Как определить емкость smd конденсатора без маркировки
Конденсаторы в SMD исполнении выпускаются в различных корпусах, керамических, пластиковых и металлических (аллюминиевых).
Конденсаторы керамические, пленочные и т.п. неполярные выпускаются без маркировки. Емкость варьируется от 1пф до 10мкф.
Электролитические конденсаторы выпускаются в виде бочонков в аллюминиевом корпусе с маркировкой, подобные выводным, но для поверхностного монтажа.
Танталовые в прямоугольных корпусах, различного размера, черного, желтого, оранжевого цвета. С кодовой маркировкой.
Маркировка электролитических и танталовых конденсаторов подобна маркировке резисторов, за исключением того, что может применяться знак «µ».
Обозначение 105 — первая цифра — 1, вторая — 0, множитель — х10 5 . Получаем 1000000 пФ или 1 мкФ.
Обозначение 476 — первая цифра — 4, вторая — 7, множитель — х10 6 . Получаем 47000000 пФ или 47 мкФ.
Маркировка может содержать знак » µ» — 47 µ , указывает на емкость в 47 мкФ
Маркировка 3 µ 3 — указывает на емкость 3,3 мкФ
Так же указывается и номинальное рабочее напряжение в виде циферного или буквенного обозначения.
Обозначение 35 — будет означать номинальное рабочее напряжение в 35 вольт.
Рядом с цифрой может стоять и значёк «v», 10v — 10 Вольт.
Напряжение может быть указано буквой латинского алфавита, перед или после цифр указывающих емкость.
e — 2.5в
G — 4в
J — 6.3в
A — 10в
C — 16в
D — 20в
E — 25в
V — 35в
H — 50в
На малогабаритных конденсаторах, ввиду малой области для маркировки, применяется буквенное кодовое обозначение состоящее из трех или двух символов
Если символов три, первая буква обозначает производителя, к примеру «K» — Kemet
Второй символ указывает на ёмкость.
Буква | Ёмкость | Буква | Ёмкость | Буква | Ёмкость | Буква | Ёмкость |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | f | 5.0 | |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
Третий символ — цифра, указывает на множитель.
Маркировка KT3 — конденсатор фирмы Kemet, ёмкость 5.1 х 10 3 = 5100 пФ или 5.1 нФ
При двухбуквенном коде не указывается производитель — A5 — ёмкость 1.0 х 10 5 = 100000 пФ или 100 нФ
Маркировка полярности SMD конденсаторов
У танталовых SMD конденсаторов на корпусе маркируется положительный вывод сплошной полосой или черточкой. Тут легко перепутать с выводными электролитическими, у которых черточкой или полосой обозначается минусовой контакт.
А у электролитических SMD обозначается минусовой контакт, так же как и у выводных.
Народ, помогите неучу, последнее время очень интересуют smd кондёры, а именно: как определить живой или не живой кондёр, как определить ёмкость и вольтаж (и возможно ли это), какие тонкости возможны при перепайке и как они различаются друг от друга. Коменты к сожалению оставлять не могу 🙁
Дубликаты не найдены
Если трещин нет, цвет нормальный и не звонится — они работают идеально с вероятностью 95%
Если трещины есть, и не звонится — скорее всего кондер умер, но может быть и так, что трещина будет между пятаком и торцом конденсатора. Пропаяй получше, иначе снимай и выкидывай.
А если звонится, то увы.
А вообще большая часть этих конденсаторов стоит между землей и питанием отдельных элементов, поэтому они либо есть, либо их нет, и параметры не так уж важны.
Разницы между ними кроме размера и соответствующих параметров (для безымянных конденсаторов) на практике не встречал. У них есть типоразмеры, например, 0402, 0603 и так далее — что означает размер, 0,4х0,2 мм. При пайке основная тонкость — точно попасть паяльником и не сдуть феном, вот и всё.
Очень многие начинающие радиолюбители сталкиваются с проблемой определения характеристик таких накопительных устройств, как смд конденсаторы. Имеющие небольшой размер и используемые при такой технологии установки, как поверхностный монтаж, эти компоненты многих печатных плат имеют маркировку, отличающуюся от той, которая используется у более крупных аналогов для сквозного монтажа. В данной статье будут рассмотрены основные виды данных радиодеталей, их обозначение и его расшифровка.
Виды SMD-конденсаторов
Все используемые для поверхностного монтажа накопительные устройства бывают трех основных видов: керамические, электролитические и танталовые.
Электролитические
Такие компоненты для поверхностного монтажа состоят из:
- Алюминиевого цилиндрического корпуса, диаметром от 4 до 10 мм и высотой от 5,4 до 10,5 мм;
- Двух обкладок из тонкой фольги, разделенных пропитанной электролитом бумагой и скрученных в небольшой рулончик;
- Двух контактов (выводов), которые располагаются перпендикулярно осевой линии компонента. Так как электролитические смд накопители являются полярными, то к одному из контактов, обозначенному специальной полосой на торце корпуса, подключают отрицательный потенциал, ко второму – положительный.
- Монтажной площадки, предназначенной для фиксации компонента на рабочей поверхности.
Различные модели данных компонентов, имеющие номинал от 1 до 1000-150 мкФ, способны работать при напряжении от 4 до 1000 В.
Керамические
Наиболее часто применяемый керамический многослойный накопитель для поверхностного монтажа имеет следующее строение:
- Керамическое тело – большое количество тонких слоев керамического диэлектрика;
- Внутренние электроды – никелевые тонкие пластинки, расположенные между слоями керамического диэлектрика;
- Торцевые контактные электроды – два вывода, к каждому из которых подключена половина внутренних электродов.
В отличие от электролитических, такие компоненты имеют уплощенную прямоугольную форму, небольшие размеры (длина и ширина самых мелких радиодетали этого вида составляют всего 0,8 и 1,5-1,6 мм, соответственно). Однако, несмотря на небольшие размеры, такие смд компоненты могут работать при напряжении от 25 до 700-1000В, накапливая при этом заряд, величиной от 0,5-1,пФ до 3-3,3 мкФ.
Танталовые
Основными составными частями танталовых полярных накопительных смд устройств являются:
- Анод – контакт, на который подается электрический ток с отрицательным потенциалом;
- Катод – расположенный на противоположной стороне корпуса контакт, запитываемый положительным потенциалом;
- Диэлектрик – слой не проводящего электрический ток материала, располагающегося между анодом и катодом;
- Электролит – находящееся в жидком или твёрдом агрегатном состоянии, проводящее электрический ток вещество. Для предотвращения высыхания конденсатора чаще всего в качестве электролита используют гранулированный оксид марганца.
- Диэлектрик – оксид тантала, которым покрыт располагающийся в корпусе гранулированный анод.
Применяют такие небольшие по размерам накопительные устройства при рабочем напряжении от 6 до 32-35 В. Величина накапливаемого при этом заряда колеблется от 1 до 600-680 мкФ.
Как определить номинал и напряжение
Очень многие производители не указывают на своих изделиях такие основные для любого конденсатора характеристики, как рабочее напряжение и номинал (номинальная емкость).
Определение номинала данных электронных компонентов производится следующими способами:
- С помощью такого имеющего функцию измерения номинала контрольно-измерительного прибора, как мультиметр. Для измерения значения номинала контрольные щупы прибора подключают к специальным разъемам. Затем переключатель устанавливается на самый большой по значению предел измерения (в большинстве мультиметров это 200 мкФ). После этого щупы прикладывают к контактам конденсатора, спустя несколько секунд на дисплее прибора получают значение номинала накопительного устройства.
Важно! Перед измерением емкости смд накопитель обязательно разряжают – оставшийся в обкладках заряд может повредить электронные схемы мультиметра.
- С помощью специализированного измерительного прибора RLC.
Для того чтобы узнать рабочее напряжение накопительного SMD устройства, пользуются следующей простой методикой:
- При помощи мультиметра измеряют напряжение между выводами включенного в схему компонента;
- Полученное значение умножают на 1,5.
Рассчитанное таким способом рабочее напряжение будет примерным, более точное значение данной характеристики можно узнать из маркировочного кода конденсатора или его описания.
Маркировка конденсаторов: расшифровка цифр и букв
В зависимости от вида накопительного смд устройства, различают несколько методик их маркировки.
Маркировка керамических устройств
Устройства данного вида маркируются с помощью одной или двух латинских букв и цифры. Первая буква при этом обозначает производителя компонента, вторая – его номинальную ёмкость. Цифра в маркировочном коде указывает на степень номинала конденсатора в пикофарадах.
Пример. Маркировка накопительного смд компонента KG3 расшифровывается как изделие, произведенное компанией «Kemet» и имеющее емкость 1,8×103 пкФ.
Маркировка электролитических SMD накопителей
Электролитические накопительные устройства для поверхностного монтажа маркируются 4 основными способами:
- В виде одной буквы, обозначающей рабочее напряжение, и трех цифр, две из которых указывают на значение емкости конденсатора, а третья – на степень номинала в пикофарадах.
- В виде двух букв, обозначающих рабочее напряжение и емкость, одной цифры, указывающей на степень номинала в пикофарадах.
- Четырьмя символами – это обозначение, состоящее из одной буквы, означающей рабочее напряжение, двух цифр, указывающих на емкость компонента, и последней цифры, определяющей количество нулей после значения емкости.
- Двухстрочная – верхняя часть маркировки в виде цифры означает емкость компонента, нижняя – его рабочее напряжение.
Маркировка танталовых накопительных смд устройств
Маркировка танталовых смд накопителей состоит из следующих частей:
- Большой латинской буквы, указывающей на рабочее напряжение компонента;
- Трёхзначного числа, первые две цифры которого означают емкость накопителя, а последняя – количество нулей после значения емкости.
Пример. Маркировка танталового накопителя G103 означает, что он имеет рабочее напряжение 4 В и емкость 10 000 пикофарад.
Важно! При подключении танталовых и электролитических накопителей необходимо соблюдать полярность. Для этого на их корпуса наносится специальная полоса, имеющая черный цвет и обозначающая положительный (у танталовых накопителей) или отрицательный (у электролитических устройств) вывод. Неправильное подключение с игнорированием данных меток приведет к тому, что накопитель выйдет из строя.
Как маркируются большие конденсаторы
Большие накопительные смд устройства маркируются по тем же принципам, что их более мелкие аналоги. При больших размерах корпуса на таких компонентах часто пишется полное значение их емкости и рабочего напряжения.
На заметку. По поисковому запросу «smd конденсаторы без маркировки как определить», помимо сайтов, на первой странице выдачи полезную информацию по данной тематике содержат различные форумы радиолюбителей и специалистов, занимающихся ремонтом компьютерной и бытовой техники.Обозначение в схемах.
На электрических схемах накопительные смд устройства имеют такое же обозначение, как и у их используемых для сквозного монтажа аналогов.
Таким образом, умение читать и расшифровывать маркировочные коды позволяет правильно определять характеристики данных накопителей. Такие навыки очень важны при замене вышедших из строя накопителей, пайке сложных схем, чувствительных к перепадам вольт-амперных характеристик электрического тока.
Видео
«>
Маркировка SMD компонентов: кодовые обозначения
Маркировка SMD компонентов. Обозначения и расшифровка радиоэлектронных компонентов сейчас доступна не только в специальной литературе, интернете, но и в виде программного приложения. Кодовые обозначения этих миниатюрных приборов выполнены в сжатом формате, и чтобы все это расшифровать, нужно знать, что представляет из себя маркировка SMD элементов.
Кодовые обозначения и маркировка SMD компонентов для поверхностного монтажа
Сейчас промышленность выпускает большое количество миниатюрных элементов для поверхностного монтажа электронных схем. Корпуса таких приборов, также могут различаться как по форме так и по размеру, а также по окраске. Есть радиодетали с выводами и без выводов, есть маленькие и совсем маленькие, но при этом все они имеют свои кодовые обозначения. Однако, маркировка SMD компонентов непосвященному радиолюбителю ничего не скажет.
Немного о самих SMD приборах
Основное преимуществом SMD компонентов заключается в возможности их компактного использования на печатных платах, где компоновку, монтаж и пайку выполняют автоматы. При этом и маркировку SMD компонентов делают также роботы с особой быстротой и точностью. Поэтому, если вы решили собрать электронное устройство именно с использованием СМД компонентов для поверхностного монтажа, то в этом случае вам необходимо изучить как маркируются SMD элементы и как можно расшифровать их кодовые обозначения.
В этой статье мы представим варианты опознания номинальных значений различных электронных приборов из категории СМД с помощью вспомогательных таблиц. А в конце статьи есть ссылка на программу, использование которой можно значительно облегчить определение номиналов деталей и расшифровывать маркировку SMD приборов. Данное приложение содержит большую базу современных полупроводниковых приборов для поверхностного монтажа.
Кроме этого, хотелось бы упомянуть здесь о еще одном важном преимуществе поверхностного монтажа (SMT), которое заключается в свойстве этих элементов работать не внося существенные искажения в схему. Обосновывается это тем, что эти миниатюрные электронные элементы ввиду своих компактных размеров, имеют очень маленькую паразитную емкость и индуктивность, соответственно и малые помехи.
Корпуса и SMD маркировка
Так как разновидностей таких приборов великое множество, их принято условно делить на несколько групп, исходя из количества контактных выводов на них и габаритов корпуса:
выводы/размер | Очень-очень маленькие | Очень маленькие | Маленькие | Средние |
2 вывода | SOD962 (DSN0603-2), WLCSP2*, SOD882 (DFN1106-2), SOD882D (DFN1106D-2), SOD523, SOD1608 (DFN1608D-2) | SOD323, SOD328 | SOD123F, SOD123W | SOD128 |
3 вывода | SOT883B (DFN1006B-3), SOT883, SOT663, SOT416 | SOT323, SOT1061 (DFN2020-3) | SOT23 | SOT89, DPAK (TO-252), D2PAK (TO-263), D3PAK (TO-268) |
4-5 выводов | WLCSP4*, SOT1194, WLCSP5*, SOT665 | SOT353 | SOT143B, SOT753 | SOT223, POWER-SO8 |
6-8 выводов | SOT1202, SOT891, SOT886, SOT666, WLCSP6* | SOT363, SOT1220 (DFN2020MD-6), SOT1118 (DFN2020-6) | SOT457, SOT505 | SOT873-1 (DFN3333-8), SOT96 |
> 8 выводов | WLCSP9*, SOT1157 (DFN17-12-8), SOT983 (DFN1714U-8) | WLCSP16*, SOT1178 (DFN2110-9), WLCSP24* | SOT1176 (DFN2510A-10), SOT1158 (DFN2512-12), SOT1156 (DFN2521-12) | SOT552, SOT617 (DFN5050-32), SOT510 |
Естественно, в эту таблицу невозможно уместить данные о всех существующих корпусов, так как выполнить такое просто не реально. Разработка и производство новых и модифицированных SMD компонентов не стоит на месте, поэтому периодически появляются новые геометрически видоизмененные корпуса с индивидуальной маркировкой, и занести их одномоментно в реестр, не предоставляется возможным.
Электронные приборы помещенные в корпус SMD, в зависимости от размеров и назначения имеют контактные выводы, но также есть и без выводов. В случае отсутствия на корпусе привычных нам выводов, то их функции выполняет контактная площадка, как правило расположенная в торце корпуса. Например: микросхемы типа BGA, используемые в микроэлектронике, содержат на корпусе множество небольших капелек припоя.
Кроме этого, детали для поверхностного монтажа, могут отличаются от других производителей как размерами по высоте или ширине, так и SMD маркировка может быть другой, то есть кодовыми обозначениями.
В подавляющем большинстве корпуса SMD деталей созданы для установки на печатную плату технологического оборудования выполняющего монтаж в автоматическом режиме. Конечно, простые радиолюбители такую технику для работы в домашних условиях никогда не смогут приобрести.
Да она в принципе и не нужна для дома, для этого есть другая аппаратура, не менее эффективная, но только для работы в домашней мастерской. Как бы там не было, но наши умельцы научились перепаивать BGA микросхемы своими силами и средствами, например: так называемой “перекаткой” шариков микросхемы.
Группа СМД корпусов по их названию
Название | Расшифровка | кол-во выводов |
SOT | small outline transistor | 3 |
SOD | small outline diode | 2 |
SOIC | small outline integrated circuit | >4, в две линии по бокам |
TSOP | thin outline package (тонкий SOIC) | >4, в две линии по бокам |
SSOP | усаженый SOIC | >4, в две линии по бокам |
TSSOP | тонкий усаженный SOIC | >4, в две линии по бокам |
QSOP | SOIC четвертного размера | >4, в две линии по бокам |
VSOP | QSOP ещё меньшего размера | >4, в две линии по бокам |
PLCC | ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
CLCC | ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
QFP | квадратный плоский корпус | >4, в четыре линии по бокам |
LQFP | низкопрофильный QFP | >4, в четыре линии по бокам |
PQFP | пластиковый QFP | >4, в четыре линии по бокам |
CQFP | керамический QFP | >4, в четыре линии по бокам |
TQFP | тоньше QFP | >4, в четыре линии по бокам |
PQFN | силовой QFP без выводов с площадкой под радиатор | >4, в четыре линии по бокам |
BGA | Ball grid array. Массив шариков вместо выводов | массив выводов |
LFBGA | низкопрофильный FBGA | массив выводов |
CGA | корпус с входными и выходными выводами из тугоплавкого припоя | массив выводов |
CCGA | СGA в керамическом корпусе | массив выводов |
μBGA | микро BGA | массив выводов |
FCBGA | Flip-chip ball grid array. Массив шариков на подложке, к которой припаян кристалл с теплоотводом | массив выводов |
LLP | безвыводной корпус |
Все это большое разнообразие электронных элементов обычному радиолюбителю может и не потребоваться, но знать о них нужно, мало ли что. Для паяльщика, который творит у себя дома, вполне может хватить перечня из основных деталей, которыми обычно пользуются все радиолюбители. Чип-конденсаторы, как правило выполнены в форме многоугольника либо миниатюрного бочонка, который относится к группе электролитический емкостей. Конденсаторы формы параллелепипеда могут принадлежать группе керамических либо танталовых.
Основные виды и размеры SMD приборов
Корпуса компонентов для микроэлектроники, имеющие одинаковые номинальные значения, могут отличаться друг от друга габаритами. Их габариты определяются прежде всего по типовому размеру каждого. К примеру: резисторы обозначаются типовыми размеры от «0201» до «2512». Данные 4 цифры в маркировке SMD компонента обозначают кодировку, которая указывает длину и ширину прибора в дюймовом измерении. В размещенной таблице, типовые размеры указаны также и в мм.
Маркировка SMD компонентов — резисторы
Прямоугольные чип-резисторы и керамические конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | H, мм (дюйм) | A, мм | Вт |
0201 | 0.6 (0.02) | 0.3 (0.01) | 0.23 (0.01) | 0.13 | 1/20 |
0402 | 1.0 (0.04) | 0.5 (0.01) | 0.35 (0.014) | 0.25 | 1/16 |
0603 | 1.6 (0.06) | 0.8 (0.03) | 0.45 (0.018) | 0.3 | 1/10 |
0805 | 2.0 (0.08) | 1.2 (0.05) | 0.4 (0.018) | 0.4 | 1/8 |
1206 | 3.2 (0.12) | 1.6 (0.06) | 0.5 (0.022) | 0.5 | 1/4 |
1210 | 5.0 (0.12) | 2.5 (0.10) | 0.55 (0.022) | 0.5 | 1/2 |
1218 | 5.0 (0.12) | 2.5 (0.18) | 0.55 (0.022) | 0.5 | 1 |
2010 | 5.0 (0.20) | 2.5 (0.10) | 0.55 (0.024) | 0.5 | 3/4 |
2512 | 6.35 (0.25) | 3.2 (0.12) | 0.55 (0.024) | 0.5 | 1 |
Цилиндрические чип-резисторы и диоды | |||||
Типоразмер | Ø, мм (дюйм) | L, мм (дюйм) | Вт | ||
0102 | 1.1 (0.01) | 2.2 (0.02) | 1/4 | ||
0204 | 1.4 (0.02) | 3.6 (0.04) | 1/2 | ||
0207 | 2.2 (0.02) | 5.8 (0.07) | 1 |
SMD конденсаторы
Конденсаторы выполненные из керамики по размеру одинаковы с резисторами, что касается танталовых конденсаторов, то они определяются по своей, собственной шкале типовых размеров:
Танталовые конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | T, мм (дюйм) | B, мм | A, мм |
A | 3.2 (0.126) | 1.6 (0.063) | 1.6 (0.063) | 1.2 | 0.8 |
B | 3.5 (0.138) | 2.8 (0.110) | 1.9 (0.075) | 2.2 | 0.8 |
C | 6.0 (0.236) | 3.2 (0.126) | 2.5 (0.098) | 2.2 | 1.3 |
D | 7.3 (0.287) | 4.3 (0.170) | 2.8 (0.110) | 2.4 | 1.3 |
E | 7.3 (0.287) | 4.3 (0.170) | 4.0 (0.158) | 2.4 | 1.2 |
Катушки индуктивности и дроссели SMD
Индуктивные катушки могут быть выполнены в различных конфигурациях корпуса, но их значение индицируется также, исходя из типоразмеров. Такой принцип маркировки SMD и расшифровки кодовых обозначений, дает возможность значительно упростить монтаж элементов на плате в автоматическом режиме, а радиолюбителю свободнее ориентироваться.
dr>
Моточные компоненты, такие как катушки, трансформаторы и прочие, которые мы в большинстве случаев изготавливаем собственноручно, могут просто не уместится на плате. Поэтому такие изделия, также выпускаются в компактном исполнении, которые можно установить на плату.
Определить какая именно катушка требуется вашему проекту, лучше всего воспользоваться каталогом и там подобрать требующийся вариант по типовому размеру. Типовые размеры, определяют с использованием кодового обозначения маркированного 4 числами (0805). Где значение «08» определяет длину, а число «05» показывает ширину в дюймовом измерении. Фактические габариты такого SMD компонента составят 0.08х0.05 дюйма.
Диоды и стабилитроны в корпусе SMD
Что касается диодов, то они также выпускаются в корпусах как цилиндрической формы так и в виде многогранника. Типовые размеры у этих компонентов задаются идентично индуктивным катушкам, сопротивлениям и конденсаторам.
Диоды, стабилитроны, конденсаторы, резисторы | |||||
Тип корпуса | L* (мм) | D* (мм) | F* (мм) | S* (мм) | Примечание |
DO-213AA (SOD80) | 3.5 | 1.65 | 048 | 0.03 | JEDEC |
DO-213AB (MELF) | 5.0 | 2.52 | 0.48 | 0.03 | JEDEC |
DO-213AC | 3.45 | 1.4 | 0.42 | — | JEDEC |
ERD03LL | 1.6 | 1.0 | 0.2 | 0.05 | PANASONIC |
ER021L | 2.0 | 1.25 | 0.3 | 0.07 | PANASONIC |
ERSM | 5.9 | 2.2 | 0.6 | 0.15 | PANASONIC, ГОСТ Р1-11 |
MELF | 5.0 | 2.5 | 0.5 | 0.1 | CENTS |
SOD80 (miniMELF) | 3.5 | 1.6 | 0.3 | 0.075 | PHILIPS |
SOD80C | 3.6 | 1.52 | 0.3 | 0.075 | PHILIPS |
SOD87 | 3.5 | 2.05 | 0.3 | 0.075 | PHILIPS |
Транзисторы в корпусе SMD
СМД транзисторы выполнены в корпусах, которые соответствуют их максимальном мощности. Корпуса этих полупроводниковых элементов символично можно разделить на два вида: SOT и DPAK.
Здесь нужно пояснить — корпуса такого типа могут содержать в себе не только одиночный транзистор, но и целую сборку компонентов.
Маркировка SMD компонентов
Маркировка электронных приборов в современной технике уже требует профессиональных знаний, и так просто, с кондачка в ней тяжело разобраться, особенно начинающему радиолюбителю. В сравнении с деталями выпускаемыми при Советском Союзе, где маркировка номинального значения и тип прибора наносилась в текстовом варианте, сейчас это просто мета паяльщика. Не надо было держать под рукой кипы справочной литературы, чтобы определить назначение и параметры того или иного прибора.
Однако, технологические процессы в промышленности не стоят на месте и автоматизация производства определяет свои правила. Именно SMD детали в поверхостном монтаже играют главную роль, а роботу нет никакого дела до маркировки деталей заправленных в машину, что туда поместили, то он и припаяет. Маркировка нужна специалисту, который обслуживает этого робота.
Скачать программу для расшифровки обозначения SMD деталей
Конденсатор постоянной емкости обозначение. Маркировка конденсаторов SMD
Наряду с самыми распространенными радиокомпонентами резисторами, конденсаторы по праву занимают второе место по использованию в электрических цепях и схемах. Основные характеристиками конденсатора являются номинальная ёмкость и номинальное напряжение. Чаще всего в схемах радиоэлектроники применяются постоянные конденсаторы, и значительно реже — переменные и подстроенные.
Номинальное напряжение конденсаторов обычно на схемах не указывают, хотя иногда и встречается в некоторых случаях, например, в высоковольтных схемах питающего рентгеновского устройства с обозначением номинальной емкости часто пишут и номинальное напряжение. Для оксидных, их еще называют электролитических конденсаторов номинал напряжения, также очень часто указывают.
Большинство оксидных конденсаторов полярные, поэтому включать их в электрическую схемуь можно только с соблюдением полярности. Чтобы отобразить это на схеме, у символа положительной обкладки имеется знак «+» .
Для развязки цепей питания в высокочастотных схемах по переменному току применяют проходные конденсаторы . Они имеют три вывода: два — от одной обкладки («вход» и «выход»), а третий от другой, наружной, которую соединяют с экраном. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора. Наружную обкладку рисуют короткой дугой, а также одним или двумя отрезками прямых линий с выводами от середины. С той же задачей, что и проходные, используют опорные конденсаторы. Обкладку, соединяемую с корпусом, выделяют в обозначении такого конденсатора тремя наклонными линиями, говорящим о « ».
Обозначение конденсаторов переменной емкости (КПЕ) на схемах |
КПЕ используются для оперативной регулировки и состоят из статора и ротора. Такие конденсаторы широко применяются, например, для регулировки частоты радиовещательных и телевизионных приёмников. КПЕ допускают многократную регулировку ёмкости в заданных пределах. Это их свойство отображается на схемах знаком регулировки — наклонной стрелкой, пересекающей базовый символ под углом 45° , а возле него обычно пишут минимальную и максимальную емкость). Если требуется обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора
Для одновременного изменения емкости в нескольких цепях применяются блоки, из двух, грех и большего количества КПЕ. Принадлежность КПЕ к блоку указывают на схемах штриховой линией механической связи. При отображении КПЕ блока в разных частях схемы, механическую связь не показывают, ограничиваясь только соответствующей нумерацией секции.
Саморегулирумые конденсаторы (другое название нелинейные) обладают свойством изменять номинал емкость под действием внешних условий. В радиоэлектронных самоделках и конструкциях часто используют вариконды . Их уровень емкости меняется в зависимости от приложенного к обкладкам напряжения. Буквенный код варикондов — CU , обозначаются на схемах с латинской буквой U
Аналогичным образом обозначают термоконденсаторы . Буквенный код этой разновидности конденсаторов — СK а на схемах указывается символом t°
Керамические конденсаторы SMD ввиду их малых габаритов иногда маркируются кодом, состоящим из одного или двух символов и цифры. Первый символ, если он есть – код изготовителя (напр. K для Kemet, и т.д.), второй символ – мантисса и цифра показатель степени (множитель) емкости в pF. Например S3 – 4. 7nF (4.7 x 10^3 Pf) конденсатор от неизвестного изготовителя, в то время как KA2 100 pF (1.0 x 10^2 PF) конденсатор от фирмы Kemet.
Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.
В общем случае керамические конденсаторы на
основе диэлектрика с высокой проницаемостью обозначаются
согласно EIA тремя символами, первые два из которых указывают
на нижнюю и верхнюю границы рабочего диапазона температур, а
третий – допустимое изменение емкости в этом диапазоне.
Расшифровка символов кода приведена в
Z5U – конденсатор с точностью
22, -56% в диапазоне температур от +10 до +85°C.X7R – конденсатор с точностью ±15% в диапазоне
температур от -55 до +125°C.
Маркировка электролитических конденсаторов SMD.
Электролитические конденсаторы SMD часто маркируются их емкостью и рабочим напряжением, например 10 6V – 10 µ F 6V. Иногда этот код используется вместо обычного, который состоит из символа и 3 цифр. Символ указывает рабочее напряжение, а 3 цифры (2 цифры и множитель) дают емкость в pF.
Срез или полоса указывает положительный вывод.
Символ Напряжение
Например, конденсатор маркирован A475 – 4. 7mF 10V
475 = 47 x 10^5pF = 4.7 x 10^6pF = 4. 7mF
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Наряду с резисторами конденсаторы являются наиболее широко используемыми компонентами электрических цепей. Основные характеристики конденсатора — номинальная ёмкость и номинальное напряжение. Чаще всего в схемах используются постоянные конденсаторы, и гораздо реже — переменные и подстроенные. Отдельной группой стоят конденсаторы, изменяющие свою ёмкость под воздействием внешних факторов.
Общие условные графические обозначения конденсаторов постоянной ёмкости приведены на рис. 3.1 и их определяет соответствующий ГОСТ .
Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах, как правило, не указывают. Только в некоторых случаях, например, в схемах цепей высокого напряжения рядом с обозначением номинальной ёмкости можно указывать и номинальное напряжение (см. рис. 3.1, С4 ). Для оксидных же конденсаторов (старое название электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало практически обязательным (рис. 3.2 ).
Подавляющее большинство оксидных конденсаторов — полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности. Чтобы показать это на схеме, у символа положительной обкладки такого конденсатора ставят знак «+», Обозначение С1 на рис. 3.2 — общее обозначение поляризованного конденсатора. Иногда используется.другое изображение обкладок конденсатора (см. рис.3.2 , С2 и СЗ).
С технологическими целями или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но выводов делают только три (один из них общий). Условное графическое обозначение
Для развязки цепей питания высокочастотных устройств по переменному току применяют так называемые проходные конденсаторы . У них тоже три вывода: два — от одной обкладки («вход» и «выход»), а третий (чаще в виде винта) — от другой, наружной, которую соединяют с экраном или завёртывают в шасси. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора (рис. 3.3 , С1). Наружную обкладку обозначают короткой дугой, а также одним (С2) или двумя (СЗ) отрезками прямых линий с выводами от середины. Условное графическое обозначение с позиционным обозначением СЗ используют при изображении проходного конденсатора в стенке экрана. С той же целью, что
Как вы распознаете смд конденсаторы без маркировки? — Электроника
28 минут назад, Деревня65 сказал:
Вот эта мелочь немаркированная размером длина 4,5 мм, боковые 2 х 2 мм — как понять, какая емкость и напряжение?
Померять нужно, однако. (всегда Ваш, Капитан Очевидность)
28 минут назад, Деревня65 сказал:
Рискнуть и поставить наобум?
Все зависит от того, в какое место и какой схемы Вы это планируете вставлять. Что там будет происходить, если емкость будет на порядок больше, или на порядок меньше нужной ?
Если ничего страшного, то можно и поставить; — по результатам работы поймете насколько угадали, или ошиблись…
28 минут назад, Деревня65 сказал:
Есть еще маркированные покрупнее 226С, но это 22 мкф я так понимаю, лишку будет супротив требуемого 1 мкф.
А кроме того, он еще и полярный.
Если в Вашей схеме это значения не имеет — ставьте. Если имеет — не ставьте.