов Hot Spring и Caldera (Watkins Manufacturing) требуют специальных разъединителей субпанелей. У них есть 2 отдельных выключателя GFCI на 240 В в центре нагрузки.

    Схема подключения гидромассажной ванны

    Используйте разъединитель GFCI, предназначенный для гидромассажных ванн на 240 В, 4- или 3-проводных типов спа.На интерактивной схематической диаграмме ниже показаны 3- и 4-проводные конфигурации. Выберите конфигурацию проводки, которая требуется для вашего СПА:


    Основы установки:

    Выключатель сервисной панели

    Выберите размер автоматического выключателя фидера на сервисной панели в соответствии с требованиями к нагрузке спа. Вы можете найти эту информацию в руководстве пользователя, или электрик может определить для вас стоимость. Номинальная нагрузка отключающей коробки должна быть больше или равна мощности выключателя в служебной панели дома.

    Электрик может легко определить, может ли ваша электрическая панель приспособиться к новой цепи 240 В, необходимой для этого проекта. В коробке также должно быть два доступных слота для двухполюсного выключателя. В большинстве домов это не будет проблемой.

    Электрики

    При выборе электрика обязательно спросите об опыте установки гидромассажных ванн, особенно 4-проводных конфигураций.

    Отключение GFCI из-за неправильного подключения нейтрали

    Наиболее частая ошибка при подключении возникает в 4-проводных системах.К сожалению, мы обнаружили, что даже несколько профессиональных электриков не справляются с этим.

    Подключите белый нейтральный провод к блоку управления спа непосредственно к клемме нейтрали выключателя GFCI. См. Наши 4-проводные схемы выше. Не прикрепляйте его к шине заземления дополнительной панели. Неправильное подключение к земле мгновенно приводит к срабатыванию GFCI при подаче напряжения, что приводит к отключению питания гидромассажной ванны.


    Электропроводка и фитинги из ПВХ

    Мы предпочитаем защиту заглубленных каналов на заднем дворе, где в будущем могут потребоваться рытье для посадки кустов и т. Д.Труба ПВХ проста в установке и недорогая. Обычно требуемая глубина составляет 18 дюймов — уточните у местных властей. Закрепите кабелепровод к стене с помощью U-образных хомутов.

    В нашем примере 4 провода используются в 1-дюймовом кабелепроводе из ПВХ, который, хотя и немного превышает размер, облегчает протягивание провода. Для угловых изгибов используются широкие 90 ° изгибы из ПВХ. Резьбовые клеммные переходники из ПВХ приклеиваются к кабелепроводу для электрического коробчатые соединения.

    Наш электрик использовал короткие отрезки гибкого водонепроницаемого ПВХ-трубопровода для подключения к нашему блоку управления спа.Он провел LB Condulet от внешней стены до электрической панели. LB обеспечивает легкий доступ для прокладки проводов.

    Деформационные швы для защиты от замерзания

    Там, где этого требуют местные нормы, используйте компенсаторы из ПВХ там, где водопроводная труба выходит из земли, входит в стену или настенные ограждения.

    Эти скользящие муфты допускают изменение уклона, обычно связанное с морозным пучением, чтобы предотвратить разрыв трубопровода.

    Резка и цементирование трубопроводов из ПВХ

    Перед прокладкой провода необходимо смонтировать кабелепровод из ПВХ

    .Как правило, легче протянуть проволоку через канал в траншее, прежде чем она будет закопана.

    Надрезы должны выполняться под прямым углом с помощью режущего инструмента или канатной пилы для ПВХ. Удалите заусенцы канцелярским ножом и наждачной бумагой средней зернистости. Перед склеиванием просушите детали.

    Электропроводка из ПВХ

    соединяется с соответствующим клеем на основе ПВХ. Перед соединением поверхности соединения следует протереть начисто.

    Дополнительная информация: NEMA Guide Solvent-Cementing PVC Nonmetallic Conduit


    Размер и тип провода для гидромассажных ванн

    Изучив руководство пользователя спа, наш электрик определил, что для нашего проекта необходим многожильный медный провод №6 THHN.Он использовал четыре отдельных изолированных провода: (1) красный и (1) черный-горячий, (1) белый-нейтральный и (1) зеленый-заземляющий провод в нашем примере.

    Требования к калибру провода могут отличаться от нашего примера, в зависимости от технических характеристик производителя гидромассажной ванны, требований кодов и типа провода. Необычно длинные участки могут потребовать большего сечения провода, как определит электрик.

    Хотя медь стоит недешево, обрезка проволокой меньшего диаметра — опасная ложная экономия. Это может привести к нарушению требований кода и / или аннулированию гарантии производителя вашего оборудования.Не рекомендуется использовать алюминиевый или покрытый медью алюминиевый провод. Кабель в оболочке, например Romex®, не допускается внутри подземных трубопроводов.

    Примечание: клеммы блока управления Spa обычно не подходят для провода большего размера, чем , чем №6. Обратитесь к руководству пользователя.

    Прямая проводка UF-B

    В некоторых местах разрешается закапывать кабель напрямую, по крайней мере, на участке от сервисной панели до блока отключения. В других юрисдикциях это запрещено. По словам некоторых электриков, с кабелем UF-B может быть неудобно работать.

    Трос

    При надлежащей подготовке протянуть проволоку не так уж и сложно. После сборки кабелепровода электрики используют узкую ленту из пружинной стали, чтобы пропустить через него провода. Первые несколько дюймов ленты покрыты смазкой для протягивания проволоки. Это помогает ему плавно скользить по подходящим краям и по изгибам пустого трубопровода.

    Сначала лента продевается через пустую трубу, стараясь не перегибать ее из-за защемления. Затем провода прикрепляются к крючку на его конце и вытягиваются обратно

    Осторожно протолкните провода в кабелепровод, удерживая их разделенными и прямыми, избегая перегибов.Нанесите смазку на провода, когда они входят в кабелепровод. Второй человек тянет с противоположного конца с помощью рыболовной ленты.

    Крепление проводов к рыболовной ленте

    Распространенная ошибка — наматывать все провода на крючок ленты. В результате получается только большой узел, который может застрять или развязаться. Вот способ получше:

    • Сначала рыбная лента проходит через пустой канал и выводится с другого конца.
    • Затем с каждого проводника снимается около 6 дюймов изоляции.
    • Около 1/3 медных жил от каждого провода отделяются и вырезаются, чтобы получился более тонкий жгут. Тогда они будут легче проходить через проушину.
    • Затем голые вырезы плотно скручиваются вместе с помощью плоскогубцев.
    • Теперь медная оплетка продевается через крючок и сгибается пополам на себя.
    • Наконец, связка представляет собой двойную обертку в стиле парикмахерской с электротехнической лентой. Начните над крюком и опустите несколько дюймов на изолированные провода.
    • Если все сделано правильно, сборка будет выглядеть плотно свернутой и симметричной.
    • Пучок, покрытый лентой, должен быть покрыт смазкой для проволоки для облегчения вытягивания.

    ПРИМЕЧАНИЕ. Провода (4) №6 намного легче протягивать через канал диаметром 1 дюйм, чем диаметром 3/4 дюйма. Следует обильно использовать одобренную негорючую смазку для электрических проводов.

    Вы можете ловить провода с любого конца кабелепровода. Если ближе к одному концу есть крутые изгибы, тяга с этого конца иногда обеспечивает меньшее сопротивление.

    Провода легче вытащить, если есть место для их протяжки на всю длину. Это помогает избежать перегибов из-за намотки проволоки.

    После того, как провода проложены, обрезки обернутой проволоки, прикрепленные к рыболовной ленте, отрезаются и выбрасываются.

    ВНИМАНИЕ: Никогда не используйте рыболовную ленту вокруг электрифицированных проводов. Кроме того, никогда не ударяйте рыбу в электрическую сервисную панель или из нее, даже если главный выключатель выключен.

