Расчет гасящего конденсатора: Как рассчитать емкость гасящего конденсатора простого блока питания – Расчет конденсатора для светодиода (калькулятор)

Как рассчитать емкость гасящего конденсатора простого блока питания

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная — подходит для расчета при произвольном выходном напряжении.
Простая — подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I — выходной ток нашего БП
Uвх — напряжение сети, например 220 Вольт
Uвых — напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С — собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения — радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных — 2,2мкФ, ну или "по импортному" — 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ

3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим — небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.

Ток — 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов — 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой "простой" блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике — Начинающим.

Расчет емкости гасящего конденсатора для паяльника

радиоликбез

В статье приводится методика расчета емкости гасящего конденсатора и напряжения но его выводах в цепи активной нагрузки,в частности паяльника, которая позволяет существенно сократить объем вычислений ,сведя их до минимума, что упрощает расчеты и сокращает время, необходимое для выбора гасящего конденсатора требуемой емкости и соответствующего номинального напряжения.

 

 

В приведенном материале предлагается методика расчета емкости конденсатора и напряжения на нем при его последовательном включении с паяльником, причем рассматриваются два варианта. В первом варианте необходимо уменьшить мощность паяльника на требуемую величину с помощью гасящего конденсатора, а во втором — включить низковольтный паяльник в сеть 220 В, погасив излишек напряжения конденсатором.

Осуществление первого варианта (рис.1) предполагает два вычисления с исходными данными (ток, потребляемый паяльником из сети I и сопротивление паяльника R1), затем два промежуточных вычисления (ток, потребляемый паяльником при меньшей его мощности на требуемую величину II и емкостное сопротивление конденсатора Rc) и, наконец, два последних вычисления, которые дают искомые

рис.1

величины емкость конденсатора С на частоте 50 Гц и напряжение на выводах конденсатора Uc). Таким образом, для решения задачи по первому варианту необходимо осуществить 6 вычислений.

По второму варианту (рис.2), чтобы решить задачу, необходимо произвести с исходными данными два вычисления, как и в первом варианте, а именно: найти ток

I, потребляемый паяльником из сети, и сопротивление паяльника R, затем следует одно промежуточное вычисление, из которого, как и в первом варианте, находится емкостное сопротивление конденсатора Rc и, наконец, два последних вычисления, из которых определяют емкость конденсатора С при частоте 50 Гц и на-

рис.2

пряжение на выводах конденсатора Uc. Таким образом, для решения задачи по второму варианту необходимо осуществить пять вычислений.

Решение задач по обоим вариантам требует определенных затрат во времени. Методика не позволяет сразу в одно действие, минуя исходные и промежуточные расчеты, определить емкость гасящего конденсатора и соответственно напряжение на его выводах.

Удалось найти выражения, которые позволяют сразу в одно действие вычислить емкость гасящего конденсатора, а затем напряжение на его выводах для первого варианта. Подобным образом получено выражение для определения емкости гасящего конденсатора для второго варианта.

Вариант 1. Располагаем паяльником 100 Вт 220 В и желаем эксплуатировать его при мощности 60 Вт, используя при этом последовательно включенный с ним гасящий конденсатор. Исходные данные: номинальная мощность паяльника Р = 100 Вт; номинальное напряжение сети U = 220 В; требуемая мощность паяльника Р1 = 60 Вт. Требуется вычислить емкость конденсатора и напряжение на его выводах согласно рис.1. Формула для расчета емкости гасящего конденсатора имеет вид:

С = Р∙106/2πf1U2(P/P1 — 1)0,5(мкФ).

При частоте питающей сети = 50 Гц формула принимает вид:

С =3184,71 Р/U2(Р/Р1— 1)0,5 =

=3184,71-100 /2202( 100/60-1 )=8,06 мкФ.

В контрольном примере емкость конденсатора равняется 8,1 мкФ, т.е. имеем полное совпадение результата. Напряжение на выводах конденсатора равно

Uс = (РР1)0,5 ∙106/2πf1СU (В).

При частоте сети f1 = 50 Гц формула упрощается:

Uc = 3184,71 (PP1)0,5/CU =

= 3184,71(60∙100)0,5/8,06 • 220 =

= 139,1 В.

В контрольном примере Uc = 138 В, т.е. практическое совпадение результата. Таким образом, для решения задачи по первому варианту вместо шести вычислений нужно сделать всего два (без промежуточных расчетов). При необходимости емкостное сопротивление конденсатора можно сразу вычислить по формуле:

Rc = U2(P/P, — 1)0,5/Р =

= 2202( 100/60 — 1)0,5/100 = 395,2 Ом.

В контрольном примере Rc = 394 Ом, т.е. практическое совпадение.

Вариант 2. Располагаем паяльником мощностью 25 Вт, напряжением 42 В и хотим включить его в сеть 220 В. Необходимо рассчитать емкость гасящего конденсатора, последовательно включенного в цепь паяльника, и напряжение на его выводах согласно рис.2. Исходные данные: номинальная емкость паяльника Р = 25 Вт; номинальное напряжение Ur = 42 В; напряжение сети U = 220 В. Формула для расчета емкости конденсатора имеет вид:

С = Р∙106/2πf1Ur(U2 — Ur2)0,5 мкФ.

При частоте сети f1 = 50 Гц формула принимает вид:

С = 3184,71 P/Ur(U2 — Ur2)0,5 =

= 3184,71 -25/42(2202 — 422) =

= 8,77 мкФ.

Напряжение на выводах конденсатора легко определить, пользуясь исходными данными, по теореме Пифагора:

Uc = (U2 — Ur2)0,5 = (2202 — 422) =

= 216 В.

Таким образом, для решения задачи по второму варианту вместо пяти вычислений необходимо осуществить только два. При необходимости величину емкостного сопротивления конденсатора, для данного варианта, можно определить по формуле:

Rc = Ur(U2 — Ur2)0,5/P =

= 42(2202 — 422)/25 = 362,88 Ом.

По контрольному примеру Rc = 363 Ом. Гасящий конденсатор С на приведенных рисунках желательно зашунтировать разрядным резистором МЛТ-0,5 номиналом 300…500 кОм.

Выводы. Предлагаемая методика расчета емкости гасящего конденсатора и напряжения на его выводах позволяет существенно сократить объем вычислений, сведя их до минимума.

К. В. Коломойцев.

Читайте также: Расчет бестрансформаторного блока питания

 

 


Использование конденсатора в качестве сопротивления

Опубликовал admin | Дата 10 ноября, 2014

     Маломощные зарядные устройства для герметизированных малогабаритных аккумуляторов, блоки питания для светодиодных ламп, блоки питания для низковольтных слаботочных устройств обычно подключают к первичной сети переменного тока 220 вольт через понижающие трансформаторы или добавочные резисторы. При этом на гасящем резисторе выделяется большая бесполезная мощность в виде тепла, а трансформаторы имеют большие габариты и вес.

      Можно конечно применить малогабаритные трансформаторы, но из-за применения в них очень тонких обмоточных проводов, резко уменьшается надежность таких блоков питания. Известно, что конденсатор, установленный в цепи переменного тока, обладает реактивным сопротивлением, которое зависит от частоты переменного тока, протекающего через его обкладки. Использование конденсаторов позволяет гасить излишнее напряжение, при этом мощность на реактивном сопротивлении не выделяется и это является большим преимуществом конденсатора перед резистором. Один из методов расчета гасящего конденсатора я уже приводил ранее, теперь хочу предложить еще один, с использованием номограммы.
     Так как полное сопротивление Z цепи, составленной из последовательно включенных нагрузки с активным сопротивлением Rн и гасящего конденсатора с реактивным сопротивлением Хс равно


то прямой расчет емкости гасящего конденсатора довольно сложен.

     Поэтому проще воспользоваться номограммой. На ней по оси абсцисс отложены величины сопротивлений нагрузки Rн в килоомах, а по оси ординат отложены величины емкостей гасящих конденсаторов в микрофарадах. По оси, проведенной под углом сорок пять градусов – полные сопротивления Z цепи в килоомах.
Чтобы воспользоваться номограммой, надо определить сопротивление нагрузки — Rн. Rн = I2•R = U2/R и полное сопротивление цепи Z.
Пример. Мостовой выпрямитель с выходным напряжением 12 вольт и током нагрузки 120 мА необходимо питать от сети переменного тока 220 вольт. Надо найти емкость гасящего конденсатора, подключенного последовательно выпрямительному диодному мосту.
Для начала нам необходимо определить сопротивление нагрузки. Rн = U/I = 12 В / 0,12 А = 100 Ом. Теперь определяем полное сопротивление цепи в сети переменного тока 220 вольт. Z = 220 В/0,12 А = 1833 Ом. Далее определяем емкость гасящего конденсатора по номограмме. Для этого из точки на оси абсцисс, соответствующей сопротивлению 100 Ом восстановим перпендикуляр. Через точку, находящуюся на оси Z и соответствующей сопротивлению 1833 Ома, проводим дугу В с центром в точке 0, до пересечения с перпендикуляром А. Получаем точку С, которую проектируем на оси Y – ось емкости. Получаем необходимую емкость гасящего конденсатора, примерно 1,8 мкф. Все просто и удобно. Успехов. К.В.Ю.
Используемая литература: журнал «Радио» № 7 за 1970 год. Автор статьи В. Шишков
Скачать рисунок номограммы можно в формате sPlan здесь.

Скачать “Использование конденсатора в качестве сопротивления” Nomogramma.rar – Загружено 1 раз – 2 KB

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:16 423


Конденсаторное питание | Электроника для всех

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступление

В цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R2+(XL+Xс)2)1/2

Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.
Даже обычный проводник имеет какую то паразитную емкость и индуктивность.

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и XL катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.

Получается у нас вот такая вот схема:

Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше. И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.

Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.

Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

I = 2F * C (1.41U — Uвых/2).

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока. На печатке он здоровый такой, возле разьема.

Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:

Как всегда, прикладываю LAY файл.

После чего, как обычно, все вытравил и спаял:

Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

ТЕХНИКА БЕЗОПАСНОСТИ

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер , то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.

Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:

Offtop:
Для троллей я заготовил много вкусной еды — энджой!

Расчет сетевого источника питания с гасящим конденсатором

РАСЧЕТ СЕТЕВОГО ИСТОЧНИКА ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ

С. БИРЮКОВ, г. Москва

Методика расчета бестрансформаторных источников питания с га­сящим конденсатором, предложенная М. Дорофеевым («Бестранс­форматорный с гасящим конденсатором» в «Радио», 1995, Ns 1), во-первых, весьма сложна, неудобна для проектирования блока пита­ния с выходным напряжением менее 20 В, а во-вторых, она не во всем безошибочна. Автор помещенной ниже статьи предлагает аль­тернативную методику, обеспечивающую высокую точность расче­та, проверенную многолетней практикой.



Для малых значешй выходного на­пряжения

В таком источнике питания к сети пе­ременного напряжения подключены по­следовательно соединенные конденса­тор и нагрузка. Рассмотрим вначале ра­боту источника с чисто резистивной на­грузкой (рис.1,а).

Из курса электротехники известно, что полное сопротивление последова­тельно включенных конденсатора С1 и резистора Рн равно:

где Xc1=1/2n*f*C1 — емкостное сопротив­ление конденсатора на частоте f. Поэто-

Рис.1

му эффективный переменный ток в цепи Iэфф=Uс/Z (Uc — напряжение питающей се­ти). Нагрузочный ток связан с емкостью конденсатора, выходным напряжением источника и напряжением сети следую

Для малых значений выходного на­пряжения

Iэфф=2л*f*С1*Uс.

В качестве примера, полезного в практике, проведем расчет гасящего кон­денсатора для включения в сеть 220 В паяльника на 127 В мощностью 40 Вт. Не­обходимое эффективное значение тока нагрузки Iэфф=40/127=0,315 А. Расчетная емкость гасящего конденсатора

Для работы нагревательных приборов важно значение именно эффективного то­ка. Однако, если нагрузкой является, на­пример, аккумуляторная батарея, вклю­ченная в диагональ выпрямительного мос­та (рис. 1 ,б), заряжать ее будет уже сред-невыпрямленный (пульсирующий) ток, численное значение которого меньше Iэфф:

                                               (1)

В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последова­тельно с диодным мостом, а нагрузка, за-шунтированная другим конденсатором, питается от выходной диагонали моста (рис. 2). В этом случае цепь становится резко нелинейной и форма тока, протека­ющего через мост и гасящий конденса­тор, будет отличаться от синусоидаль­ной. Из-за этого представленный выше расчет оказывается неверным.

Каковы процессы, происходящие в ис­точнике со сглаживающим конденсато­ром С2 емкостью, достаточной для того, чтобы считать пульсации выходного на­пряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся ре­жиме представляет собой некий эквива­лент симметричного стабилитрона. При напряжении на этом эквиваленте, мень­шем некоторого значения (оно практиче­ски равно напряжению Uвых на конденса­торе С2), мост закрыт и тока не прово­дит, при большем — через открытый мост течет ток, не давая увеличиваться на­пряжению на входе моста.

Рассмотрение начнем с момента ti, когда напряжение сети максимально (рис. 3). Конденсатор С1 заряжен до амп­литудного напряжения сети Uс.амп за вы­четом напряжения на диодном мосте uм, примерно равного Uвых. Ток через кон­денсатор С1 и закрытый мост равен ну­лю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меня­ется.

Рис. 2

Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2). В этот момент появится скачком ток lei через конденсатор С1 и мост. Начиная с момента t2, напряжение на мосте не ме­няется, а ток определяется скоростью изменения напряжения сети и, следова­тельно, будет точно таким же, как если бы к сети был подключен только конден­сатор С1 (график 3).

Когда напряжение сети достигнет от­рицательного амплитудного значения (момент t3), ток через конденсатор С1 снова станет равным нулю. Далее про­цесс повторяется каждый полупериод.

Ток через мост протекает лишь в ин­тервале времени от t2 до t3, его среднее значение может быть рассчитано как площадь заштрихованной части синусои­ды на графике 3. Несложные расчеты, требующие, однако, знания дифференци­ального и интегрального исчисления, да­ют такую формулу для среднего тока Iср через нагрузку Rн:

                      (2)

При малых значениях выходного на­пряжения эта формула и ранее получен­ная (1) дают одинаковый результат. Если в (2) выходной ток приравнять к нулю, по­лучим Uвыx=Uc*2^1/2, т. е. при токе нагрузки, равном нулю (при случайном отключении нагрузки, скажем, из-за ненадежного контакта), выходное напряжение источ­ника становится равным амплитудному напряжению сети. Это означает, что все элементы источника должны выдержи­вать такое напряжение. При уменьшении тока нагрузки, например, на 10%, выход­ное напряжение увеличится так, чтобы выражение в скобках также уменьши­лось на 10%, т. е. примерно на 30 В (при Uвых=10 В). Вывод — включение стабили­трона параллельно нагрузке Rн (как по­казано штриховыми линиями на рис. 2) практически обязательно.

Для однополупериодного выпрямите­ля (рис. 4) ток рассчитывают по следую­щей формуле:

Естественно, при малых значениях выходного напряжения ток нагрузки бу­дет вдвое меньше, чем для двуполупери-одного выпрямителя, а выходное напря­жение при нулевом токе нагрузки — вдвое больше — ведь это выпрямитель с удвое­нием напряжения!

Порядок расчета источников по схеме на рис. 2 следующий. Вначале задаются выходным напряжением Uвых, максималь­ным Iн max и минимальным Iнmin значения-ми тока нагрузки, максимальным Uc max и минимальным Uc min значениями напря­жения сети. Выше уже было указано, что при меняющемся токе нагрузки обязате­лен стабилитрон, включенный парал­лельно нагрузке Rн. Как его выбирать? При минимальном напряжении сети и максимальном токе нагрузки через ста­билитрон должен протекать ток не менее допустимого минимального тока стабили­зации 1ст min. Можно задаться значением в пределах 3…5 мА. Теперь определяют емкость гасящего конденсатора С1 для двуполупериодного выпрямителя:

С1 =3,5(Iст min+lн max)/(Uc min-0,7Uвыx). (3)

Формула получена из (2) подстанов­кой соответствующих значений. Ток в ней — в миллиамперах, напряжение — в воль­тах; емкость получится в микрофарадах. Результат расчета округляют до ближай­шего большего номинала; можно исполь­зовать батарею из нескольких конденса­торов, включенных параллельно.

Далее рассчитывают максимальный ток через стабилитрон при максималь­ном напряжении сети и минимальном по­требляемом от источника токе:

Iст max=(Uc mах-0,7Uвых)С1/3,5-Iн min    (4)

При отсутствии стабилитрона на не­обходимое напряжение Uвых, допускаю­щего рассчитанный максимальный ток стабилизации, можно соединить несколь­ко стабилитронов на меньшее напряже­ние последовательно или применить ана­лог мощного стабилитрона [1].

Подставлять в формулу (4) минималь­ный ток нагрузки Iн mm следует лишь тог­да, когда этот ток длителен — единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секун­ды) его надо заменить средним (по вре­мени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использо­вать гасящий конденсатор несколько большей емкости для уменьшения требо­ваний к точности его подборки.

При однополупериодной схеме вы­прямления (рис. 4) емкость гасящего кон­денсатора и максимальный ток через стабилитрон рассчитывают по форму­лам:

Конденсаторы для светодиодных лампочек

Для чего я заказал эти конденсаторы? Ответ банален. Чтобы «колхозить» светодиодное освещение. А куда ещё их применить можно? Расскажу, как рассчитать ёмкость балласта для светодиодной лампочки. Обзор контрольный. Кто не боится пользоваться такими драйверами, заходим. Для тех, кто не уважает подобные схемы, заходить не обязательно.

Для начала, как обычно, посмотрим, что было в посылке


Ну а теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная).

Добавил R4, будет вместо предохранителя, а также смягчит пусковой ток. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды, и рассчитываем его ёмкость по формуле (1).

Для расчётов нам необходимо знать падение напряжения на светодиодах. Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но ооочень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Я не сторонник насилия. Поэтому рассчитаем лампочку на 100мА. Будет запас по мощности. А запас, как говорится, карман не тянет.
По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети, от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. Кстати при помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек. Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения сети. Чем больше превышает, тем болезненнее реагирует (это дружеский совет).
И всё же, на сколько точны номиналы ёмкостей, проверим. Сначала 2,2мкФ.

Теперь 1мкФ.

Погрешности небольшие, не более 2%. Можно смело брать.
Перейдём к практическому применению. Кому интересно, посмотрите, куда применил. Это уже было в одном из предыдущих обзоров, поэтому спрятал под спойлер.

Вырезка из обзора панелей

В одном из моих обзоров подключал панели к драйверу на кондёрах. Вот такая лампочка получилась из энергосберегайки. Напомню, модуль состоит из пяти параллелей. В каждой параллели 18 светодиодов 2835smd. Падение напряжения 51В.

Посчитаем ток из формулы (2):
Получаем ток =(220-51)*2,2/3,18=117мА. 51В*117мА=6Вт светодиодной мощности (66,7мВт на каждый светодиод-33% от номинала) — расчётная мощность светильника. Собираем, включаем. РАБОТАЕТ!

Но без защитного стекла или пластикового рассеивателя подобные лампочки использовать нельзя. Все светодиоды под фазой, в рабочем режиме касаться нельзя. А теперь посмотрим, что показывают приборы. Куда ж я без них?

Прибор показал 5,95Вт.
Конечно, такую лампочку можно использовать разве что в сарае.
А у людей есть и сараи и гаражи. И туда тоже надо что-то вкручивать (деревенский вариант, объясню почему). Летом часто езжу в деревню. А в деревне напряжение больше 200В не поднимается, бывает и ниже. А теперь посчитаем мощность нашей лампочки при 180В в сети. Всё по той же формуле сначала найдём ток, который течёт через светодиоды. Только вместо 220В в формуле поставим 180В. Итого 110мА*51В=5,6Вт. Как видим, мощность почти не изменилась. А вот лампочки накаливания при таком напряжении ели коптят.
Вариант с гаражом. В гараже наоборот, лампочки не успеваю менять – минимум 240В. Посчитаем ток и мощность при 260В, всё по той же формуле. Имеем: 145мА*51В=7,4Вт (41% от максимальной мощности). До перегорания слишком далеко. Вывод: и при 180В будет светить и при260В не перегорит.
А теперь попробую оценить качественные характеристики света. Попробовал осветить стену

Светит очень ярко, тёплым приятным светом, ярче чем лампа накаливания на 60Вт (снимок ниже). Можете сравнить яркость и цветовой тон. Всё снималось в одинаковых условиях, на одном и том же расстоянии от стены.

Мощность лампы накаливания я тоже измерил для чистоты эксперимента, тем же прибором при тех же условиях.
Лампа накаливания – 56,5Вт.
Светодиодная лампа – 5, 95Вт.
Обе лампочки вставлял по очереди в настольный светильник с отражателем. Вы его видели.


Теперь вырезка из последнего моего обзора. Правда, добавил измерения.

Вырезка из обзора Про диоды 1W LED Bulbs High power

При помощи этих светодиодов решил переделать светильник.

Лампочки уже испортились, а новые идут невысокого качества.

Светильник решил подключить через кондёры, большАя мощность мне не нужна, а электронный драйвер приберегу для чего-нибудь более стоящего. А вот и схема.

Все диоды соединяю последовательно.

Плату для драйвера тоже изготовил из того, что было (по-быстрому)



Даже штырь для крепления был. Дроссель убирать не стал. Оставил для веса, иначе лампа будет падать.


Сделал по всем правилам электробезопасности. Ни одного элемента под напряжением наружу не выходит. Плата закреплена печатными проводниками внутрь.
Посчитаем мощность получившейся лампочки. Сначала по формуле (2) найдём ток через светодиоды при ёмкости балласта 3,2мкФ. (220-18)*3,2/3,18=203,2мА. 203,2мА*18В=3,66Вт – расчётная мощность (при напряжении в сети 220В).
Смотрим на прибор

Прибор показывает 3,78Вт. Но ведь и в розетке 232В, а не 220В. Погрешность минимальна.
И, как обычно, посмотрим как светит.

Это светит лампочка на 40Вт. Естественно, все лампочки в равных условиях (выдержка на ручнике, расстояние до стены одинаковое).

Это мой светодиодный светильник. Фотоэкспонометр подсказывает, что светит ярче сороковки. Ну и наконец третий прибор, где их (кондёры) можно применить. Много лет пользовался самодельной зарядкой.

Дополнительная информация

А теперь попытаемся подытожить. Постараюсь выделить все плюсы и минусы подобных схем.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к при этом необходимы конденсаторы больших размеров.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
+Схема очень проста, не требует особых навыков при изготовлении.
+Не требует особых материальных затрат при изготовлении. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Я написал своё видение, свое отношение к подобным схемам, Оно может отличаться от вашего. Но я его высказал. А вывод как всегда делать вам.
На этом всё. Больше к подробному разбору подобных схем возвращаться не буду. Измусолил их от и до.
А в конце для тех, кто отслеживает треки.

Дополнительная информация



На этом всё!
Удачи всем.

Гасящий конденсатор вместо гасящего резистора

Иногда возникает задача понизить переменное напряжение сети 220 вольт до некоторого заданного значения, причем применение понижающего трансформатора (в таком случае) не всегда бывает целесообразным.

Скажем, низкочастотный понижающий трансформатор, выполненный традиционно на трансформаторном железе, способный преобразовать мощность 200 Ватт, весит больше килограмма, не говоря о высокой стоимости. Следовательно в некоторых случаях можно применить гасящий резистор, который ограничит ток, однако при этом на самом гасящем резисторе выделится мощность в виде тепла, а это не всегда является приемлемым.

Например, если нужно запитать 200 Ваттную лампу только на половину ее наминала, потребовалось бы рассеять мощность в 100 Ватт на гасящем резисторе, а это крайне сомнительное решение.

Весьма удобной альтернативой, для данного примера, может служить применение гасящего конденсатора, емкостью около14мкф, (такой можно собрать из трех металлопленочных типа К73-17 по 4,7мкф, рассчитанных на 250в, а лучше – на 400в) это позволит получить нужный ток без необходимости рассеивать значительную мощность в виде тепла.

Рассмотрим физическую сторону этого решения. Как известно, конденсатор, включенный в цепь переменного тока, является реактивным элементом, обладающим емкостным сопротивлением, связанным с частотой переменного тока в цепи, а также с собственной емкостью.

Чем больше емкость конденсатора и чем выше частота переменного напряжения в цепи, тем больший ток проходит через конденсатор, значит емкостное сопротивление конденсатора обратно пропорционально его емкости, а также частоте переменного тока, в цепи, куда он включен.

Это видно и из формулы для емкостного сопротивления конденсатора:

Если в цепь переменного тока включены последовательно резистор (активная нагрузка) и конденсатор, то их общее сопротивление можно найти по формуле:

А поскольку и то

Итак, зная напряжение на нагрузке, силу тока нагрузки и напряжение на гасящем конденсаторе, можно определить емкость гасящего конденсатора, который нужно включить последовательно нагрузке для получения требуемых параметров питания:

Рассмотрим пример: требуется запитать лампу накаливания мощностью 100 Ватт, рассчитанную на напряжение 110 вольт от розетки 220 вольт. В первую очередь найдем значение рабочего тока лампы:

Получим значение тока лампы равное 0,91 А. Теперь можно найти требуемое значение емкости гасящего конденсатора, она будет равна 15,2 мкФ.

Следует отметить, что этот расчет верен для чисто активной нагрузки, когда имеет место эффективное значение. При использовании же выпрямителя, необходимо учесть, что эффективное значение тока будет немного меньше в силу действия пульсаций. Также следует помнить, что в качестве гасящих конденсаторов, полярные конденсаторы применять ни в коем случае нельзя.

Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,
          Мы делаем звук живым!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *