Что такое электрическая емкость и в чем она измеряется
Что собой представляет электрическая емкость. Единицы измерения и формулы для расчета данной величины. Электроемкость аккумуляторов и конденсаторов.
В электротехнике часто встречается понятие ёмкости. При этом речь идёт не о ведре или другом сосуде, а об электрической ёмкости проводника, аккумулятора и конденсатора. Путать эти понятия нельзя. В этой статье мы разберемся, что такое электрическая ёмкость, от чего она зависит и в каких единицах измеряется. Содержание:
Определение
Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:
C=q/Ф
Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:
Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.
Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:
1 фарад =1 Кл/1 В
Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:
1 мФ = 10^(-3) Ф
1 мкФ = 10^(-6) Ф
1 нФ = 10^(-9) Ф
1 пФ = 10^(-12) Ф
Конденсаторы
Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной. Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках. Формула электрической емкости конденсатора в общем случае:
C=q/U
Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:
- керамические;
- плёночные;
- слюдяные;
- металлобумажные;
- электролитические;
- танталовые и пр.
По форме обкладок:
- плоские;
- цилиндрические;
- сферические и пр.
Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.
Для плоского конденсатора:
Для двух концентрических сфер с общим центром:
Для цилиндрического конденсатора:
Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.
От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:
- При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость
Cобщ=C1+C2+C3
- При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:
Cобщ=(1/С1)+ (1/С2)+ (1/С3)
Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.
Аккумуляторы и электроемкость
Основными характеристиками аккумуляторных батарей является:
- Номинальное напряжение.
- Емкость.
- Максимальный ток разряда.
В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.
В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:
- А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
- мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
- Вт*часы — ватт-часы.
Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.
Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч
Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства. Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту. Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.
Более подробно изучить вопрос поможет предоставленное видео:
Кратко объяснение изложено в этом видео уроке:
Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!
Материалы по теме:
- Как определить емкость конденсатора
- Что такое электрический заряд
- Закон Кулона простыми словами
Нравится0)Не нравится0)
В чем измеряются единицы емкости конденсаторов
Конденсатор представляет собой электрическое устройство, которое обладает возможностью накапливать заряд, состоит из обкладок и слоя диэлектрика между ними. Одной из важнейших характеристик прибора является ёмкость.
Конденсатор
Единица измерения емкости
В Международной системе СИ за единицу измерения ёмкости конденсатора принимают фарад:
[C] = Ф, где С – обозначение ёмкости устройства.
Международное обозначение – F. Названа в честь английского физика М.Фарадея и используется в Международной системе СИ с 1960г.
Формула для расчёта электроёмкости записывается следующим образом:
С = Dq / U (1), где:
- Dq – заряд (измеряется в кулонах, или Кл),
- U – разность потенциалов между обкладками (измеряется в вольтах или В).
Следовательно, 1Ф = 1Кл / 1В.
То есть конденсатор ёмкостью в 1 фарад накапливает на обкладках заряд, равный 1 кулон, создавая напряжение между ними, равное 1 вольт.
В фарадах измеряются электроёмкости проводников и конденсаторов.
Согласно правилам написания, принятых в СИ, если название происходит от фамилии учёного, то полное её название «фарад» пишется с маленькой (строчной) буквы, а её сокращённое название «Ф» – с прописной.
Единица измерения электроёмкости в других системах
Помимо СИ, есть ещё устаревшая система СГС, которой пользовались ранее. Первые три символа в названии обозначают:
- С – сантиметр,
- Г – грамм,
- С – секунда.
Существует две разновидности системы: СГСЭ и СГСМ. Символ Э в СГСЭ обозначает электростатическую систему, а символ М – магнитную. В системе СГСЭ емкость конденсатора измеряется в сантиметрах, или см. Для пересчёта используют соотношение:
- 1см » 1,1126 · 10-12Ф,
- 1Ф » 8,99 · 1011 статФ.
Сантиметр по-другому может называться статфарад, или статФ.
В системе СГСМ единицей измерения является абфарад, или абФ. Абфарад связан с фарадом следующим образом:
1абф = 1·109 Ф = 1ГФ.
Для перевода из СГСЭ и СГСМ в СИ в сети Интернет имеются специальные сервисы, которые позволяют автоматизировать эти действия.
Онлайн переводчик из СГС в СИ
Фарады через основные единицы системы СИ
Для выражения фарады через основные единицы СИ воспользуемся следующими формулами.
Единица измерения заряда вычисляется как:
Dq = I · Dt (2), где:
- I – сила тока (измеряется в амперах или А),
- Dt – время прохождения заряда (измеряется в секундах или с).
В свою очередь, напряжение определяется как работа, которую нужно выполнить для перемещения заряда в электростатическом поле:
U = А / Dq (3), где А – работа по перемещению заряда, определяется в джоулях, или Дж.
Из механики известно, что:
А = F · s = m · a · s (4), где:
- m – масса, измеряется в килограммах, или кг,
- s – перемещение, рассчитывается в метрах, или м,
- a – ускорение, определяется в м/с2.
Из формул 1-4 имеем:
Таким образом, 1 фарад через единицы СИ определяется как:
Кратные единицы ёмкости
При покупке радиодеталей невозможно купить конденсатор с электроёмкостью даже в несколько единиц фарад. Они выпускаются с гораздо меньшими параметрами. Это объясняется тем, что ёмкость в 1 фарад является очень большой величиной. Например, такую электроёмкость может иметь изолированный проводник в форме шара с радиусом в 13 раз больше радиуса Солнца.
Именно по этой причине для характеристики емкостных устройств применяют дольные единицы, которые рассчитываются как доля от определённого числа фарад. Для обозначения используют приставки, которые применяются для сокращения длины записываемого числа.
Таблица перевода дольных единиц
Приставка | Обозначение | Множитель | |
---|---|---|---|
деци | дФ | dF | 10^-1 |
санти | сФ | sF | 10^-2 |
милли | мФ | mF | 10^-3 |
микро | мкФ | F или uF | 10^-6 |
нано | нФ | nF | 10^-9 |
пико | пФ | pF, mmF, uuF | 10^-12 |
фемто | фФ | fF | 10^-15 |
атто | аФ | aF | 10^-18 |
зепто | зФ | zF | 10^-21 |
йокто | иФ | yF | 10^-24 |
Таким образом, если параметр указывается равным 5 uF, то для перевода в фарады необходимо умножить цифру 5 на соответствующий множитель. Получаем 5 uF = 5 · 10-6 F.
В радиотехнике наиболее популярны модели, ёмкость которых измеряется в микрофарадах, нанофарадах (микромикрофарадах) или пикофарадах.
Также промышленность выпускает устройства ионисторы, которые представляют собой конденсаторы, имеющие двойной электрический слой. У некоторых ионисторов ёмкость может измеряться в килофарадах.
Ионистор с характеристикой в 1F
Маркировка конденсаторов в зависимости от ёмкости
Кодировка маленьких по размерам устройств
Существует специальная цифровая кодировка. Её используют для маркировки маленьких по размерам приборов. Кодировка электроёмкости выполняется согласно стандарту EIA.
Внимание! Ёмкость небольших конденсаторов, например, керамических или танталовых, обычно измеряется в пикофарадах, а больших, например, алюминиевых электролитических, в микрофарадах.
Существует специальная таблица таких обозначений, с помощью которой можно быстро подобрать такую же или аналогичную радиодеталь по соответствующему коду. Её можно свободно найти в Интернете.
В старых маркировках использовалась следующая кодировка. Если нанесено целое двузначное число, значит, значение ёмкость измеряется в пикофарадах, а если нанесена десятичная дробь, значит, параметр определяется в микрофарадах.
Например, радиодеталь с параметром 1000 nF =1 uF будет иметь маркировку 105, с параметрами 820 nF = 0, 82 uF – маркировку 824, а 0,27 uF = 270nF будет обозначено кодом 274.
В настоящее время, если на устройстве нанесено значение, не содержащее буквы, то оно обозначает ёмкость в пикофарадах. Если перед цифрами или после них стоит символ «н» («n»), то это означает, что значение даётся в нанофарадах, если «мк» («m», «u») – микрофарадах. В том случае, когда символ располагается перед числом, цифры в нём обозначают сотые доли. Например, n61 расшифровывается как 0,61нФ. Если символ располагается посередине значения, то на место символа нужно поставить запятую. Сам символ покажет единицы измерения. Например, 5u2 обозначает 5,2 мкФ.
Также в настоящее время используется цифровая кодировка, содержащая три числа. Первые две цифры являются числовыми характеристиками ёмкости. Параметр при этом измеряется в пикофарадах. Если значение меньше 1, то первая цифра – 0. Третья цифра определяет множитель, на который нужно умножить число, получаемое из первых двух цифр.
В случае, когда последнее число находится в диапазоне от 0 до 6, к значению дописывают количество нулей, равное третьей цифре. Например, если указано число 270, то устройство имеет параметр 27 пФ, если 271 – то на 270 пФ.
Трёхзначная кодировка
Если число равно 8, то в этом случае множитель равен 0,01. То есть если указано число 278, то ёмкость будет равна 27 · 10-2 = 0,27. Когда третье число равно 9, то множитель будет 0,1. Например, маркировка 109 указывает на электроёмкость в 1 пФ.
Если в кодировке присутствует символ «R», то параметр указывается в пикофарадах, а символ показывает место расположения запятой. Например, 4R1 расшифровывается как 4,1пФ.
Кодировка больших по размерам устройств
На больших по габаритным размерам конденсаторах маркировка наносится сверху на корпус, причём в данном случае будет присутствовать полная информация о параметрах устройства.
В обозначениях может встречаться значение MF. В приставках Международной системы единиц СИ если перед единицей измерения располагается большая буква М, то это обозначает, что должен использоваться множитель 106. В случае с конденсатором это всё равно будет обозначать микрофарады.
Также может встречаться обозначение МFD или mfd. В данном случае сочетание символов «fd» обозначает farad. Таким образом, если на корпусе написано 5 mfd, то значит, что конденсатор используется на 5 микрофарад.
Маркировка больших по размерам конденсаторов
Таким образом, при ремонте электросхемы, содержащей конденсатор, нужно правильно читать маркировку устройства и соответственно информации подбирать нужный прибор.
Видео
Оцените статью:Электроемкость проводника. Электроемкость конденсатора. — Студопедия
Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд.
В (СИ) ёмкость измеряется в фарадах.
Электроемкость уединенного проводника есть физическая величина численно равная величине заряда, который необходимо сообщить данному проводнику для увеличения его потенциала на единицу. В математической форме данное определение имеет вид
где — заряд, — потенциал проводника.
Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара (или сферы) радиуса R равна (в системе СИ):
где ε0 — электрическая постоянная, ε — относительная диэлектрическая проницаемость.
Понятие электроёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком или вакуумом, — к конденсатору. В этом случае электроёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:
где S — площадь одной обкладки (подразумевается, что обкладки одинаковы), d — расстояние между обкладками, ε — относительная диэлектрическая проницаемость среды между обкладками, ε0 = 8.854·10−12 Ф/м — электрическая постоянная.
Вывод формулы для плоского конденсатора (если понадобиться на всякий случай)
Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением
Согласно принципу суперпозиции, напряженность E поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:
Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен
Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:
Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:
Конденсаторы
Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы. Конденсатор — это система двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные диэлектриком, образуют плоский конденсатор. Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность между пластинами будет в два раза больше, чем напряженность одной пластины. Вне пластин напряженность равна нулю.
Обозначаются конденсаторы на схемах так:
При параллельном соединении конденсаторов U=U1=U2
при последовательном q=q1=q2.
В зависимости от типа диэлектрика конденсаторы бывают воздушные, бумажные, слюдяные.
Конденсаторы применяются для накопления электроэнергии и использования ее при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного тока, в выпрямителях, колебательных контурах и других радиоэлектронных устройствах.
электроемкость — это… Что такое электроемкость?
- электроемкость
capacité f électrique
Большой французско-русский и русско-французский словарь. 2003.
- электродоение
- электрокар
Смотреть что такое «электроемкость» в других словарях:
электроемкость — электроемкость … Орфографический словарь-справочник
электроемкость — сущ., кол во синонимов: 2 • емкость (66) • электроёмкость (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
Электроемкость* — Это отношение количества электричества, имеющегося на каком либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Электроемкость — Это отношение количества электричества, имеющегося на каком либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Электроемкость — электроёмкость ж. 1. Способность тела воспринимать электрический заряд. 2. Величина, характеризующая связь между зарядом, сообщенным проводнику его потенциалом (в физике). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
Электроемкость — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона … Википедия
электроемкость (затраты электроэнергии на выполнение некоторого экономического показателя)
электроемкость основных производственных фондов — Отношение всей потребляемой за год предприятием электрической энергии к стоимости основных производственных фондов … Политехнический терминологический толковый словарь
электроемкость продукции — Отношение всей потребляемой за год электрической энергии к годовому объему продукции (в натуральном, условном или стоимостном выражении), выпускаемой предприятием … Политехнический терминологический толковый словарь
Энергоемкость (электроемкость) ВВП — (Energy consumption per GDP unit) — удельный показатель потребления энергоресурсов (электроэнергии) по отношению к ВВП, измеряется обычно в тут (тонны условного топлива) на единицу стоимости ВВП в национальной или иностранной валюте … Экономико-математический словарь
Колебательный разряд — При разряде какого либо наэлектризованного тела, конденсатора, лейденской банки или батареи, состоящей из нескольких таких банок, электрический ток, являющийся в проводнике, при посредстве которого производится разряд, имеет вполне определенное… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Книги
- 10класс. Физика, Сборник. Аудиокурс поможет учащимся в освоении необходимого материала по курсу физики в 10 классе общеобразовательной школы. Важной темой аудиокурса является раздел «Механика», включающая динамику… Подробнее Купить за 124 руб аудиокнига
- Курсы «Подготовка к ЕГЭ по физике», Коллектив авторов. Данный курс посвящен подготовке к итоговой аттестации по школьному курсу по физике, подготовке к сдаче единого государственного экзамена и дальнейшему поступлению школьника в ВУЗ. Главные… Подробнее Купить за 124 руб аудиокнига
Емкость конденсатора Формула
Емкость конденсатора — это способность конденсатора накапливать электрический заряд на единицу напряжения на своих пластинах конденсатора. Емкость определяется делением электрического заряда на напряжение по формуле C = Q / V. Его единица — Фарад.
Формула
Формула имеет следующий вид:
C = Q / V
Где C — емкость, Q — напряжение, а V — напряжение. Мы также можем найти заряд Q и напряжение V, переставив приведенную выше формулу как:
Q = CV
V = Q / C
Фарад — единица измерения емкости.Один фарад — это величина емкости, когда один кулон заряда хранится с одним вольт на пластинах.
Большинство конденсаторов, используемых в электронике, имеют значения емкости, указанные в микрофарадах (мкФ) и пикофарадах (пФ). Микрофарад — это одна миллионная фарада, а пикофарад — одна триллионная фарада.
Какие факторы влияют на емкость конденсатора?
Это зависит от следующих факторов:
Площадь пластин
Емкость прямо пропорциональна физическому размеру пластин, определяемому площадью пластины A.Большая площадь пластины дает большую емкость и меньшую емкость. На рис. (А) показано, что площадь пластины конденсатора с параллельными пластинами равна площади одной из пластин. Если пластины перемещаются относительно друг друга, как показано на рис (b), площадь перекрытия определяет эффективную площадь пластины. Это изменение эффективной площади пластины является основным для определенного типа переменного конденсатора.
Разделение пластин
`Емкость обратно пропорциональна расстоянию между пластинами.Разделение пластин обозначено буквой d, как показано на рис. (А). Чем больше разделение пластин, тем меньше емкость, как показано на рис. (B). Как обсуждалось ранее, напряжение пробоя прямо пропорционально расстоянию между пластинами. Чем дальше разделены пластины, тем больше напряжение пробоя .
Диэлектрическая проницаемость материала
Как известно, изоляционный материал между пластинами конденсатора называется диэлектриком. Диэлектрические материалы имеют тенденцию уменьшать напряжение между пластинами при заданном заряде и, таким образом, увеличивать емкость.Если напряжение фиксировано, из-за наличия диэлектрика может храниться больше заряда, чем может храниться без диэлектрика. Мера способности материала создавать электрическое поле называется диэлектрической постоянной или относительной диэлектрической проницаемостью и обозначается как? r .
Емкость прямо пропорциональна диэлектрической проницаемости. Диэлектрическая проницаемость вакуума определяется как 1, а диэлектрическая проницаемость воздуха очень близка к 1. Эти значения используются в качестве эталона, а для всех других материалов значения ∈r указаны по сравнению с вакуумом или воздухом.Например, материал с εr = 8 может привести к емкости в восемь раз большей, чем у воздуха, при прочих равных условиях.
Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0 , выраженное следующей формулой:
∈ r = ∈ / ∈ 0
Ниже приведены некоторые общие диэлектрические материалы и типичные диэлектрические постоянные для каждого из них.Значения могут варьироваться, поскольку зависят от конкретного состава материала.
Материал Типичные значения ∈r
- Воздух 1,0
- Тефлон 2,0
- Бумага 2,5
- Масло 4,0
- Слюда 5,0
- Стекло 7,5
- Керамика 1200
Диэлектрическая проницаемость ∈r безразмерна, поскольку относительная мера.Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈0, которое выражается следующей формулой:
∈r = ∈ / ∈0
Значение ∈0 равно 8,85 × 10-12 Ф / м.
Формула емкости в терминах физических параметров
Вы видели, как емкость напрямую связана с площадью пластины, A, и диэлектрической постоянной, ∈r, и обратно пропорциональна расстоянию между пластинами, d. Точная формула для расчета емкости по этим трем величинам:
C = A ∈ r ∈ / d
, где ∈ = ∈ r ∈ 0 = ∈r (8.85 × 10-12Ф / м)
Емкость конденсатора с параллельными пластинами
Рассмотрим конденсатор с параллельными пластинами. Размер пластины большой, а расстояние между пластинами очень маленькое, поэтому электрическое поле между пластинами однородно.
Электрическое поле ‘E’ между конденсатором с параллельными пластинами составляет:
Емкость цилиндрических конденсаторов физика
Рассмотрим цилиндрический конденсатор длиной L, образованный двумя коаксиальными цилиндрами радиусов ‘a’ и ‘ б ‘.Предположим, что L >> b, такое, что на концах цилиндров нет окаймляющего поля.
Пусть «q» — это заряд конденсатора, а «V» — разность потенциалов между пластинами. Внутренний цилиндр заряжен положительно, а внешний цилиндр — отрицательно. Мы хотим узнать выражение емкости цилиндрического конденсатора. Для этого рассмотрим цилиндрическую гауссовскую поверхность радиуса «r», такую что a << b.
Если ‘E’ — напряженность электрического поля в любой точке цилиндрической гауссовой поверхности, то по закону Гаусса:
Если ‘V’ — разность потенциалов между пластинами, то
Это соотношение для емкость цилиндрического конденсатора.
Емкость сферического конденсатора
Емкость изолированного сферического конденсатора
Внешний источник
https://en.wikipedia.org/wiki/Capacitance
Что такое конденсатор (C)
Что такое конденсатор и расчет конденсатора.
Что такое конденсатор
Конденсатор — это электронный компонент, который хранит электрический заряд. Конденсатор состоит из двух замкнутых проводников (обычно пластин), которые разделены диэлектрическим материалом. Пластины накапливаются электрический заряд при подключении к источнику питания. Одна тарелка накапливает положительный заряд, а другая пластина накапливает отрицательный заряд.
Емкость — это количество электрического заряда, который сохраняется в конденсаторе при напряжении 1 Вольт.
Емкость измеряется в единицах Фарад (Ф).
Конденсатор отключает ток в цепях постоянного (DC) и короткое замыкание в цепях переменного (AC).
Фотографии конденсатора
Обозначения конденсаторов
Емкость
Емкость (C) конденсатора равна электрическому заряду (Q), деленному на напряжение (В):
C — емкость в фарадах (Ф)
Q — электрический заряд в кулонах (Кл), накопленный на конденсаторе
В — напряжение между пластинами конденсатора в вольтах (В)
Емкость пластин конденсатора
Емкость (C) пластин конденсатора равна диэлектрической проницаемости (ε), умноженной на площадь пластины (A), деленную на зазор или расстояние между пластинами (d):
C — емкость конденсатора в фарадах (Ф).
ε — диэлектрическая проницаемость диалектического материала конденсатора в фарадах на метр (Ф / м).
А — площадь пластины конденсатора в квадратных метрах ( 2 м).
d — расстояние между пластинами конденсатора в метрах (м).
Конденсаторы серии
Суммарная емкость конденсаторов, включенных последовательно, C1, C2, C3, ..:
Конденсаторы параллельно
Суммарная емкость конденсаторов, включенных параллельно, C1, C2, C3 ,.. :
C Итого = C 1 + C 2 + C 3 + …
Ток конденсатора
Мгновенный ток конденсатора i c (t) равен емкости конденсатора
раз производная мгновенного напряжения конденсатора v c (t):
Напряжение конденсатора
Мгновенное напряжение конденсатора v c (t) равно начальному напряжению конденсатора
плюс 1 / C, умноженный на интеграл мгновенного тока конденсатора i c (t) за время t:
Энергия конденсатора
Накопленная энергия конденсатора E C в джоулях (Дж) равна емкости C в фарадах (Ф)
раз больше напряжения конденсатора квадратной формы В C в вольтах (В) разделенных на 2:
E C = C × V C 2 /2
Цепи переменного тока
Угловая частота
ω = 2 π f
ω — угловая скорость, измеренная в радианах в секунду (рад / с)
f — частота, измеренная в герцах (Гц).
Реактивное сопротивление конденсатора
Импеданс конденсатора
Декартова форма:
Полярная форма:
Z C = X C ∟-90º
Типы конденсаторов
Конденсатор переменной емкости | Конденсатор переменной емкости с изменяемой емкостью |
Конденсатор электролитический | Электролитические конденсаторы используются, когда требуется высокая емкость.Большинство электролитических конденсаторов поляризованы |
Конденсатор сферический | Сферический конденсатор сферической формы |
Конденсатор силовой | Силовые конденсаторы используются в высоковольтных энергосистемах. |
Конденсатор керамический | Керамический конденсатор имеет керамический диэлектрический материал. Имеет функцию высокого напряжения. |
Конденсатор танталовый | Диэлектрический материал из оксида тантала. Имеет высокую емкость |
Слюдяной конденсатор | Конденсаторы высокой точности |
Конденсатор бумажный | Бумажный диэлектрический материал |
См. Также:
.Как работают конденсаторы | HowStuffWorks
Конденсатор чем-то похож на батарею. Хотя они работают совершенно по-разному, конденсаторы и батареи хранят электрическую энергию . Если вы читали «Как работают батареи», то знаете, что у батареи есть две клеммы. Внутри батареи химические реакции производят электроны на одном выводе и поглощают электроны на другом выводе. Конденсатор намного проще, чем батарея, поскольку он не может производить новые электроны — он только сохраняет их.
В этой статье мы точно узнаем, что такое конденсатор, для чего он нужен и как он используется в электронике. Мы также рассмотрим историю конденсатора и то, как несколько человек помогли сформировать его развитие.
Объявление
Внутри конденсатора клеммы соединяются с двумя металлическими пластинами , разделенными непроводящим веществом, или диэлектриком . Конденсатор легко сделать из двух кусков алюминиевой фольги и листа бумаги.С точки зрения емкости накопителя это не будет особенно хороший конденсатор, но он будет работать.
Теоретически диэлектриком может быть любое непроводящее вещество. Однако для практического применения используются специальные материалы, которые лучше всего подходят для функции конденсатора. Слюда, керамика, целлюлоза, фарфор, майлар, тефлон и даже воздух — вот некоторые из используемых непроводящих материалов. Диэлектрик определяет, какой это конденсатор и для чего он лучше всего подходит. В зависимости от размера и типа диэлектрика, некоторые конденсаторы лучше подходят для высокочастотных применений, а некоторые — для высоковольтных приложений.Конденсаторы могут изготавливаться для любых целей, от самого маленького пластикового конденсатора в вашем калькуляторе до сверхконденсатора, который может питать пригородный автобус. НАСА использует стеклянные конденсаторы, чтобы помочь разбудить схемы космического шаттла и помочь развернуть космические зонды. Вот некоторые из различных типов конденсаторов и способы их использования.
- Воздух — Часто используется в схемах настройки радио
- Майлар — Чаще всего используется для схем таймера, таких как часы, сигнализация и счетчики
- Стекло — Подходит для приложений высокого напряжения
- Керамика — Используется для высокочастотных целей, таких как антенны, рентгеновские лучи и МРТ
- Суперконденсатор — Питание электрических и гибридных автомобилей
В следующем разделе мы подробнее рассмотрим, как именно работают конденсаторы.
.Емкость | Основная концепция Capacitamce
Емкость — одна из основных концепций электроники, и она широко используется, о чем свидетельствует количество конденсаторов, используемых в электронных схемах
Емкостное руководство В комплект входит:
Емкость
Формулы конденсатора
Емкостное реактивное сопротивление
Параллельные конденсаторы
Последовательные конденсаторы
Диэлектрическая проницаемость и относительная диэлектрическая проницаемость
Коэффициент рассеяния, тангенс угла потерь, СОЭ
Таблица преобразования конденсаторов
После резисторов конденсаторы являются следующим наиболее часто используемым компонентом в электронной промышленности.Конденсаторы находят применение во всех типах схем, от логических схем до источников питания и радиочастотных схем до аудиосистемы. В дополнение к этому существует много типов конденсаторов, но, несмотря на их различия, все они основаны на основных понятиях емкости.
Что такое емкость
Емкость — это способность накапливать заряд. В простейшем виде конденсатор состоит из двух параллельных пластин. Было обнаружено, что когда батарея или любой другой источник напряжения подключен к двум пластинам, как показано, ток течет в течение короткого времени, и одна пластина получает избыток электронов, а другая — слишком мало.Таким образом, одна пластина с избытком электронов заряжается отрицательно, а другая — положительно.
Заряд хранится на двух пластинах конденсатораЕсли аккумулятор вынуть, конденсатор останется заряженным. Однако, если резистор помещен поперек пластин, ток будет течь, пока конденсатор не разрядится.
Конденсаторы реальные
Конденсаторыбывают самых разных форм, каждый со своими свойствами.Физические конденсаторы могут быть либо для поверхностного монтажа, либо с традиционными выводами, а также иметь различные форм-факторы и электрические характеристики.
Примечание о типах конденсаторов:
Существует множество различных типов конденсаторов. Хотя емкость является универсальной мерой, разные конденсаторы имеют разные характеристики с точки зрения таких элементов, как максимальный ток, частотная характеристика, размер, напряжение, стабильность, допуск и тому подобное.Для соответствия этим параметрам некоторые типы конденсаторов в некоторых приложениях лучше, чем другие,
Подробнее о Типы конденсаторов.
Единицы или емкость
Необходимо уметь определять «размер» конденсатора. Емкость конденсатора — это мера его способности накапливать заряд, а основной единицей емкости является Фарад, названный в честь Майкла Фарадея.
Фарад определяется: конденсатор имеет емкость в один фарад, когда разность потенциалов в один вольт заряжает его одним кулоном электричества (т.е.е. один усилитель на одну секунду).
Конденсатор с емкостью в один Фарад слишком велик для большинства электронных приложений, и обычно используются компоненты с гораздо меньшими значениями емкости. Используются три префикса (множители), µ (микро), n (нано) и p (пико):
Префиксы и умножители единиц емкости | ||
---|---|---|
Префикс | Множитель | Терминология |
µ | 10 -6 (миллионная) | 1000000 мкФ = 1Ф |
n | 10 -9 (миллионная) | 1000 нФ = 1 мкФ |
п. | 10 -12 (миллионно-миллионная) | 1000 пФ = 1 нФ |
Зарядка и разрядка конденсатора
Также можно посмотреть напряжение на конденсаторе, а также заряд.Ведь легче измерить на нем напряжение простым измерителем. Когда конденсатор разряжен, на нем нет напряжения. Точно так же, если он полностью заряжен, ток не течет от источника напряжения, и поэтому он имеет то же напряжение на нем, что и источник.На самом деле в цепи всегда будет какое-то сопротивление, и поэтому конденсатор будет подключен к источнику напряжения через резистор. Это означает, что для зарядки конденсатора потребуется определенное время, а повышение напряжения не произойдет мгновенно.Было обнаружено, что скорость нарастания напряжения поначалу намного выше, чем после некоторой зарядки. В конце концов, он достигает точки, когда он практически полностью заряжен и ток почти не течет. Теоретически конденсатор никогда не заряжается полностью, так как кривая имеет асимптотический характер. Однако на самом деле он достигает точки, когда его можно считать полностью заряженным или разряженным и ток не течет.
Точно так же конденсатор всегда будет разряжаться через сопротивление.По мере того как заряд конденсатора падает, напряжение на пластинах уменьшается. Это означает, что ток будет уменьшен, и, в свою очередь, скорость, с которой уменьшается заряд, падает. Это означает, что напряжение на конденсаторе падает экспоненциально, постепенно приближаясь к нулю.
Скорость нарастания или спада напряжения зависит от сопротивления в цепи. Чем больше сопротивление, тем меньше передаваемый заряд и тем больше времени требуется для зарядки или разрядки конденсатора.
Напряжение конденсатора при зарядке и разрядеДо сих пор рассматривался случай, когда аккумулятор был подключен для зарядки конденсатора и отключен, а для его зарядки был применен резистор. Если к конденсатору приложить переменную форму волны, которая по своей природе постоянно меняется, то он будет постоянно заряжаться и разряжаться. Для этого в цепи должен протекать ток. Таким образом, конденсатор пропускает переменный ток, но блокирует постоянный ток.В качестве таких конденсаторов используются для передачи сигнала переменного тока между двумя цепями, которые имеют разные установившиеся потенциалы.
Дополнительные основные понятия:
Напряжение
Текущий
Сопротивление
Емкость
Мощность
Трансформеры
RF шум
Децибел, дБ
Q, добротность
Вернуться в меню «Основные понятия». . .