    Подключение проводов клемм

    Везде, где провода присоединяются к клеммам, винтовые соединения должны быть плотными.Плохо прикрепленная проводка неизбежно приведет к перегреву, сгоревшей изоляции и выходу из строя цепи.

    Пакет управления спа

    В нашем примере электрик установил гибкий кабелепровод для силовых проводов внутри отсека для оборудования гидромассажной ванны.


    Чего следует избегать:

    • Не забудьте перед установкой прочитать руководство по эксплуатации производителя спа.

    • Не забудьте получить разрешение на электричество.

    • Не устанавливайте гидромассажную ванну под воздушными линиями электропередач.

    • Не прокладывайте подземную проводку под гидромассажной ванной.

    • Не подключайте 4-проводную гидромассажную ванну к 3-проводной цепи — это было бы небезопасно и незаконно.

    • Не используйте провод меньшего диаметра.

    • Не используйте алюминиевый провод.

    • Не устанавливайте наружное освещение в пределах 10 футов от гидромассажных ванн.

    • Не используйте гидромассажную ванну до тех пор, пока не будет одобрена электрическая установка.

    • Не забывайте часто проверять устройство GFCI, используя его кнопку TEST .

    • Не забывайте поддерживать водный баланс и дезинфицирующее средство.

    • Не забывайте закрывать крышку спа после каждого использования.

    • Не забывайте регулярно пользоваться гидромассажной ванной!


    Спасательные бассейны, требующие двойных субпанельных выключателей 240 В GFCI

    Некоторые модели спа-салонов Hot Spring и Caldera (Watkins Manufacturing) требуют специальных разъединителей субпанелей.Они содержат два отдельных прерывателя GFCI: один для нагревателя, а второй для насоса и других компонентов.

    Эти гидромассажные ванны не следует подключать к одной коробке автоматического выключателя, например, к нашей разъединительной панели MW. Обратитесь к руководству пользователя, к дилеру или производителю за информацией по установке.


    Портативные гидромассажные ванны около 120 В

    Это руководство предназначено для портативных спа-установок на 240 вольт. Если у вас есть или вы приобретаете 120-вольтовый спа-центр plug-n-play, большая часть этой информации к вам не относится.Однако некоторые СПА легко преобразовать для работы на моделях любого напряжения.

    При настройке на использование 120 В спа-салоны этого класса используют GFCI на конце шнура питания. Затем он подключается к стандартной специальной домашней розетке. Закрытые розетки с защитой GFCI должны использоваться на открытом воздухе. Преобразование этих гидромассажных ванн в проводные 240 В служит двум целям: более быстрое время нагрева и способность поддерживать температуру в холодную погоду.


    Заявление об отказе от ответственности:
    SpaDepot.com не несет ответственности за использование и не дает никаких гарантий относительно точности, пригодности или полезности этой информации. Эта информация не предназначена для замены или замены информации, содержащейся в руководствах пользователя оборудования. Вы прямо соглашаетесь обезопасить The Spa Depot и его сотрудников. Это включает материальный ущерб, телесные повреждения и / или смерть, утрату или ущерб, возникшие в результате использования вами этой информации. Никакие советы или информация, устные или письменные, полученные вами с этого веб-сайта или нашими сотрудниками, не создают никаких гарантий, прямо не указанных здесь.Читатель соглашается принять на себя весь риск, связанный с применением любой информации, представленной здесь. Используя этот веб-сайт, включая любые содержащиеся на нем апплеты, программное обеспечение и контент, посетитель соглашается с тем, что использование этого веб-сайта и его информационных продуктов полностью на его / ее страх и риск.


    Прочтите предупреждение

    Оборудование других марок может отличаться от представленного на иллюстрациях внешним видом и / или конфигурацией клемм. Прочтите инструкции по установке оборудования.

    К сожалению, обычные центры нагрузки часто работают ненадежно с гидромассажными ваннами из-за явления, называемого ошибочным отключением. Это ложное срабатывание вызывает большое разочарование как домовладельцев, так и электриков. Часто это неправильно относят к проблеме со спа, когда ее нет.

    Обычные выключатели GFCI иногда реагируют на нормальное состояние СПА, как если бы это было замыкание на землю. Реактивные нагрузки двигателей СПА плюс резистивная нагрузка нагревателей делают обычные выключатели GFCI в лучшем случае ненадежными.

    Наша панель Spa Disconnect GFCI решает эти проблемы. Это надежный детектор замыкания на землю, разработанный специально для гидромассажных ванн. Специально экранированный GFCI предотвращает ложное срабатывание из-за радиочастотных помех. Он также разработан для обеспечения стабильности при низком напряжении, чтобы предотвратить отключение из-за сбоев, колебаний и смешанных нагрузок. В случае замыкания на землю быстродействующий GFCI мгновенно отключает линии.

    Примечание: NEC и многие юрисдикции ТРЕБУЮТ установку наружной розетки GFCI на 120 В.Он должен быть расположен на расстоянии 10-20 футов от спа или бассейна для безопасной работы с проводными приборами.


    Центр нагрузки / разъединение Spa GFCI

    «Я был очень впечатлен качеством. Мне очень понравилось, что мы смогли добавить наружную электрическую розетку GFCI (требуется по нормам, в которых мы живем). Нам не пришлось платить электрику за подключение всей отдельной цепи. Это одно более чем заплатили за это! »

    Брок Хирш
    Бриктаун, штат Нью-Джерси,

    Системы литиевых батарей LifeBlue с монитором

    В батареях

    LifeBlue используются призматические элементы и обеспечивается наиболее полный мониторинг по Bluetooth, который показывает состояние, температуру, напряжение, ток, срок службы, состояние батареи, неисправности и состояние заряда.Поскольку приложение Bluetooth показывает состояние заряда отдельных батарей, некоторые клиенты могут предпочесть удалить монитор батареи Victron BMV-712. AM Solar включила BMV-712, чтобы показать совокупный уровень заряда нескольких батарей и обеспечить интеграцию монитора Victron Color Control GX. Сообщите нам, если вы хотите изменить комплект.

    Модели xxx-HC могут быть подключены последовательно до 48 Вольт. Xxx-HCLT можно подключать только параллельно из-за особенностей работы внутренней системы отопления.Рекомендуется не подключать более четырех аккумуляторов, но некоторые клиенты пошли против этой рекомендации и успешно подключили до восьми аккумуляторов.

    Низкотемпературные батареи имеют внутренний механизм нагрева, предназначенный для более эффективной зарядки в экстремальных условиях.

    Руководство по предварительной зарядке и установке

    100 Ач: В 6,5 «x Ш 12,5» x Г 9,4 «28 фунтов
    125 Ач: Ш 12,5″ x В 6,5 «x Г 8,5» 28 фунтов
    150 Ач: Ш 19.0 «x В 6,6» x Г 9,5 «44 фунта
    200 Ач: В 10,8″ x Ш 20 «x Г 6,9» 57 фунтов
    300 Ач: Ш 20,8 «x В 8,8» x Г 10,5 «83 фунта
    * Без клемм и кабелей

    Схема подключения Dual 150, 300Ah
    Схема подключения Dual 200, 400Ah
    Схема подключения Dual 300, 600Ah
    Схема подключения 0005 Схема подключения 4 2006 9 8006000 Четыре 300, 1200 Ач

    Гарантия

    Что вы получаете:

    Dual 150, 300 Ач
    1x MONITOR-VTBMV-S BAM030712000 Монитор температуры Victron Battery BMV-712EMP-ASS- датчик для серии BMV-700
    2x BATTLI-LB-150HC LB12150-HC LifeBlue LiFePO4 12V150Ah HC
    6x LUG-4/0-RING-3/8 5339 4/0 Lug-3/8 «Кольцо
    4x 93H-B3 / 4 Термоусадочный черный 1.5 «x 3/4»
    2 x 93H-R3 / 4 термоусадочная стойка 1,5 «x 3/4»
    5 ‘CABLE-4 / 0-1-BLK 4727 Cable-4/0

    Dual 200, 400Ah
    1x MONITOR-VTBMV-S BAM030712000 Victron Battery Monitor BMV-712 Smart
    1x TEMP-VTBMV ASS000100000 Датчик температуры Victron для серии BMV-700
    2x BATTLI-LB-200HC LB12200-HC LifeBlue-4FePO4 12V / 200Ah L- 9058 RING-3/8 5339 4/0 Lug-3/8 «Кольцо
    4x 93H-B3 / 4 термоусадочное черное 1.5 «x 3/4»
    2 x 93H-R3 / 4 термоусадочная стойка 1,5 «x 3/4»
    5 ‘CABLE-4 / 0-1-BLK 4727 Cable-4/0

    Dual 300, 600Ah
    1x МОНИТОР-VTBMV-S BAM030712000 Монитор батареи Victron BMV-712 Smart
    1x TEMP-VTBMV ASS000100000 Датчик температуры Victron для серии BMV-700
    2x BATTLI-LB-300HC LB12300-HC LifeBlue LiFePO4 12 В 4 300 Ач 0 HC -RING-3/8 5339 4/0 Lug-3/8 «Кольцо
    4x 93H-B3 / 4 термоусадочное черное 1.5 «x 3/4»
    2x 93H-R3 / 4 Термоусадочная стойка 1,5 «x 3/4»
    5 ‘CABLE-4 / 0-1-BLK 4727 Cable-4/0

    Вас также может заинтересовать в:

    Securitron M32 — ASSA ABLOY

    Документы, сертификаты и списки

    600 фунтов. удерживающая сила Magnalock с автоматическим двойным напряжением.Рекомендуется для применений, в которых не ожидается физического нападения на дверь, например, для внутренних помещений с контролируемым доступом и безопасных зон внутри зданий.

    Характеристики продукта

    • Запатентованная схема мгновенного расцепителя — без остаточного магнетизма
    • Легко устанавливается на поверхность с минимальным набором инструментов
    • Полностью герметичная электроника — защита от взлома и атмосферных воздействий
    • Устанавливается с помощью стальных крепежных винтов в глухие чистовые гайки
    • Архитектурная отделка из матовой нержавеющей стали (US32D / 630)
    • Все поверхности из черного металла покрыты в соответствии со спецификацией MIL
    • Аппаратные аксессуары доступны для настройки любого проема
    • Доступны чехлы
    • Десять футов [3.05м] многожильного провода в оболочке
    • Опции замка включают датчик магнитной связи BondSTAT и встроенный переключатель положения двери
    • Зарегистрировано в UL
    • MagnaCare ® , пожизненная замена, гарантия на неисправность отсутствует

    Технические характеристики

    • Удерживающая сила: 600 фунтов. [272 кг]
    • Потребление тока и напряжение: 300 мА при 12 В постоянного тока; 150 мА при 24 В постоянного тока
    • Рабочая температура: от -40 до + 140F [от -40 до + 60C]
    • Вес в упаковке: 6 фунтов

    Модели

    Номер детали Описание
    M32 M32 Magnalock — 12 / 24В постоянного тока
    M32B M32 Magnalock — 12/24 В постоянного тока, MBS
    M32BD M32 Magnalock- 12 / 24VDC, MBS, DPS
    M32D
    M32 Magnalock — 12/24 В постоянного тока, DPS
    M32F M32 Magnalock — 12 / 24VDC, торцевое сверление
    M32FB M32 Magnalock — 12 / 24VDC, с торцевым отверстием, MBS
    M32FBD M32 Magnalock — 12 / 24VDC, торцевое сверление, MBS, DPS
    M32FD M32 Magnalock — 12 / 24VDC, с торцевым отверстием, DPS

    ПРИМЕЧАНИЕ: Для M32 с защелкой требуется минимум 2 штуки.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *