Виды конденсаторов реферат – История создания и применение конденсатора | Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Содержание

Реферат Конденсатор

скачать

Реферат на тему:



План:

    Введение
  • 1 История
  • 2 Свойства конденсатора
  • 3 Обозначение конденсаторов на схемах
  • 4 Характеристики конденсаторов
    • 4.1 Основные параметры
      • 4.1.1 Ёмкость
      • 4.1.2 Удельная ёмкость
      • 4.1.3 Плотность энергии
      • 4.1.4 Номинальное напряжение
      • 4.1.5 Полярность
      • 4.1.6 Опасность разрушения (взрыва)
    • 4.2 Паразитные параметры
      • 4.2.1 Электрическое сопротивление изоляции конденсатора — r
      • 4.2.2 Эквивалентное последовательное сопротивление — R
      • 4.2.3 Эквивалентная последовательная индуктивность — L
      • 4.2.4 Саморазряд
      • 4.2.5 Тангенс угла диэлектрических потерь
      • 4.2.6 Температурный коэффициент ёмкости (ТКЕ)
      • 4.2.7 Диэлектрическое поглощение
  • 5 Классификация конденсаторов
  • 6 Сравнение конденсаторов постоянной ёмкости
  • 7 Применение конденсаторов
  • Примечания
    Литература

Введение

.

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические. На полярных SMD конденсаторах + обозначен полоской.

Различные конденсаторы для объёмного монтажа

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых

обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.


1. История

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук случайно создали конструкцию-прототип электролитического конденсатора — «лейденскую банку». Первые конденсаторы, состоящие из двух проводников разделенных непроводником, упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше.[1]


2. Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

где  — мнимая единица,  — частота[2] протекающего синусоидального тока,  — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

Резонансная частота конденсатора равна

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где  — напряжение (разность потенциалов), до которого заряжен конденсатор.


3. Обозначение конденсаторов на схемах

В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[3] либо международному стандарту IEEE 315—1975:

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор переменной ёмкости
Варикап

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 10

6 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 — 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, то есть на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.


4. Характеристики конденсаторов

4.1. Основные параметры

4.1.1. Ёмкость

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками

(q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где  — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице),  — электрическая постоянная, численно равная Ф/м (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи

параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

или

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи

последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.


4.1.2. Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

4.1.3. Плотность энергии

Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Например, у конденсатора EPCOS B4345 ёмкостью 12000 мкФ x 450 В и массой 1.9 кг плотность энергии составляет 639Дж/кг или 845Дж/л. Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гаусса


4.1.4. Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.


4.1.5. Полярность

Современные конденсаторы, разрушившиеся без взрыва из-за специально разрывающейся конструкции верхней крышки. Разрушение возможно из-за действия температуры и напряжения, не соответствовавших рабочим, или старения. Конденсаторы с разорванной крышкой практически неработоспособны и требуют замены, а если она просто вспучена но еще не разорвана — скорее всего скоро он выйдет из строя или сильно изменятся параметры, что сделает его использование невозможным.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.


4.1.6. Опасность разрушения (взрыва)

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). В современных компьютерах перегрев конденсаторов — также очень частая причина выхода их из строя, когда они стоят рядом с источниками повышенного тепловыделения (радиаторы охлаждения).

Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце, иногда на больших конденсаторах она прикрыта пластиком). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа и иногда даже жидкости, и давление спадает без взрыва и осколков.

В старых электролитических конденсаторах никаких защит от взрыва не было. Взрывная сила частей корпуса может быть достаточно большой и травмировать человека.


4.2. Паразитные параметры

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:


4.2.1. Электрическое сопротивление изоляции конденсатора — r

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

4.2.2. Эквивалентное последовательное сопротивление — R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague (англ.)).

Существуют специальные приборы (ESR-метры) для измерения этого достаточно важного параметра конденсатора, по которому можно часто определить пригодность его дальнейшего использования в определённых целях. Этот параметр, кроме собственно ёмкости (ёмкость — это основной параметр) — часто имеет решающее значение в исследовании состояния старого конденсатора, стоит ли использовать его в определённой схеме, или он прогнозируемо выйдет за пределы допустимых отклонений.


4.2.3. Эквивалентная последовательная индуктивность — L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

4.2.4. Саморазряд

С течением времени конденсатор теряет энергию за счёт саморазряда.

4.2.5. Тангенс угла диэлектрических потерь

Тангенс угла диэлектрических потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол где δ — угол диэлектрических потерь. При отсутствии потерь δ = 0. Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.


4.2.6. Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменение ёмкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом, значение ёмкости от температуры представляется линейной формулой:

,

где ΔT — увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость ёмкости от температуры, и конденсаторы с большими уходами ёмкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение ёмкости в рабочем диапазоне температур.


4.2.7. Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.


5. Классификация конденсаторов

Слюдяной плёночный конденсатор типа «СГМ» для навесного монтажа

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка.

Керамический подстроечный конденсатор

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.


6. Сравнение конденсаторов постоянной ёмкости

Тип конденсатораИспользуемый диэлектрикОсобенности/примененияНедостатки
Бумажные конденсаторыБумага/пропитанная бумагаПропитанная бумага широко использовалась в старых конденсаторах. В качестве пропитки использовался воск, масло или эпоксидная смола. Некоторые подобные конденсаторы до сих пор применяются для работы при высоком напряжении, но в большинстве случаев теперь вместо них используют плёночные конденсаторы.Большой размер. Большая гигроскопичность, из-за чего они поглощают влагу из воздуха даже при наличии пластикового корпуса и пропитки. Поглощённая влага ухудшает их характеристики, повышая диэлектрические потери и понижая сопротивление изоляции.
Металлизированные бумажные конденсаторыБумагаМеньший размер, чем у бумажно-фольговых конденсаторовПодходят только для слаботочных применений. Вместо них стали широко применяться металлизированные плёночные конденсаторы.
Полиэтилентерефталатные конденсаторыПолиэтилентерефталатная плёнкаМеньше чем бумажные или полипропиленовые конденсаторы со схожими характеристиками. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. ПЭТ конденсаторы почти полностью заменили бумажные для задач, где требуется работа с прямым током. Имеют рабочие напряжения вплоть до 60000 вольт при постоянном токе, а рабочую температуру до 125 °C. Обладают невысокой гигроскопичностью.Температурная стабильность ниже чем у бумажных. Могут применяться при низкочастотном переменном токе, но непригодны при высокочастотном из-за чрезмерного нагрева диэлектрика.
Каптоновые конденсаторыПолиамидная плёнка марки КаптонАналогичны ПЭТ, но обладают значительно более высокой рабочей температурой (вплоть до 250 °C).Дороже ПЭТ. Температурная стабильность ниже чем у бумажных конденсаторов. Также могут применяться только при низкочастотном переменном токе, так как при высоких частотах происходит сильный нагрев диэлектрика.
Полистирольные конденсаторыПолистиролОтличные плёночные конденсаторы общего применения. Имеют отличную стабильность, высокую влагостойкость и малый отрицательный температурный коэффициент, позволяющий использовать их для компенсации позитивного температурного коэффициента других компонентов. Идеальны для маломощных высокочастотных и прецизионных аналоговых задач.Максимальная рабочая температура ограничена +85 °C. Сравнительно большие по размеру.
Поликарбонатные плёночные конденсаторыПоликарбонатИмеют лучшее сопротивление изоляции, тангенс угла потерь и диэлектрическую адсорбцию в сравнении с полистирольными конденсаторами. Обладают лучшей влагостойкостью. Температурный коэффициент примерно ±80 ppm. Выдерживают полное рабочее напряжение на всём температурном диапазоне (от −55 °C до 125 °C)Максимальная рабочая температура ограничена на уровне 125 °C.
Полипропиленовые конденсаторыПолипропиленЧрезвычайно низкий тангенс угла потерь, более высокая диэлектрическая прочность, чем у поликарбонатных и ПЭТ конденсаторов. Низкая гигроскопичность и высокое сопротивление изоляции. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. Плёнка совместима с технологией самолечения, повышающей надёжность. Могут работать на высоких частотах, в том числе при большой мощности, например, для индукционного нагрева (часто вместе с водяным охлаждением), благодаря очень низким диэлектрическим потерям. При более высоких ёмкостях и рабочем напряжении, например от 1 до 100 мкФ и напряжением до 440 вольт переменного тока, могут применяться как пусковые для работы с некоторыми типами однофазных электрических моторов.Более чувствительны к повреждениям от кратковременных перенапряжений или переполюсовке чем пропитанные маслом бумажные конденсаторы.
Полисульфоновые плёночные конденсаторыПолисульфонАналогичны поликарбонатным. Могут выдерживать полное номинальное напряжение на сравнительно высоких температурах. Поглощение влаги около 0,2 %, что ограничивает их стабильность.Малая доступность и высокая стоимость.
Тефлоновые конденсаторыТефлонОчень низкие диэлектрические потери. Рабочая температура до 250 °C, огромное сопротивление изоляции, хорошая стабильность. Используются в критичных задачах.Большой размер из-за низкой диэлектрической постоянной, более высокая цена в сравнении с другими конденсаторами.
Полиамидные плёночные конденсаторыПолиамидРабочая температура до 200 °C. Высокое сопротивление изоляции, хорошая стабильность, малый тангенс угла потерь.Большие размеры и высокая цена.
Металлизированные плёночные конденсаторыПЭТ или ПоликарбонатНадёжные и значительно меньшие по размеру. Тонкая металлизация может использоваться для придания им свойства самолечения.Тонкая металлизация ограничивает максимальный ток.
Многоуровневые пластинчатые слюдяные конденсаторыСлюда (англ. Mica)Преимущества данных конденсаторов основаны на том, что их диэлектрик инертен. Он не изменяется со временем ни физически, ни химически, а также имеет хорошую температурную стабильность. Обладают очень высокой стойкостью к коронным разрядам.Без правильной герметизации подвержены влиянию влажности, что ухудшает их параметры. Высокая цена из-за редкости и высокого качества диэлектрика, а также ручной сборки.
Металлизированные или серебряные слюдяные конденсаторыСлюдаТе же преимущества, в дополнение обладают большей устойчивостью к влаге.Более высокая цена.
Стеклянные конденсаторыСтеклоАналогичны Mica. Стабильность и частотные характеристики лучше, чем у Mica. Очень надёжные, очень стабильные, стойкие к радиации.Высокая цена.
Температурно-компенсированные керамические конденсаторыСмесь сложных соединений титанатовДешёвые, миниатюрные, обладают превосходными высокочастотными характеристиками и хорошей надёжностью. Предсказуемое линейное изменение ёмкости относительно температуры. Имеются изделия, выдерживающие до 15000 вольтИзменение ёмкости при различном приложенном напряжении, частоте, подвержены старению.
Керамические конденсаторы с высокой диэлектрической постояннойДиэлектрики, основанные на титанате барияМиниатюрнее температурно-компенсированных конденсаторов из-за большей диэлектрической постоянной. Доступны для напряжений вплоть до 50000 вольт.Обладают меньшей температурной стабильностью, ёмкость значительно изменяется при различном приложенном напряжении.
Алюминиевые электролитические конденсаторыОксид алюминияОгромное отношение ёмкости к объёму, недорогие, полярные. В основном применяются как сглаживающие и питающие конденсаторы в источниках питания.Высокие токи утечки, большое внутреннее сопротивление и индуктивность ограничивают возможность использования их на высоких частотах. Имеют низкую температурную стабильность и плохие отклонения параметров. Могут взорваться при превышении допустимых параметров и/или перегреве, при приложении обратного напряжения. Максимальное напряжение около 500 вольт.
Литий-ионные конденсаторыLithium ionЛитий-ионные конденсаторы обладают большей энергоёмкостью, сравнимой с батареями, безопаснее в сравнении с литий-ионными батареями, в которых начинается бурная химическая реакция при высокой температуре. По сравнению с ионисторами они имеют большее выходное напряжение.Новая технология.
Танталовые конденсаторыОксид танталаБольшое отношение ёмкости к объёму, малый размер, хорошая стабильность, большой диапазон рабочих температур. Широко используются в миниатюрном оборудовании и компьютерах. Доступны как в полярном, так и неполярном исполнении. Твёрдотельные танталовые конденсаторы имеют намного лучшие характеристики по сравнению с имеющими жидкий электролит.Дороже алюминиевых электролитических конденсаторов. Максимальное напряжение ограничено планкой около 50 вольт. Взрываются при превышении допустимого тока, напряжения или скорости нарастания напряжения, а также при подаче напряжения неправильной полярности.
Конденсаторы с двойным электрическим слоем (ионисторы)Тонкий слой электролита и активированный угольОгромная ёмкость относительно объёма, маленький размер, низкое эквивалентное последовательное сопротивление. Доступны номиналы в сотни и даже тысячи фарад. Это сравнительно новая технология. Обычно используются для временного питания оборудования при замене батарей. Могут быстро заряжаться и разряжаться бо́льшими токами, чем батареи, что делает их ценными для гибридных автомобилей. Полярные, имеют низкое номинальное напряжение (вольт на конденсаторную ячейку). Группы ячеек соединяются последовательно для повышения общего рабочего напряжения.Относительно высокая стоимость.
Масляные конденсаторы переменного токаПромасленная бумагаВ основном разрабатывались для обеспечения очень больших ёмкостей для промышленного применения в цепях переменного тока, выдерживая при этом большие токи и высокие пиковые напряжения частотой силовой питающей сети. В их задачи входит пуск и работа электрических моторов переменного тока, разделение фаз, коррекция коэффициента мощности, стабилизация напряжения, работа с контрольным оборудованием и т. д.Ограничены низкой рабочей частотой, поскольку на высоких частотах имеют высокие диэлектрические потери.
Масляные конденсаторы постоянного токаБумага или её комбинация с ПЭТРазработаны для работы при постоянном токе для фильтрации, удвоения напряжения, предотвращения образования дуги, как проходные и разделительные конденсаторыПри наличии пульсаций требуют уменьшения рабочего напряжения согласно предоставленным производителем графикам. Обладают бо́льшими размерами в сравнении с аналогами с полимерными диэлектриками.
Энергонакопительные конденсаторыКонденсаторная крафт-бумага, пропитанная касторовым маслом или схожей жидкостью с высокой диэлектрической постоянной, и пластинки из фольгиРазработаны для работы в импульсном режиме с высоким током разряда. Лучше переносят изменение полярности напряжения чем многие полимерные диэлектрики. Обычно применяются в импульсных лазерах, генераторах Маркса, для импульсной сварки, при электромагнитной формовке и иных задачах, требующих использования импульсов большой мощности.Имеют большой размер и вес. Их энергоёмкость значительно меньше чем у конденсаторов использующих полимерные диэлектрики. . Не способны к самолечению. Отказ подобного конденсатора может быть катастрофичным из-за большого объёма накопленной энергии.
Вакуумные конденсаторыВакуумные конденсаторы используют стеклянные или керамические колбы с концентрическими цилиндрическими электродами.Чрезвычайно малые потери. Используются для мощных высоковольтных радиочастотных задач, таких как индукционный нагрев, где даже малые потери приводят чрезмерному нагреву самого конденсатора. При ограниченном токе искры могут обладать самолечением.Очень высокая цена, хрупкость, большой размер, низкая ёмкость.

12 пФ, 20 кВ вакуумный конденсатор постоянной ёмкости.

Два 8 мкФ, 525 В бумажных электролитических конденсатора в радио 1930х годов.[4]


7. Применение конденсаторов

Конденсаторы находят применение практически во всех областях электротехники.

  • Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях, импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.
  • Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов (см. генератор Ван де Граафа).
  • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
  • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
  • Измерителя уровня жидкости. Непроводящая жидкость, заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
  • Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Так же он может применяться для пуска и работы трехфазных асинхронных двигателей при питании от однофазного напряжения.
  • Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Так же существуют некоторые модели трамваев в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.

Примечания

  1. «Курс Физики» профессора физико-математических наук А.Гано, перевод Ф.Павленко В.Черкасова, 1882 год.
  2. Частота в радианах в секунду.
  3. ГОСТ 2.728-74 (2002) — protect.gost.ru/document.aspx?control=7&id=165312.
  4. Аббревиатура «MF» использовалась в то время для обозначения микрофарад; «MMF» употреблялась для микро-микрофрад = 10−12 Ф или пикофарад.

Литература

Учебник физики для средних специальных учебных заведений. Авторы: Л. С. Жданов, Г. Л. Жданов.

Конденсаторы

Введение.

 

Конденсаторы являются непременным элементом любых  электронных схем, от простых до самых сложных. Трудно себе представить  какую бы то ни было электронную  схему, в которой не используются конденсаторы. За два с половиной  века своего существования они весьма значительно изменили свой облик. Некоторые конденсаторы стоят не больше рубля, но их производство в мировом масштабе исчисляется миллиардами долларов.

 

Устройство  конденсаторов.

Сейчас существует множество  видов и разновидностей конденсаторов. Но в основе своей они все повторяют простейший конденсатор, который образуют две металлические пластины, изолированные одна от другой (рис.1).

Чаще всего пластины называют обкладками, а изолирующий  слой – диэлектриком.

Миниатюризация — основное направление в совершенствовании конструкции конденсаторов, поскольку от этого зависит дальнейшее уменьшение размеров интегральных схем. Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

 

Конденсаторы  разделяют:

 

По виду диэлектрика  различают:

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.

 

 

 

  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка.
  • Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

 

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

 

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.

 

Название

Ёмкость

Электрическое поле

Схема

Плоский конденсатор

 

 

 

Цилиндрический конденсатор

 

 

 

Сферический конденсатор

 

 

 

 

 

Сфера

 

 

 

 

Применение  конденсаторов:

Конденсаторы находят  применение практически во всех областях электротехники.

  • Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях, импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.
  • Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов (см. генератор Ван де Граафа).
  • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
  • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
  • Измерителя уровня жидкости. Непроводящая жидкость заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
  • Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Так же он может применяться для пуска и работы трехфазных асинхронных двигателей при питании от однофазного напряжения.
  • Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Так же существуют некоторые модели трамваев в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.

 

 

Вывод:

В ходе работы над рефератом  я познакомился с такими устройствами, как конденсаторы, их устройством и разновидностями, применением.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Список использованной литературы

 

1. Справочник по электротехническим материалам. Том 3. Л. «Энергия», 1988.

2. Конденсатор, электрический // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.

3. Учебник физики для средних специальных учебных заведений. Авторы: Л. С. Жданов, Г. Л. Жданов.


Реферат — Конденсаторы — Электрофизика

Конденсаторы являются непременным элементом любых электронных схем, от простых до самых сложных. Трудно себе представить какую бы то ни было электронную схему, в которой не используются конденсаторы. За два с половиной века своего существования они весьма значительно изменили свой облик и сегодня отвечают всем требованиям передовой технологии. Некоторые конденсаторы стоят не больше рубля, но их производство в мировом масштабе исчисляется миллиардами долларов.
Принципы изготовления конденсаторов стали известны еще 250 лет назад, когда в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, откуда и возникло название. Эти принципы не изменились до сих пор, однако совершенствование технологий и применение новых материалов позволили значительно улучшить конструкцию конденсаторов. Суммарный заряд, который мог накапливаться в лейденской банке емкостью 1 литр, теперь можно «уместить» в устройстве размером не больше булавочной головки. За последние 30 лет размеры конденсаторов уменьшались столь же быстро, сколь быстро происходила миниатюризация в электронике. Ведь легко можно вспомнить как еще 15 – 20 лет назад компьютеры (ЭВМ) были настолько огромными, что занимали целые залы. Сейчас же, миниатюрный компьютер с легкость умещается у нас на ладони, хотя его производительность в десятки раз выше.
Мало кому известно, что наш великий электротехник Павел Николаевич Яблочков, изобретший дуговую лампу особой конструкции, одновременно занимался разработкой и использованием конденсаторов и достиг выдающихся результатов. Основные работы по конденсаторам отражены в его публикациях (докладах и патентах) 1877 – 1880 гг. Так, во французском патенте № 120684, выданном П.Н. Яблочкову 11 октября 1877 г., речь идет о лейденских банках и «конденсаторах особых типов». Для примера на рис.1 представлена батарея лейденских бутылок с проводящей жидкостью. Из бутылок выступают стержневые выводы, соединенные между собой. От сосуда отходит другой общий вывод.

В этом патенте для нас наибольший интерес представляют «конденсаторы особых типов» в виде стопки (блока) металлических пластин (или полосок фольги) с находящимися между ними изоляционными слоями (пластинами), при этом четные металлические пластины (полоски фольги) соединены между собой общим проводником, а нечетные другим (рис. 2). П.Н.Яблочков указывает, что такие блоки можно соединять друг с другом параллельно или последовательно. Блочная (пакетная) конструкция, предложенная им, впоследствии нашла широкое применение.

В конце 1877 года и в начале 1878г. П.Н.Яблочков демонстрировал конденсаторы, предназначавшиеся для его системы электрического освещения. Они представляли собой свернутые в рулон листы оловянной фольги, разделенные слоями пластыря и гуттаперчи. В реферате доклада П.Н.Яблочкова отмечалось, что такие конденсаторы «позволяют получать в небольшом объеме громадные электрические мощности».
В дополнении от 12 октября 1878 года цитированному выше патенту № 120684 Павел Николаевич Яблочков заявляет свои права на «металлические листки, покрытые изолирующим веществом, специально в целях устройства конденсатора посредством погружения таких изолирующих пластин в жидкость, содержавшуюся в резервуаре».
Можно предположить, что П.Н. Яблочков вслед за А.Вольтой, который изобрел лакопленочный конденсатор, покрывал пластинки или фольгу лаком. Предложенная Яблочковым конденсаторная обкладка в виде проводящей жидкости повышает электрическую прочность и емкость конденсатора, обращая на пользу неровность покрытия. Этой идеей П.Н.Яблочков предвосхитил конструкцию оксидного (электролитического) конденсатора, запатентованного вскоре после его смерти.
Напомним, что в оксидном конденсаторе диэлектриком служит оксидный слой, образующийся при электролизе на поверхности металла, который является одной обкладкой, при этом другой обкладкой служит электролит, необходимый для существования оксидного слоя. Толщина оксидного слоя при небольших напряжениях меньше микрометра, благодаря чему у оксидных конденсаторов рекордные удельные и абсолютные емкости.
Работы П.Н.Яблочкова по конденсаторам относятся к тому периоду времени, когда только начиналось их промышленное применение в телеграфии. Яблочков одним из первых включил конденсатор в цепь переменного (по русской терминологии того времени – перемежающегося) тока. Изучение работы конденсатора на переменном токе имело важнейшее значение для становления и развития электротехники, а в последствии и радиотехники.
Сейчас существует множество видов и разновидностей конденсаторов. Но в основе своей они все повторяют простейший конденсатор, который образуют две металлические пластины, изолированные одна от другой (рис.3).

Чаще всего пластины называют обкладками, а изолирующий слой – диэлектриком.
Миниатюризация — основное направление в совершенствовании конструкции конденсаторов, поскольку от этого зависит дальнейшее уменьшение размеров интегральных схем. Существуют две наиболее распространенные конструкции конденсаторов: одна основана на использовании хрупких керамических слоев толщиной 0,002 см и меньше, а в основе другой лежит технология, позволяющая «сворачивать» плоские структуры площадью с газетный лист в объемные конструкции размером с кусок сахара. Чтобы понять теоретические основы этих технологий, вернемся к самым первым конденсаторам.
Прообразом современных конденсаторов, как уже было сказано, была лейденская банка. В 1746 г. ее усовершенствовал английский ученый, астроном и физик Дж. Бевис. Лейденская банка представляет собой стеклянный сосуд, внутренняя и наружная поверхность которого покрыты двумя листами фольги. Через резиновую пробку в сосуд вставлен металлический стержень так, что он касается внутреннего листа фольги. Внутренний и наружный листы фольги, в обычных условиях имеющие нейтральный заряд, играют роль электродов, если их подсоединить к внешнему источнику электрических зарядов.
Источником зарядов может быть электрическая батарейка, генератор или простая эбонитовая палочка, потертая о шерсть или мех. Если такой палочкой, несущей в себе свободные электроны, коснуться металлического стержня в горлышке сосуда, электроны перетекут с палочки на внутренний электрод. Таким образом отрицательный заряд будет перенесен на внутренний электрод. Поскольку способность накапливать заряды у сосуда ограничена их взаимным отталкиванием, их переход на электрод не может быть бесконечным. Способность накапливать или удерживать заряды называется емкостью.
В лейденской банке емкость увеличивается благодаря наличию второго электрода на внешней стенке сосуда. Если этот электрод заземлить, то заряд, накопленный на внутреннем электроде, будет притягивать из земли такой же по величине заряд противоположного знака. Накопленный на наружном электроде положительный заряд притягивает находящиеся на внутреннем электроде отрицательно заряженные электроны, частично нейтрализуя силы отталкивания, сдерживающие накапливание электронов. Благодаря этому емкость сосуда увеличивается. Однако расти бесконечно она не может.
Имеются два пути увеличения емкости лейденской банки. Один из них заключается в увеличении площади электродов, чтобы дать возможность зарядам рассредоточиться в большем пространстве и тем самым уменьшить силу взаимного отталкивания электронов. Другой путь — уменьшить толщину стеклянной стенки сосуда, разделяющей заряды, скапливающиеся на внутреннем и внешнем электродах. Не надо забывать при этом, что если стекло будет слишком тонким, электроны смогут пройти сквозь него, создавая искровой разряд, что приведет к рассеянию заряда.
Оба пути в лейденской банке трудно реализовать, но они входят в число трех классических способов, к которым прибегают современные ученые и инженеры при разработке новых конструкций конденсаторов. Третье направление увеличения емкости — учет особенностей поведения электронов в изоляторах. Хотя электроны в изоляционном материале неподвижны, они все же могут слегка смещаться под воздействием сил притяжения или отталкивания, действующих со стороны электродов. На одной стороне разделяющего электроды диэлектрика электроны как бы «вспучиваются» под его поверхностью, создавая отрицательный заряд, на другой его стороне они «утопают» в толщу диэлектрика, увеличивая в подповерхностной зоне значение положительного заряда.
Таким образом, созданные в диэлектрике заряды способствуют нейтрализации зарядов на обкладках, а некоторые диэлектрики могут нести заряды, которые по величине не уступают зарядам на самих электродах. Нейтрализация зарядов уменьшает действие сил отталкивания и создает условия для накопления на электродах большего заряда, что ведет к увеличению емкости. Степень проявления этого феномена зависит от свойств диэлектрика и называется диэлектрической проницаемостью материала. Диэлектрическая проницаемость указывает, во сколько раз увеличивается емкость конденсатора, когда вместо вакуума пространство между его электродами (обкладками) заполняется данным материалом. Стекло, используемое в лейденской банке, имеет значение диэлектрической проницаемости около 5, а диэлектрическая проницаемость новых материалов, используемых в современных конденсаторах массового производства, достигает 20 000.
Применением этих материалов как раз и объясняется высокая эффективность работы многослойных керамических конденсаторов, являющихся одним из двух наиболее распространенных видов этого устройства. Другой тип — электролитические конденсаторы; их удельная емкость (на единицу объема) еще выше, даже без использования диэлектриков с высокой диэлектрической проницаемостью. Объем производства тех и других составляет 95% общего количества поступающих в продажу конденсаторов.
Многослойный керамический конденсатор — уменьшенный вариант лейденской банки. На практике в качестве диэлектрика в керамических конденсаторах используется титанат бария с добавлением небольшого количества других оксидов. Такие керамики, имеющие диэлектрическую проницаемость в пределах от 2000 до 6000, в исходном состоянии представляют собой тонкодисперсный порошок, частицы которого имеют диаметр несколько микрон. Порошок смешивают с растворителем, содержащим связующее вещество, которое потом соединит равномерно рассредоточенные в растворе частицы керамики. Полученная смесь в виде жидкой глины имеет такую же консистенцию, как и краска. Смесь разливают слоем толщиной несколько сотых долей миллиметра на бумажную или стальную ленту и высушивают. Пленка режется на квадратные пластины размером 15-20 см; на каждую такую пластину методом печатного монтажа наносится несколько тысяч обкладок через специальный трафарет, задающий их конфигурацию. Для нанесения обкладок используется серебряно-палладиевая суспензия.
После того как обкладки нанесены, берут 30-60 пластин и спрессовывают их между несколькими слоями таких же пластин, на которые обкладки не наносились. Полученные заготовки конденсаторов обжигаются в печи с медленным нагревом до 1000-1400°С.
Электролитический конденсатор можно уподобить лейденской банке из очень тонкого стекла, уменьшенной до размеров небольшого куба. Он изготавливается из куска металла с 60%-ной пористостью. Для большинства современных электролитических конденсаторов используют измельченный тантал — твердый металл серого цвета. Порошок тантала спрессовывается и затем в течение нескольких часов полученную заготовку нагревают в вакуумной камере до температуры, близкой к 2000°С. В результате частицы металла спекаются, плотно сцепляясь друг с другом. Образуемые при этом небольшие ниши и щели в толще спрессованного порошка повышают поверхностную площадь заготовки, которая потом будет служить одной из обкладок конденсатора. Затем в электролитической ванне заготовку подвергают анодированию, чтобы на поверхностях пор получить изолирующий слой оксида тантала. Потом заготовку погружают в раствор нитрата марганца. В ее порах после нагрева осаждаются частицы полупроводящего диоксида марганца, слой которых играет роль одной обкладки, а танталовые частицы под слоем оксида тантала — другой обкладки. Конденсатор сначала покрывают графитовой, потом серебряной краской, напыляют слой никеля и заделывают в корпус.
Несмотря на то что электролитические конденсаторы имеют наибольшую удельную емкость по сравнению с другими типами конденсаторов, область их применения ограничена. Во-первых, это объясняется тем, что подводимое к нему напряжение должно иметь определенную полярность, которую нельзя менять. Эта особенность допускает использование электролитических конденсаторов только в цепях постоянного тока. Во-вторых, электролитические конденсаторы более подвержены пробою, поскольку слои диэлектрика в нем очень тонкие.

Список использованной литературы

1. Справочник по электротехническим материалам. Том 3. Л. «Энергия», 1988.
2. Добрынин А.В., Казаков Н.П., Найда Г.А., Подденежный Е.Н. и др. Нитрид алюминия в электронной технике. Ж. «Зарубежная электронная техника», №4 1989.
3. Носов О.Н. Оптоэлектроника. М. «Высшая школа». 1976.
4. Журнал «Радио» №4 1991год.
5. Тихонов С.Н. «Электротехника для начинающих» М. «Военное издательство министерства обороны СССР» 1969г.
6. Справочник «Конденсаторы» М. «Радио и связь» 1987.
7. Терещук Р.М., Терещук К.М., Седов С.А. «Полупроводниковые приемно-усилительные устройства, справочник радиолюбителя». Издание 4-е стереотипное. Киев. «Наукова думка» 1988.
8. В. А. Ацюковский — «Емкостные датчики перемещения»
9. Журнал “Радио”, номер 12, 1978 г.
10. Виноградов Ю.В. “Основы электронной и полупроводниковой техники”. Изд. 2-е, доп. М., “Энергия”, 1972 г. — 536 с.

Устройство конденсатора — реферат, курсовая работа, диплом, 2017

Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.

Похожие работы:

Назначение и устройство котельных установок

7.07.2009/реферат

Комплекс устройств для получения водяного пара под давлением (или горячей воды). Составляющие котельной установки, классификация в зависимости от показателей производительности. Котлоагрегаты с естественной и принудительной циркуляцией (прямоточной).

Тепловой расчет котла-утилизатора П-83

25.06.2010/контрольная работа

Устройство котла-утилизатора П-83. Порядок определения энтальпий газов и коэффициента использования тепла. Особенности расчета пароперегревателей, испарителей и экономайзеров высокого и низкого давления, а также дополнительного и кипящего экономайзеров.

Термодинамический анализ эффективности агрегатов энерготехнологических систем

8.12.2010/курсовая работа

Устройство котлов-утилизаторов; термодинамический анализ эффективности агрегатов энерготехнологических систем и протекающих в них процессов. Оценка экономии топлива за счет утилизации теплоты отходящих газов сажевого производства, расчет дымовой трубы.

Бытовой холодильный прибор; разработка системы охлаждения герметичного компрессора

2.11.2009/курсовая работа

Использование холодильников в промышленной и в бытовой сфер. Назначение, применение, типы и устройство компрессоров. Система охлаждения холодильных компрессоров: описание функций, диапазон применения, схема холодильного цикла, фитинги для компонентов.

Оборудование перерабатывающих предприятий

24.01.2009/реферат

Этапы механического способа очистки сырья (консервного производства, плодоовощного): мойка, чиcткa, peзкa, дpoблeниe. Принцип работы и устройство корзиночного пресса. Методы ocвeтлeния соков. Оборудование и характеристика мукомольного производства.

Холодильное оборудование торговых предприятий

5.04.2010/контрольная работа

Характеристика вспомогательных средств, применяемых при холодильной обработке и хранении продуктов. Принцип действия и устройство компрессоров холодильных машин. Назначение и особенности хранения продуктов в охлаждаемых прилавках и прилавках-витринах.

Технологии в химической промышленности

29.01.2011/отчет по практике

Переработка сырьевых материалов и получение продуктов, которые сопровождаются изменением химического состава веществ. Предмет и основные задачи химической технологии. Переработка углеводородов, устройство коксовой печи. Нагрузка печей угольной шихтой.

Технологический процесс ремонта буксового узла

12.01.2011/отчет по практике

Виды технического обслуживания и планово-предупредительного ремонта локомотивов. Усовершенствование диагностического комплекса для контроля буксовых узлов. Устройство каткового стенда для диагностики КМБ. Расчёт технико-экономического эффекта инновации.

Технология производства черной меди на ОАО «Среднеуральский медеплавильный завод»

19.01.2011/курсовая работа

Общие сведения о меди, ее свойства и области применения. Основные минералы меди. Организация медеплавильного цеха ОАО «СУМЗ». Процесс плавки в жидкой ванне. Конструкция печи Ванюкова. Устройство конвертера и особенности конвертирование медных штейнов.

Пролетные и консольные краны

17.11.2010/контрольная работа

Применение грузоподъемных машин для погрузочно-разгрузочных и монтажных работ. Пролетное строение козловых кранов в виде четырехферменной или двухбалочной конструкции. Совершенствование типов и конструкций кабельных кранов. Устройство консольного крана.

Перейти в список рефератов, курсовых, контрольных и дипломов по
         дисциплине Производство и технологии

Реферат: Конденсатор

Конденсаторы являются непременным элементом любых электронных схем, от простых до самых сложных. Трудно себе представить какую бы то ни было электронную схему, в которой не используются конденсаторы. За два с половиной века своего существования они весьма значительно изменили свой облик и сегодня отвечают всем требованиям передовой технологии. Некоторые конденсаторы стоят не больше рубля, но их производство в мировом масштабе исчисляется миллиардами долларов.
Принципы изготовления конденсаторов стали известны еще 250 лет назад, когда в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор —
«лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, откуда и возникло название. Эти принципы не изменились до сих пор, однако совершенствование технологий и применение новых материалов позволили значительно улучшить конструкцию конденсаторов. Суммарный заряд, который мог накапливаться в лейденской банке емкостью 1 литр, теперь можно
«уместить» в устройстве размером не больше булавочной головки. За последние
30 лет размеры конденсаторов уменьшались столь же быстро, сколь быстро происходила миниатюризация в электронике. Ведь легко можно вспомнить как еще 15 – 20 лет назад компьютеры (ЭВМ) были настолько огромными, что занимали целые залы. Сейчас же, миниатюрный компьютер с легкость умещается у нас на ладони, хотя его производительность в десятки раз выше.
Мало кому известно, что наш великий электротехник Павел Николаевич
Яблочков, изобретший дуговую лампу особой конструкции, одновременно занимался разработкой и использованием конденсаторов и достиг выдающихся результатов. Основные работы по конденсаторам отражены в его публикациях
(докладах и патентах) 1877 – 1880 гг. Так, во французском патенте № 120684, выданном П.Н. Яблочкову 11 октября 1877 г., речь идет о лейденских банках и
«конденсаторах особых типов». Для примера на рис.1 представлена батарея лейденских бутылок с проводящей жидкостью. Из бутылок выступают стержневые выводы, соединенные между собой. От сосуда отходит другой общий вывод.
[pic]

В этом патенте для нас наибольший интерес представляют «конденсаторы особых типов» в виде стопки (блока) металлических пластин (или полосок фольги) с находящимися между ними изоляционными слоями (пластинами), при этом четные металлические пластины (полоски фольги) соединены между собой общим проводником, а нечетные другим (рис. 2). П.Н.Яблочков указывает, что такие блоки можно соединять друг с другом параллельно или последовательно.
Блочная (пакетная) конструкция, предложенная им, впоследствии нашла широкое применение.
[pic]
В конце 1877 года и в начале 1878г. П.Н.Яблочков демонстрировал конденсаторы, предназначавшиеся для его системы электрического освещения.
Они представляли собой свернутые в рулон листы оловянной фольги, разделенные слоями пластыря и гуттаперчи. В реферате доклада П.Н.Яблочкова отмечалось, что такие конденсаторы «позволяют получать в небольшом объеме громадные электрические мощности».
В дополнении от 12 октября 1878 года цитированному выше патенту № 120684
Павел Николаевич Яблочков заявляет свои права на «металлические листки, покрытые изолирующим веществом, специально в целях устройства конденсатора посредством погружения таких изолирующих пластин в жидкость, содержавшуюся в резервуаре».
Можно предположить, что П.Н. Яблочков вслед за А.Вольтой, который изобрел лакопленочный конденсатор, покрывал пластинки или фольгу лаком.
Предложенная Яблочковым конденсаторная обкладка в виде проводящей жидкости повышает электрическую прочность и емкость конденсатора, обращая на пользу неровность покрытия. Этой идеей П.Н.Яблочков предвосхитил конструкцию оксидного (электролитического) конденсатора, запатентованного вскоре после его смерти.
Напомним, что в оксидном конденсаторе диэлектриком служит оксидный слой, образующийся при электролизе на поверхности металла, который является одной обкладкой, при этом другой обкладкой служит электролит, необходимый для существования оксидного слоя. Толщина оксидного слоя при небольших напряжениях меньше микрометра, благодаря чему у оксидных конденсаторов рекордные удельные и абсолютные емкости.
Работы П.Н.Яблочкова по конденсаторам относятся к тому периоду времени, когда только начиналось их промышленное применение в телеграфии. Яблочков одним из первых включил конденсатор в цепь переменного (по русской терминологии того времени – перемежающегося) тока. Изучение работы конденсатора на переменном токе имело важнейшее значение для становления и развития электротехники, а в последствии и радиотехники.
Сейчас существует множество видов и разновидностей конденсаторов. Но в основе своей они все повторяют простейший конденсатор, который образуют две металлические пластины, изолированные одна от другой (рис.3).
[pic]
Чаще всего пластины называют обкладками, а изолирующий слой – диэлектриком.
Миниатюризация — основное направление в совершенствовании конструкции конденсаторов, поскольку от этого зависит дальнейшее уменьшение размеров интегральных схем. Существуют две наиболее распространенные конструкции конденсаторов: одна основана на использовании хрупких керамических слоев толщиной 0,002 см и меньше, а в основе другой лежит технология, позволяющая
«сворачивать» плоские структуры площадью с газетный лист в объемные конструкции размером с кусок сахара. Чтобы понять теоретические основы этих технологий, вернемся к самым первым конденсаторам.
Прообразом современных конденсаторов, как уже было сказано, была лейденская банка. В 1746 г. ее усовершенствовал английский ученый, астроном и физик Дж. Бевис. Лейденская банка представляет собой стеклянный сосуд, внутренняя и наружная поверхность которого покрыты двумя листами фольги.
Через резиновую пробку в сосуд вставлен металлический стержень так, что он касается внутреннего листа фольги. Внутренний и наружный листы фольги, в обычных условиях имеющие нейтральный заряд, играют роль электродов, если их подсоединить к внешнему источнику электрических зарядов.
Источником зарядов может быть электрическая батарейка, генератор или простая эбонитовая палочка, потертая о шерсть или мех. Если такой палочкой, несущей в себе свободные электроны, коснуться металлического стержня в горлышке сосуда, электроны перетекут с палочки на внутренний электрод.
Таким образом отрицательный заряд будет перенесен на внутренний электрод.
Поскольку способность накапливать заряды у сосуда ограничена их взаимным отталкиванием, их переход на электрод не может быть бесконечным.
Способность накапливать или удерживать заряды называется емкостью.
В лейденской банке емкость увеличивается благодаря наличию второго электрода на внешней стенке сосуда. Если этот электрод заземлить, то заряд, накопленный на внутреннем электроде, будет притягивать из земли такой же по величине заряд противоположного знака. Накопленный на наружном электроде положительный заряд притягивает находящиеся на внутреннем электроде отрицательно заряженные электроны, частично нейтрализуя силы отталкивания, сдерживающие накапливание электронов. Благодаря этому емкость сосуда увеличивается. Однако расти бесконечно она не может.
Имеются два пути увеличения емкости лейденской банки. Один из них заключается в увеличении площади электродов, чтобы дать возможность зарядам рассредоточиться в большем пространстве и тем самым уменьшить силу взаимного отталкивания электронов. Другой путь — уменьшить толщину стеклянной стенки сосуда, разделяющей заряды, скапливающиеся на внутреннем и внешнем электродах. Не надо забывать при этом, что если стекло будет слишком тонким, электроны смогут пройти сквозь него, создавая искровой разряд, что приведет к рассеянию заряда.
Оба пути в лейденской банке трудно реализовать, но они входят в число трех классических способов, к которым прибегают современные ученые и инженеры при разработке новых конструкций конденсаторов. Третье направление увеличения емкости — учет особенностей поведения электронов в изоляторах.
Хотя электроны в изоляционном материале неподвижны, они все же могут слегка смещаться под воздействием сил притяжения или отталкивания, действующих со стороны электродов. На одной стороне разделяющего электроды диэлектрика электроны как бы «вспучиваются» под его поверхностью, создавая отрицательный заряд, на другой его стороне они «утопают» в толщу диэлектрика, увеличивая в подповерхностной зоне значение положительного заряда.
Таким образом, созданные в диэлектрике заряды способствуют нейтрализации зарядов на обкладках, а некоторые диэлектрики могут нести заряды, которые по величине не уступают зарядам на самих электродах. Нейтрализация зарядов уменьшает действие сил отталкивания и создает условия для накопления на электродах большего заряда, что ведет к увеличению емкости. Степень проявления этого феномена зависит от свойств диэлектрика и называется диэлектрической проницаемостью материала. Диэлектрическая проницаемость указывает, во сколько раз увеличивается емкость конденсатора, когда вместо вакуума пространство между его электродами (обкладками) заполняется данным материалом. Стекло, используемое в лейденской банке, имеет значение диэлектрической проницаемости около 5, а диэлектрическая проницаемость новых материалов, используемых в современных конденсаторах массового производства, достигает 20 000.
Применением этих материалов как раз и объясняется высокая эффективность работы многослойных керамических конденсаторов, являющихся одним из двух наиболее распространенных видов этого устройства. Другой тип — электролитические конденсаторы; их удельная емкость (на единицу объема) еще выше, даже без использования диэлектриков с высокой диэлектрической проницаемостью. Объем производства тех и других составляет 95% общего количества поступающих в продажу конденсаторов.
Многослойный керамический конденсатор — уменьшенный вариант лейденской банки. На практике в качестве диэлектрика в керамических конденсаторах используется титанат бария с добавлением небольшого количества других оксидов. Такие керамики, имеющие диэлектрическую проницаемость в пределах от 2000 до 6000, в исходном состоянии представляют собой тонкодисперсный порошок, частицы которого имеют диаметр несколько микрон. Порошок смешивают с растворителем, содержащим связующее вещество, которое потом соединит равномерно рассредоточенные в растворе частицы керамики. Полученная смесь в виде жидкой глины имеет такую же консистенцию, как и краска. Смесь разливают слоем толщиной несколько сотых долей миллиметра на бумажную или стальную ленту и высушивают. Пленка режется на квадратные пластины размером
15-20 см; на каждую такую пластину методом печатного монтажа наносится несколько тысяч обкладок через специальный трафарет, задающий их конфигурацию. Для нанесения обкладок используется серебряно-палладиевая суспензия.
После того как обкладки нанесены, берут 30-60 пластин и спрессовывают их между несколькими слоями таких же пластин, на которые обкладки не наносились. Полученные заготовки конденсаторов обжигаются в печи с медленным нагревом до 1000-1400°С.
Электролитический конденсатор можно уподобить лейденской банке из очень тонкого стекла, уменьшенной до размеров небольшого куба. Он изготавливается из куска металла с 60%-ной пористостью. Для большинства современных электролитических конденсаторов используют измельченный тантал — твердый металл серого цвета. Порошок тантала спрессовывается и затем в течение нескольких часов полученную заготовку нагревают в вакуумной камере до температуры, близкой к 2000°С. В результате частицы металла спекаются, плотно сцепляясь друг с другом. Образуемые при этом небольшие ниши и щели в толще спрессованного порошка повышают поверхностную площадь заготовки, которая потом будет служить одной из обкладок конденсатора. Затем в электролитической ванне заготовку подвергают анодированию, чтобы на поверхностях пор получить изолирующий слой оксида тантала. Потом заготовку погружают в раствор нитрата марганца. В ее порах после нагрева осаждаются частицы полупроводящего диоксида марганца, слой которых играет роль одной обкладки, а танталовые частицы под слоем оксида тантала — другой обкладки.
Конденсатор сначала покрывают графитовой, потом серебряной краской, напыляют слой никеля и заделывают в корпус.
Несмотря на то что электролитические конденсаторы имеют наибольшую удельную емкость по сравнению с другими типами конденсаторов, область их применения ограничена. Во-первых, это объясняется тем, что подводимое к нему напряжение должно иметь определенную полярность, которую нельзя менять. Эта особенность допускает использование электролитических конденсаторов только в цепях постоянного тока. Во-вторых, электролитические конденсаторы более подвержены пробою, поскольку слои диэлектрика в нем очень тонкие.

Список использованной литературы

1. Справочник по электротехническим материалам. Том 3. Л. «Энергия», 1988.
2. Добрынин А.В., Казаков Н.П., Найда Г.А., Подденежный Е.Н. и др. Нитрид алюминия в электронной технике. Ж. «Зарубежная электронная техника», №4
1989.
3. Носов О.Н. Оптоэлектроника. М. «Высшая школа». 1976.
4. Журнал «Радио» №4 1991год.
5. Тихонов С.Н. «Электротехника для начинающих» М. «Военное издательство министерства обороны СССР» 1969г.
6. Справочник «Конденсаторы» М. «Радио и связь» 1987.
7. Терещук Р.М., Терещук К.М., Седов С.А. «Полупроводниковые приемно- усилительные устройства, справочник радиолюбителя». Издание 4-е стереотипное. Киев. «Наукова думка» 1988.
8. В. А. Ацюковский — «Емкостные датчики перемещения»
9. Журнал “Радио”, номер 12, 1978 г.
10. Виноградов Ю.В. “Основы электронной и полупроводниковой техники”. Изд.
2-е, доп. М., “Энергия”, 1972 г. — 536 с.

История создания и применение конденсатора | Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Тема:

Конденсатор

Рис. 4.68. Из истории открытия лей­денской банки

Первый конденсатор был создан в 1745 г. голландским ученым Питером Мушенбруком, профессором Лейденского универси­тета. Проводя опыты по электризации тел, он опустил проводник от кондуктора элект­рической машины в стеклянный графин с водой. Случайно коснувшись пальцем этого проводника, ученый ощутил сильный элект­рический удар. Позже жидкость заменили металлическими проводниками изнутри и снаружи банки и назвали эту банку лейден­ской (рис. 4.68). В таком виде она про­существовала почти 200 лет.

Более сложные и совершенные конден­саторы нашли широкое применение в со­временных электротехнике и радиоэлектрон­ной технике. Они есть в фильтрах адаптеров, которые подают постоянное напряжение для питания электронных приборов, в радио­приемниках и радиопередатчиках как эле­менты колебательных контуров или состав­ные различных функциональных схем элект­ронной аппаратуры. В фотовспышках кон­денсаторы накапливают большой заряд, не­обходимый для работы импульсной лампы.

Мушенбрук Питер ван (1692 — 1761) — голландский физик. Родился в Лейде­не. Окончил Лейденский университет, был профессором Дуйсбургского, Утрехт­ского и с 1740 г. Лейденского универ­ситетов. Работы посвящены электри­честву, теплоте, оптике. В 1745 г. не­зависимо от Клейста изобрел первый конденсатор — лейденскую банку и провел с ней ряд опытов, в частности обратил внимание на физиологическое действие тока. Был автором первого си­стемного курса физики, а его двухтом­ное издание «Введение в натуральную философию» (1762 г.) было энциклопе­дией физических знаний того времени.

В электротехнике конденсаторы обеспе­чивают необходимый режим работы элект­родвигателей, автоматических и релейных приборов, линий электропередач и т.п. Материал с сайта http://worldofschool.ru

Рис. 4.69. Конденсатор переменной ем­кости
Рис. 4.70. Разные типы конденсаторов постоянной емкости

Во многих широкодиапазонных радио­приемниках конденсаторы переменной ем­кости (рис. 4.69) позволяют плавно изме­нять собственную частоту колебательного контура при поиске передачи необходимой радиостанции. Широко распространены кон­денсаторы, емкость которых можно изме­нять электрическим способом. Их называют варикапами.

Конструктивно конденсаторы могут быть плоскими, трубчатыми, дисковыми. В ка­честве диэлектрика в них применяют парафи­нированную бумагу, слюду, воздух, пласт­массы, керамику и т. п. (рис.4.70). Благодаря искусственным изоляционным материалам в наше время созданы конденсаторы боль­шой емкости, приходящейся на единицу объема.

На этой странице материал по темам:
  • Кто изобрел конденсатор сообщение кратко

  • Конденсатор доклад кратко

  • История создания электрического конденсатора

  • История создания конденсаторы? физика

  • История создания первого конденсата питер ван veity,ehu

Вопросы по этому материалу:
  • Какие диэлектрики применяются в современных конденсаторах?

  • Для чего применяют конденсаторы?

Реферат Электрический конденсатор

скачать

Реферат на тему:



План:

    Введение
  • 1 История
  • 2 Свойства конденсатора
  • 3 Обозначение конденсаторов на схемах
  • 4 Характеристики конденсаторов
    • 4.1 Основные параметры
      • 4.1.1 Ёмкость
      • 4.1.2 Удельная ёмкость
      • 4.1.3 Плотность энергии
      • 4.1.4 Номинальное напряжение
      • 4.1.5 Полярность
      • 4.1.6 Опасность разрушения (взрыва)
    • 4.2 Паразитные параметры
      • 4.2.1 Электрическое сопротивление изоляции конденсатора — r
      • 4.2.2 Эквивалентное последовательное сопротивление — R
      • 4.2.3 Эквивалентная последовательная индуктивность — L
      • 4.2.4 Саморазряд
      • 4.2.5 Тангенс угла диэлектрических потерь
      • 4.2.6 Температурный коэффициент ёмкости (ТКЕ)
      • 4.2.7 Диэлектрическое поглощение
  • 5 Классификация конденсаторов
  • 6 Сравнение конденсаторов постоянной ёмкости
  • 7 Применение конденсаторов
  • Примечания
    Литература

Введение

.

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические. На полярных SMD конденсаторах + обозначен полоской.

Различные конденсаторы для объёмного монтажа

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.


1. История

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук случайно создали конструкцию-прототип электролитического конденсатора — «лейденскую банку». Первые конденсаторы, состоящие из двух проводников разделенных непроводником, упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше.[1]


2. Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

где  — мнимая единица,  — частота[2] протекающего синусоидального тока,  — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

Резонансная частота конденсатора равна

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где  — напряжение (разность потенциалов), до которого заряжен конденсатор.


3. Обозначение конденсаторов на схемах

В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[3] либо международному стандарту IEEE 315—1975:

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор переменной ёмкости
Варикап

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 — 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, то есть на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.


4. Характеристики конденсаторов

4.1. Основные параметры

4.1.1. Ёмкость

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где  — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице),  — электрическая постоянная, численно равная Ф/м (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

или

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.


4.1.2. Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

4.1.3. Плотность энергии

Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Например, у конденсатора EPCOS B4345 ёмкостью 12000 мкФ x 450 В и массой 1.9 кг плотность энергии составляет 639Дж/кг или 845Дж/л. Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гаусса


4.1.4. Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.


4.1.5. Полярность

Современные конденсаторы, разрушившиеся без взрыва из-за специально разрывающейся конструкции верхней крышки. Разрушение возможно из-за действия температуры и напряжения, не соответствовавших рабочим, или старения. Конденсаторы с разорванной крышкой практически неработоспособны и требуют замены, а если она просто вспучена но еще не разорвана — скорее всего скоро он выйдет из строя или сильно изменятся параметры, что сделает его использование невозможным.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.


4.1.6. Опасность разрушения (взрыва)

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). В современных компьютерах перегрев конденсаторов — также очень частая причина выхода их из строя, когда они стоят рядом с источниками повышенного тепловыделения (радиаторы охлаждения).

Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце, иногда на больших конденсаторах она прикрыта пластиком). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа и иногда даже жидкости, и давление спадает без взрыва и осколков.

В старых электролитических конденсаторах никаких защит от взрыва не было. Взрывная сила частей корпуса может быть достаточно большой и травмировать человека.


4.2. Паразитные параметры

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:


4.2.1. Электрическое сопротивление изоляции конденсатора — r

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

4.2.2. Эквивалентное последовательное сопротивление — R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague (англ.)).

Существуют специальные приборы (ESR-метры) для измерения этого достаточно важного параметра конденсатора, по которому можно часто определить пригодность его дальнейшего использования в определённых целях. Этот параметр, кроме собственно ёмкости (ёмкость — это основной параметр) — часто имеет решающее значение в исследовании состояния старого конденсатора, стоит ли использовать его в определённой схеме, или он прогнозируемо выйдет за пределы допустимых отклонений.


4.2.3. Эквивалентная последовательная индуктивность — L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

4.2.4. Саморазряд

С течением времени конденсатор теряет энергию за счёт саморазряда.

4.2.5. Тангенс угла диэлектрических потерь

Тангенс угла диэлектрических потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол где δ — угол диэлектрических потерь. При отсутствии потерь δ = 0. Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.


4.2.6. Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменение ёмкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом, значение ёмкости от температуры представляется линейной формулой:

,

где ΔT — увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость ёмкости от температуры, и конденсаторы с большими уходами ёмкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение ёмкости в рабочем диапазоне температур.


4.2.7. Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.


5. Классификация конденсаторов

Слюдяной плёночный конденсатор типа «СГМ» для навесного монтажа

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка.

Керамический подстроечный конденсатор

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.


6. Сравнение конденсаторов постоянной ёмкости

Тип конденсатораИспользуемый диэлектрикОсобенности/примененияНедостатки
Бумажные конденсаторыБумага/пропитанная бумагаПропитанная бумага широко использовалась в старых конденсаторах. В качестве пропитки использовался воск, масло или эпоксидная смола. Некоторые подобные конденсаторы до сих пор применяются для работы при высоком напряжении, но в большинстве случаев теперь вместо них используют плёночные конденсаторы.Большой размер. Большая гигроскопичность, из-за чего они поглощают влагу из воздуха даже при наличии пластикового корпуса и пропитки. Поглощённая влага ухудшает их характеристики, повышая диэлектрические потери и понижая сопротивление изоляции.
Металлизированные бумажные конденсаторыБумагаМеньший размер, чем у бумажно-фольговых конденсаторовПодходят только для слаботочных применений. Вместо них стали широко применяться металлизированные плёночные конденсаторы.
Полиэтилентерефталатные конденсаторыПолиэтилентерефталатная плёнкаМеньше чем бумажные или полипропиленовые конденсаторы со схожими характеристиками. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. ПЭТ конденсаторы почти полностью заменили бумажные для задач, где требуется работа с прямым током. Имеют рабочие напряжения вплоть до 60000 вольт при постоянном токе, а рабочую температуру до 125 °C. Обладают невысокой гигроскопичностью.Температурная стабильность ниже чем у бумажных. Могут применяться при низкочастотном переменном токе, но непригодны при высокочастотном из-за чрезмерного нагрева диэлектрика.
Каптоновые конденсаторыПолиамидная плёнка марки КаптонАналогичны ПЭТ, но обладают значительно более высокой рабочей температурой (вплоть до 250 °C).Дороже ПЭТ. Температурная стабильность ниже чем у бумажных конденсаторов. Также могут применяться только при низкочастотном переменном токе, так как при высоких частотах происходит сильный нагрев диэлектрика.
Полистирольные конденсаторыПолистиролОтличные плёночные конденсаторы общего применения. Имеют отличную стабильность, высокую влагостойкость и малый отрицательный температурный коэффициент, позволяющий использовать их для компенсации позитивного температурного коэффициента других компонентов. Идеальны для маломощных высокочастотных и прецизионных аналоговых задач.Максимальная рабочая температура ограничена +85 °C. Сравнительно большие по размеру.
Поликарбонатные плёночные конденсаторыПоликарбонатИмеют лучшее сопротивление изоляции, тангенс угла потерь и диэлектрическую адсорбцию в сравнении с полистирольными конденсаторами. Обладают лучшей влагостойкостью. Температурный коэффициент примерно ±80 ppm. Выдерживают полное рабочее напряжение на всём температурном диапазоне (от −55 °C до 125 °C)Максимальная рабочая температура ограничена на уровне 125 °C.
Полипропиленовые конденсаторыПолипропиленЧрезвычайно низкий тангенс угла потерь, более высокая диэлектрическая прочность, чем у поликарбонатных и ПЭТ конденсаторов. Низкая гигроскопичность и высокое сопротивление изоляции. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. Плёнка совместима с технологией самолечения, повышающей надёжность. Могут работать на высоких частотах, в том числе при большой мощности, например, для индукционного нагрева (часто вместе с водяным охлаждением), благодаря очень низким диэлектрическим потерям. При более высоких ёмкостях и рабочем напряжении, например от 1 до 100 мкФ и напряжением до 440 вольт переменного тока, могут применяться как пусковые для работы с некоторыми типами однофазных электрических моторов.Более чувствительны к повреждениям от кратковременных перенапряжений или переполюсовке чем пропитанные маслом бумажные конденсаторы.
Полисульфоновые плёночные конденсаторыПолисульфонАналогичны поликарбонатным. Могут выдерживать полное номинальное напряжение на сравнительно высоких температурах. Поглощение влаги около 0,2 %, что ограничивает их стабильность.Малая доступность и высокая стоимость.
Тефлоновые конденсаторыТефлонОчень низкие диэлектрические потери. Рабочая температура до 250 °C, огромное сопротивление изоляции, хорошая стабильность. Используются в критичных задачах.Большой размер из-за низкой диэлектрической постоянной, более высокая цена в сравнении с другими конденсаторами.
Полиамидные плёночные конденсаторыПолиамидРабочая температура до 200 °C. Высокое сопротивление изоляции, хорошая стабильность, малый тангенс угла потерь.Большие размеры и высокая цена.
Металлизированные плёночные конденсаторыПЭТ или ПоликарбонатНадёжные и значительно меньшие по размеру. Тонкая металлизация может использоваться для придания им свойства самолечения.Тонкая металлизация ограничивает максимальный ток.
Многоуровневые пластинчатые слюдяные конденсаторыСлюда (англ. Mica)Преимущества данных конденсаторов основаны на том, что их диэлектрик инертен. Он не изменяется со временем ни физически, ни химически, а также имеет хорошую температурную стабильность. Обладают очень высокой стойкостью к коронным разрядам.Без правильной герметизации подвержены влиянию влажности, что ухудшает их параметры. Высокая цена из-за редкости и высокого качества диэлектрика, а также ручной сборки.
Металлизированные или серебряные слюдяные конденсаторыСлюдаТе же преимущества, в дополнение обладают большей устойчивостью к влаге.Более высокая цена.
Стеклянные конденсаторыСтеклоАналогичны Mica. Стабильность и частотные характеристики лучше, чем у Mica. Очень надёжные, очень стабильные, стойкие к радиации.Высокая цена.
Температурно-компенсированные керамические конденсаторыСмесь сложных соединений титанатовДешёвые, миниатюрные, обладают превосходными высокочастотными характеристиками и хорошей надёжностью. Предсказуемое линейное изменение ёмкости относительно температуры. Имеются изделия, выдерживающие до 15000 вольтИзменение ёмкости при различном приложенном напряжении, частоте, подвержены старению.
Керамические конденсаторы с высокой диэлектрической постояннойДиэлектрики, основанные на титанате барияМиниатюрнее температурно-компенсированных конденсаторов из-за большей диэлектрической постоянной. Доступны для напряжений вплоть до 50000 вольт.Обладают меньшей температурной стабильностью, ёмкость значительно изменяется при различном приложенном напряжении.
Алюминиевые электролитические конденсаторыОксид алюминияОгромное отношение ёмкости к объёму, недорогие, полярные. В основном применяются как сглаживающие и питающие конденсаторы в источниках питания.Высокие токи утечки, большое внутреннее сопротивление и индуктивность ограничивают возможность использования их на высоких частотах. Имеют низкую температурную стабильность и плохие отклонения параметров. Могут взорваться при превышении допустимых параметров и/или перегреве, при приложении обратного напряжения. Максимальное напряжение около 500 вольт.
Литий-ионные конденсаторыLithium ionЛитий-ионные конденсаторы обладают большей энергоёмкостью, сравнимой с батареями, безопаснее в сравнении с литий-ионными батареями, в которых начинается бурная химическая реакция при высокой температуре. По сравнению с ионисторами они имеют большее выходное напряжение.Новая технология.
Танталовые конденсаторыОксид танталаБольшое отношение ёмкости к объёму, малый размер, хорошая стабильность, большой диапазон рабочих температур. Широко используются в миниатюрном оборудовании и компьютерах. Доступны как в полярном, так и неполярном исполнении. Твёрдотельные танталовые конденсаторы имеют намного лучшие характеристики по сравнению с имеющими жидкий электролит.Дороже алюминиевых электролитических конденсаторов. Максимальное напряжение ограничено планкой около 50 вольт. Взрываются при превышении допустимого тока, напряжения или скорости нарастания напряжения, а также при подаче напряжения неправильной полярности.
Конденсаторы с двойным электрическим слоем (ионисторы)Тонкий слой электролита и активированный угольОгромная ёмкость относительно объёма, маленький размер, низкое эквивалентное последовательное сопротивление. Доступны номиналы в сотни и даже тысячи фарад. Это сравнительно новая технология. Обычно используются для временного питания оборудования при замене батарей. Могут быстро заряжаться и разряжаться бо́льшими токами, чем батареи, что делает их ценными для гибридных автомобилей. Полярные, имеют низкое номинальное напряжение (вольт на конденсаторную ячейку). Группы ячеек соединяются последовательно для повышения общего рабочего напряжения.Относительно высокая стоимость.
Масляные конденсаторы переменного токаПромасленная бумагаВ основном разрабатывались для обеспечения очень больших ёмкостей для промышленного применения в цепях переменного тока, выдерживая при этом большие токи и высокие пиковые напряжения частотой силовой питающей сети. В их задачи входит пуск и работа электрических моторов переменного тока, разделение фаз, коррекция коэффициента мощности, стабилизация напряжения, работа с контрольным оборудованием и т. д.Ограничены низкой рабочей частотой, поскольку на высоких частотах имеют высокие диэлектрические потери.
Масляные конденсаторы постоянного токаБумага или её комбинация с ПЭТРазработаны для работы при постоянном токе для фильтрации, удвоения напряжения, предотвращения образования дуги, как проходные и разделительные конденсаторыПри наличии пульсаций требуют уменьшения рабочего напряжения согласно предоставленным производителем графикам. Обладают бо́льшими размерами в сравнении с аналогами с полимерными диэлектриками.
Энергонакопительные конденсаторыКонденсаторная крафт-бумага, пропитанная касторовым маслом или схожей жидкостью с высокой диэлектрической постоянной, и пластинки из фольгиРазработаны для работы в импульсном режиме с высоким током разряда. Лучше переносят изменение полярности напряжения чем многие полимерные диэлектрики. Обычно применяются в импульсных лазерах, генераторах Маркса, для импульсной сварки, при электромагнитной формовке и иных задачах, требующих использования импульсов большой мощности.Имеют большой размер и вес. Их энергоёмкость значительно меньше чем у конденсаторов использующих полимерные диэлектрики. . Не способны к самолечению. Отказ подобного конденсатора может быть катастрофичным из-за большого объёма накопленной энергии.
Вакуумные конденсаторыВакуумные конденсаторы используют стеклянные или керамические колбы с концентрическими цилиндрическими электродами.Чрезвычайно малые потери. Используются для мощных высоковольтных радиочастотных задач, таких как индукционный нагрев, где даже малые потери приводят чрезмерному нагреву самого конденсатора. При ограниченном токе искры могут обладать самолечением.Очень высокая цена, хрупкость, большой размер, низкая ёмкость.

12 пФ, 20 кВ вакуумный конденсатор постоянной ёмкости.

Два 8 мкФ, 525 В бумажных электролитических конденсатора в радио 1930х годов.[4]


7. Применение конденсаторов

Конденсаторы находят применение практически во всех областях электротехники.

  • Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях, импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.
  • Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов (см. генератор Ван де Граафа).
  • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
  • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
  • Измерителя уровня жидкости. Непроводящая жидкость, заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
  • Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Так же он может применяться для пуска и работы трехфазных асинхронных двигателей при питании от однофазного напряжения.
  • Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Так же существуют некоторые модели трамваев в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.

Примечания

  1. «Курс Физики» профессора физико-математических наук А.Гано, перевод Ф.Павленко В.Черкасова, 1882 год.
  2. Частота в радианах в секунду.
  3. ГОСТ 2.728-74 (2002) — protect.gost.ru/document.aspx?control=7&id=165312.
  4. Аббревиатура «MF» использовалась в то время для обозначения микрофарад; «MMF» употреблялась для микро-микрофрад = 10−12 Ф или пикофарад.

Литература

Учебник физики для средних специальных учебных заведений. Авторы: Л. С. Жданов, Г. Л. Жданов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *