Конденсаторы современные: Виды конденсаторов и их применение – История конденсаторов часть 2: современная эра / Habr

История конденсаторов часть 2: современная эра / Habr

В предыдущих сериях:
История конденсаторов часть 1: первые открытия
Конденсаторы для «чайников»

В начале истории конденсаторов они использовались в основном для получения первых представлений об электричестве, ещё даже до того, как были открыты электроны. Это было время для публичных демонстраций достижений науки, например, в виде держащихся за руки людей, через которых пропускали ток конденсатора. Современная эра развития конденсаторов начинается в конце 18-го века, когда началось практическое применение электричества, потребовавшее изготовления конденсаторов с определёнными свойствами.

Лейденские банки


Маркони с передающим аппаратом

Одним из примеров практического использования стали искровые трансмиттеры, появившиеся до 1900 года и существовавшие в первом и втором десятилетиях. Трансмиттеры набирали большое напряжение для разряда через зазор, и потому с этой целью использовались керамические конденсаторы, которые могли выдержать такое напряжение. Кроме того, для этого требовалась высокая частота. Это были, по сути, лейденские банки, и для получения нужной ёмкости им требовались большие размеры.

Слюда

В 1909 году Уильям Дубилье [William Dubilier] изобрёл слюдяные конденсаторы меньшего размера, которые использовались на принимающей стороне в резонансных контурах беспроводного оборудования.

Ранние слюдяные конденсаторы представляли собою слои слюды и медной фольги, сжатые вместе в «пакетные слюдяные конденсаторы». Они были ненадёжными, и из-за того, что между слоями слюды и фольги оставались воздушные зазоры, были подвержены коррозии и окислению, а расстояние между пластинами могло меняться, что приводило к изменениям ёмкости.

В 1920-х были разработаны слюдяные конденсаторы с применением серебра, в которых слюда была с обеих сторон заключена в металл, что устраняло воздушные зазоры. Благодаря тонкому металлическому покрытию их размер можно было уменьшить, и они были очень надёжными. Конечно, развитие не остановилось на этом. Давайте рассмотрим историю современных конденсаторов, отмеченную рядом прорывов, следовавших один за другим.

Керамика


Многослойные керамические конденсаторы вокруг микропроцессора

В 1920-х слюды в Германии было мало, и там экспериментировали с новыми поколениями керамических конденсаторов. Было обнаружено, что у рутила (диоксида титана) ёмкость линейно зависит от температуры, и они могут заменить слюдяные конденсаторы. Их сначала производили в небольших количествах, а затем более крупными партиями в 1940-х. Они состояли из дисков, покрытых с двух сторон металлом.

Для увеличения ёмкости использовалась ещё одна разновидность керамики, титанат бария, и у неё диэлектрическая постоянная была в 10 раз выше, чем у слюды или диоксида титана. Но электрически параметры у неё были менее стабильными, и в результате её можно было использовать вместо слюды только там, где не требовалось надёжности. После Второй Мировой этот недостаток был исправлен.

Начавшая работу в 1961 году американская компания представила многослойный керамический конденсатор (multi-layer ceramic capacitor, MLCC), у которого размеры были меньше, а ёмкость – больше. К 2012 году ежегодное производство MLCC из титаната бария достигало уже 1012 штук.

Алюминиевые электролитические


Электролитический конденсатор

В 1890-х Чарльз Поллак открыл, что слой оксида на алюминиевом аноде проявляет стабильность в нейтральной или щелочной среде, и получил в 1897 году патент на алюминиевый электролитический конденсатор с бурой. Первые «мокрые» электролитические конденсаторы» появились в радиоприёмниках в 1920-х, но их срок жизни был ограничен. «Мокрыми» их называли из-за содержания воды. Это была ёмкость с металлическим анодом, погружённым в раствор буры или другого электролита, растворённого в воде. Внешняя часть контейнера служила второй пластиной. Их использовали в телефонных АТС для уменьшения шума реле.

Патент на предка современного электролитического конденсатора был заявлен в 1925 году Сэмюэлем Рубеном. Он сделал бутерброд из гелеобразного электролита, расположенного между анодом, покрытым оксидом, и второй пластиной из металлической фольги, устранив необходимость в контейнере с водой. В результате получился «сухой» электролитический конденсатор. Всё это серьёзно уменьшило размер и стоимость конденсаторов.

В 1936-м компания Cornell-Dubilier представила свои алюминиевые электролитические конденсаторы, в которых были такие улучшения, как загрубление поверхности анода, помогавшее увеличить ёмкость. Компания Hydra-Werke, принадлежавшая AEG, примерно в то же время начала их массовое производство в Берлине.

После Второй Мировой быстрое развитие технологий радио и телевидения привело к увеличению производства конденсаторов и разнообразия их стилей и размеров. Среди улучшений были уменьшение утечек тока и эквивалентное последовательное сопротивление (ESR), увеличение температурных рамок и срока службы благодаря использованию новых органических электролитов. Дальнейшие разработки в 1970-1990-х годах продолжили эту тенденцию, уменьшая утечки, ESR и увеличивая рабочие температуры.

В начале 2000-х годов случилась т.н. «конденсаторная чума», из-за того, что производители использовали для изготовления конденсаторов украденный рецепт электролита, который оказался неполным. Отсутствие стабилизирующих компонентов приводило к раннему выходу конденсаторов из строя.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы впервые начали изготавливать для военных нужд в 1930-х. Они использовали закрученную танталовую фольгу и жидкий электролит. В 1950-х в Bell Laboratories изготовили первый танталовый конденсатор с твёрдым электролитом. Они растирали тантал в порошок и спекали его в цилиндр. Сначала использовались жидкие электролиты, но потом было обнаружено, что диоксид марганца можно использовать в качестве твёрдого электролита.

И хотя основные изобретения были сделаны в Bell Labs, в 1954-м Sprague Electric Company улучшила процесс изготовления, и начала производить первые коммерчески доступные танталовые конденсаторы с твёрдым электролитом.

В 1975 появились полимерные танталовые электролитические конденсаторы с гораздо большей проводимостью. В них проводящие полимеры заменяли диоксид марганца, что приводило к уменьшению ESR. NEC выпустили полимерный танталовый конденсатор в 1995 году для поверхностного монтажа, а в 1997 за ними последовала и Sanyo.

Стоимость танталовой руды на рынке нестабильна, и пару раз скачки уже случались – в 1980 и в 2000/2001 годах. Последний скачок привёл к разработке ниобиевых электролитических конденсаторов с электролитом из диоксида марганца, свойства которых были примерно сравнимы с танталовыми.

Полимерная плёнка


Конденсаторы на полимёрной плёнке

Конденсаторы на металлизированной бумаге были запатентованы в 1900-м году Г.Ф. Мэнсбриджем [G.F. Mansbridge]. Металлизировали бумагу, покрывая её связующим веществом, содержавшим частички металла. В начале 1900-х их активно использовали как развязывающие конденсаторы в телефонии. Во время Второй мировой Bosch улучшила процесс и производила их, покрывая бумагу лаком, который затем покрывался металлом путём вакуумного напыления. В 1954-м Bell Labs изготовили металлизированную лаковую плёнку толщиной 2,5 мкм отдельно от бумаги, что позволило создавать конденсаторы ещё меньшего размера. Этот конденсатор можно считать первым полимерным.

Исследования пластика, проводимые специалистами по органической химии во время Второй мировой, привели к развитию этой темы. Одним из них в 1954 году стал первый майларовый конденсатор. Торговую марку «майлар» в 1952 году представила компания Dupont, и это был очень прочный полиэтилентерефталат (PET), плёнка на основе синтетического полиэфирного волокна. В 1954 был произведён конденсатор на майларовой плёнке толщиной 12 мкм. К 1959 году список включал конденсаторы, сделанные при помощи полиэтилена, полистирена, политетрафторэтилена (PTFE), PET и поликарбоната. К 1970-м в электронных устройствах использовались конденсаторы из плёнки и фольги без бумаги.

Двойные (суперконденсаторы)


Суперконденсаторы

И вот история приводит нас к последнему типу конденсаторов, и очень интересному, поскольку их ёмкость измеряется уже в тысячах фарад. В начале 1950-х исследователи в General Electric использовали свои наработки в области топливных ячеек и перезаряжаемых батарей для экспериментов с конденсаторами с пористыми электродами из углерода. Это привело к патенту Беккера на «Электролитический конденсатор низкого напряжения с пористыми углеродными электродами». GE не стала заниматься дальнейшими разработками, но заложенные в патент принципы привели к созданию конденсаторов очень высокой ёмкости.

Компания Standard Oil из Огайо разработала ещё одну их версию, и в итоге продала в 1970-х лицензию компании NEC, которая довела их до коммерческого варианта под торговой маркой «суперконденсатор». Они работали с напряжением в 5,5 В и имели ёмкости до 1 Ф. Они достигали объёма в 5 куб.см. и использовались в качестве резервного источника питания для компьютерной памяти.

Профессор Брайан Эванс Конвэй из Оттавского университета работал над электрохимическими конденсаторами из оксида рутения с 1975 по 1980 годы. В 1991 он описал разницу между суперконденсаторами и батареями в электрохимическом хранении заряда, а полностью описал различия в 1999 году, снова введя в оборот термин «суперконденсатор».

Продукты и рынки для суперконденсаторов постепенно появлялись. Известные торговые марки – это Goldcaps, Dynacap и PRI Ultracapacitor, последняя из которых связана с первыми суперконденсаторами, обладающими небольшим внутренним сопротивлением, разработанными в 1982 году компанией Pinnacle Research Institute (PRI) для нужд военных.

Относительно свежие разработки на рынке включают литий-ионные конденсаторы, в которых аноды из активированного угля покрываются ионами лития. Их ёмкость составляет тысячи фарад при напряжении в 2,7В.

виды, классификация и особенности звучания

Конденсаторы (Capacitors, CAP) являются важными компонентами в аудиосистемах. Они имеют различные показатели напряжения, тока и форм-факторов. Для того чтобы выбрать, какие конденсаторы лучше для звука, модераторам нужно разбираться во всех параметрах CAP. Целостность аудиосигнала во многом зависит от выбора конденсаторов. Поэтому при выборе правильного устройства необходимо учитывать все важные факторы.

Параметры CAP аудиосигнала специально оптимизированы для высокопроизводительных приложений и предлагают более эффективные аудиоканалы, чем стандартные компоненты. Типы конденсаторов, которые обычно используются в аудиоканалах, представляют собой алюминиевые электролитические и пленочные CAP, а какие конденсаторы лучше для звука в конкретных условиях, зависит от используемых схем и устройств: громкоговорителей, проигрывателей компакт-дисков и музыкальных инструментов, бас-гитар и других.

История звукового конденсатора

Конденсатор является одним из старейших электронных компонентов. Электрические проводники были обнаружены в 1729 году. В 1745 году немецкий изобретатель Эвальд Георг фон Клейст обнаружил лейденский сосуд, который стал первым CAP. Физик Питер ван Мюссенбрук — физик из Лейденского университета открыл лейденскую банку самостоятельно в 1746 году.

История звукового конденсатора

В настоящее время лейденская банка представляет собой стеклянный сосуд, покрытый металлической фольгой внутри и снаружи. CAP служит средством хранения электричества, а какие конденсаторы лучше для звука будет зависеть от емкости, ведь чем больше этот показатель, тем больше электроэнергии он будет хранить. Емкость зависит от размера противоположных пластин, расстояния между пластинами и характера изолятора между ними.

Конденсаторы, используемые в усилителях звука, бывают нескольких типов, например, обычный CAP с металлической фольгой для обеих пластин и пропитанной бумагой между ними. Конденсаторы с металлизированной бумагой (MP), также называемые бумажно-масляными CAP и металлизированные бумажные однослойные конденсаторы (МБГО) для звука, которые используются в цепях переменного, постоянного и импульсного тока.

Позже майлар (полиэстер) и другие синтетические изоляторы стали более распространенными. В шестидесятые годы прошлого века металлический CAP с майларом стал очень популярным. Две сильные стороны этих устройств — меньший размер и тот факт, что они являются самовосстанавливающимися. Сегодня это лучшие конденсаторы для звука, они используются практически в каждом электронном устройстве. Из-за огромных объемов торговли и производства таких типов конденсаторов они довольно дешевы.

Другой тип CAP — электролитический со специальной конструкцией с преимущественно высокими и очень высокими значениями в диапазоне от 1 мкФ до нескольких десятков тысяч мкФ. Они в основном используются для развязки или фильтрации в блоке питания. Наиболее распространенными в конструкции усилителей являются металлизированные майларовые или полиэфирные конденсаторы (МКТ). В усилителях более высокого качества в основном используется металлизированный полипропилен (МКП).

Технология изготовления компонентов

Технология изготовления компонентов

Технология CAP во многом определяет характеристики устройств, а какие конденсаторы лучше для звука зависит от класса оборудования. Высококлассные изделия имеют жесткие допуски и стоят дороже, чем конденсаторы широкого применения. Кроме того, такие высококачественные CAP могут быть многоразовыми. Высококачественные аудиосистемы требуют высококачественных CAP для обеспечения высшего класса качества звука.

Производительность или то, как влияют конденсаторы на звук, во многом зависит от того, как они припаиваются к печатной плате. Пайка вызывает напряжение в пассивных компонентах, что может привести к появлению пьезоэлектрических напряжений и растрескиванию поверхностно установленных CAP. При пайке конденсаторов необходимо использовать правильный порядок пайки и следовать рекомендациям профиля.

Все лавсановые конденсаторы для звука неполяризованные, то есть им не нужно маркировать вывод как положительный, так и отрицательный. Их соединение в цепи не имеет значения. Они предпочтительны в высококачественных звуковых цепях из-за низких потерь и уменьшенных искажений, если при этом позволяет размер изделия.

MKC металлизированный поликарбонатный тип уже практически не используется. Известно, что типы ERO MKC все еще широко применяются, потому что имеют сбалансированный музыкальный звук с очень небольшой окраской. Типы MKP имеют более яркий звук, а также отличаются большим диапазоном звучания.

Малоизвестный тип конденсатора MKV — это металлизированный полипропиленовый CAP в масле. Это лучший конденсатор для звука, поскольку обладает более мощными характеристиками, чем металлизированная бумага в масле.

Сравнение конденсаторов

Качество пассивных элементов

Конденсаторы, особенно когда они находятся на выходной сигнальной линии, сильно влияют на качество звука аудиосистемы.

Есть несколько факторов, которые определяют качество CAP, несомненно, очень важные для аудио:

  1. Толерантность и фактическая емкость, необходимые для использования в фильтрах.
  2. Зависимость емкости от частоты, так 1 микрофарад на 1 000 Гц не означает 1 микрофарад при 20 кГц.
  3. Внутреннее сопротивление (ESR).
  4. Ток утечки.
  5. Старение — фактор, который со временем будет развиваться для любого продукта.
Качество пассивных элементов

Лучший выбор приложений конденсатора зависит от применения в цепи и необходимой емкости:

  1. Диапазон от 1 пФ до 1 нФ — схемы управления и обратной связи. Этот диапазон в основном используется для устранения высокочастотного шума на аудиоканале или для целей обратной связи, таких как мост усилителя Quad 606. Конденсатор СГМ в звуке является лучшим выбором в этом диапазоне. Он имеет очень хорошую толерантность (до 1 %) и очень низкие искажения и шум, но довольно дорогой. МКС или МКП — это хорошая альтернатива. На сигнальной линии следует избегать керамических CAP, поскольку они могут вызвать дополнительные нелинейные искажения до 1 %.
  2. От 1 нФ до 1 мкФ — сцепление, развязка и подавления колебаний. Они чаще всего используются в аудиосистемах, а также между этапами, когда существует разница в уровне постоянного тока, устранение вибраций и в схемах обратной связи. Как правило, пленочные конденсаторы будут использоваться в этом диапазоне до 4,7 микрофарад. Лучшим выбором конденсатора для звука и аудио является полистирол (МКС), полипропилен (МКП). Полиэтилен (МКТ) является альтернативой с более низкой ценой.
  3. 1 Ф и выше — источники питания, выходные конденсаторы, фильтры, изоляция. Преимущество очень высокая емкость (до 1 Farad). Но есть несколько недостатков. Электролитические CAP подлежат старению и сушке. Через 10 или более лет масло высыхает, а важные факторы, такие как СОЭ, меняются. Они поляризованы и должны быть заменены каждые 10 лет, иначе негативно повлияют на звук. При проектировании соединительного контура электролитов на сигнальной линии часто можно избежать проблем путем пересчета константы времени (RxC) для низкой емкости ниже 1 микрофарада. Это поможет определить, какие электролитические конденсаторы лучше для звука. Если это невозможно, важно, чтобы электролит имел менее 1 В постоянного тока и использовался CAP высокого качества (BHC Aerovox, Nichicon, Epcos, Panasonic).

Выбрав лучшее решение для каждой программы, разработчик может достичь наилучшего качества звука. Инвестирование в высококачественные CAP оказывает положительное влияние на качество звука, больше чем в любой другой компонент.

Тестирование CAP-элементов для приложений

Существует общее понимание о том, что различные CAP могут изменять качество звука в аудиоприкладных программах в различных условиях. Какие конденсаторы установить, в каких схемах и в каких условиях — остаются самыми обсуждаемыми темами у специалистов. Именно поэтому лучше не изобретать велосипед в этой сложной теме, а использовать результаты проверенных испытаний. Некоторые звуковые схемы, как правило, очень большие, а загрязнение в звуковой окружающей среде, например, в таких как заземления и шасси, может быть большой проблемой для качества. Рекомендуется добавлять нелинейность и природные искажения к тесту, проверяя остатки моста с нуля.

Диэлектрический

Полистирол

Полистирол

Полипропилен

Полиэстер

Silver-слюда

Керамический

Polycarb

Температура

72

72

72

72

72

73

72

Уровень напряжения

160

63

50

600

500

50

50

Толерантность %

2.5

1

2

10

1

10

10

Ошибка %

2,18%

0,28%

0,73%

-7,06%

0,01%

-0,09%

-1,72%

Рассеивание

0.000053

0.000028

0.000122

0.004739

0.000168

0.000108

0.000705

Абсорбция

0,02%

0,02%

0,04%

0,23%

0,82%

0,34%

н /

DCR, 100 В

3.00E + 13

2.00E + 15

3.50E + 14

9.50E + 10

2.00E + 12

3.00E + 12

н /

Фаза, 2 МГц

-84

-84

-86

-84

-86

-84

н /

R, 2 МГц

6

7,8

9,2

8,5

7,6

7,6

н /

Собственное разрешение, МГц

7

7,7

9,7

7,5

8,4

9,2

н /

Мост

низкий

низкий

очень низкий

высоко

низкий

низкий

высоко

Характеристики моделей

В идеальном случае разработчик ожидает, что конденсатор будет точно соответствовать его проектному значению, в то время как большинство других параметров будут нулевыми или бесконечными. Основные измерения емкости здесь не так заметны, поскольку детали обычно соответствуют допускам. Все пленочные CAP имеют значительный температурный коэффициент. Поэтому, чтобы определить, какие пленочные конденсаторы лучше для звука, проводят тестирование лабораторными приборами.

Характеристики моделей

Коэффициент диффузии полезен при оценке эффективности электролитического источника питания. Это влияние на звуковые характеристики сигнальных CAP не согласовано и может быть весьма незначительным. Число представляет внутренние потери и при желании может быть преобразовано в эффективное последовательное сопротивление (ESR).

ESR не является постоянной величиной, но имеет тенденцию быть настолько низким в высококачественных конденсаторах, что не оказывает большого влияния на производительность схемы. Если бы были построены резонансные схемы с высоким Q, то это была бы совершенно другая история. Однако низкий коэффициент рассеяния является отличительной чертой хороших диэлектриков, что может служить хорошей подсказкой в дальнейших исследованиях.

Характеристики моделей

Диэлектрическое поглощение может быть более тревожным. Это было серьезной проблемой с ранними аналоговыми компьютерами. Высокого диэлектрическое поглощения можно избежать, так слюдяные конденсаторы для звука могут обеспечить сети RIAA очень хорошим звуком.

Измерения утечки постоянного тока не должны влиять на что-либо, так как сопротивление любого сигнального конденсатора должно быть очень высоким. При использовании материалов с более высокой диэлектрической проницаемостью требуется меньшая площадь поверхности, тогда утечка будет практически несущественной.

Для материалов с более низкой диэлектрической проницаемостью, таких как тефлон, несмотря на его основное высокое удельное сопротивление, может потребоваться большая площадь поверхности. Тогда утечка может быть вызвана малейшим загрязнением или примесями. Утечка постоянного тока, вероятно, является хорошим средством контроля качества, но она не связана с качеством звука.

Нежелательные паразитарные компоненты

Транзисторы, интегральные схемы и другие активные компоненты оказывают существенное влияние на качество аудиосигналов. Они используют питание от источников тока для изменения характеристик сигнала. В отличие от активных компонентов, идеальные пассивные не потребляют энергию и не должны изменять сигналы.

В электронных схемах резисторы, конденсаторы и индукторы фактически ведут себя, как активные компоненты и потребляют энергию. Из-за этих паразитных эффектов они могут значительно изменить звуковые сигналы, и для повышения качества требуется тщательный выбор компонентов. Постоянно растущий спрос на аудиооборудование с лучшим качеством звука заставляет производителей CAP выпускать устройства с лучшими характеристиками. В результате чего современные конденсаторы для использования в аудиоприложениях имеют лучшую производительность и более высокое качество звука.

Паразитные эффекты CAP в акустической цепи состоят из эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL), последовательных источников напряжения из-за эффекта Зеебека и диэлектрического поглощения (DA).

Типичное старение, изменения в рабочих условиях и специфические характеристики делают эти нежелательные паразитные компоненты более сложными. Каждый паразитарный компонент по-разному влияет на производительность электронной схемы. Начнем с того, что эффект сопротивления вызывает утечку постоянного тока. В усилителях и других схемах, содержащих активные компоненты, эта утечка может привести к значительному изменению напряжения смещения, которые могут влиять на различные параметры, включая коэффициент качества (Q).

Способность конденсатора обрабатывать пульсации и пропускать высокочастотные сигналы зависит от компонента ESR. Небольшое напряжение создается в точке, где два неоднородных металла связаны из-за явления, известного как эффект Зеебека. Небольшие батареи из-за этих паразитных термопар могут существенно повлиять на производительность схемы. Некоторые диэлектрические материалы являются пьезоэлектрическими, а шум, который они добавляют к конденсатору, проявляется из-за маленькой батареи внутри компонента. Кроме того, электролитические CAP имеют паразитные диоды, которые могут вызывать изменения в смещении или характеристиках сигнала.

Параметры, влияющие на путь прохождения сигнала

Параметры, влияющие на путь прохождения сигнала

В электронных схемах пассивные компоненты используются для определения усиления, установления блокировки постоянного тока, подавления шума источника питания и обеспечения смещения. Недорогие компоненты с небольшими размерами обычно используются в портативных аудиосистемах.

Характеристики реальных полипропиленовых конденсаторов для звука отличаются от характеристик идеальных компонентов с точки зрения ESR, ESL, диэлектрического поглощения, тока утечки, пьезоэлектрических свойств, температурного коэффициента, допуска и коэффициента напряжения. Хотя важно учитывать эти параметры при разработке CAP для использования в тракте аудиосигнала, два из них, оказывающие наибольшее влияние на путь прохождения сигнала, называют коэффициентом напряжения и обратным пьезоэлектрическим эффектом.

Как конденсаторы, так и резисторы демонстрируют изменение физических характеристик при изменении приложенного напряжения. Это явление обычно называют коэффициентом напряжения, и оно варьируется в зависимости от химического состава, конструкции и типа CAP.

Обратный пьезоэффект влияет на номинальное электрическое значение конденсаторов для усилителя звука. В аудиоусилителях это изменение электрического значения компонента приводит к изменению усиления в зависимости от сигнала. Этот нелинейный эффект приводит к искажению звука. Обратный пьезоэлектрический эффект вызывает значительные искажения аудиосигнала на более низких частотах и является основным источником коэффициента напряжения в керамических CAP класса II.

Напряжение, приложенное к CAP, влияет на его производительность. В случае керамических CAP класса II, емкость компонента уменьшается, когда прикладывается возрастающее положительное постоянное напряжение. Если к нему подается высокое напряжение переменного тока, емкость компонента уменьшается аналогичным образом. Однако, когда прикладывается низкое переменное напряжение, емкость компонента имеет тенденцию к увеличению. Эти изменения в емкости могут значительно повлиять на качество аудиосигналов.

Общая характеристика гармонических искажений THD

Общая характеристика гармонических искажений THD

THD конденсаторов для звука зависит от диэлектрического материала компонента. Некоторые из них могут давать впечатляющие характеристики THD, в то время как другие могут серьезно ухудшить его. Полиэфирные конденсаторы и алюминиевые электролитические конденсаторы относятся к числу CAP, которые дают самое низкое значение THD. В случае диэлектрических материалов класса II, X7R предлагает лучшие характеристики именно THD.

CAP для использования в аудиооборудовании обычно классифицируются в соответствии с применением, для которого они используются. Три приложения: путь прохождения сигнала, функциональные задачи и приложения поддержки напряжения. Обеспечение использования оптимальных конденсатор MKT для звука в этих трех областях помогает улучшить выходной тон и уменьшить искажения звука. Полипропиленовые имеют низкий коэффициент рассеяния и подходят для всех трех областей. Хотя все CAP, используемые в аудиосистеме, влияют на качество звука, компоненты, находящиеся на пути прохождения сигнала, оказывают наибольшее влияние.

Использование высококачественных конденсаторов класса аудио помогает значительно снизить ухудшение качества звука. Из-за их превосходной линейности пленочные конденсаторы обычно используются в аудиотракте. Эти неполярные конденсаторы для звука идеально подходят для аудиотехники премиум-класса. Диэлектрики, обычно применяемые в конструкциях пленочных конденсаторов с качеством звука для использования на пути прохождения сигнала, включают полиэфир, полипропилен, полистирол и полифениленсульфид.

CAP для использования в предварительных усилителях, цифро-аналоговых преобразователях, аналого-цифровых преобразователях и аналогичных приложениях совместно классифицируются как функциональные конденсаторы задания. Хотя эти неполярные конденсаторы для звука не находятся на пути прохождения сигнала, они тоже могут значительно ухудшить качество аудиосигнала.

Конденсаторы, которые используются для поддержания напряжения в аудиооборудовании, оказывают минимальное влияние на звуковой сигнал. Несмотря на это, требуется внимание при выборе CAP, которые поддерживают напряжение для оборудования высокого класса. Использование компонентов, оптимизированных для аудио приложений, помогает улучшить производительность звуковой схемы.

Полистирольный пластинчато-диэлектрический блок

Полистирольный пластинчато-диэлектрический блок

Полистирольные конденсаторы изготавливаются путем намотки пластинчато-диэлектрического блока, подобного электролитическому, или путем укладки в последовательные слои, например, книгу (сложенная пленка-фольга). В основном они используются в качестве диэлектриков из различных пластиков, таких как полипропилен (MKP), полиэфир / майлар (MKT), полистирол, поликарбонат (MKC) или тефлон. Для пластин используют алюминий с высокой степенью чистоты.

В зависимости от типа используемого диэлектрика производятся конденсаторы разных размеров и емкости с рабочим напряжением. Высокая диэлектрическая прочность полиэфира позволяет изготавливать лучшие электролитические конденсаторы для звука небольшого размера и при относительно низких затратах для повседневного использования, когда особые качества не требуются. Возможны емкости от 1 000 пФ до 4,7 микрофарад при рабочих напряжениях до 1 000 В.

Коэффициент диэлектрических потерь в полиэфире относительно высок. Для аудио полипропилен или полистирол могут значительно снизить диэлектрические потери, но здесь следует отметить, что они намного дороже. Полистирольные используются в фильтрах / кроссоверах. Одним недостатком полистирольных конденсаторов является низкая температура плавления диэлектрика. Вот почему полипропиленовые конденсаторы для звука обычно отличаются друг от друга, так как диэлектрик защищен путем отделения паяных выводов от корпуса конденсатора.

Технология FIM с высокой плотностью энергии

Технология FIM с высокой плотностью энергии

Пленочные CAP большой мощности предлагают три категории этого типа: TRAFIM (стандартная и специальная), FILFIM и PPX. Технология FIM основана на концепции контролируемых самовосстанавливающихся свойств сегментированных пленок металлизации алюминия.

Емкость разделена на несколько миллионов элементарных элементов, объединенных и защищенных плавкими предохранителями. Слабые диэлектрические элементы изолированы, а перед перфорацией предохранителей изолируют поврежденные элементы, с которыми конденсатор продолжает работать в обычном режиме без короткого замыкания или взрыва, как это может быть в случае электролитических конденсаторов для звука.

При благоприятных условиях не следует ожидать, что ожидаемый срок службы CAP этого типа превысит 200 000 часов, а MTBF — 10 000 000 часов. Работая как батарея, эти конденсаторы потребляют небольшую часть емкости из-за постепенного разрушения отдельных элементов в течение срока службы компонента.

Серии TRAFIM и FILFIM предлагают непрерывную фильтрацию для высоких напряжений / мощностей (до 1 кВ). Емкость варьируется:

  • от 610 мкФ до 15 625 мкФ для стандартного TRAFIM;
  • от 145 мкФ до 15 460 мкФ для специального TRAFIM;
  • от 8,2 мкФ до 475 мкФ для FILFIM.

Диапазон постоянного напряжения составляет:

  • от 1,4 кВ до 4,2 кВ для стандартного TRAFIM;
  • от 1,3 кВ до 5,3 кВ для персонализированного TRAFIM;
  • и от 5,9 кВ до 31,7 кВ для FILFIM.

Конденсаторы серии PPX предлагают полный спектр сетевых решений для защиты от помех в тиристорах GTO, а также для блокирующих CAP, предлагая емкость от 0,19 мкФ до 6,4 мкФ. Диапазон напряжения для PPX колеблется от 1 600 В до 7 500 В с очень низкой собственной индуктивностью.

Пленочные конденсаторы для звука, как правило, имеют отличные высокочастотные характеристики, но это часто компрометируется большими размерами и компенсируется большой длиной провода. Можно заметить, что у маленького радиального конденсатора Panasonic собственный резонанс намного выше (9,7 МГц), чем у Audience (4,5 МГц). Это не из-за установленной тефлоновой крышки, а из-за того, что она имеет длину в несколько дюймов и не может быть присоединена к корпусу. Если разработчику нужны высокочастотные характеристики для поддержания стабильности в широкополосных полупроводниках, уменьшают размер и длину провода до абсолютного минимума.

Производительность звуковых цепей сильно зависит от пассивных компонентов, таких как конденсаторы и резисторы. Фактические CAP содержат нежелательные паразитные компоненты, которые могут значительно искажать характеристики аудиосигналов. Конденсаторы, используемые в тракте сигнала, в значительной степени определяют качество аудиосигнала. В результате требуется тщательный выбор CAP, чтобы минимизировать ухудшение сигнала.

Конденсаторы класса аудио оптимизированы для удовлетворения потребностей современных высококачественных аудиосистем. Пластиковые пленочные конденсаторы для звука используются в высококачественных аудиосистемах и имеют широкий спектр применения.

Чем примечательны конденсаторы КМ

26 октября 2019

Конденсаторы представляют собой устройство для того, чтобы накопить заряд и полевую энергию. Серия КМ используется в оборудовании промышленного применения, для высокоточных аппаратов, аппаратов радиопередачи, разработок для оборонной сферы.

Основные сведения

Керамические конденсаторы, в отличие от остальных, обладают высокой стабильностью, в том числе при работе во время импульсных колебаний, а также цепях, как постоянного, так и переменного тока. Такие элементы имеют значительное обкладочное сцепление, а также замедленное устаревание.

Последний параметр должен обеспечить низкий показатель коэффициента, отвечающего за нестабильность температуры в емкости. При достаточно небольших размерах конденсаторы имеют приличную емкость 2,2 микрофарада. При этом изменение емкости при действующей температуре у керамических элементов идет в диапазоне до 90 процентов.

Все керамические конденсаторы имеют разделение на группы. Здесь учитывается и сфера применения, цвет, емкость и другие параметры. При соединении емкость может значительно увеличится, что положительно влияет на все устройства.

Виды конденсаторов КМ

Конденсаторы КМ группы Н используются обычно в виде элементов схемы для блокировки и перехода. Современные КМ производят с помощью опрессовки под давлением в единый блок керамических пластин небольшой толщины. Значительные прочностные показатели материала позволяет применять небольшие по толщине заготовки. В итоге, конденсаторная емкость растет в пропорции с объемом.

Кроме того, конденсаторы серии КМ имеют сравнительно высокую стоимость. Причина в том, что для обкладок диэлектрического типа применяются драгоценные металлы, среди которых платина, золото, палладий и их сплавы. Потому высоким спросом обладают старые изделия и даже непригодные к использованию.

Драгметаллы есть в конденсаторах вида КМ3-6. Они делятся на изготовленные из палладия и платины, КМ Н90 и КМ Н30 соответственно. Также есть разновидность конденсаторов КМ группы Н30, а именно КМ5 D, где платины содержится не так много. Если в Н90 платины содержится 3 грамма на килограмм конденсаторных элементов, то в Н30 такого материала находится в количестве 50 грамм на килограмм элемента.

Цены на конденсаторы зависят не столько от количества драгметаллов, сколько от цены на сами материалы и аффинаж. Самыми популярными считаются элементы зеленого и рыжего цвета. Также распространены импортные изделия и с пластмассовыми корпусами.

Закупка конденсаторов

Приобретают такие конденсаторы с целью получения драгоценных металлов или перепродажи. Конденсаторы КМ стоят особняком в каталоге из-за наличия в составе редкоземельных металлов. Серебро при этом не влияет на итоговую стоимость по причине значительного содержания, потому рассматривать его не имеет смысла

Различное содержание металлов влияет на стоимость изделия, каждый конденсатор имеет индивидуальную стоимость. Также стоимость конденсаторов вида КМ зависит от цен на бирже, которые часто меняются в зависимости от различных экономических факторов. Такие изделия являются лидерами в рейтинге наиболее дорогостоящих радиоэлементов из-за наличия дорогостоящих материалов.

Каждый конденсатор можно найти в каталоге компаний, специализирующихся на закупке и продаже радиоэлектронных компонентов. Профессиональные сотрудники помогут не только определить тип конденсатора, но и посчитают его реальную стоимость. Это значительно облегчит поиск нужных компонентов и поможет подобрать самые ценные с точки зрения извлечения металлов.

Приобретать стоит изделия, которые изготовили во времена СССР. Тогда не жалели закладывать в производство драгоценные металлы, а, следовательно, добыть его оттуда гораздо легче. И помните: если нет уверенности в том, какой именно конденсатор находится в руках, то лучше обратиться к профессионалам отрасли.


◄ Назад к новостям

Основные типы конденсаторов. » Хабстаб

Основные типы конденсаторов.
На сегодняшний день существует множество типов конденсаторов и каждый из них обладает своими преимуществам и недостатками.
Одни могут работать при высоких напряжениях, другие обладают большой ёмкостью, третьи малой утечкой, четвёртые малой индуктивностью — эти факторы определяют область применения конденсаторов конкретного типа.
В этой статье будут рассмотрены основные, но далеко не все типы конденсаторов.

Алюминиевые электролитические конденсаторы.
Основные типы конденсаторов.
Алюминиевые электролитические конденсаторы, состоят из двух скрученных тонких алюминиевых полосок, между которыми помещается бумага, пропитанная электролитом. Ёмкость этого типа конденсаторов может быть от 0.1uF до 100 000uF, что является их главным преимуществом перед другими типами, а максимальное рабочее напряжение может доходить до 500V. Максимальное рабочее напряжение и ёмкость обычно указываются на конденсаторе, максимальное рабочее напряжение конденсатора, изображенного на картинке, составляет

35 вольт, а ёмкость или заряд приходящийся на 1 вольт, составляет 680uF. Недостатком этого типа конденсаторов является относительно высокий ток утечки и то, что ёмкость их уменьшается с ростом частоты, именно поэтому на платах часто можно встретить алюминиевый электролитический конденсатор, параллельно которому ставят керамический или как горят “шунтируют керамикой”. Также надо сказать, что этот тип конденсаторов имеет полярность, это значит, что вывод конденсатора, обозначенный минусом на корпусе, должен всегда находиться под более отрицательным напряжением, чем другой вывод конденсатора. При несоблюдении этого правила конденсатор скорее всего взорвётся и именно поэтому применять их можно только в цепях с постоянным и пульсирующим током, но не переменным.

Танталовые конденсаторы.
Основные типы конденсаторов.
Танталовые конденсаторы изготавливаются из пентаоксида тантала и схожи по свойствам с алюминиевыми электролитическими конденсаторами, но обладают некоторыми особенностями. Они меньшего размера, максимальное рабочее напряжение до 100V, ёмкость этого типа конденсаторов может быть от 47nF до 1000uF, обладают меньшей индуктивностью и могут применяться в более высокочастотных схемах, работающих на частотах в сотни Khz. К недостаткам можно отнести чувствительность к превышению рабочего напряжения.

Надо отметить, что в отличии от алюминиевых электролитических конденсаторов, линией на корпусе помечают плюсовой вывод.

Керамические однослойные дисковые конденсаторы.
Основные типы конденсаторов.


Дисковые керамические конденсаторы обладают достаточно большой ёмкостью при их размерах, она может быть от 1pF до 220nF, а максимальное рабочее напряжение не должно превышать 50V. Значение ёмкости на данном типе конденсаторов указывается в pF, например ёмкость конденсатора изображенного на картинке равна 100 000 pF или 100nF или 0.1uF, данное значение получается следующим образом, первые две цифры надо умножить на 10, возведенную в степень третьей цифры, в нашем случае надо 10 х 10^4 = 10^5 или 100 000pF. К достоинствам можно отнести, незначительные токи утечки, небольшие габаритные размеры, низкую индуктивность и способность работать на высоких частотах, а также высокую температурную стабильность ёмкости. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические многослойные конденсаторы
Основные типы конденсаторов.
Керамические многослойные конденсаторы представляет собой структуру с чередующимися тонкими слоями керамики и металла.
Этот тип конденсаторов схож по свойствам с однослойными дисковыми, но обладает в несколько раз большей ёмкостью, достигающей нескольких uF. Максимальное рабочее напряжение на корпусе этих конденсаторов не указывается и так же как для однослойных дисковых, не должно превышать 50V. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические высоковольтные конденсаторы
Основные типы конденсаторов.
Преимущество этого типа конденсаторов понятно из названия, их отличительной особенностью является способность работать под высоким напряжением. Диапазон рабочих напряжений от 50 до 15000V, а ёмкость может 68pF до 150nF. Максимальное напряжение конденсатора, изображенного на картинке конденсатора равно 1000V, а ёмкость 100nF, выше описывалось как её узнать. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Полиэстеровые конденсаторы.
Основные типы конденсаторов.
Ёмкость этого типа конденсаторов может быть от 1nF до 15uF, диапазон рабочих напряжений от 50 до 1500V. Они изготавливаются с разными допуском( допустимое отклонение номинальной ёмкости ), 5%, 10% и 20%, обладают высокой температурной стабильностью, достаточно большой ёмкостью при их размерах, низкой ценой и как следствие находят широкое применение. Ёмкость конденсатора, изображенного на картинке равна 150 000pF или 150nF, буква К после числа 154 означает допуск, то есть на сколько реальное значение ёмкости может отличаться от указанной на конденсаторе. В данном случае допуск составляет 10%, подробнее об этом будет написано ниже. Нас больше интересует, что в маркировке этого конденсатора означает 2J и чему равно его максимальное рабочее напряжение. Для того чтобы ответить на два эти вопроса можно воспользоваться таблицей, буквенной маркировки напряжения.

Основные типы конденсаторов.
Из таблицы становится понятно, что максимальное рабочее напряжение конденсатора равно 630V

Полипропиленовые конденсаторы.
Основные типы конденсаторов.
В конденсаторах этого типа в качестве диэлектрика применяется полипропиленовая плёнка, а их ёмкость может быть от 100pF до 10uF. Одним из главных преимуществ этого типа конденсаторов является высокое рабочее напряжение, которое может достигать 3000V, также преимуществом является возможность изготовления этого типа конденсаторов с допуском в 1%. На картинке изображён конденсатор ёмкость которого 5600pF, а максимальное рабочее напряжение равно 630V. Буква J после числа 562 обозначает допуск и в данном случае он равен 5%. Допуск можно определить, пользуясь таблицей, изображенной ниже.

Основные типы конденсаторов.
То есть реальное значение ёмкости может отличаться на 5% той, что указана на конденсаторе. Могут работать на частотах до 100KHz.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *