Самые мощные конденсаторы в мире: Ионистор — Википедия – Неубиваемые графеновые суперконденсаторы для электромобилей — это мощный удар по литиевым аккумуляторам | Пацан к успеху шёл…

Содержание

принцип работы и алгоритм выбора

Все чаще в составе современных электронных устройств можно встретить суперконденсаторы. Суперконденсаторы способны выступать как в качестве основных элементов питания, так и в качестве буферных элементов для сглаживания провалов напряжения аккумуляторов при работе с импульсной нагрузкой.

Наравне с термином «суперконденсатор» в литературе часто применяют альтернативные названия, например, «ультраконденсатор» или «ионистор». Все эти именования используются для обозначения одного и того же компонента – конденсатора с двойным электронным слоем. Впервые суперконденсатор был создан в далеком 1957 году компанией General Electric. Позднее аналогичные компоненты выпускались различными производителями по всему миру, в том числе и в СССР (например, ионисторы КИ1-1).

Принцип работы суперконденсатора

Структура и принцип работы суперконденсатора поясняются на рис. 1. Суперконденсатор состоит из электродов, графитового сепаратора и электролита. При приложении внешнего напряжения носители заряда образуют два электронных слоя на границе сепаратора и электролита. Чем больше площадь поверхности сепаратора, тем больше будет накапливаемый заряд. Из рисунка видно, что в отличие от аккумуляторов в суперконденсаторе отсутствуют химические реакции, а энергия накапливается в виде статического заряда, как и в обычных конденсаторах.

Структура и принцип действия суперконденсатора

Рис. 1. Структура и принцип действия суперконденсатора

Основные характеристики суперконденсаторов

По своим характеристикам суперконденсаторы занимают промежуточное положение между аккумуляторами и обычными конденсаторами. В последнее время, благодаря большой емкости, суперконденсаторы становятся отличной альтернативой для аккумуляторов в широком спектре малопотребляющих устройств. Сравнение некоторых параметров суперконденсаторов и аккумуляторов приведено в таблице 1.

Таблица 1. Сравнение параметров суперконденсаторов и аккумуляторов

Параметр

Суперконденсатор

Литий-ионный аккумулятор

Время заряда

1–10 с

10–60 мин

Срок службы (циклов)

1 миллион циклов
или 30 000ч

500 и более

Напряжение

2,3…2,75 В (тип)

3,6 В (ном)

Удельная энергия (Вт·ч/кг)

5 (тип)

120–240

Удельная мощность (Вт/кг)

До 10 000

1 000…3 000

Стоимость кВт·ч

$10,000 (тип)

$250–$1,000

Время наработки на отказ)

10-15 лет

5-10 лет

Диапазон температур заряда

–40…65 °C

0…45 °C

Диапазон температур разряда

–40 to 65 °C

–20…60 °C

Емкость – один из важнейших параметров для любого накопителя энергии. По величине удельной емкости на единицу массы суперконденсаторы значительно превосходят обычные конденсаторы (в том числе, электролитические), но в свою очередь так же сильно уступают аккумуляторам (рис. 2). По этой же причине стоимость единицы емкости для суперконденсаторов оказывается существенно выше, чем для аккумуляторов.

Сравнение удельной емкости накопителей энергии

Рис. 2. Сравнение удельной емкости накопителей энергии

Вторым по важности параметром накопителя энергии является разрядный ток. По этому показателю лидируют обычные конденсаторы, которые из-за низкого собственного сопротивления способны выдерживать огромные импульсы тока. Аккумуляторы наоборот отличаются высоким сопротивлением и чрезвычайно чувствительны к большим разрядным токам. Например, литий-ионные аккумуляторы склонны к перегреву и разрушению при быстром разряде. Суперконденсаторы характеризуются более высоким последовательным сопротивлением, чем простые конденсаторы, однако существуют модели, способные выдерживать разрядные токи до сотен ампер.

Высокое сопротивление создает проблемы не только с точки зрения разогрева, но и с точки зрения просадки напряжения при импульсной нагрузке. Импульсное потребление характерно для большинства современных систем, но особенно ярко оно проявляется в устройствах с беспроводными радиопередатчиками. На рис. 3 представлен пример преждевременного отключения системы с аккумуляторным питанием из-за просадки напряжения. При передаче данных по беспроводному каналу потребление системы существенно возрастает, однако аккумулятор не способен выдать требуемую мощность мгновенно. Из-за этого напряжение на нагрузке проседает и может опуститься ниже порогового значения. Пороговое значение ограничивает минимально допустимое напряжение питания, ниже которого происходит отключение устройства. На рис. 3 пороговое значение составляет 1 В. В результате просадки напряжения устройство отключается, несмотря на то, что уровень заряда аккумулятора на самом деле остается высоким. Во многих случаях с данной проблемой не могут справиться даже развязывающие конденсаторы.

Провалы напряжения из-за высокого внутреннего сопротивления аккумулятора

Рис. 3. Провалы напряжения из-за высокого внутреннего сопротивления аккумулятора

Суперконденсаторы способны выдавать достаточно высокую импульсную мощность и позволяют решить проблему просадки напряжения (рисунок 4). Для этого суперконденсатор включается параллельно с аккумулятором. В данном случае ультраконденсатор не только предотвращает ложные выключения системы, но и защищает аккумулятор от пиковых токов, которые негативно влияют на срок его службы и могут в некоторых случаях банально вызвать его перегрев и разрушение. Таким образом, режим буферного элемента является одним из основных вариантов использования суперконденсаторов. Подробнее об этом вопросе рассказывается в статье «Расстояние не помеха. Эффективный радиус действия суперконденсаторов CAP-XX».

 Суперконденсатор не только предотвращает ложные выключения, но и защищает аккумулятор от пиковых токов

Рис. 4. Суперконденсатор не только предотвращает ложные выключения, но и защищает аккумулятор от пиковых токов

В последнее время наблюдается бурное развитие малопотребляющей электроники. Современные электронные системы могут потреблять всего лишь сотни мкА в активном режиме и доли мкА в режиме ожидания. Очень часто для питания таких устройств используют различные маломощные харвестеры энергии: солнечные батареи, виброхарвестеры, термогенераторы и т.д. Для накопления энергии этих преобразователей не всегда можно использовать конденсаторы. Например, устройство может накапливать энергию несколько часов, после чего выполнять быструю отправку данных по радиоканалу и снова засыпать. Высокий саморазряд конденсаторов не позволит работать в таком режиме. В то же время суперконденсатор окажется вполне приемлемым вариантом на роль накопителя энергии. Пример такого режима работы рассматривается в статье «Использование суперконденсаторов CAP-XX в устройствах с питанием от солнечных батарей».

Однако при использовании суперконденсатора в качестве основного элемента питания необходимо учитывать две важные особенности. Во-первых, суперконденсаторы обладают низким рабочим напряжением 2,3…2,75 В (хотя на рынке присутствуют модели с напряжением 3 В, например, суперконденсаторы от VINATech). Этого не всегда достаточно, а значит, может потребоваться последовательное включение нескольких элементов, что приведет к уменьшению суммарной емкости. В то же время у литий-ионных аккумуляторов номинальное напряжение составляет 3,6 В, что является оптимальным значением для большинства современных микросхем.

Во-вторых, еще одним недостатком суперконденсаторов становится линейный характер разряда. Разумеется, предсказуемая форма разряда это хорошо, но не всегда. На рис. 5 представлен пример, в котором система достигает граничного напряжения (минимально допустимое напряжение питания) в тот момент, когда суперконденсатор разряжен всего лишь на 50%. По этой причине для нормальной работы устройства может потребоваться дополнительный повышающий регулятор. В то же время аккумуляторы характеризуются относительно небольшим уменьшением напряжения в рабочем диапазоне.

Разрядные характеристики аккумуляторов и суперконденсаторов

Рис. 5. Разрядные характеристики аккумуляторов и суперконденсаторов

Еще одним преимуществом суперконденсаторов перед аккумуляторами является широкий диапазон рабочих температур. Это касается как процесса заряда, так и процесса разряда. На рынке присутствуют модели суперконденсаторов, которые способны работать при отрицательных температурах до -40°С и при положительных до +125 °С. В качестве примера можно привести ультраконденсторы от компания FastCAP (рис. 6). Разумеется, на рынке присутствуют и аккумуляторы с широким диапазоном рабочих температур, однако речь идет о специализированных решениях.

Существуют модели ультарконденсаторов, способные работать в широком диапазоне температур

Рис. 6. Существуют модели ультарконденсаторов, способные работать в широком диапазоне температур, например, ультраконденсторы от компания FastCAP

Примеры суперконденсаторов

В заключение краткого экскурса по суперконденсатором приведем некоторые конкретные примеры.

Широкий спектр суперконденсаторов выпускает компания LS Mtron, которая была создана на базе одного из подразделений LG Electronics. В номенклатуре LS Mtron можно найти модели с традиционной рулонной и прямоугольной конструкцией, а также суперконденсаторные батареи и модули (рис. 7).

Суперконденсаторы FastCAP отличаются широким диапазоном рабочих температур -40…+125 °С

Рис. 7. Суперконденсаторы FastCAP отличаются широким диапазоном рабочих температур -40…+125 °С

Еще одним известным производителем суперконденсаторов является компания SPSCAP, которая предлагает несколько серий одноячеечных суперконденсаторов с диапазоном выходных токов 0,9…250 А (рис. 8). SPSCAP также выпускает ультраконденсаторные батареи.

Суперконденсаторы от компании SPSCAP

Рис. 8. Суперконденсаторы от компании SPSCAP

Интересный модельный ряд суперконденсаторов предлагает корейская компания VINATech. Кроме того, это один из немногих производителей, который выпускает суперконденсаторы с рабочим напряжением 3,0 В.

Суперконденсаторы и суперконденсаторные батареи от VINATech с рабочим напряжением до 3 В

Рис. 9. Суперконденсаторы и суперконденсаторные батареи от VINATech с рабочим напряжением до 3 В

На портале УНИТЕРа мы также неоднократно рассказывали и о некоторых уникальных решениях, к числу которых можно отнести и сверхтонкие суперконденсаторы DMHA14R5V353M4ATA0 от компании Murata. Эти суперконденсаторы имеют толщину всего 0,4 мм (рис. 10).

Сверхтонкие суперконденсаторы DMHA14R5V353M4ATA0

Рис. 10. Сверхтонкие суперконденсаторы DMHA14R5V353M4ATA0 имеют толщину всего 0,4 мм

В одной из статей мы также рассказывали о суперконденсаторах от компании FastCAP , которые отличаются широким диапазоном рабочих температур -40…+125 °С (рис. 11).

Суперконденсаторы от компании FastCAP с широким диапазоном рабочих температур

Рис. 11. Суперконденсаторы от компании FastCAP с широким диапазоном рабочих температур

Алгоритм выбора суперконденсаторов

Как уже отмечалось выше, суперконденсаторы могут использоваться либо в качестве основного накопителя энергии, либо в качестве буферного элемента при работе в связке с основным аккумулятором. Разумеется, алгоритм выбора суперконденсатора в этих случаях будет отличаться, однако основные шаги будут примерно одинаковыми.

Для начала следует определиться с основными параметрами суперконденсатора – с рабочим напряжением и с максимальным выходным током.

Суперконденсаторы не любят перенапряжений, по этой причине при выборе подходящего накопителя следует позаботиться о согласовании рабочего напряжения. Для увеличения рабочего напряжения можно использовать последовательное включение суперконденсаторов, однако не стоит забывать, что в таком случае емкость будет уменьшаться. Кроме того, при необходимости следует предусмотреть защитные цепи для ограничения напряжения.

Далее следует рассчитать величину емкости. Рассмотрим алгоритм расчета, предложенный компанией SPSCAP. Для начала необходимо выбрать сценарий разряда суперконденсатора. Разряд может происходить либо с постоянным током, либо с постоянным напряжением.

Разряд с постоянным током. При таком сценарии ток разряда имеет фиксированное значение, а емкость будет рассчитываться по формуле:

C = It / (Vwork -Vmin),

где Vwork – номинальное рабочее напряжение, Vmin – минимально допустимое напряжение, I – ток разряда (постоянная величина в данном случае), t – время разряда.

Например, если Vwork=5 В, Vmin=4,2 В, t = 10 с, I =100 мА = 0,1 А, тогда:

C = 0,1 * 10 / (5 -4,2) = 1,25 Ф.

При выборе конкретной модели суперконденсатора необходимо предусмотреть некоторый запас по емкости. Кроме того, следует учесть температурную зависимость емкости. После выбора конкретной модели суперконденсатора следует свериться с температурной характеристикой, чтобы убедиться в том, что емкость превышает рассчитанное значение во всем диапазоне рабочих температур.

Разряд с постоянной мощностью. В таком случае мощность разряда остается фиксированной, а  емкость будет рассчитываться по формуле:

C = 2Pt/ (Vwork2 -Vmin2)

где Vwork – номинальное рабочее напряжение, Vmin – минимально допустимое напряжение, P – мощность разряда (постоянная величина в данном случае), t – время разряда.

Например, если предполагается разряд суперконденсатора в течение 10 секунд при постоянной мощности 200 кВт, а диапазон рабочего напряжения составляет 450 В — 750 В, тогда требуемая емкость составит:

С = 2 * 200 кВт * 10 / (7502-4502) = 11 Ф

В данном случае вновь следует предусмотреть некоторый запас и температурную зависимость емкости.

Источник:

Сравнение суперконденсатора и аккумулятора

Категория: Поддержка по аккумуляторным батареям
Опубликовано 04.04.2016 02:39
Автор: Abramova Olesya

Суперконденсатор, также известный как ультраконденсатор или двухслойный конденсатор, отличается от обычного конденсатора тем, что имеет очень большую емкость. Конденсатор хранит энергию с помощью статического заряда, в противовес электрохимическим реакциям батареи. Применение дифференциального напряжения на положительную и отрицательную пластины заряжает конденсатор. Это похоже на накопление статического заряда при трении. Прикосновение же к пластине конденсатора высвободит энергию.

Существует три типа конденсаторов, основным среди них является электростатический конденсатор с сухим сепаратором. Эта классическая модель конденсатора имеет очень маленькую емкость и в основном используется в радиоэлектронике. Емкость конденсатора измеряется в фарадах и для электростатического колеблется в диапазоне пикофарад (пФ).

Следующий тип конденсатора — электролитический, он обеспечивает более высокую емкость в сравнении электростатическим и оценивается в микрофарадах (мкФ), что в миллион раз больше пикофарада. Сепаратор в таких конденсаторах влажного типа. Как и в электрических батареях, конденсаторы имеют разные полюса, которые необходимо соблюдать при использовании.

Третий тип – это суперконденсатор, его емкость оценивается в фарадах и в тысячи раз больше емкости электролитического. Суперконденсатор используется для хранения энергии, подвергающейся частым циклам заряда/разряда при высоких значениях силы тока и короткой длительности.

Единица измерения емкости фарад, названа так в честь английского физика Майкла Фарадея (1791-1867). Один фарад хранит один кулон электрического заряда при напряжении один вольт. Один микрофарад в миллион раз меньше фарада, а пикофарад в миллион раз меньше микрофарада.

Инженеры General Electric начали экспериментировать с ранней версией суперконденсатора еще в 1957 году, но коммерческого интереса эти разработки не вызвали. В 1966 году Standart Oil заново случайно обнаружили эффект двухслойного конденсатора во время работы с экспериментальными конструкциями топливных элементов. Двухслойная структура значительно улучшала способность накапливать энергию. Технология снова не была коммерциализирована и лишь 1990-х нашла свое применение.

Развитие суперконденсаторов тесно переплетено с технологиями электрохимических источников тока, именно оттуда были позаимствованы специальные электроды и электролит. В то время как основной электрохимический двухслойный конденсатор (EDLC) зависит от электростатического действия, асимметричный двухслойный электрохимический конденсатор (AEDLC) использует батарееподобные электроды для получения более высокой плотности энергии, но это ограничивает его жизненный цикл и наделяет ограничениями, схожими на ограничения электрохимического источника тока. Многообещающим выглядит использование графена в качестве материала электрода, но исследования в этом направлении пока только ведутся.

Было испробовано много типов электродов, и наиболее распространенной системой электрохимического двухслойного суперконденсатора сегодня является версия на основе углерода с органическим электролитом. Неоспоримым преимуществом такого суперконденсатора является простота изготовления.

Все конденсаторы имеют предел напряжения. В то время как электростатический конденсатор является высоковольтным, суперконденсатор ограничен напряжением в 2,5-2,7 В. Повышение значения напряжения выше этого уровня возможно, но негативно сказывается на продолжительности срока службы. Поэтому для получения более высокого напряжения используют последовательное соединение нескольких суперконденсаторов. В свою очередь, последовательное соединение уменьшает общую емкость и увеличивает внутреннее сопротивление. Такое соединение более чем трех конденсаторов требует дополнительной балансировки для избежания перенапряжения отдельной ячейки. Похожим образом реализована система защиты литий-ионного аккумулятора.

Удельная энергоемкость суперконденсатора колеблется от 1 до 30 Вт*ч/кг, что в 10-50 раз меньше показателя литий-ионного аккумулятора. Еще одним недостатком является кривая разряда. В то время как электрохимические батареи обеспечивают постоянное напряжение в полезном диапазоне мощности, напряжение суперконденсаторов уменьшается линейно, что сокращает спектр доступной мощности. (Смотрите: Базовые знания о разряде электрохимического источника тока).

Возьмите источник тока с номинальным напряжением 6 В и напряжением отсечки 4,5 В. Если этот источник тока – суперконденсатор, то из-за своего линейного характера разряда он достигнет точки отсечки еще в первой четверти цикла, остальные три четверти энергетического резерва будут недоступными для использования. Можно конечно дополнительно использовать преобразователь напряжения — он позволит пользоваться источником питания и с низким значением напряжения, но это добавляет дополнительные расходы и приводит к потерям энергии. Электрическая же батарея имеет график разряда в виде относительно прямой линии, что позволяет использовать от 90 до 95 % накопленной в ней энергии.

На рисунках 1 и 2 показаны характеристики тока и напряжения при заряде и разряде суперконденсатора. При зарядке напряжение увеличивается линейно, а ток проседает, когда конденсатор полностью зарядился, вследствие этого даже отпадает необходимость использования системы детектирования полного заряда. При разрядке напряжение уменьшается также линейно. Для поддержания постоянного уровня потребляемой мощности при падении напряжения, преобразователь напряжения будет потреблять все большую силу тока. Разряд будет достигнут, когда нагрузочные требования больше не могут быть удовлетворены.

Зарядные характеристики суперконденсатора

Рисунок 1: Зарядные характеристики суперконденсатора. Напряжение линейно растет при постоянном уровне тока заряда. При полном заполнении конденсатора зарядный ток падает.

Разрядные характеристики суперконденсатора

Рисунок 2: Разрядные характеристики суперконденсатора. При разряде напряжение снижается линейно. Опциональный преобразователь напряжения может поддерживать определенный показатель напряжения, но это увеличивает показатель силы тока разряда.

Время зарядки суперконденсатора составляет от 1 до 10 секунд. Зарядные характеристики аналогичны характеристикам электрохимических батарей, и в значительной степени ограничены допустимой силой тока зарядного устройства. Суперконденсатор невозможно зарядить сверх его емкости, вследствие этого ему не нужна система детектирования полного заряда — ток просто перестает течь в него.

В таблице 3 сравниваются суперконденсатор и стандартный литий-ионный аккумулятор.

Характеристики Суперконденсатор Стандартный литий-ионный аккумулятор
Время зарядки 1-10 секунд 10-60 минут
Количество циклов 1 миллион или 30 тысяч часов 500 и выше
Напряжение ячейки От 2,3 до 2,75 В 3,6 В номинал
Удельная энергоемкость (Вт*ч/кг) 5 (стандартно) 120-240
Удельная мощность (Вт/кг) до 10 тысяч 1000-3000
Стоимость килограмм ватта $ 10000 (стандартно) $ 250-1000 (большие системы)
Время жизни 10-15 лет от 5 до 10 лет
Допустимый зарядный диапазон температур от -40°С до 65°С от 0°С до 45°С
Допустимый разрядный диапазон температур от -40°С до 65°С от -20°С до 60°С

Таблица 3: Сравнение производительности суперконденсатора и литий-ионного аккумулятора.

Суперконденсатор может заряжаться и разряжаться практически неограниченное число раз. В отличии от электрохимической батареи, в которую заложен жизненный цикл определенного размера, суперконденсатор практически нечувствителен к воздействию циклического режима работы. Также слабее на него действуют и возрастные изменения, связанные с деградацией материалов. При нормальных условиях емкость суперконденсатора после 10 лет эксплуатации сохраняется на уровне 80% от номинальной. Но работа с высокими напряжениями может снизить его срок жизни. Также стоит отметить преимущество суперконденсатора по температурным показателях — слабым местом всех электрохимических источников тока.


Аккумуляторы EverExceed

 

OPzS NI-CD OPzV
аккумуляторы opzs промышленные аккумуляторы ni-cd аккумуляторы opzv
20 лет / 1500 циклов 25 лет / 2000 циклов 20 лет / 1500 циклов
для промышленного и частного применения: телекоммуникации, аварийное освещение, солнечные электростанции, системы безопасности, (UPS) источники бесперебойного питания и т.д.

Саморазряд суперконденсатора значительно выше у обычных конденсаторов и немного превышает показатель электрохимической батареи. Причиной такого высокого саморазряда, главным образом, выступают свойства органического электролита. Для сравнения, суперконденсатор теряет половину запасенной энергии за 30-40 дней, а свинцовые и литиевые аккумуляторы саморазряжаются всего на 5% в месяц.

Применение суперконденсаторов

Суперконденсаторы являются идеальным выбором в случаях, где возникает краткосрочная потребность в питании и есть возможность быстрой зарядки. В противовес этому, электрохимические батареи оптимизированы для обеспечения относительно долгосрочного электропитания. Объединение этих двух систем в гибридный источник питания позволяет использовать сильные стороны каждой. Такие гибриды уже существуют, например, в виде союза суперконденсатора и свинцово-кислотной электрохимической системы.

Суперконденсаторы находят свое применение в системах, где необходимо обеспечение питания продолжительностью от нескольких секунд до нескольких минут, и также могут быть быстро заряжены. Подобными качествами располагает и маховик (инерционный аккумулятор), поэтому суперконденсатор может выступать ему альтернативой в определенных процессах, например, транспортной сфере.

Сегодня продолжаются испытания системы суперконденсаторов мощностью 2 мВт и системы маховиков мощностью 2,5 мВт для обеспечения движения Нью-Йоркской железной дороги (Long Island Rail Road — LIRR). Целью этих испытаний является поиск решения проблемы проседания напряжения при разгоне. Обе системы должны обеспечивать бесперебойную подачу электроэнергии определенной мощности в течение 30 секунд, а также заряжаться за такой же период времени. Главными требованиями являются колебание напряжения в диапазоне не более 10 %, низкие эксплуатационные расходы и долговечность не менее 20 лет. (Пока что больший интерес вызывали маховики, так как считается, что они более прочные и экономичные, но испытания еще продолжаются).

Япония также активно исследует и развивает использование суперконденсаторов. Уже существуют 4 мВт системы, установленные в зданиях, предназначение которых заключается в уменьшении нагрузки на электросети в часы пик. Также существуют системы, обеспечивающие кратковременное электропитание в моменты между отключением электричества и запуском резервных генераторов.

Технологии суперконденсаторов также смогли проникнуть в область электротранспорта. Возможность зарядки за счет сил торможения и способность обеспечения высоких показателей силы тока для ускорения делают суперконденсаторы крайне интересными для гибридных и электрических транспортных средств. Широкий диапазон рабочих температур и долговечность дают преимущество над электрохимическими батареями в этой сфере.

Но недостатки суперконденсаторов, такие как низкая удельная энергоемкость и высокая стоимость, побуждают некоторых разработчиков делать выбор в пользу более емкого аккумулятора за ту же стоимость. В таблице 4 приведены преимущества и недостатки суперконденсаторов.

Преимущества Практически неограниченный жизненный цикл; может быть перезаряжен миллионы раз
Высокая удельная мощность и низкое внутреннее сопротивление обеспечивают высокие токи нагрузки
Процесс зарядки занимает секунды; сам прекращает процесс зарядки
Простой процесс и условия зарядки
Безопасный, устойчивый к неправильной эксплуатации
Отличные показатели работы при низких температурах
Недостатки Низкая удельная энергоемкость
Линейный характер снижения напряжения не позволяет использовать всю накопленную энергию
Высокий саморазряд, выше, чем у электрических батарей
Низкое напряжение ячейки, необходимость последовательного соединения и балансировки систем из нескольких ячеек
Высокая стоимость ватта энергии

Таблица 4: Преимущества и недостатки суперконденсаторов.

Последнее обновление 2016-02-29

Суперконденсатор — ионистор — свободная инергия

С подачи -а Задумаемся о будущем уже сегодня

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионис

Суперконденсаторы. Устройство и применение. Виды и работа

Суперконденсаторы — это электрохимические конденсаторы, которые существенно отличаются от обычных практически неограниченной долговечностью, более низкими потерями тока и большими значениями удельной мощности. При этом они имеют на порядок меньшие габариты. То есть это батарея нового поколения, которая сможет открыть многочисленные перспективы в энергетике. В первую очередь большой интерес к суперконденсаторам вызван возможностью замены ими батарей, а также создания гибких источников питания большой мощности.

Стратегической задачей для ученых является создание батарей высокой емкости, которые можно было бы использовать в разных областях, к примеру, для электромобилей. Это позволит обеспечить поездки на длительные дистанции и быструю зарядку батарей. Также это гарантирует более экономичную работу возобновляемых источников энергии путем аккумулирования избытков энергии: ветроэнергетические установки, солнечные батареи и так далее.

Суперконденсатор – это тот же аккумулятор, но на порядок с лучшими свойствами. В первую очередь это относится к существенно более быстрому заряду и разряду. Суперконденсатор представляет элемент с двумя электродами, между ними располагается электролит. Электроды выполнены в виде пластины из определенного материала. Для улучшения электрических параметров суперконденсатора, пластины могут дополнительно покрываться пористым материалом, к примеру, активированным углем. В качестве электролита может применяться неорганическое или органическое вещество.

В целом суперконденсатор – это гибрид химической аккумуляторной батареи и обычного конденсатора:
  • Главное отличие суперконденсатора от привычного конденсатора — в наличии у первого не просто диэлектрика между электродами, а двойного электрического слоя. В результате между электродами образуется очень маленькое расстояние, а его возможность накапливать электрическую энергию (электрическая емкость) получается намного выше.
  • Кроме этого суперконденсатор от аккумуляторной батареи отличается скоростью накапливания, а также степенью отдачи электрического заряда. Благодаря применению двойного электрического слоя повышается площадь поверхности электродов при тех же общих габаритах. То есть в устройстве сочетаются лучшие электрические характеристики – существенная емкость аккумулятора и скорость конденсатора.

Впервые о суперконденсаторе заговорили в 1962 году. Именно тогда химик американской компании Standard Oil Company Роберт Райтмаер подал заявку на патент, где подробно расписывался механизм сохранения электрической энергии в конденсаторе, который обладал «двойным электрическим слоем». В предлагаемом варианте акцент делался на материал обкладок. У электродов должна быть различная проводимость: один электрод должен иметь электронную проводимость, а другой – ионную. В результате при заряде конденсатора происходило разделение положительных центров и электронов в электронном проводнике, а также разделение анионов и катионов в ионном проводнике.

В 1971 году лицензия досталась японской компании NEC, которая к этому времени занималась всеми направлениями электронной коммуникации. NEC удалось успешно продвинуть технологию под названием «Суперконденсатор». Затем суперконденсаторами стали заниматься и другие компании. С 2000-х годов активное развитие технологии началось во многих странах мира.

Виды
Суперконденсаторы сегодня подразделяются на:
  • Двойнослойные конденсаторы (ДСК).
  • Псевдоконденсаторы.
  • Гибридные конденсаторы.

Двойнослойный суперконденсатор предполагает наличие двух пористых электродов, выполненных из электропроводящих материалов, а также разделенных заполненным электролитом сепаратором. Здесь процесс запасания энергии идет за счет разделения заряда на электродах с весьма большой разностью потенциалов между ними. Электрический заряд двойнослойных конденсаторов определяется непосредственно емкостью двойного электрического слоя, то есть отдельного конденсатора на поверхности каждого электрода. Между собой они соединяются последовательно посредством электролита, который является проводником с ионной проводимостью.

Псевдоконденсаторы уже ближе к перезаряжаемым аккумуляторам. В них имеются два твердых электрода. Принцип действия сочетает два механизма сохранения энергии: фарадеевские процессы, которые схожи с процессами, происходящими в батареях и аккумуляторах, а также электростатическое взаимодействие, свойственное конденсаторам с двойным электрическим слоем. Приставка «псевдо» появилась вследствие того, что емкость ДЭС зависит не только от электростатических процессов, но и быстрых фарадеевских реакций с переносом заряда.

Гибридные конденсаторы – это переходный вариант между конденсатором и аккумулятором. Слово «гибридные» обусловлено тем, что электроды в гибридных конденсаторах производятся из различных материалов, а накопление заряда осуществляется по разным механизмам. Большинством случаев в гибридных конденсаторах катодом является материал с псевдоемкостью. В результате аккумулирование заряда на катоде осуществляется вследствие окислительно-восстановительных реакций, что увеличивает удельную емкость конденсатора, а также расширяет область рабочих напряжений.

В гибридных конденсаторах часто применяют комбинацию электродов из допированных проводящих полимеров и смешанных оксидов. Весьма перспективными могут стать композиционные материалы, которые состоят из оксидов металлов, осажденных на проводящие полимеры или углеродные носители.

Принцип действия

Суперконденсаторы, как высокоемкие конденсаторы, производят накопление энергии электростатическим способом, поляризуя раствор электролита. При накоплении энергии в суперконденсаторе химические реакции не задействуются, хотя суперконденсатор является электрохимическим устройством. В силу высокой обратимости механизма накопления энергии, конденсаторы способны тысячи раз заряжаться и разряжаться.

Суперконденсатор – электрохимический конденсатор, который имеет способность накапливать чрезвычайно большое количество энергии по отношению к его размеру, а также в сравнении с традиционным конденсатором. Данное свойство суперконденсатора особенно интересно в создании гибридных транспортных средств в автомобильной промышленности, в том числе в производстве машин на аккумуляторной электротяге, в которых суперконденсаторы применяются в виде дополнительного накопителя энергии.

В большинстве случаев, в суперконденсаторе действуют два активных электрода, которые разделены непроводящим материалом, размещенным между металлическими токовыми коллекторами. Органический или водный электролит пропитывает пористые электроды, обеспечивая появление носителей заряда в устройстве с последующим его накоплением.

Применения и особенности
Области применения суперконденсаторов могут быть поделены на следующие направления:
  • Накопительные устройства для источников возобновляемой энергии, к примеру, топливных элементов, океанской волны, ветра и солнца.
  • Транспортные средства, к примеру, устройства запуска двигателя машин, гибридные электрические транспортные средства, автомобили на водородном топливе, локомотивы поездов.
  • Как накопители энергии в жилищном секторе, к примеру, в зданиях с солнечными фотоэлектрическими системами, в которых имеется необходимость в аккумуляторах с повышенными характеристиками.
  • Благодаря высокой плотности энергии и удельной емкости, суперконденсаторы применяются в электронных устройствах в виде источника кратковременного электропитания.
  • В системах бесперебойного электропитания. Достоинством является то, что они в критических областях применения обеспечивают мгновенную мощность.
  • Среди развивающихся областей суперконденсаторы находят применение в системах бесперебойного электропитания с топливными элементами.
  • В устройствах демпфирования пиковой нагрузки, а также запуска двигателя.
  • Электроэнергетика с критическими нагрузками, коммуникации аэропортов, вышки беспроводной связи, банковские центры, больницы.
  • Источник резервного питания для материнских плат, микропроцессоров и запоминающих устройств.
  • Мобильные телефоны.
Достоинства и недостатки
Среди достоинств суперконденсаторов можно отметить:
  • Низкая стоимость устройства накопления энергии в расчете на 1 фарад.
  • Высочайшая плотность емкости.
  • Высокий кпд цикла, который достигает 95% и выше.
  • Длительный срок службы.
  • Надежность устройства.
  • Экологическая безопасность.
  • Бесперебойная эксплуатация.
  • Весьма высокая удельная энергия и удельная мощность.
  • Широкий диапазон рабочих температур.
  • Большое количество циклов практически с неизменными параметрами.
  • Высокая скорость заряда и разряда.
  • Сниженная токсичность применяемых материалов.
  • Отличная обратимость механизма накопления энергии.
  • Допустимость разряда до нуля.
  • Малый вес в сравнении с электролитическими конденсаторами.
Среди недостатков суперконденсаторов можно отметить:
  • Относительно малая энергетическая плотность.
  • Не способность обеспечить достаточное накопление энергии.
  • Весьма низкое напряжение на одну единицу элемента.
  • Высокая степень саморазряда.
  • Недостаточное развитие технологий.
Суперконденсаторы в перспективе

В ближайшем будущем суперконденсаторы станут применять повсеместно. Многообещающими областями для суперконденсаторов могут стать медицинская и авиакосмическая промышленность, военная техника.

  • При разработке суперконденсаторов все больше повышается их удельная емкость. В результате во многих технических сферах произойдет полная замена аккумуляторов на конденсаторы.
  • Произойдет интегрирование суперконденсаторов в самые разные структуры: от электроники до всевозможных настроек. Появится умная одежда с использованием этих устройств. Конденсаторы обеспечивают экологически чистый метод экономии энергии, поэтому они имеют больше возможностей для передачи и хранения энергии в сравнении с иными энергосберегающими технологиями.
  • Повсеместное использование суперконденсаторов: автомобили, трамваи, автобусы, электроника, в особенности смартфоны и другая мобильная техника. Зарядка будет занимать секунды, а запасаемой энергии будет хватать надолго.
Похожие темы:

Какие конденсаторы обладают самой большой емкостью. Конденсаторы их виды, характеристики, способы проверки

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

После зарядки вся энергия хранится как энергия. При разгрузке это снова высвобождается. Во время процесса разрядки напряжение быстро уменьшается, а затем уменьшается медленнее. Это связано с тем, что при разряде электрическое поле в конденсаторе становится слабее.

Во время процесса разряда конденсатора. Постоянная времени \\ вычисляется следующим образом. Для значений в приведенной выше анимации. После времени зарядки \\ конденсатор достигает напряжения \\, а после времени зарядки около \\ он уже достиг 50% от его конечного напряжения. По истечении времени зарядки он заряжается приблизительно на 99%, поэтому на практике предполагается, что он полностью заряжен после этого времени.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Следовательно, конденсатор в вышеупомянутой анимации заряжается примерно через ок. Что также можно увидеть на графике. Простой пластинчатый конденсатор состоит из двух взаимно параллельных электропроводящих пластин. Между ними часто не только воздух, но и другие материалы, которые затем называются «диэлектриками». Пластины могут быть электрически заряжены.

Нам интересны два аспекта. Однородное поле конденсатора. Этот аспект играет важную роль во многих теоретических соображениях. Для магнитного поля рассмотрим поле катушки. Если расстояние между пластинами невелико по сравнению с размером пластины, можно предположить, что между пластинами и снаружи нет только одного электрического поля. Это поле тогда однородно по направлению и силе.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Электрические схемы часто содержат конденсаторы разных типов. У них есть задача хранения и хранения энергии. Например, в велосипедных фонарях или в электрических резонансных схемах всех видов. В технологии переменного тока они играют большую роль, аналогичную омическому сопротивлению.

Конденсатор ка

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *