Таблицы цветовой маркировки конденсаторов
В данной статье речь пойдет об определении параметров конденсатора по таблицам цветовой маркировки конденсаторов.
Цветовая маркировка конденсаторов содержит сокращенное обозначение параметров конденсатора и может быть представлена в виде полос, колец или точек.
На конденсаторе маркируют такие параметры как:
- номинальная емкость;
- множитель;
- допускаемое отклонение напряжения;
- температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение.
Три метки информируют о допуске 20%. При этом возможно сочетание двух колец и точки, указывающий на множитель. При пяти метках цвет корпуса указывает на значение рабочего напряжения.
Цветовая маркировка шестью метками применяется для прецизионных конденсаторов с малыми ТКЕ.
В зарубежных конденсаторов используется маркировка по допуску и температурному коэффициенту.
Обозначение группы ТКЕ приведено в соответствии со стандартом EIA, в скобках – IEC.
Рассмотрим на примере как использовать представленные таблицы цветовой маркировки для определения параметров конденсаторов.
Пример
Определим параметры конденсатора с шесть полосами: зеленый, коричневый, черный, красный, красный, желтый, используя таблицу «Цветовая маркировка конденсаторов (общая таблица)», номиналы элементов указаны в пФ – 10
- первая цифра (1 — элемент) – 5;
- вторая цифра (2 — элемент) – 1;
- третья цифра(3 — элемент) – 0;
- множитель – 102;
- допуск,% – 2;
- группа ТКЕ – М220.
Соответственно получается: 510*10-12 * 102 = 51*10-9 Ф или 51 нФ±2%, М220.
Определим параметры для конденсатора с тремя полосами: коричневый, красный и желтый.
- первая цифра (1 — элемент) – 1;
- вторая цифра (2 — элемент) – 2;
- множитель – 104;
Соответственно получается: 12*10-12
Как мы видим ничего сложного в определении параметров конденсаторов нету, не много практики и вскоре Вам данные таблицы будут уже не нужны, уже на автомате будете определять номинальную емкость конденсатора.
Всего наилучшего! До новых встреч на сайте Raschet.info.
Поделиться в социальных сетях
Кодовая и цветовая маркировка конденсаторов
Кодовая и цветовая маркировка конденсаторов
(Львиная доля информации заимствована с портала http://kazus.ru )
Кодовая маркировка
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
1. Кодировка тремя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей.
Таблица 1
* Иногда последний ноль не указывают.
2. Кодировка четырьмя цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).
Таблица 2
3. Маркировка ёмкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения
Примеры:
Рисунок 1
Цветовая маркировка
На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки
* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.
** Цвет корпуса указывает на значение рабочего напряжения.
Вывод «+» может иметь больший диаметр.
Для маркировки пленочных конденсаторов используют 5 цветных полос или точек:
Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.
Маркировка допусков
В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка:
Маркировка ТКЕ
Конденсаторы с ненормируемым ТКЕ
* Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Конденсаторы с линейной зависимостью от температуры
* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85’С.
** Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Конденсаторы с нелинейной зависимостью от температуры
* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.
** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим.
Например, фирма PHILIPS для группы Y5P нормирует -55…+125 њС.
*** В соответствии с EIA. Некоторые фирмы, например Panasonic, пользуются другой кодировкой.
Особенности кодировки конденсаторов производства СССР
В СССР придерживались стандартов МЭК, поэтому можно пользоваться вышеприведенными данными, но были и незначительные отличия.
Кодированное обозначение номинальных емкостей состоит из двух или трех цифр и буквы. Буква кода является множителем, составляющим значение емкости (см. таблицу), и определяет положение десятичной дроби.
Допускаемое отклонение величины емкости в процентах от номинального значения указывают теми же буквами, что и допуски на сопротивление резисторов, однако, с некоторыми дополнениями (см. таблицу). Для конденсаторов емкостью менее 10 пФ допускаемое отклонение устанавливается
Конденсаторы маркируются кодом в следующем порядке:
- номинальная емкость;
- допускаемое отклонение емкости;
- ТКЕ и (или) номинальное напряжение.
Приведем примеры кодированной маркировки конденсаторов.
Сокращенная буквенно-цифровая маркировка на конденсаторе 33pKL обозначает номинальную емкость 33 пФ с допускаемым отклонением ±10% и температурной нестабильностью группы М75 (75х10-6 °C-1). Надпись m10SF обозначает 100 мкФ (0,1 миллифарады) с допуском -20…+50% и номинальным напряжением 20 В.
Номинальная емкость 150 пФ может обозначаться 150р или n15; 4700пф — 4n7; 0,15 мкФ — µ15; 2.2мкф — 2µ2.
Емкость | ||
---|---|---|
Множитель | Код | Значение |
10-12 | p | пикофарады |
10-9 | n | нанофарады |
10-6 | ч | микрофарады |
10-3 | m | миллифарады |
1 | F | фарады |
Примечание.
Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн | Напр. В | Букв. обозн |
---|---|---|---|---|---|---|---|---|---|
1,0 | I | 6.3 | B | 40 | S | 100 | N | 350 | T |
2,5 | M | 10 | D | 50 | J | 125 | P | 400 | Y |
3.2 | A | 16 | E | 63 | K | 160 | Q | 450 | U |
4.0 | C | 20 | F | 80 | L | 315 | X | 500 | V |
Кодовая и цветовая маркировка резисторов
Маркировка конденсаторов. Кодовая и цветовая маркировака конденсаторов
Маркировка тремя цифрами.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | ||||
1.0 пФ | 1000 пФ | 1 нФ | |||||||||
1.5 пФ | 1500 пФ | 1.5 нФ | |||||||||
2.2 пФ | 2200 пФ | 2.2 нФ | |||||||||
3.3 пФ | 3300 пФ | 3.3 нФ | |||||||||
4.7 пФ | 4700 пФ | 4.7 нФ | |||||||||
6.8 пФ | 6800 пФ | 6.8 нФ | |||||||||
10 пФ | 0. 01 нФ | 10000 пФ | 10 нФ | 0.01 мкФ | |||||||
15 пФ | 0.015 нФ | 15000 пФ | 15 нФ | 0.015 мкФ | |||||||
22 пФ | 0.022 нФ | 22000 пФ | 22 нФ | 0.022 мкФ | |||||||
33 пФ | 0.033 нФ | 33000 пФ | 33 нФ | 0.033 мкФ | |||||||
47 пФ | 0.047 нФ | 47000 пФ | 47 нФ | 0.047 мкФ | |||||||
68 пФ | 0.068 нФ | 68000 пФ | 68 нФ | 0.068 мкФ | |||||||
100 пФ | 0.1 нФ | 100000 пФ | 100 нФ | 0.1 мкФ | |||||||
150 пФ | 0.15 нФ | 150000 пФ | 150 нФ | 0. 15 мкФ | |||||||
220 пФ | 0.22 нФ | 220000 пФ | 220 нФ | 0.22 мкФ | |||||||
330 пФ | 0.33 нФ | 330000 пФ | 330 нФ | 0.33 мкФ | |||||||
470 пФ | 0.47 нФ | 470000 пФ | 470 нФ | 0.47 мкФ | |||||||
680 пФ | 0.68 нФ | 680000 пФ | 680 нФ | 0.68 мкФ | |||||||
1000000 пФ | 1000 нФ | 1 мкФ | |||||||||
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1. 0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
«Справочник» — справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т. д. Вся справочная информация электронных компонентов электронных компонентов .
· Допуски
· Кодовая маркировка
· Допуски
· Конденсаторы с линейной зависимостью от температуры
· Конденсаторы с нелинейной зависимостью от температуры
· Кодовая маркировка
· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
Допуски
Таблица 1
*-Для конденсаторов емкостью
Δ=(δхС/100%)[Ф]
Пример:
Конденсаторы с ненормируемым ТКЕ
Таблица 2
Конденсаторы с линейной зависимостью от температуры
Таблица 3
Обозначение ГОСТ | Обозначение международное | ТКЕ * | Буквенный код | Цвет** |
П100 | P100 | 100 (+130…-49) | A | красный+фиолетовый |
П33 | N | серый | ||
МПО | NPO | 0(+30. .-75) | С | черный |
М33 | N030 | -33(+30…-80] | Н | коричневый |
М75 | N080 | -75(+30…-80) | L | красный |
M150 | N150 | -150(+30…-105) | Р | оранжевый |
М220 | N220 | -220(+30…-120) | R | желтый |
М330 | N330 | -330(+60…-180) | S | зеленый |
М470 | N470 | -470(+60…-210) | Т | голубой |
М750 | N750 | -750(+120…-330) | U | фиолетовый |
М1500 | N1500 | -500(-250…-670) | V | оранжевый+оранжевый |
М2200 | N2200 | -2200 | К | желтый+оранжевый |
* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55. ..+85 ° С.
** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Кодовая маркировка
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Таблица 10
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
1,0 | 0,001 | 0,000001 | |
1,5 | 0,0015 | 0,000001 | |
2,2 | 0,0022 | 0,000001 | |
3,3 | 0,0033 | 0,000001 | |
4,7 | 0,0047 | 0,000001 | |
6,8 | 0,0068 | 0,000001 | |
100* | 0,01 | 0,00001 | |
0,015 | 0,000015 | ||
0,022 | 0,000022 | ||
0,033 | 0,000033 | ||
0,047 | 0,000047 | ||
0,068 | 0,000068 | ||
0,1 | 0,0001 | ||
0,15 | 0,00015 | ||
0,22 | 0,00022 | ||
0,33 | 0,00033 | ||
0,47 | 0,00047 | ||
0,68 | 0,00068 | ||
1,0 | 0,001 | ||
1,5 | 0,0015 | ||
2,2 | 0,0022 | ||
3,3 | 0,0033 | ||
4,7 | 0,0047 | ||
6,8 | 0,0068 | ||
0,01 | |||
0,015 | |||
0,022 | |||
0,033 | |||
0,047 | |||
0,068 | |||
0,1 | |||
0,15 | |||
0,22 | |||
0,33 | |||
0,47 | |||
0,68 | |||
1,0 |
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Таблица 11
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
http://www.radioradar.net/hand_book/hand_books/conder.html
Кодовая маркировка
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
Кодировка тремя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ.
Таблица 1
* Иногда последний ноль не указывают.
Кодировка четырьмя цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).
Таблица 2
Цветовая маркировка
На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки
* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.
** Цвет корпуса указывает на значение рабочего напряжения.
Вывод «+» может иметь больший диаметр.
Для маркировки пленочных конденсаторов используют 5 цветных полос или точек:
Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.
Маркировка допусков
В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка:
Маркировка ТКЕ
Маркировка тремя цифрами.
Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | ||||
1. 0 пФ | 1000 пФ | 1 нФ | |||||||||
1.5 пФ | 1500 пФ | 1.5 нФ | |||||||||
2.2 пФ | 2200 пФ | 2.2 нФ | |||||||||
3.3 пФ | 3300 пФ | 3.3 нФ | |||||||||
4.7 пФ | 4700 пФ | 4.7 нФ | |||||||||
6.8 пФ | 6800 пФ | 6.8 нФ | |||||||||
10 пФ | 0.01 нФ | 10000 пФ | 10 нФ | 0.01 мкФ | |||||||
15 пФ | 0.015 нФ | 15000 пФ | 15 нФ | 0.015 мкФ | |||||||
22 пФ | 0. 022 нФ | 22000 пФ | 22 нФ | 0.022 мкФ | |||||||
33 пФ | 0.033 нФ | 33000 пФ | 33 нФ | 0.033 мкФ | |||||||
47 пФ | 0.047 нФ | 47000 пФ | 47 нФ | 0.047 мкФ | |||||||
68 пФ | 0.068 нФ | 68000 пФ | 68 нФ | 0.068 мкФ | |||||||
100 пФ | 0.1 нФ | 100000 пФ | 100 нФ | 0.1 мкФ | |||||||
150 пФ | 0.15 нФ | 150000 пФ | 150 нФ | 0.15 мкФ | |||||||
220 пФ | 0.22 нФ | 220000 пФ | 220 нФ | 0.22 мкФ | |||||||
330 пФ | 0.33 нФ | 330000 пФ | 330 нФ | 0. 33 мкФ | |||||||
470 пФ | 0.47 нФ | 470000 пФ | 470 нФ | 0.47 мкФ | |||||||
680 пФ | 0.68 нФ | 680000 пФ | 680 нФ | 0.68 мкФ | |||||||
1000000 пФ | 1000 нФ | 1 мкФ | |||||||||
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ, 22p = 22 пФ, 2н2 = 2. 2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1. 0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Кодовая и цветовая маркировака конденсаторов
«Справочник» — справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т.д. Вся справочная информация содержит все, необходимые для подбора электронных компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию электронных компонентов .
· Допуски
· Конденсаторы с линейной зависимостью от температуры
· Конденсаторы с нелинейной зависимостью от температуры
· Кодовая маркировка
· Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
· Допуски
· Температурный коэффициент емкости (ТКЕ)
Конденсаторы с ненормируемым ТКЕ
· Конденсаторы с линейной зависимостью от температуры
· Конденсаторы с нелинейной зависимостью от температуры
· Кодовая маркировка
· Кодовая маркировка электролитических конденсаторов для поверхностного монтажа
· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
Допуски
В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:
Таблица 1
*-Для конденсаторов емкостью
Перерасчет допуска из % (δ) в фарады (Δ):
Δ=(δхС/100%)[Ф]
Пример:
Реальное значение конденсатора с маркировкой 221J (0. 22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.
Температурный коэффициент емкости (ТКЕ)
Конденсаторы с ненормируемым ТКЕ
Таблица 2
* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).
При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).
При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой используется буква R: R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).
После обозначения емкости может быть нанесен буквенный символ, обозначаю щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.
Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами
Пикофарады (пФ; pF)
Нанофарады (нФ; nF)
Микрофарады (мкФ)
Емкость
Пикофарады ( пф ; pF)
Нанофарады ( нФ ; nF)
Микрофарады ( мкФ ; mF)
Таблица 2. 6. Кодировка номинальной емкости конденсаторов четырьмя цифрами
Емкость
Пикофарады (пФ; pF)
Нанофарады (нФ; nF)
Микрофарады (мкФ
ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
(10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
(«М» или « N »), близким к нулю («МП») или ненормированным («Н»).Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO (COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.
Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.
Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов :
- Кодовая маркировка 3 цифрами;
- Кодовая маркировка 4 цифрами;
- Буквенно цифровая маркировка;
- Специальная маркировка для планарных конденсаторов.
Кодовая маркировка конденсаторов 3 цифрами
К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.
Код | Пикофарады, пФ, pF | Нанофарады, нФ, nF | Микрофарады, мкФ, μF |
109 | 1.0 пФ | 0.0010нф | |
159 | 1.5 пФ | 0.0015нф | |
229 | 2.2 пФ | 0.0022нф | |
339 | 3. 3 пФ | 0.0033нф | |
479 | 4.7 пФ | 0.0048нф | |
689 | 6.8 пФ | 0.0068нФ | |
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0. 068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1. 5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0. 033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0. 68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Кодовая маркировка конденсаторов 4 цифрами
При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*10 2 пФ = 10000 пФ = 10.0 нФ . Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.
Буквенно-цифровая маркировка
В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).
Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ 22 = 0.22 мкФ.
Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.
Иногда вместо мкФ используют букву R.
Например: 6R8 = 6,8 мкФ
Маркировка планарных керамических конденсаторов
Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.
Обозначение конденсаторов на схеме импортное. Маркировка конденсаторов – как разобраться
Содержание:Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с , она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица — фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица — миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF — микрофарадам. Также встречается маркировка fd — сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы — керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р — пикофарад, u- микрофарад, n — нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ — это максимальная температура.
Цифры соответствуют следующим показателям: 2 — 45 0 С, 4 — 65 0 С, 5 — 85 0 С, 6 — 105 0 С, 7 — 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным — «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 — от 10 до 99 вольт, 2 — от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Основным параметром конденсатора является его номинальная емкость, измеряемая в фарадах (Ф) микрофарадах (мкФ) или пикофарадах (пФ).
Конденсаторы
Допустимые отклонения емкости конденсатора от номинального значения указаны в стандартах и определяют класс его точности. Для конденсаторов , как и для сопротивлений, чаще всего применяются три класса точности I (E24), II (Е12) и III (E6), соответствующие допускам ±5 % , ±10 % и ±20 % .
По виду изменения емкости конденсаторы делятся на изделия с постоянной емкостью, переменной и саморегулирующиеся. Номинальная емкость указывается на корпусе конденсатора. Для сокращения записи применяется специальное кодирование:
- П – пикофарады – пФ
- Н – одна нанофарада
- М – микрофарад – мкФ
Ниже в качестве примера приводятся кодированные обозначения конденсаторов:
- 51П – 51 пФ
- 5П1 – 5,1 пФ
- h2 – 100 пФ
- 1Н – 1000 пФ
- 1Н2 – 1200 пФ
- 68Н – 68000 пФ = 0,068 мкФ
- 100Н – 100 000 пФ = 0,1 мкФ
- МЗ – 300 000 пФ = 0,3 мкФ
- 3М3 – 3,3 мкФ
- 10М – 10 мкФ
Числовые значения ёмкостей 130 пФ и 7500 пФ целые числа (от 0 до 9999 пФ)
Конструкции конденсаторов постоянной емкости и материал, из которого они изготовляются, определяются их назначением и диапазоном рабочих частот.
Высокочастотные конденсаторы имеют большую стабильность, заключающуюся в незначительном изменении емкости при изменении температуры, малые допустимые отклонения емкости от номинального значения, небольшие размеры и вес. Они бывают керамическими (типов КЛГ, КЛС, КМ, КД, КДУ, КТ, КГК, КТП и др.), слюдяными (КСО, КГС, СГМ), стеклокерамическими (СКМ), стеклоэмалевыми (КС) и стеклянными (К21У).
Конденсатор с дробной ёмкостью
от 0 до 9999 Пф
Для цепей постоянного, переменного и пульсирующего токов низкой частоты требуются конденсаторы с большими емкостями, измеряемыми тысячами микрофарад. В связи с этим выпускаются бумажные (типов БМ, КБГ), металлобумажные (МБГ, МБМ), электролитические (КЭ, ЭГЦ, ЭТО, К50 , К52 , К53 и др.) и пленочные (ПМ, ПО, К73 , К74 , К76) конденсаторы.
Конструкции конденсаторов постоянной емкости разнообразны. Так, слюдяные, стеклоэмалевые, стеклокерамические и отдельные типы керамических конденсаторов имеют пакетную конструкцию. В них обкладки, выполненные из металлической фольги или в виде металлических пленок, чередуются с пластинами из диэлектрика (например, слюды).
Емкость конденсатора 0,015 мкФ
Конденсатор с ёмкостью 1 мкФ
Для получения значительной емкости формируют пакет из большого числа таких элементарных конденсаторов. Электрически соединяют между собой все верхние обкладки и отдельно – нижние. К местам соединений припаивают проводники, служащие выводами конденсатора. Затем пакет спрессовывают и помещают в корпус.
Применяется и дисковая конструкция керамических конденсаторов . Роль обкладок в них выполняют металлические пленки, нанесенные на обе стороны керамического диска. Бумажные конденсаторы часто имеют рулонную конструкцию. Полосы алюминиевой фольги, разделенные бумажными лентами с высокими диэлектрическими свойствами, свертываются в рулон. Для получения большой емкости рулоны соединяют друг с другом и помещают в герметичный корпус.
В электролитических конденсаторах диэлектрик представляет собой оксидную пленку, наносимую на алюминиевую или танталовую пластинку, являющуюся одной из обкладок конденсатора, вторая обкладка – электролит.
Электролитический конденсатор 20,0 × 25В
Металлический стержень (анод) должен подключаться к точке с более высоким потенциалом, чем соединенный с электролитом корпус конденсатора (катод). При невыполнении этого условия сопротивление оксидной пленки резко уменьшается, что приводит к увеличению тока, проходящего через конденсатор, и может вызвать его разрушение.
Такую конструкцию имеют электролитические конденсаторы типа КЭ. Выпускаются также электролитические конденсаторы с твердым электролитом (типа К50).
Проходной конденсатор
Площадь перекрытия пластин или расстояние между ними у конденсаторов переменной емкости можно изменять различными способами. При этом меняется и емкость конденсатора. Одна из возможных конструкций конденсатора переменной емкости (КПЕ) изображена на рисунке справа.
Конденсатор переменной ёмкости от 9 пФ до 270 пФ
Здесь емкость изменяется путем различного расположения роторных (подвижных) пластин относительно статорных (неподвижных). Зависимость изменения емкости от угла поворота определяется конфигурацией пластин. Величина минимальной и максимальной емкости зависит от площади пластин и расстояния между ними. Обычно минимальная емкость С мин, измеряемая при полностью выведенных роторных пластинах, составляет единицы (до 10 – 20) пикофарад, а максимальная емкость С макс, измеряемая при полностью выведенных роторных пластинах, – сотни пикофарад.
В радиоаппаратуре часто используются блоки КПЕ, скомпонованные из двух, трех и более конденсаторов переменной емкости, механически связанных друг с другом.
Конденсатор переменной ёмкости от 12 пФ до 497 пФ
Благодаря блокам КПЕ можно изменять одновременно и на одинаковую величину емкость различных цепей устройства.
Разновидностью КПЕ являются подстроечные конденсаторы . Их емкость так же, как и сопротивление подстроечных резисторов, изменяют лишь с помощью отвертки. В качестве диэлектрика в таких конденсаторах могут использоваться воздух или керамика.
Конденсатор подстроечный от 5 пФ до 30 пФ
На электрических схемах конденсаторы постоянной емкости обозначаются двумя параллельными отрезками, символизирующими обкладки конденсатора, с выводами от их середин. Рядом указывают условное буквенное обозначение конденсатора – букву С (от лат. Capacitor – конденсатор).
После буквы С ставится порядковый номер конденсатора в данной схеме, а рядом через небольшой интервал пишется другое число, указывающее на номинальное значение емкости.
Емкость конденсаторов от 0 до 9999 пФ указывают без единицы измерения, если емкость выражена целым числом, и с единицей измерения – пФ, если емкость выражена дробным числом.
Подстроечные конденсаторы
Емкость конденсаторов от 10 000 пФ (0,01 мкФ) до 999 000 000 пФ (999 мкФ) указывают в микрофарадах в виде десятичной дроби либо как целое число, после которого ставят запятую и нуль. В обозначениях электролитических конденсаторов знаком « + » помечается отрезок, соответствующий положительному выводу – аноду, и после знака « х » – номинальное рабочее напряжение.
Конденсаторы переменной емкости (КПЕ) обозначаются двумя параллельными отрезками, перечеркнутыми стрелкой.
Если необходимо, чтобы к данной точке устройства подключались именно роторные пластины, то на схеме они обозначаются короткой дугой. Рядом указываются минимальный и максимальный пределы изменения емкости.
В обозначении подстроечных конденсаторов параллельные линии пересекаются отрезком с короткой черточкой, перпендикулярной одному из его концов.
«Справочник» — информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам , конденсаторам , светодиодам и т.д. Информация содержит все, необходимые для подбора компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию радиоэлементов .
Допуски
В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:
Таблица 1
*-Для конденсаторов емкостью
Перерасчет допуска из % (δ) в фарады (Δ):
Δ=(δхС/100%)[Ф]
Пример:
Реальное значение конденсатора с маркировкой 221J (0. 22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.
Температурный коэффициент емкости (ТКЕ)
Маркировка конденсаторов с ненормируемым ТКЕ
Таблица 2
* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Маркировка конденсаторов с линейной зависимостью от температуры
Таблица 3
Обозначение ГОСТ | Обозначение международное | ТКЕ * | Буквенный код | Цвет** |
П100 | P100 | 100 (+130…-49) | A | красный+фиолетовый |
П33 | 33 | N | серый | |
МПО | NPO | 0(+30..-75) | С | черный |
М33 | N030 | -33(+30. ..-80] | Н | коричневый |
М75 | N080 | -75(+30…-80) | L | красный |
M150 | N150 | -150(+30…-105) | Р | оранжевый |
М220 | N220 | -220(+30…-120) | R | желтый |
М330 | N330 | -330(+60…-180) | S | зеленый |
М470 | N470 | -470(+60…-210) | Т | голубой |
М750 | N750 | -750(+120…-330) | U | фиолетовый |
М1500 | N1500 | -500(-250…-670) | V | оранжевый+оранжевый |
М2200 | N2200 | -2200 | К | желтый+оранжевый |
* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85 ° С.
** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Маркировка конденсаторов с нелинейной зависимостью от температуры
Таблица 4
Группа ТКЕ* | Допуск[%] | Температура**[ ° C] | Буквенный код *** | Цвет*** |
Y5F | ±7,5 | -30…+85 | ||
Y5P | ±10 | -30…+85 | серебряный | |
Y5R | -30…+85 | R | серый | |
Y5S | ±22 | -30…+85 | S | коричневый |
Y5U | +22…-56 | -30…+85 | A | |
Y5V(2F) | +22…-82 | -30…+85 | ||
X5F | ±7,5 | -55…+85 | ||
Х5Р | ±10 | -55. ..+85 | ||
X5S | ±22 | -55…+85 | ||
X5U | +22…-56 | -55…+85 | синий | |
X5V | +22…-82 | -55..+86 | ||
X7R(2R) | ±15 | -55…+125 | ||
Z5F | ±7,5 | -10…+85 | В | |
Z5P | ±10 | -10…+85 | С | |
Z5S | ±22 | -10…+85 | ||
Z5U(2E) | +22…-56 | -10…+85 | E | |
Z5V | +22…-82 | -10…+85 | F | зеленый |
SL0(GP) | +150…-1500 | -55…+150 | Nil | белый |
* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.
** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма «Philips» для группы Y5P нормирует -55…+125 °С.
*** В соответствии с EIA. Некоторые фирмы, например «Panasonic», пользуются другой кодировкой.
Таблица 5
Метки полосы, кольца, точки | 1 | 2 | 3 | 4 | 5 | 6 |
3 метки* | 1-я цифра | 2-я цифра | Множитель | — | — | — |
4 метки | 1-я цифра | 2-я цифра | Множитель | Допуск | — | — |
4 метки | 1-я цифра | 2-я цифра | Множитель | Напряжение | — | — |
4 метки | 1 и 2-я цифры | Множитель | Допуск | Напряжение | — | — |
5 меток | 1-я цифра | 2-я цифра | Множитель | Допуск | Напряжение | — |
5 меток» | 1-я цифра | 2-я цифра | Множитель | Допуск | ТКЕ | — |
6 меток | 1-я цифра | 2-я цифра | 3-я цифра | Множитель | Допуск | ТКЕ |
* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.
** Цвет корпуса указывает на значение рабочего напряжения.
Таблица 6
Таблица 7
Цвет | 1-я цифра пФ | 2-я цифра пФ | 3-я цифра пФ | Множитель | Допуск | ТКЕ |
Серебряный | 0,01 | 10% | Y5P | |||
Золотой | 0,1 | 5% | ||||
Черный | 0 | 0 | 1 | 20%* | NPO | |
Коричневый | 1 | 1 | 1 | 10 | 1%** | Y56/N33 |
Красный | 2 | 2 | 2 | 100 | 2% | N75 |
Оранжевый | 3 | 3 | 3 | 10 3 | N150 | |
Желтый | 4 | 4 | 4 | 10 4 | N220 | |
Зеленый | 5 | 5 | 5 | 10 5 | N330 | |
Голубой | 6 | 6 | 6 | 10 6 | N470 | |
Фиолетовый | 7 | 7 | 7 | 10 7 | N750 | |
Серый | 8 | 8 | 8 | 10 8 | 30% | Y5R |
Белый | 9 | 9 | 9 | +80/-20% | SL |
* Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.
Таблица 8
Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.
Таблица 9
Номинальная емкость [мкФ] | Допуск | Напряжение | |||
0,01 | ±10% | 250 | |||
0,015 | |||||
0,02 | |||||
0,03 | |||||
0,04 | |||||
0,06 | |||||
0,10 | |||||
0,15 | |||||
0,22 | |||||
0,33 | ±20 | 400 | |||
0,47 | |||||
0,68 | |||||
1,0 | |||||
1,5 | |||||
2,2 | |||||
3,3 | |||||
4,7 | |||||
6,8 | |||||
1 полоса | 2 полоса | 3 полоса | 4 полоса | 5 полоса |
Кодовая маркировка конденсаторов
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Таблица 10
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Таблица 11
D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Таблица 13
Кодовая маркировка кондесаторов электролетических для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования
А. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Таблица 14
Код | Емкость [мкФ] | Напряжение [В] |
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
В рации mj333 конденсатор 68pch(2012)помогите расшифровать
Подскажите пожалуйста расшифровку кондера K73-17В 330hK и чем его можно заменить.
что обозначает пленочный конденсатор свв13 9200j400 подскажите пожалуйста,
что обозначает пленочный конденсатор свв13 9200j400
как расшифровать конденсатор в182к?
Спасибо за расшифровку буквенных кодов допусков!:-)
Подскажите что это за такое?В панели приборов сгоревшая деталь,зелёная,плоская,круглая на двух ножках маркировка толи U103M или J103M
Пожалоста скажите что ето за маркировка кондера кт 1,0/10 160 40/100/21 88 болше нет никакого обозначения.ВЗЯТ С немецкого «роботрона»?ПОДСКАЖИТЕ возможную замену пожалоста?
Сгорел конденсатор на картине (водопад)марка 225J МРЕ 400V.Сколько в нём мкф или пкф и чем можно его заменить???? Спасибо!
На конденсаторе надпись 400WV560uF.Что обозначает буква W после цифр 400?
что это 10u63vbo030ko10uT63v
МРЕ 400V ЧТО ЭТО???
Сгорел конденсатор на картине (водопад)марка 225J МРЕ 400V.Сколько в нём мкф или пкф и чем можно его заменить???? Спасибо!!
Great, thanks for sharing this article. Really Cool. degddeadeaee
пожалуста подскажыте E1 1000j UD
Подскажите пожалуйста! На конденсаторе написано в 2 строчки W4, 100V (старая материнская плата INTEL) Гугл мне не помог ничем:)
Конденсаторы 70-х Румынские 2К2; 1К82; 10К — это сколько?
или это дросель…
Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов . Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать эти коды, можно узнать их ёмкость. Для чего это нужно — всем понятно.Итак,
расшифровывать коды нужно так:Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.
Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10 — 6х о С). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается «Н»).
Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф
Код | Ёмкость | |||
Пикофарад(пФ, pF) | Нанофарад (нФ, nF) | Микрофорад (мкФ, µF) | ||
109 | 1.0 | 0.001 | ||
159 | 1.5 | 0.0015 | ||
229 | 2.2 | 0.0022 | ||
339 | 3.3 | 0.0033 | ||
479 | 4.7 | 0.0047 | ||
689 | 6.8 | 0.0068 | ||
100 | 10 | 0.01 | ||
150 | 15 | 0.015 | ||
220 | 22 | 0.022 | ||
330 | 33 | 0.033 | ||
470 | 47 | 0.047 | ||
680 | 68 | 0.068 | ||
101 | 100 | 0.1 | ||
151 | 150 | 0.15 | ||
221 | 220 | 0.22 | ||
331 | 330 | 0.33 | ||
471 | 470 | 0.47 | ||
681 | 680 | 0.68 | ||
102 | 1000 | 1.0 | 0.001 | |
152 | 1500 | 1.5 | 0.0015 | |
222 | 2200 | 2.2 | 0.0022 | |
332 | 3300 | 3.3 | 0.0033 | |
472 | 4700 | 4.7 | 0.0047 | |
682 | 6800 | 6.8 | 0.0068 | |
103 | 10000 | 10 | 0.01 | |
153 | 15000 | 15 | 0.015 | |
223 | 22000 | 22 | 0.022 | |
333 | 33000 | 33 | 0.033 | |
473 | 47000 | 47 | 0.047 | |
683 | 68000 | 68 | 0.068 | |
104 | 100000 | 100 | 0.1 | |
154 | 150000 | 150 | 0.15 | |
224 | 220000 | 220 | 0.22 | |
334 | 330000 | 330 | 0.33 | |
474 | 470000 | 470 | 0.47 | |
684 | 680000 | 680 | 0.68 | |
105 | 1000000 | 1000 | 1.0 | |
1622 | 16200 | 16.2 | 0.0162 | |
КОДОВАЯ МАРКИРОВКА Кодировка 3-мя цифрами Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ. * Иногда последний ноль не указывают. Кодировка 4-мя цифрами Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF). Примеры: Маркировка ёмкости в микрофарадах Вместо десятичной точки может ставиться буква R. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку. ЦВЕТОВАЯ МАРКИРОВКА На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки * Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель. ** Цвет корпуса указывает на значение рабочего напряжения. Вывод «+» может иметь больший диаметр Для маркировки пленочных конденсаторов используют 5 цветных полос или точек: Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение. МАРКИРОВКА ДОПУСКОВ В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка: МАРКИРОВКА ТКЕ Конденсаторы с ненормируемым ТКЕ * Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса. Конденсаторы с линейной зависимостью от температуры * В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85″С. ** Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса. Конденсаторы с нелинейной зависимостью от температуры * Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC. ** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например, фирма PHILIPS для группы Y5P нормирует -55…+125 њС. *** В соответствии с EIA. Некоторые фирмы, например Panasonic, пользуются другой кодировкой. |
Как считать значение кода конденсатора
Нажмите здесь, чтобы увидеть цветовой код резистора и код резистора SMD
• На керамических дисковых конденсаторах напечатан двух- или трехзначный код.
• Первые два числа описывают емкость конденсатора, а третье число — количество нулей в умножителе.
• Когда первые два числа умножаются на множитель, результирующее значение представляет собой значение емкости конденсатора в пикофарад .
• Если есть только два числа, это означает, что множитель отсутствует. Затем вы просто считываете значение первых двух чисел в пикофарадах .
• Если на каком-либо конденсаторе напечатано 10 — тогда его значение будет 10 PF
• Когда на каком-либо конденсаторе напечатано 104 — он имеет множитель 4 (третье число кода). 10 умножается на 10 × 10 4 = 10000. Тогда его значение 10 × 10000 = 100000ПФ
Вот таблица наиболее часто используемых кодов керамических конденсаторов и их преобразование единиц в Micro, Nano и Picofarad
Последнее число является степенью 10 и умножается на первые два числа.
Если конденсатор имеет код 682 — сначала проверьте последнее «нет», здесь последнее «нет» — 2. Теперь множитель 10 2
Например —
- 204 = 20 × 10 4 = 200000 ПФ
- 472 = 47 × 10 2 = 4700 ПФ
- 502 = 50 × 10 2 = 5000 ПФ
- 330 = 33 × 10 0 = 33 ПФ [10 0 = 1]
ЕДИНИЦ—
- 1000 нанофарад (нФ) = 1 микрофарад (мкФ)
- 1 пикофарад = 10 -12 фарад.
- нано = 10 -9
- Микро = 10 -6
- 1 нанофарад = 10 -9 фарад
- 1 Микрофарад (мкФ) = 10 -6 Фарад
1 нФ = 1000 пФ
1 пФ = 0,001 нФ
Пример:
преобразовать 15 нФ в пФ:
15 нФ = 15 × 1000 пФ = 15000 пФ
Если конденсатор имеет маркировку 2A474J , емкость декодируется, как описано выше, два первых знака представляют собой номинальное напряжение и могут быть декодированы из приведенной ниже таблицы. 2A — это номинальное напряжение 100 В постоянного тока в соответствии со стандартом EIA (Electronic Industries Alliance).
Вторая буква будет температурным коэффициентом, если он присутствует.
Некоторые конденсаторы имеют маркировку только 0,1 или 0,01 , в большинстве случаев значения указаны в мкФ.
Некоторые конденсаторы малой емкости могут быть помечены буквой R. Если код 3R9, то R является индикатором значений менее 10 пФ и не имеет ничего общего с сопротивлением.3R9 будет 3,9 пФ.
105J = 10 × 105 = 1000000pf = 1000nf = 1.0 мкФ
j = +/- 5% Допуск
104 = 10 × 104 = 100000pf = 100nf = 0,1 мкФ
j = + — 5% отклонение
2A = номинальное напряжение 100 В постоянного тока
Также читается
Расчет кода конденсатора— Загрузить диаграмму в формате PDF
В этой статье я объяснил, как рассчитать значение емкости на основе 3-значного кода конденсатора.Для керамических конденсаторов трехзначный код, нанесенный на конденсатор, указывает их значение емкости.
Что такое керамический конденсатор
Керамические конденсаторы — это конденсаторы с фиксированной величиной, в которых диэлектрик изготовлен из керамических материалов. Для любых керамических конденсаторов существует два или более чередующихся слоев керамики и металла, действующих как электроды.
Таблица кодов конденсаторов: Таблица
для кодов конденсаторов со значением емкости в пФ и нФОбучающее видео по коду конденсатора
Как вычислить код конденсатора 104
Наиболее распространенный код использует первую цифру, вторую цифру, и схема умножения.
На этом рисунке я показал, как получить значение емкости из кода конденсатора 104.
Чтобы получить значение емкости, сначала запишите первую и вторую цифру. Третья цифра указывает количество нулей, которые вы должны написать после первых двух цифр.
Для кода 104 третья цифра — 4 , поэтому вам нужно написать 0000 (4 нуля) после 10 (первые две цифры).
Таким образом, значение емкости для 104 будет 100000 пикофарад или 100 нанофарад или 0.1 мкФ.
Код маркировки допускаДополнительные примеры:
Для некоторых конденсаторов значение емкости указано очень ясно .
Керамический конденсатор 22 пФКак вы можете видеть на рисунке для 22 пФ , 22 кОм отмечен на конденсаторе. (K означает допуск 10%)
Дополнительные примеры:
Измерение емкости с помощью мультиметра
Вы также можете использовать мультиметр для проверки значения емкости конденсаторов.Здесь я тестирую керамический конденсатор 155J . В мультиметре можно значение емкости 1,5 мкФ .
Поделитесь своими отзывами об этом обучающем видео по конденсаторам, а также дайте мне знать, если у вас возникнут какие-либо вопросы.
Вы также можете посетить наш канал YouTube e l для получения дополнительных полезных руководств по базовой электронике.
Надеюсь, вам понравился этот урок. Спасибо за ваше время.
Маркировка Во-первых, давайте уточним нашу номенклатуру.1 мФ (милли) = 10 -3 фарад, 1 мкФ (мкФ) = 10 -6 фарад. 1 нФ (нано) = 10 -9 фарад, 1 пФ (пико) = 10 -12 фарад. 1 пФ = 10 -3 нФ = 10 -6 мкФ. Нано встречается гораздо реже, чем микро и пико, но все же появляется. «Фемтофарад» (fF) используется для таких вещей, как накопительные конденсаторы микросхемы RAM, но нет дискретных конденсаторов в этом диапазоне размеров. Было бы неплохо, если бы маркировка конденсаторов была более единообразной.Если у производителя много места (например, на больших электролитиках), они будут обычно печатают все, что умеют; значение, номинальное напряжение, номинальная температура, серия и даже страна-производитель. Однако чем меньше размер детали, тем меньше информации вы получите до тех пор, пока не получите информацию о мельчайших деталях. может вообще ничего не быть. На керамике со сквозными отверстиями часто (но не всегда) используется система двух чисел плюс показатель степени. Это, как и большинство систем маркировки, основано на пикофараде, самом низком уровне знаменатель емкости.470 может быть 47 (47 x 10 0 ) или 470 пФ, но 471 почти наверняка будет 470 (47 x 10 1 ). 473, вероятно, будет 0,0047. Однако 479, вероятно, будет означать 4,7 (47 x 10 -1 ). Значения ниже 10 пФ могут использовать «R» для десятичной точки, например, 4R7 = 4,7 пФ. Если повезет, вы также можете найти материал (C0G, X7R и т. Д.) И номинальное напряжение. Допуск может быть следующим к значению. В таблице 5 приведены коды допусков EIA для керамических конденсаторов.Еще раз, не ожидайте найти все возможные комбинации значений, диэлектриков и допусков. Более жесткие допуски в основном применяется к конденсаторам малой емкости C0G, а меньшие допуски — к керамике большего размера класса 2-4. Например, если вы видите.047K, значение составляет 0,047 мкФ 10%. Некоторые керамические диски носят цветной «тюбетейный колпачок» для обозначения диэлектрика. Они также будут использовать XXM формат для указания значения (где M — множитель) и буква допуска из Таблицы 5 выше. В европейских деталях вы также можете увидеть конденсаторы, помеченные двузначной системой с «множителем». буква, используемая как десятичная точка. Например, 4700 пФ можно записать как 4n7, что составляет 4,7 нанофарад. Насколько я понимаю, это взято из IEC 60062 (которого я еще не видел). Вот несколько примеров: Некоторые производители пленочных конденсаторов используют код, который указывает тип конденсатора.Я видел, как это упоминалось как «европейский». Некоторые производители, кажется, точно следуют этой системе, в то время как другие иногда используют ее с вариациями. Приведенная ниже таблица не является полной. Другие из них находятся на http://www.fust-electronica.nl. Все это небольшая проблема для оборудования производители, которые знают, что покупают.Любитель, использующий излишки деталей (или кто-то, занимающийся ремонтом), может, по крайней мере, захотеть инвестировать в дешевый измеритель емкости (или построить его). SMD Тип диэлектрика может быть обозначен системой «штрих-кода», в которой используются полосы сверху, снизу и на обе стороны от кода значения.Например, | XX — это X7R со значением XX из таблицы 6 выше, а XX I — Z5U. XX — это N330 (S2H), X X — это N470 (T2H), X X — это N750 (U2J). C0G — XX, где полоса — это мой способ обозначения полос> над <цифрами значения (XX). Так, например, | A5 равно 0,1 мкФ X7R. Мурата-Эри использует эту систему, но я не знаю, использует ли кто-нибудь еще ...
Тантал SMD обычно имеет достаточно места, чтобы указать значение и напряжение (иногда не сообщая вам, что есть что), некоторые используют двузначный код EIA, указанный выше, а некоторые помечены другим способом.Танталы также можно найти с кодом напряжения (вместо кода допуска, обычно встречающегося на керамика), как показано в Таблице 12 ниже. Итак, сколькими способами можно маркировать танталовый конденсатор SMD? Любое количество способов в зависимости от наличие места и настроение производителя. Конденсатор 10 мкФ / 25 В может выглядеть так: 2 X — код даты 3 Y — допуск Приведенный выше список не является исчерпывающим.Варианты включают коды дат, основанные на системе точек, и специальные схемы напряжение / значение в общих чертах основаны на кодах EIA, но с изменениями и дополнениями. Хотя бы один Компания иногда использует буквенную часть кода EIA без экспоненты для обозначения мкФ вместо пФ (J будет 2,2 мкФ). Когда дело доходит до идентификации полярности, производители тантала полностью зацикливаются на аноде. с полосой (белой на черном теле или черной на светлом), знаком «+», острым скосом или какой-либо комбинацией. Однако некоторые танталы для поверхностного монтажа настолько малы, что вообще не имеют маркировки. В этом случае анодный конец идентифицируется по тому, что конец анодной проволоки проходит через анодное окончание. Я не знаю ни одного производитель, который маркирует катод, но кто знает? Конденсаторы военного назначения Устаревшие коды слюды MIL-C-5 использовал систему из 6 и 9 точек для отображения значения, допуска, напряжения, уровня вибрации и температурный дрейф.Номинальное напряжение определялось размерами корпуса при использовании 6 точек. EIA RS-153 был 5-, 6- или 9-точечной системой, очень похожей на MIL-C-5. Система EIA охватывала «кнопочные» слюды как а так же марочные слюды. Производители использовали различные проприетарные системы с 3, 4, 5 и 6 точками, чтобы показать значение, допуск и напряжение. В конце концов, некоторые производители отказались от точек краски и просто напечатали цифры на корпусе, особенно если деталь не подходила к системе (например, деталь с допуском 1/2%). http://www.tpub.com/neets/book2/3g.htm Цветовые коды слюды. Другие устаревшие коды Дополнительные сайты с информацией о маркировке конденсаторов. Http://mile-high-www.cudenver.edu/callab Сборник стандартов маркировки конденсаторов для старых слюдяных, керамических и бумажных конденсаторов. http://xtronics.com/kits/ccode.htm |
Руководство по идентификации комплектов деталей для начинающих
Добавлено в избранное Любимый 7Конденсаторы
Керамические конденсаторы — 10 пФ, 100 пФ, 1 нФ, 10 нФ, 0.1 мкФ, 1 мкФ
Конденсаторы никогда не будут играть ведущую роль в схемах, тем не менее, они лежат в основе большинства конструкций. Эти колпачки чаще всего используются для развязки цепи , где они размещаются параллельно источнику постоянного напряжения для подавления шума. У них также есть множество других применений, таких как накопление энергии и настройка схемы синхронизации (см. Таймер 555 ниже).
Каждую из этих крышек можно отличить по крошечному принту на корпусе.См. Таблицу ниже, чтобы сопоставить каждую границу с ее значением, вы, вероятно, заметите шаблон:
Значение ограничения | Маркировка крышки |
---|---|
10 пФ | 100 |
100пФ | 101 |
1 нФ | 102 |
10 нФ | 103 |
0.1 мкФ | 104 |
1 мкФ | 105 |
Электролитические конденсаторы — 10 мкФ и 100 мкФ
Не слишком дальний родственник керамического конденсатора, эти электролитические колпачки имеют одну очень отличительную черту: они поляризованы , что означает, что они имеют как положительную, так и отрицательную ножку.
Отрицательный полюс отмечен знаком «-» на корпусе колпачка (золотой на 100 мкФ и белым на 10 мкФ) и более коротким полюсом.Убедитесь, что напряжение на длинном положительном проводе выше, чем на отрицательном. Если вы случайно закрутите крышку назад, неизбежен катастрофический отказ, обычно в виде того, что крышка издает забавный «хлопающий» звук и вроде как надувается. Звучит забавно, я знаю, но у вас только пять штук каждого, так что вы можете держать их в рабочем состоянии.
Совет: Ищете дополнительную информацию о керамических конденсаторах? Ознакомьтесь с этим разделом нашего руководства по идентификации комплектов конденсаторов для получения дополнительной информации о маркировке конденсаторов.Для получения дополнительной информации ознакомьтесь с нашим руководством по конденсаторам.
Конденсаторы
19 июня 2013 г.
Узнайте обо всем, что касается конденсаторов. Как они сделаны. Как они работают. Как они выглядят. Типы конденсаторов. Последовательные / параллельные конденсаторы. Конденсаторные приложения.
← Предыдущая страница
Коробка с регулируемыми деталями Конденсаторы
— Маркировка конденсаторов — Radio Daze LLC
КОНДЕНСАТОР | ЗНАЧЕНИЕ |
101 | .0001uf = 100pf |
151 | .00015 мкФ = 150 пф |
221 | .00022 мкФ = 220 пф |
331 | .00033 мкФ = 330 пф |
471 | .00047 мкФ = 470 пф |
681 | .00068 мкФ = 680 пф |
102 | .001 мкФ = 1000 пф |
152 | . 0015 мкФ = 1500 пф |
222 | . 0022 мкФ = 2200 пф |
332 | . 0033 мкФ = 3300 пф |
472 | .0047uf = 4700pf |
682 | . 0068 мкФ = 6800 пф |
103 | . 01 мкФ |
153 | 0,015 мкФ |
223 | 0,022 мкФ |
333 | .033 мкФ |
473 | 0,047 мкФ |
683 | 0,068 мкФ |
104 | . 1 мкФ |
154 | 0,15 мкФ |
224 | .22 мкФ |
334 | .33 мкФ |
474 | .47 мкФ |
684 | 0,68 мкФ |
105 | 1.0 мкФ |
225 | 2,2 мкФ |
Не можете определить значение
конденсатора на вашем стенде?
Вот таблица, которая вам в помощь.Буква
после маркировки часто указывает на допуск.
+/- 5% (J), +/- 10% (K), +/- 20% (M)
Пример: 101K будет 100pf, +/- 10%
Когда вы устали, у вас болит голова при переводе пикофарадов в микрофарады? | ||
4,7 ммс или pf | = | .0000047 мф |
47 ммс или пф | = | .000047 mf |
470 ммс или пф | = | .00047 mf |
4,700 ммс или пф | = | .0047 мф |
47000 ммс или пф | = | .047 мф |
470,000 ммс или пф | = | .47 mf |
Лучшее руководство по коду конденсатора
Ⅰ Введение
При подключении к источнику напряжения конденсаторы являются основными пассивными устройствами, которые могут накапливать электрический заряд на своих пластинах.Конденсатор, как и миниатюрная перезаряжаемая батарея, обладает способностью или «емкостью» накапливать энергию в виде электрического заряда, создавая разность потенциалов (статическое напряжение) на своих пластинах.
Конденсаторыбывают самых разных размеров и форм, от крошечных конденсаторных бусинок, используемых в резонансных цепях, до огромных конденсаторов коррекции коэффициента мощности, но они всегда накапливают заряд.
в этом видео показано, как работают конденсаторы
Каталог
Ⅱ Типы конденсаторов
Доступны конденсаторы, от очень маленьких тонких подстроечных конденсаторов, используемых в генераторах или радиосхемах, до огромных мощных конденсаторов типа металлических банок, используемых в высоковольтных схемах коррекции и сглаживания мощности.
Диэлектрик, используемый между пластинами, обычно используется для сравнения различных типов конденсаторов. Существуют различные разновидности конденсаторов, как и резисторы, которые позволяют нам регулировать значение их емкости для использования в схемах радиосвязи или «частотной настройки».
Металлическая фольга переплетается с тонкими листами пропитанной парафином бумаги или майлара в качестве диэлектрического материала в промышленных конденсаторах. Поскольку пластины из металлической фольги свернуты в цилиндр, образуя компактную коробку с изолирующим диэлектрическим материалом, зажатым между ними, некоторые конденсаторы напоминают трубки.
Керамические материалы часто используются для изготовления небольших конденсаторов, которые впоследствии герметизируются эпоксидной смолой. Конденсаторы в любом случае играют решающую роль в электронных схемах, поэтому вот несколько из наиболее «распространенных» доступных типов конденсаторов.
2.1 Диэлектрический конденсатор
Когда для настройки передатчиков, приемников и транзисторных радиоприемников необходимо постоянное изменение емкости, обычно используются различные диэлектрические конденсаторы.Многопластинчатые конденсаторы с переменной диэлектрической проницаемостью, разнесенные по воздуху, имеют набор неподвижных пластин (лопатки статора) и набор подвижных пластин (лопатки ротора), которые перемещаются между неподвижными пластинами.
Общая величина емкости определяется положением подвижных пластин относительно неподвижных пластин. Когда два набора пластин полностью соединились, емкость обычно достигает максимума. При пробивном напряжении в несколько тысяч вольт настроечные конденсаторы высокого напряжения имеют относительно большие промежутки или воздушные зазоры между пластинами.
2.2 Переменный конденсатор Обозначение
Подстроечные резисторы представляют собой переменные конденсаторы предварительно установленного типа, которые доступны в дополнение к бесступенчатым разновидностям. Как правило, это небольшие устройства, которые можно модифицировать или «предварительно установить» на конкретное значение емкости с помощью небольшой отвертки, они доступны с очень низкой емкостью 500 пФ или меньше и являются неполяризованными.
символ переменного конденсатора
2.4 Осевой вывод типа
Длинные тонкие полоски тонкой металлической фольги с зажатым между ними диэлектрическим материалом скручивают в плотный рулон, а затем запечатывают в бумажные или металлические трубки для пленочных и фольговых конденсаторов.
Чтобы уменьшить вероятность разрывов или проколов пленки, эти типы пленок требуют значительно более толстой диэлектрической пленки и, таким образом, лучше подходят для более низких значений емкости и больших размеров корпуса.
с осевым выводом
Конденсаторы из металлизированной фольги имеют проводящую металлизированную пленку, напыленную непосредственно на каждую сторону диэлектрика, что придает конденсатору способность самовосстановления и позволяет использовать более тонкие диэлектрические пленки.Для заданной емкости это позволяет использовать более высокие значения емкости и меньшие размеры корпуса. Пленочные и фольговые конденсаторы обычно используются в ситуациях, требующих большей мощности и точности.
2,5 Керамические конденсаторы
Керамические конденсаторы, также известные как дисковые конденсаторы, создаются путем покрытия двух сторон крошечного фарфорового или керамического диска серебром и их сложения вместе, чтобы сформировать конденсатор. Одиночный керамический диск размером примерно 3-6 мм используется для очень низких значений емкости.Керамические конденсаторы имеют высокую диэлектрическую проницаемость (High-K) и доступны в крошечных физических размерах, что обеспечивает относительно высокие емкости.
керамический конденсатор
Поскольку они неполяризованы и демонстрируют огромные нелинейные изменения емкости в зависимости от температуры, они используются в качестве развязывающих или шунтирующих конденсаторов. Керамические конденсаторы имеют размер от нескольких пикофарад до одной или двух микрофарад, но их номинальное напряжение часто невелико.
Трехзначный код обычно наносится на корпус керамических конденсаторов для определения значения их емкости в пикофарадах. Первые две цифры обычно представляют собой номинал конденсатора, а третья цифра представляет количество добавляемых нулей. Керамический дисковый конденсатор с маркировкой 103, например, будет показывать 10 и 3 нуля в пикофарадах, что равно 10 000 пФ или 10 нФ.
Цифры 104, например, представляют 10 и 4 нуля в пикофарадах, что сравнимо с 100 000 пФ или 100 нФ и так далее.Цифры 154 на изображении керамического конденсатора выше представляют 15 и 4 нуля в пикофарадах, что сопоставимо с 150 000 пФ, 150 нФ или 0,15 Ф. Для обозначения значения допуска иногда используются буквенные коды, например J = 5%, K = 10%, M = 20% и т. Д.
2.6 Электролитические конденсаторы
Когда требуются очень большие значения емкости, обычно используются электролитические конденсаторы. Вместо использования очень тонкого металлического пленочного слоя для одного из электродов используется полужидкий раствор электролита в форме желе или пасты (обычно катод).
Диэлектрик представляет собой очень тонкий слой оксида, который создается электрохимическим способом в процессе производства и имеет толщину менее десяти микрон. Поскольку изолирующий слой очень тонкий, конденсаторы с большим значением емкости можно изготавливать небольшого физического размера, потому что расстояние между пластинами d очень короткое.
конденсатор электролитический
Большинство электролитических конденсаторов поляризованы, это означает, что напряжение постоянного тока, подаваемое на клеммы конденсатора, должно иметь правильную полярность, т.е.е. положительный полюс к положительному выводу и отрицательный к отрицательному выводу, в противном случае изолирующий оксидный слой будет разрушен, что может привести к необратимому повреждению.
Полярность всех поляризованных электролитических конденсаторов обозначается отрицательным знаком, обозначающим отрицательный вывод, которому необходимо следовать.
Из-за большой емкости и небольшого размера электролитические конденсаторы обычно используются в цепях питания постоянного тока, чтобы помочь уменьшить пульсации напряжения или для приложений связи и развязки.Электролитические конденсаторы имеют низкое напряжение, что означает, что они не могут использоваться в сети переменного тока из-за их поляризации. Алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы — два наиболее распространенных типа электролитов.
2.7 Алюминиевые электролитические конденсаторы
Типы алюминиевых электролитических конденсаторов с простой фольгой и с протравленной фольгой. Эти конденсаторы имеют чрезвычайно высокие значения емкости для своего размера из-за толщины покрытия из оксида алюминия и высокого напряжения пробоя.
конденсатор алюминиевый электролитический
А постоянный ток используется для анодирования фольгированных пластин конденсатора. Полярность материала пластины устанавливается во время процесса анодирования, который определяет, какая сторона пластины является положительной, а какая — отрицательной.
Оксид алюминия на анодной и катодной фольгах был подвергнут химическому травлению для увеличения площади поверхности и диэлектрической проницаемости, что отличает протравленную фольгу от фольги простого типа.В результате получается конденсатор меньшего размера, чем у обычного типа фольги сопоставимого номинала, но у него есть недостаток, заключающийся в том, что он не может выдерживать сильные постоянные токи. Диапазон их толерантности также довольно высок, достигая 20%. Значения емкости алюминиевых электролитических конденсаторов обычно находятся в диапазоне от 1 мкФ до 47 000 мкФ.
Обычные фольговые электролиты лучше подходят в качестве сглаживающих конденсаторов в источниках питания, а протравленные фольговые электролиты лучше всего использовать в цепях связи, блокировки постоянного тока и байпаса.Однако, поскольку алюминиевые электролиты являются «поляризованными» устройствами, инвертирование приложенного напряжения на выводах приведет к повреждению изолирующего слоя внутри конденсатора, а также самого конденсатора. С другой стороны, электролит конденсатора помогает залечить поврежденную пластину, если повреждение незначительное.
Электролит может повторно анодировать пластину из фольги, поскольку он может самовосстановить поврежденную пластину. Электролит может удалить оксидный слой с фольги, если процесс анодирования будет обратным, как если бы конденсатор был подключен с обратной полярностью.Поскольку электролит может проводить электричество, при удалении или разрушении слоя оксида алюминия ток может течь от одной пластины к другой, вызывая выход конденсатора из строя, «так что будьте начеку».
2,8 Танталовые электролитические конденсаторы
Танталовые электролитические конденсаторы и танталовые шарики бывают как мокрого (фольга), так и сухого (твердого) электролитического типа, из которых наиболее распространен сухой тантал. Твердотельные танталовые конденсаторы имеют второй вывод из диоксида марганца и физически меньше аналогичных алюминиевых конденсаторов.
Диэлектрические характеристики оксида танталапревосходят диэлектрические характеристики оксида алюминия, что приводит к снижению токов утечки и большей стабильности емкости, что делает его идеальным для приложений блокировки, обхода, развязки, фильтрации и синхронизации.
Танталовые конденсаторы, хотя и поляризованы, могут выдерживать обратное напряжение значительно лучше, чем алюминиевые конденсаторы, но они рассчитаны на гораздо более низкие рабочие напряжения.Твердотельные танталовые конденсаторы обычно используются в цепях с низким напряжением переменного тока по сравнению с напряжением постоянного тока.
Некоторые танталовые конденсаторы, с другой стороны, состоят из двух конденсаторов в одном, подключенных отрицательно к отрицательному, чтобы сделать «неполяризованный» конденсатор для использования в цепях переменного тока низкого напряжения. Положительный вывод конденсатора с танталовыми шариками обычно идентифицируется по отметке полярности на корпусе конденсатора, имеющей овальную геометрическую форму. Значения емкости обычно варьируются от 47 нФ до 470Ф.
2.9 Часто задаваемые вопросы о различных типах конденсаторов
1. Какой тип конденсатора лучше? Керамические конденсаторыкласса 1 обеспечивают высочайшую стабильность и самые низкие потери. Они обладают высокой толерантностью и точностью и более стабильны при изменении напряжения и температуры. Конденсаторы класса 1 подходят для использования в качестве генераторов, фильтров и требовательных аудиоприложений.
2. Имеет ли значение тип конденсатора?Да, тип конденсатора может иметь значение.Конденсаторы разных типов обладают разными свойствами. Некоторые свойства, которые различаются в зависимости от типа конденсатора: поляризованный или неполяризованный.
3. Все ли конденсаторы одинаковые?Не все конденсаторы одинаковы. Каждый конденсатор имеет определенную емкость. Емкость конденсатора говорит вам, сколько заряда он может хранить, большая емкость означает большую емкость для хранения заряда.
4. Какой тип конденсатора известен как поляризованный конденсатор?Конденсаторы электролитические.Электролитические конденсаторы — это конденсаторы, название которых указывает на то, что в них используется какой-то электролит. Это поляризованные конденсаторы с анодом + и катодом с определенной полярностью. Металл, на котором изолирующий оксидный слой образуется в результате анодирования, называется анодом.
5. Какие конденсаторы не поляризованы?Керамические, слюдяные и некоторые электролитические конденсаторы неполяризованы. Иногда вы также слышите, как люди называют их «биполярными» конденсаторами.Поляризованный («полярный») конденсатор — это тип конденсатора, который имеет неявную полярность — он может быть подключен только одним способом в цепи.
Ⅲ Емкость конденсатора
Фарад (сокращенно F) — единица измерения емкости, названная в честь британского физика Майкла Фарадея. Емкость — это электрическое свойство конденсатора и мера способности конденсатора накапливать электрический заряд на своих двух пластинах.
Когда заряд в один кулон накапливается на пластинах напряжением в один вольт, конденсатор имеет емкость в один фарад.Стоит отметить, что емкость, или C, всегда положительна и не имеет отрицательных единиц. Однако, поскольку фарад сам по себе является относительно большой единицей измерения, обычно используются суб-кратные, такие как микрофарады, нанофарады и пикофарады.
3.1 Единица измерения емкости СИ
Конденсаторы являются распространенным типом электрических компонентов, и их значения обычно выражаются в микрофарадах, Ф (или мкФ, если микрознаки недоступны), нанофарадах, нФ или пикофарадах, пФ.
Микрофарад (мкФ) 1 мкФ = 1 / 1,000,000 = 0,000001 = 10 -6 F
Нанофарад (нФ) 1 нФ = 1 / 1,000,000,000 = 0,000000001 = 10 -9 F
Пикофарад (пФ) 1 пФ = 1/1000000000000 = 0,000000000001 = 10 -12 F
3,2 мкФ по сравнению с нФ по сравнению с пФ
Хотя в большинстве текущих схем и описаний компонентов используются номенклатура F, нФ и пФ для указания номиналов конденсаторов, более старые конструкции схем, описания схем и даже сами компоненты могут использовать различные нестандартных сокращений, которые не всегда очевидны.
Ниже приведены основные изменения для различных подмножителей емкости:
Микрофарад, мкФ: Конденсаторы большей стоимости, такие как электролитические конденсаторы, танталовые конденсаторы и даже некоторые бумажные конденсаторы, измеряемые в микрофарадах, могли иметь маркировку мкФ, МФД, МФД, МФ или УФ. Все эти термины относятся к значению в мкФ. К этой номенклатуре обычно относятся электролитические и танталовые конденсаторы.
Нано-Фарад, нФ: Поскольку номенклатура нФ или нано-Фарад не часто использовалась до стандартизации терминологии, в этом подмножестве отсутствовало множество сокращений.Термин нанофарад приобрел популярность в последние годы, хотя он все еще не получил широкого распространения в некоторых странах, при этом значения даны в огромных количествах пикофарад, например 1000 пФ для 1 нФ, или долях микрофарад, например 0,001 мкФ для нанофарад. Керамические конденсаторы, металлизированные пленочные конденсаторы, в том числе многослойные керамические конденсаторы для поверхностного монтажа и даже некоторые современные конденсаторы из серебряной слюды, используют эту терминологию.
Пико-Фарад, пФ: Значение в пикофарадах, пФ, снова было указано с использованием различных сокращений.Микроромикрофарады, mmfd, MMFD, uff, µµF были среди используемых терминов. Все эти числа в пФ. Конденсаторы пикофарад обычно используются в радиочастотах, радиочастотных цепях и оборудовании. В результате эта номенклатура чаще всего ассоциируется с керамическими конденсаторами, однако она также применяется к конденсаторам из серебряной слюды и некоторым пленочным конденсаторам.
Преобразованию значений из одного подмножителя в другое способствует стандартизация терминологии.Это привело к значительному снижению вероятности недопонимания. Преобразование из мкФ в нФ и пФ проще. Это важно, когда емкость конденсатора указана одним способом на принципиальной схеме, а другим — в списке дистрибьюторов электронных компонентов.
Поскольку разные производители электрических компонентов маркируют компоненты по-разному, таблица преобразования емкости очень полезна. Например, некоторые производители маркируют свои эквивалентные конденсаторы как доли микрофарад, другие маркируют их как доли нанофарада и так далее.Оптовые и розничные продавцы электрических компонентов предпочтут использовать номенклатуру производителя.
Точно так же в принципиальных схемах могут использоваться разные символы для представления компонентов для поддержания общности и т. Д. В результате возможность преобразования между пикофарадами, нанофарадами и микрофарадами, а также наоборот, является полезной. Если в спецификации или списке деталей для схемы указаны значения, выраженные в микрофарадах, мкФ и пикофарадах, пФ, это может помочь идентифицировать компоненты, обозначенные в значениях нанофарад.
Обычно полезно иметь возможность использовать калькулятор преобразования емкости, подобный приведенному выше, но также важно знать преобразования и популярные эквиваленты, такие как 1000 пФ = нанофарад и 100 нФ = 0,1 мкФ.
Эти преобразования становятся второй натурой при работе с электрическими компонентами и проектировании электронных схем, но таблицы преобразования емкости и калькуляторы все еще могут быть весьма полезными. Конденсаторы, а также другие электронные компоненты, такие как индукторы, выигрывают от этих преобразований.
3.3 Часто задаваемые вопросы о емкости конденсатора
1. Что такое емкость, говоря простым языком?Емкость — это способность системы электрических проводников и изоляторов накапливать электрический заряд, когда между проводниками существует разность потенциалов. Емкость выражается как отношение накопленного электрического заряда к напряжению на проводниках.
2. Что такое C в емкости?Емкость C — это отношение количества заряда q на любом проводнике к разности потенциалов V между проводниками, или просто C = q / V.
3. В чем разница между конденсатором и емкостью?Емкость — это не что иное, как способность конденсатора накапливать энергию в виде электрического заряда. Другими словами, емкость — это запоминающая способность конденсатора. Измеряется в фарадах.
4. Какая формула конденсатора?Основное уравнение для конструкции конденсатора: C = εA / d, В этом уравнении C — емкость; ε — диэлектрическая проницаемость, термин, обозначающий, насколько хорошо диэлектрический материал сохраняет электрическое поле; А — площадь параллельной пластины; и d — расстояние между двумя проводящими пластинами.
5. Какие четыре фактора влияют на емкость?
На емкость конденсатора влияет площадь пластин, расстояние между пластинами и способность диэлектрика выдерживать электростатические силы.
Ⅳ Конденсатор Преобразование: мкФ-нФ-пФ
Использование нанофарада (нФ) менее распространено в некоторых областях, при этом значения указаны в долях мкФ и огромных кратных пикофарадах (пФ).Когда доступны компоненты, отмеченные в нанофарадах, в этих обстоятельствах может потребоваться преобразование в нанофарады.
Когда на принципиальной схеме или в списке электронных компонентов указано значение в пикофарадах, например, а в списках дистрибьютора электронных компонентов или магазина электронных компонентов это указано по-другому, это может сбивать с толку.
Значение конденсатораможет быть в диапазоне 10 9 или даже выше, благодаря внедрению суперконденсаторов.Общие префиксы pico (10 -12 ), nano (10 -9 ) и micro (10 -6 ) часто используются, чтобы избежать недоразумений с большим количеством нулей, связанных с номиналами различных конденсаторов. При преобразовании между ними может быть полезна таблица преобразования конденсаторов или таблица преобразования конденсаторов для различных номиналов конденсаторов.
Еще одно требование для преобразования емкости состоит в том, что фактическое значение емкости указывается в пикофарадах в некоторых системах маркировки конденсаторов, поэтому значение должно быть преобразовано в более распространенные нанофарады или микрофарады.
4.1 Таблица преобразования конденсаторов
Микрофарады (мкФ) | нанофарад (нФ) | Пикофарады (пФ) |
0,000001 | 0,001 | 1 |
0,00001 | 0,01 | 10 |
0,0001 | 0,1 | 100 |
0,001 | 1 | 1000 |
0.01 | 10 | 10000 |
0,1 | 100 | 100000 |
1 | 1000 | 1000000 |
10 | 10000 | 10000000 |
100 | 100000 | 100000000 |
4.2 Популярные преобразования конденсаторов
Значения конденсаторов можно записать несколькими способами.Например, керамическому конденсатору часто назначается значение 100 нФ. Часто бывает интересно понять, что это 0,1 мкФ при использовании в цепях с электролитическими конденсаторами. Эти удобные преобразования могут помочь в проектировании, строительстве и обслуживании цепей.
При построении схем или использовании конденсаторов любым способом обычно полезно помнить об этих преобразованиях конденсаторов, когда значения переходят от пикофарад к нанофарадам, а затем от нанофарад к микрофарадам.
Более подробная таблица коэффициентов преобразования для преобразования между различными значениями, нФ в пФ, мкФ в нФ и т. Д., Приведена ниже.
Таблица коэффициентов преобразования для преобразования между мкФ, нФ и пФ | |
преобразовать | умножить на: |
пФ до нФ | 1 x 10 -3 |
пФ до мкФ | 1 x 10 -6 |
нФ до пФ | 1 х 10 3 |
от нФ до мкФ | 1 x 10 -3 |
мкФ до пФ | 1 х 10 6 |
мкФ до нФ | 1 х 10 3 |
4.3 Часто задаваемые вопросы о преобразовании конденсатора
1. Могу ли я заменить конденсатор на конденсатор с более высоким мкФ?Пусковые конденсаторы электродвигателя могут быть заменены на микрофарады или UF, равные или на 20% выше UF, чем у исходного конденсатора, обслуживающего двигатель.
2. Что произойдет, если я использую конденсатор емкостью выше мкФ?Чем выше количество микрофарад, тем больше энергии может удерживать конденсатор. Теоретически, если устройство имеет высокий мкФ, оно прослужит дольше при отключении электроэнергии.
3. Что произойдет, если вы используете конденсатор неправильного размера?Если установлен неправильный рабочий конденсатор, в двигателе не будет равномерного магнитного поля. Это вызовет колебания ротора на неровных участках. Это колебание вызовет шум двигателя, увеличит потребление энергии, снизит производительность и приведет к перегреву двигателя.
4. Можно ли заменить конденсатор на меньшую емкость?Да, это возможно при наличии необходимых навыков и инструментов.Да, это безопасно. Единственный рейтинг, который имеет значение для безопасности, — это номинальное напряжение: если вы подадите напряжение выше максимального, вы можете увидеть, как ваша крышка взорвется.
5. Могу ли я использовать рабочий конденсатор вместо пускового?Номинальные значения емкости и напряжения должны соответствовать исходным характеристикам пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно.
Ⅴ Код цвета конденсатора
5.1 Таблицы цветовой кодировки конденсаторов
Когда значение емкости является десятичным, возникают проблемы с маркировкой «десятичной точки», поскольку ее легко упускать из виду, что приводит к неправильному пониманию реального значения емкости. Вместо десятичной точки для обозначения позиции и веса числа используются буквы типа p (пико) или n (нано).
Конденсатор может быть обозначен, например, как n47 = 0,47 нФ, 4n7 = 4,7 нФ или 47n = 47 нФ. Кроме того, конденсаторы иногда обозначаются заглавной буквой K, чтобы указать значение в тысячу пикофарад, таким образом, конденсатор с маркировкой 100K будет иметь размер 100 x 1000 пФ или 100 нФ.
Международная схема цветового кодирования была разработана много лет назад как простой способ определения номиналов конденсаторов и допусков для уменьшения путаницы, связанной с буквами, цифрами и десятичными знаками. Система цветового кода конденсатора, состоящая из цветных полос (в спектральном порядке) и значения которой приведены ниже, представляет собой систему, состоящую из цветных полос (в спектральном порядке).
Цвет ремешка | Цифра A | Цифра B | Множитель D | Допуск (T)> 10pf | Допуск (T) <10pf | Температурный коэффициент (TC) |
Черный | 0 | 0 | х1 | ± 20% | ± 2.0пФ | |
Коричневый | 1 | 1 | x10 | ± 1% | ± 0,1 пФ | -33 × 10-6 |
Красный | 2 | 2 | x100 | ± 2% | ± 0,25 пФ | -75 × 10-6 |
Оранжевый | 3 | 3 | x1,000 | ± 3% | -150 × 10-6 | |
Желтый | 4 | 4 | x10,000 | ± 4% | -220 × 10-6 | |
Зеленый | 5 | 5 | x100 000 | ± 5% | ± 0.5пФ | -330 × 10-6 |
Синий | 6 | 6 | х1,000,000 | -470 × 10-6 | ||
фиолетовый | 7 | 7 | -750 × 10-6 | |||
Серый | 8 | 8 | x0.01 | +80%, — 20% | ||
Белый | 9 | 9 | х0.1 | ± 10% | ± 1.0 пФ | |
Золото | x0,1 | ± 5% | ||||
Серебристый | x0.01 | ± 10% |
Таблица кодов цвета конденсатора
Цвет ремешка | Номинальное напряжение (В) | ||||
Тип J | Тип K | Тип L | Тип M | Тип N | |
Черный | 4 | 100 | 10 | 10 | |
Коричневый | 6 | 200 | 100 | 1.6 | |
Красный | 10 | 300 | 250 | 4 | 35 |
Оранжевый | 15 | 400 | 40 | ||
Желтый | 20 | 500 | 400 | 6,3 | 6 |
Зеленый | 25 | 600 | 16 | 15 | |
Синий | 35 | 700 | 630 | 20 | |
фиолетовый | 50 | 800 | |||
Серый | 900 | 25 | 25 | ||
Белый | 3 | 1000 | 2.5 | 3 | |
Золото | 2000 | ||||
Серебристый |
Таблица цветов напряжения конденсатора
Опорное напряжение конденсатораТип J — танталовые конденсаторы погружного типа.
Тип К– Слюдяные конденсаторы.
Тип L– Конденсаторы из полиэстера / полистирола.
Тип M– Электролитические 4-х полосные конденсаторы.
Тип N– Электролитические 3-х полосные конденсаторы.
5.2 Цветовые коды различных конденсаторов
1. Металлизированный полиэфирный конденсатор
2. Диск и керамический конденсатор
В течение многих лет неполяризованные конденсаторы из полиэстера и слюды кодировались с использованием системы цветового кода конденсаторов.Хотя этот метод цветового кодирования больше не используется, все еще можно найти много «старых» конденсаторов. Малые конденсаторы, такие как пленочные или дисковые, теперь соответствуют стандарту BS1852 и его новой замене, BS EN 60062, в которой цвета заменяются системой буквенного или цифрового кодирования.
5.3 Часто задаваемые вопросы о цветовом коде конденсаторов
1. Что означают цвета конденсаторов?Все цветные полосы, нанесенные на корпус конденсатора, используются для обозначения значения емкости и допуска емкости.Цветовые коды, используемые для обозначения значений емкости и допуска емкости, аналогичны кодам, используемым для представления значений сопротивления и допуска сопротивления.
2. Как читать код конденсатора?Если у вас есть конденсатор, на котором напечатано только трехзначное число, третья цифра представляет количество нулей, добавляемых к концу первых двух цифр. Полученное число — это емкость в пФ. Например, 101 представляет 100 пФ: цифры 10, за которыми следует еще один ноль.
3. Какой тип конденсатора доступен с цветовым кодом?Цветовой код использовался на полиэфирных конденсаторах в течение многих лет. Сейчас они устарели, но, конечно, их еще много. Цвета должны читаться как код резистора, три верхние цветные полосы показывают значение в пФ. Игнорируйте 4-й диапазон (допуск) и 5-й диапазон (номинальное напряжение).
4.Конденсаторы имеют цветовую маркировку?Для конденсаторов используется цветовой код конденсатора, аналогичный цветовому коду резисторов (3, 4 или 5 полос).Первые два цвета обозначают значащие цифры значения емкости (в пФ), следующий цвет — это соответствующая степень 10, два других цвета являются необязательными и обозначают допуск и максимальное напряжение.
Ⅵ Код конденсатора
6.1 Типы кода конденсатора
Например, конденсатор с маркировкой 474J следует читать как 47-кратное значение, указанное в таблице 1, соответствующее третьему числу, в данном случае 10000: 47 * 10000 = 470000 пФ = 470 нФ = 0.47 мкФ, где J указывает на допуск 5%. Если присутствует температурный коэффициент, вторая буква будет им. Вы быстро научитесь определять, выражается ли емкость конденсатора в пФ, нФ или мкФ в зависимости от его размера и типа.
Емкость конденсатора, обозначенного 2A474J, кодируется, как указано выше; два начальных знака — это номинальное напряжение, которое можно расшифровать из таблицы 2 ниже. Согласно стандарту EIA, 2A — это номинал 100 В постоянного тока.
Некоторые конденсаторы имеют только маркировку 0.1 или 0,01, в большинстве случаев значения даются в мкФ.
Некоторые конденсаторы малой емкости содержат R между числами, например 3R9, что указывает на то, что значение меньше 10 пФ и не имеет никакого отношения к сопротивлению. 3R9 имеет значение 3,9 пФ.
Таблица 1 — Буквенные коды конденсаторов и допуски
3-й номер | Умножить на | Письмо | Допуск |
0 | 1 | D | 0.5пФ |
1 | 10 | Ф | 1% |
2 | 100 | G | 2% |
3 | 1 000 90 305 | H | 3% |
4 | 10 000 | Дж | 5% |
5 | 100 000 | К | 10% |
6 | 1 000 000 90 305 | M | 20% |
7 | Не используется | M | 20% |
8 | 0.01 | -П | +100% / — 0% |
9 | 0,1 | Z | +80% / — 20% |
Таблица 2A — Альянс электронной промышленности (EIA) — Таблица кодов напряжения постоянного тока
0E = 2,5 В постоянного тока | 2A = 100 В постоянного тока | 3A = 1 кВ постоянного тока |
0G = 4,0 В постоянного тока | 2Q = 110 В постоянного тока | 3L = 1.2 кВ постоянного тока |
0L = 5,5 В постоянного тока | 2B = 125 В постоянного тока | 3B = 1,25 кВ постоянного тока |
0J = 6,3 В постоянного тока | 2C = 160 В постоянного тока | 3N = 1,5 кВ постоянного тока |
1A = 10 В постоянного тока | 2Z = 180 В постоянного тока | 3C = 1,6 кВ постоянного тока |
1C = 16 В постоянного тока | 2D = 200 В постоянного тока | 3D = 2 кВ постоянного тока |
1D = 20 В постоянного тока | 2P = 220 В постоянного тока | 3E = 2.5 кВ постоянного тока |
1E = 25 В постоянного тока | 2E = 250 В постоянного тока | 3F = 3 кВ постоянного тока |
1 В = 35 В постоянного тока | 2F = 315 В постоянного тока | 3G = 4 кВ постоянного тока |
1G = 40 В постоянного тока | 2 В = 350 В постоянного тока | 3H = 5 кВ постоянного тока |
1H = 50 В постоянного тока | 2G = 400 В постоянного тока | 3I = 6 кВ постоянного тока |
1J = 63 В постоянного тока | 2 Вт = 450 В постоянного тока | 3J = 6.3 кВ постоянного тока |
1M = 70 В постоянного тока | 2J = 630 В постоянного тока | 3U = 7,5 кВ постоянного тока |
1U = 75 В постоянного тока | 2I = 650 В постоянного тока | 3K = 8 кВ постоянного тока |
1K = 80 В постоянного тока | 2K = 800 В постоянного тока |
Таблица 2B — Альянс электронной промышленности (EIA) — Таблица кодов напряжения переменного тока
2Q = 125 В переменного тока | 2T = 250 В переменного тока | 2S = 275 В переменного тока |
2X = 280 В перем. Тока | 2F = 300 В переменного тока | I0 = 305 В переменного тока |
L0 = 350 В переменного тока | 2Y = 400 В переменного тока | P0 = 440 В переменного тока |
Q0 = 450 В переменного тока | V0 = 630 В переменного тока |
Таблица 3 — Таблица кодов конденсаторов
пикофарад (пФ) | нанофарад (нФ) | мкФ | Код конденсатора |
Конденсатор 1 пФ код | 0.001 нФ код конденсатора | 0,000001 мкФ конденсатор код | 10 |
Конденсатор 1,5 пФ код | 0,0015 нФ код конденсатора | 0,0000015 мкФ конденсатор код | 1R5 |
Конденсатор 2,2 пФ код | 0,0022 нФ код конденсатора | 0,0000022 мкФ код конденсатора | 2R2 |
Конденсатор 3,3 пФ код | 0.0033 нФ код конденсатора | 0,0000033 мкФ код конденсатора | 3R3 |
Конденсатор 3,4 пФ код | 0,0039 нФ код конденсатора | 0,0000039 мкФ конденсатор код | 3R9 |
Конденсатор 3,5 пФ код | 0,0047 нФ код конденсатора | 0,0000047 мкФ конденсатор код | 4R7 |
5,6 пФ конденсатор код | 0.0056 нФ код конденсатора | 0,0000056 мкФ код конденсатора | 5R6 |
Конденсатор 6,8 пФ код | 0,0068 нФ код конденсатора | 0,0000068 мкФ конденсатор код | 6R8 |
Конденсатор 8,2 пФ код | 0,0082 нФ код конденсатора | 0,0000082 мкФ код конденсатора | 8R2 |
Конденсатор 10 пФ код | 0.01 нФ код конденсатора | 0,00001 мкФ конденсатор код | 100 |
Конденсатор 15 пФ код | 0,015 нФ конденсатор код | 0,000015 мкФ конденсатор код | 150 |
Конденсатор 22 пФ код | 0,022 нФ код конденсатора | 0,000022 мкФ конденсатор код | 220 |
Конденсатор 33 пФ код | 0,033 нФ код конденсатора | 0.000033 мкФ код конденсатора | 330 |
Конденсатор 47 пФ код | 0,047 нФ код конденсатора | 0,000047 мкФ конденсатор код | 470 |
Конденсатор 56 пФ код | 0,056 нФ код конденсатора | 0,000056 мкФ код конденсатора | 560 |
Конденсатор 68 пФ код | 0,068 нФ код конденсатора | 0,000068 мкФ конденсатор код | 680 |
Конденсатор 82 пФ код | 0.082 нФ код конденсатора | 0,000082 мкФ код конденсатора | 820 |
Конденсатор 100 пФ код | Конденсатор 0,1 нФ код | 0,0001 мкФ конденсатор код | 101 |
Конденсатор 120 пФ код | 0,12 нФ конденсатор код | 0,00012 мкФ конденсатор код | 121 |
Конденсатор 130 пФ код | 0,13 нФ конденсатор код | 0.00013мкФ код конденсатора | 131 |
Конденсатор 150 пФ код | Конденсатор 0,15 нФ код | 0,00015 мкФ конденсатор код | 151 |
Конденсатор 180 пФ код | 0,18 нФ конденсатор код | 0,00018 мкФ конденсатор код | 181 |
Конденсатор 220 пФ код | Конденсатор0,22 нФ код | 0,00022 мкФ конденсатор код | 221 |
Конденсатор 330 пФ код | 0.Конденсатор 33 нФ код | 0,00033 мкФ конденсатор код | 331 |
Конденсатор 470 пФ код | 0,47 нФ конденсатор код | 0,00047 мкФ конденсатор код | 471 |
Конденсатор 560 пФ код | 0,56 нФ конденсатор код | 0,00056 мкФ конденсатор код | 561 |
Конденсатор 680 пФ код | 0,68 нФ конденсатор код | 0.00068 мкФ конденсатор код | 681 |
Конденсатор 750 пФ код | Конденсатор0,75 нФ код | 0,00075 мкФ конденсатор код | 751 |
Конденсатор 820 пФ код | 0,82 нФ конденсатор код | 0,00082 мкФ конденсатор код | 821 |
Конденсатор 1000 пФ код | Конденсатор 1 / 1н / 1 нФ код | 0.Конденсатор 001 мкФ код | 102 |
Конденсатор 1500 пФ код | Конденсатор 1,5 / 1n5 / 1,5 нФ код | 0,0015 мкФ конденсатор код | 152 |
Конденсатор 2000 пФ код | Конденсатор 2 / 2н / 2 нФ код | 0,002 мкФ конденсатор код | 202 |
Конденсатор 2200 пФ код | Конденсатор 2.2 / 2n2 / 2.2 нФ код | 0.Конденсатор 0022 мкФ код | 222 |
Конденсатор 3300 пФ код | 3,3 / 3n3 / 3,3 нФ конденсатор код | 0,0033 мкФ конденсатор код | 332 |
Конденсатор 4700 пФ код | Конденсатор 4,7 / 4n7 / 4,7 нФ код | 0,0047 мкФ конденсатор код | 472 |
Конденсатор 5000 пФ код | 5 / 5n / 5 nF конденсатор код | 0.Конденсатор 005 мкФ код | 502 |
Конденсатор 5600 пФ код | 5,6 / 5n6 / 5,6 нФ конденсатор код | 0,0056 мкФ конденсатор код | 562 |
6800 пФ конденсатор код | Конденсатор 6,8 / 6n8 / 6,8 нФ код | 0,0068 мкФ конденсатор код | 682 |
Конденсатор 10000 пФ код | Конденсатор 10 / 10н / 10 нФ код | 0.Конденсатор 01 мкФ код | 103 |
Конденсатор 15000 пФ код | 15 / 15н / 15 нФ конденсатор код | Конденсатор 0,015 мкФ код | 153 |
Конденсатор 22000 пФ код | Конденсатор 22/22 н / 22 нФ код | 0,022 мкФ конденсатор код | 223 |
Конденсатор 33000 пФ код | Конденсатор 33 / 33н / 33 нФ код | 0.033 мкФ конденсатор код | 333 |
Конденсатор 47000 пФ код | Конденсатор 47 / 47n / 47 нФ код | Конденсатор 0,047 мкФ код | 473 |
68000 пФ конденсатор код | Конденсатор 68 / 68n / 68 нФ код | 0,068 мкФ конденсатор код | 683 |
Конденсатор 100000 пФ код | Конденсатор 100/100 нФ / 100 нФ код | 0.Конденсатор 1 мкФ код | 104 |
150000 пФ конденсатор код | Конденсатор 150 / 150н / 150 нФ код | Конденсатор 0,15 мкФ код | 154 |
200000 пФ конденсатор код | Конденсатор 200/200 н / 200 нФ код | 0,20 мкФ конденсатор код | 204 |
Конденсатор 220000 пФ код | Конденсатор 220/220 н / 220 нФ код | 0.Конденсатор 22 мкФ код | 224 |
330000 пФ конденсатор код | 330 / 330n / 330nF код конденсатора | Конденсатор 0,33 мкФ код | 334 |
470000 пФ конденсатор код | Конденсатор 470 / 470n / 470nF код | Конденсатор 0,47 мкФ код | 474 |
680000 пФ конденсатор код | Конденсатор 680 нФ код | 0.Конденсатор 68 мкФ код | 684 |
1000000 пФ конденсатор код | Конденсатор 1000 нФ код | Конденсатор 1,0 мкФ код | 105 |
1500000 пФ конденсатор код | Конденсатор 1500 нФ код | Конденсатор 1,5 мкФ код | 155 |
2000000 пФ конденсатор код | Конденсатор 2000 нФ код | Конденсатор 2,0 мкФ код | 205 |
2200000 пФ конденсатор код | Конденсатор 2200 нФ код | 2.Конденсатор 2 мкФ код | 225 |
3300000 пФ конденсатор код | Конденсатор 3300 нФ код | Конденсатор 3,3 мкФ код | 335 |
4700000 пФ конденсатор код | Конденсатор 4700 нФ код | Конденсатор 4,7 мкФ код | 475 |
6800000 пФ конденсатор код | Конденсатор6800 нФ код | Конденсатор 6,8 мкФ код | 685 |
10000000 пФ конденсатор код | Конденсатор 10000 нФ код | Конденсатор 10 мкФ код | 106 |
15000000 пФ конденсатор код | 15000 нФ конденсатор код | Конденсатор 15 мкФ код | 156 |
20000000 пФ конденсатор код | Конденсатор20000 нФ код | Конденсатор 20 мкФ код | 206 |
22000000 пФ код конденсатора | Конденсатор 22000 нФ код | Конденсатор 22 мкФ код | 226 |
33000000 пФ конденсатор код | 33000 нФ конденсатор код | Конденсатор 33 мкФ код | 336 |
47000000 пФ код конденсатора | Конденсатор 47000 нФ код | Конденсатор 47 мкФ код | 476 |
68000000 пФ код конденсатора | Конденсатор68000 нФ код | Конденсатор 68 мкФ код | 686 |
100000000 пФ код конденсатора | Конденсатор100000 нФ код | Конденсатор 100 мкФ код | 107 |
330000000 пФ конденсатор код | 330000 нФ конденсатор код | Конденсатор 330 мкФ код | 337 |
470000000 пФ конденсатор код | Конденсатор 470000 нФ код | Конденсатор 470 мкФ код | 477 |
680000000 пФ код конденсатора | Конденсатор680000 нФ код | Конденсатор 680 мкФ код | 687 |
1000000000 пФ конденсатор код | Конденсатор 1000000 нФ код | Конденсатор 1000 мкФ код | 108 |
6.2 Часто задаваемые вопросы о коде конденсатора
1. Какой код у конденсатора?Обычно фактические значения емкости, напряжения или допуска наносятся на корпус конденсаторов в виде буквенно-цифровых символов. Например, конденсатор может быть обозначен как n47 = 0,47 нФ, 4n7 = 4,7 нФ или 47n = 47 нФ и так далее.
2. Что означают цифры на конденсаторе?Первые два числа представляют значение в пикофарадах, а третье число — это количество нулей, добавляемых к первым двум.Например, конденсатор 4,7 мкФ с номинальным напряжением 25 В будет иметь маркировку E476.
3. Какова стоимость конденсатора?
Значения конденсаторов могут быть в диапазоне более 109, и даже больше, поскольку в настоящее время используются суперконденсаторы. Чтобы избежать путаницы с большим количеством нулей, прикрепленных к номиналам различных конденсаторов, широко используются общие префиксы pico (10 -12 ), nano (10 -9 ) и micro (10 -6 ).
4.Как определить емкость конденсатора?Стоимость конденсаторов может быть определена несколькими способами в зависимости от типа конденсатора, например электролитическими, дисковыми, пленочными конденсаторами и т. Д. Эти методы включают значение или число, напечатанное на корпусе конденсатора, или цветовую кодировку конденсатора.
5. Как определить емкость неизвестного конденсатора?
Чтобы определить неизвестную емкость с помощью осциллографа, последовательно подключают источник постоянного тока, такой как батарея 9 В, известное сопротивление, переключатель и конденсатор.Наконечник пробника осциллографа и заземляющий провод подключаются к конденсатору. Кроме того, вам понадобится перемычка с коротким проводом, чтобы шунтировать конденсатор.
Ⅶ Калькулятор кодов конденсатора
7.1 Инструмент расчета безопасного разряда конденсатора
Этот калькулятор безопасного разряда конденсатора помогает определить скорость разряда конденсатора при известной емкости и зарядить через резистор с фиксированным значением. Введите в калькулятор начальное напряжение, время, сопротивление и емкость.Калькулятор покажет полное разряженное и оставшееся напряжение. При выборе разрядного резистора необходимо учитывать множество факторов. Стандарты безопасности требуют, чтобы напряжение на конденсаторе достигло безопасного значения, прежде чем человек сможет к нему прикоснуться. В США стандарты, такие как UL, OSHA, NTA, ETL, MET и т. Д., Содержат требования, соответствующие потребностям вашего продукта.
7.2 Калькулятор емкости для последовательного и параллельного подключения
Этот инструмент рассчитывает общее значение емкости для нескольких конденсаторов, подключенных последовательно или параллельно.
Альтернативные модели
Деталь | Сравнить | Производители | Категория | Описание | |
Производитель.Номер детали: XC2C512-10FT256I | Сравнить: Текущая часть | Производитель: Xilinx | Категория: CPLD | Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 128 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA | |
Производитель Номер детали: XC2C512-7FTG256C | Сравнить: XC2C512-10FT256I VS XC2C512-7FTG256C | Производитель: Xilinx | Категория: CPLD | Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 179 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA | |
Производитель Номер детали: XC2C512-10FTG256I | Сравнить: XC2C512-10FT256I VS XC2C512-10FTG256I | Производитель: Xilinx | Категория: CPLD | Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 128 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA | |
Производитель Номер детали: XC2C512-10FT256I | Сравнить: XC2C512-10FT256I VS XC2C512-10FT256I | Производитель: Xilinx | Категория: CPLD | Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 128 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA |
Конденсаторы
Конденсаторы удерживают электрический заряд в течение заданного времени.Большинство конденсаторов состоит из пары проводящих элементов, разделенных изолирующим диэлектриком. Этот диэлектрик может состоять из многих материалов, включая: воздух, бумага, эпоксидка, пластик и даже масло. Большинство конденсаторов на самом деле имеют много слоев проводящих элементов и диэлектрика.Конденсаторы оцениваются по их емкости в фарадах и по напряжению пробоя их диэлектрика. Фарад — довольно большая единица измерения, поэтому многие конденсаторы измеряются в микрофарадах. Микрофарады эквивалентны одной миллионной фарада (1/1000000 фарада), еще меньший показатель — пикофарад, который является эквивалентом миллионной доли фарада (1/1000000 микрофарада).Микро в термине микрофарад чаще всего обозначается греческим символом мю (μ). Пикофарад сокращается до пФ. Номинальное напряжение (абсолютное максимальное напряжение) — это максимальное напряжение, которое конденсатор может выдержать до того, как диэлектрические слои в компоненте будут повреждены.
Конденсаторы классифицируются по используемому диэлектрическому материалу. Наиболее распространенными диэлектрическими материалами являются электролитический алюминий, электролитический тантал, керамика, слюда, полипропилен, полиэстер (или майлар), бумага и полистирол.Диэлектрический материал, используемый в конденсаторе, частично определяет, для каких приложений он должен использоваться. Электролитические конденсаторы большего размера, в которых используется алюминиевый электролит, подходят для таких рутинных работ, как фильтрация источника питания, где требуются большие значения. Значения для многих конденсаторов напечатаны непосредственно на компоненте. Это особенно верно в случае алюминиевого электролита большего размера, где большой размер конденсатора обеспечивает достаточно места для печати емкости и напряжения. Конденсаторы меньшего размера, например 0.Слюдяные дисковые конденсаторы 1 или 0,01 мкФ используют обычную трехзначную систему маркировки для обозначения емкости и допуска. Система нумерации основана на пикофарадах, а не микрофарадах.
Пример: 104 означает 10, за которыми следуют четыре нуля, что составляет 100000 пикофарад
Значения свыше 1000 пикофарад чаще всего выражаются в микрофарадах. Чтобы выполнить преобразование, переместите десятичную точку влево на шесть пробелов. Для значений ниже 1000 пикофарад эта система нумерации не используется. Вместо этого указывается фактическое значение в пикофарадах.
Один знак, который встречается почти исключительно на более крупных электролитах из тантала и алюминия, представляет собой символ полярности, чаще всего знак минус (-). Символ полярности указывает на положительный и / или отрицательный вывод конденсатора. Если конденсатор поляризован, чрезвычайно важно соблюдать правильную ориентацию при установке конденсатора. Если поменять полярность между положительным проводом (называемым анодом) и отрицательным проводом (называемым катодом), то конденсатор может выйти из строя.Результат может быть таким незначительным, как небольшой «хлопок», за которым следует струйка дыма, или столь же катастрофическим, как громкий хлопок и небольшой пожар. Другие компоненты схемы также могут быть повреждены.
Цветовой код конденсатора:
Цвет | Первая полоса (A) | Вторая полоса (B) | Множитель (C) | Допуск (D) | ||||||
Черный | 0 | 0 | 1 | 20.00% | ||||||
Коричневый | 1 | 1 | 10 | 1,00% | ||||||
Красный | 2 | 2 | 100 | 2,00% | Оранжевый 3,00% | 1000 | 3,00% | |||
Желтый | 4 | 4 | 10000 | 4,00% | ||||||
Зеленый | 5 | 5 | 100000 5 | |||||||
Синий | 6 | 1000000 | 6.100 | 1000000000 | 9,00% | |||||
Золото | 0,1 | 5,00% | ||||||||
Серебро | 0,01 | 10.00% | ||||||||
(без цвета) | 20,00% |
Конденсаторы электролитические
На электролитических конденсаторах обычно напечатаны их максимальное номинальное напряжение и значение емкости, без каких-либо кодов для интерпретации. Эти типы конденсаторов чувствительны к полярности и могут взорваться при неправильной установке. Чтобы определить полярность, обратите внимание на метку возле одной из ножек компонента.У больших электролитических конденсаторов есть полоса на стороне корпуса около одной ножки, которая обозначает «отрицательный». Конденсаторы этого типа также имеют тенденцию к утечке накопленной энергии.Конденсаторы танталовые
Максимальное номинальное напряжение и значение емкости танталовых конденсаторов обычно напечатаны прямо на них, без каких-либо кодов для интерпретации. Многие из этих типов конденсаторов имеют полоску, отмеченную знаком «+» рядом с одним из выводов, вывод, обозначенный полоской, является положительным.Танталовые конденсаторы поляризованы, и неправильная установка может привести к катастрофическому отказу.Конденсаторы алюминиевые
Алюминиевые конденсаторы работают с использованием диэлектрика, состоящего из тонкого слоя оксида алюминия. Они содержат коррозионную жидкость и могут взорваться, если конденсатор подсоединен задом наперед. Электролит имеет тенденцию высыхать при отсутствии достаточного восстанавливающего напряжения. Эти конденсаторы имеют тенденцию выходить из строя с течением времени и из-за этого требуют несколько больших затрат на обслуживание.Конденсаторы монолитные
Монолитные конденсаторы не чувствительны к полярности. Большинство монолитных конденсаторов имеют цифровую маркировку. На монолитных конденсаторах могут быть номера с обеих сторон, на одной стороне указывается код размера, а на другой — код даты изготовления.Пример: монолитный конденсатор с маркировкой «104» с одной стороны и «941» с другой. «914» обозначает год и неделю изготовления (1999, неделя 14).«104» относится к значению размера, которое в данном случае составляет 0,000094 мкФ. Код числа емкости обычно включает три числа, причем первые два представляют значение емкости конденсатора в пикофарадах, а третье — множитель (число для умножения первых двух чисел на десять в зависимости от степени).
Конденсаторы слюдяные
Слюдяные конденсаторы — это высокоточные, стабильные и надежные конденсаторы. Они доступны в небольших количествах и в основном используются на высоких частотах и в случаях, когда низкая утечка конденсатора нежелательна.В качестве диалектики они используют листы слюды. Слюда зажаты между собой и зажаты между листами медной фольги. Эти конденсаторы имеют особенно низкие допуски и стабильность по сравнению с другими конденсаторами, что вызвано дефектами поверхности слюды, которую трудно изготовить, чтобы она была идеально плоской и гладкой. Слюдяные конденсаторы сейчас считаются устаревшими.
Конденсаторы бумажные
Бумажные конденсаторы состоят из плоских тонких полос проводников из металлической фольги, разделенных вощеной бумагой.Мокнутая бумага используется в качестве диэлектрика. Бумажные конденсаторы обычно имеют номинал от 300 пикофарад до 4 мкФ. Рабочее напряжение бумажного конденсатора редко превышает 600 вольт. Бумажные конденсаторы запечатаны воском для предотвращения вредного воздействия влаги и предотвращения коррозии и утечки.
Конденсаторы полипропиленовые
Полипропиленовые конденсаторы имеют очень высокие характеристики по напряжению, току и / или мощности. Эти конденсаторы основаны на металлизированных пленочных диэлектриках или пленках-фольгах.Полипропилен обычно выбирают из-за его превосходных диэлектрических характеристик (потерь, поглощения, диэлектрической прочности, сопротивления изоляции).
Конденсаторы полиэфирные (майларовые)
Майларовые конденсаторы обычно очень стабильны и могут работать в широком диапазоне температур, обычно до 125 градусов Цельсия. Майлар — это высокотемпературная полиэфирная пленка, которая используется в качестве диэлектрика в этих конденсаторах. Могут быть разные формы, размеры и стили конструкции, но, возможно, самый долгоживущий и наиболее узнаваемый стиль — это зеленый или коричневый радиальный тип, смоченный смолой, который в сочетании с небольшими физическими размерами делает его легко подходящим для печатных плат.
Конденсаторы полистирольные
Конденсаторы из полистирольной пленки отличаются исключительно высокой изоляцией, низкой утечкой, низким диэлектрическим поглощением, низким уровнем искажений и отличной температурной стабильностью. В большинстве случаев конденсаторы из полистирола можно использовать как прямую замену серебряным слюдяным и / или керамическим дисковым конденсаторам.
Суперконденсаторы
Суперконденсаторы (суперконденсаторы) обычно измеряются в полных фарадах или долях фарад при низком напряжении. Суперконденсаторы заряжаются дольше, чем обычные конденсаторы, но дольше сохраняют свой электрический заряд.Внутренний импеданс — это свойство конденсатора, которое определяет, насколько быстро он может заряжаться и разряжаться. Некоторые суперконденсаторы, хотя и могут выдерживать большое количество напряжения, могут за один раз высвободить лишь небольшую часть своего общего заряда.
Конденсаторы керамические
Цветовые коды керамических конденсаторов:
Цвет | Десятичный множитель (C) | Допуск выше 10 пФ (D) | Допуск ниже 10 пФ (D) | Температурный коэффициент ppm / ° F (E) | ||||
Черный | 1 | 20 | 2 | 0 | ||||
Коричневый | 10 | 1 | -30 | Красный 2 80 | ||||
Оранжевый | 1000 | -150 | ||||||
Желтый | -220 | |||||||
Зеленый | 5-330 | |||||||
Синий | -470 | |||||||
Фиолетовый | -750 | 30|||||||
Белый | 0,1 | 10 | 0,1 | 500 |
Керамические дисковые конденсаторы обычно имеют маркировку. Если число <1, значение в пикофарадах, если> 1 значение в микрофарадах.Буква R иногда используется как десятичная дробь.
Пример: 4R7 — 4,7
ЗНАЧЕНИЕ
Типы конденсаторов и цвета:
1пф — 1800пф | Желтый керамический диск или синий или желтый Монолитный |
.001; .01; 0,022; 0,047; 0,1; 0,47; 1 мкФ (C96 на К2) | Красный Монолитик |
Термостабильные крышки имеют маркировку «NP0», «C0G» или иметь черный верх. |
Конденсатор Маркировочная таблица (керамические и монолитные крышки)
ВАЖНО: Конденсаторы со значениями ниже 100 пФ могут быть отмечены двумя способами: Либо всего двумя цифры (22 пФ = «22») или три цифры (22 пФ = «220»,). В последнем случае третья цифра обозначает количество нулей после первых двух цифр. «220» = 22 пФ, «221» = 220 пФ, «222» = 2200 пФ.ЗНАЧЕНИЕ | МАРКИРОВКА | ЗНАЧЕНИЕ | МАРКИРОВКА | ЗНАЧЕНИЕ | МАРКИРОВКА | ||
1пф; 3пф; 5пф | 1; 3; 5 | 2.7, 3 или 3,3 пФ можно поменять местами друг с другом. 4,7 или 5 пФ может взаимозаменяться друг с другом. | |||||
10 пф | 10 или 100 | 0,001 мкФ | 102 | 0,10 мкФ | 104 | ||
12 пф | 12 или 120 | 0.0012 мкФ (1200 пф) | 122 | 0,12 мкФ | 124 | ||
15 пф | 15 или 150 | 0,0015 мкФ | 152 | 0,15 мкФ | 154 | ||
18 пф | 18 или 180 | 0.0018 мкФ (1800 пф) | 182 | 0,18 мкФ | 184 | ||
22 пф | 22 или 220 | 0,0022 мкФ | 222 | 0,22 мкФ | 224 | ||
27 пф | 27 или 270 | 0.0027 мкФ | 272 | 0,27 мкФ | 274 | ||
33 пф | 33 или 330 | 0,0033 мкФ | 332 | 0,33 мкФ | 334 | ||
39 пф | 39 или 390 | 0.0039 мкФ | 392 | 0,39 мкФ | 394 | ||
47 пф | 47 или 470 | 0,0047 мкФ | 472 | 0,47 мкФ | 474 | ||
58 пф | 58 или 580 | 0.0056 мкФ | 562 | 0,56 мкФ | 564 | ||
68 пф | 68 или 680 | 0,0068 мкФ | 682 | 0,68 мкФ | 684 | ||
82 пф | 82 или 820 | 0.0082 мкФ | 822 | 0,82 мкФ | 824 | ||
100 пф | 101 | 0,01 мкФ | 103 | 1 мкФ | 105 или 1 мкФ | ||
120 пф | 121 | 0.012 мкФ | 123 | ||||
150 пф | 151 | 0,015 мкФ | 153 | ||||
180 пф | 181 | 0.018 мкФ | 183 | ||||
220 пф | 221 | 0,022 мкФ | 223 | ||||
270 пф | 271 | 0.027 мкФ | 273 | ||||
330 пф | 331 | 0,033 мкФ | 333 | ||||
390 пф | 391 | 0.039 мкФ | 393 | ||||
470 пф | 471 | 0,047 мкФ | 473 | ||||
560 пф | 561 | 0.056 мкФ | 563 | ||||
680 пф | 681 | 0,068 мкФ | 683 | ||||
820 пф | 821 | 0.082 мкФ | 823 |
Еще один хороший источник диаграмм: http://www.