Конденсатор назначение: Принцип работы конденсатора

Содержание

Чему не учат о конденсаторах

Davide Bortolami

|&nbsp Создано: 8 Февраля, 2021 &nbsp|&nbsp Обновлено: 16 Июня, 2021

В инженерной деятельности мы часто применяем сотни эмпирических правил для упрощения тех аспектов, над которыми работаем.

Если бы мы запускали квантово-физическое моделирование всякий раз, когда необходимо поморгать светодиодом, мы бы никогда ничего не добились. Тем не менее, многие из этих правил были сформулированы в прошлом, когда индустрия электроники радикально отличалась от нынешней.

Сегодня мы собираемся забыть, чему нас учили о том, что такое конденсатор. Кроме того, мы рассмотрим, как использовать конденсаторы с учетом современной электроники.

Чем конденсатор больше не является

Одно из общераспространенных мнений состоит в том, что основная роль конденсатора заключается в хранении заряда, подобно тому, как ведро с водой наполняется одной чашкой и в то же время опустошается другой.

Если вы когда-либо вступали в дискуссию “протекает ли ток через конденсатор” и уходили больше в политику, чем в физику, вы знаете, что типовые аналогии не имеют особого смысла, когда речь идет о переменном токе. Конденсатор – это просто два проводника, разделенных диэлектриком, и нигде в основных физических объяснениях его свойств вы не найдете объяснения того, что с этим делать.

Хранение энергии – это лишь одно из множества применений конденсатора, таких как фильтрация, формирование и инвертирование электрических сигналов и импедансов. Мы привыкли думать, что это основное применение конденсатора, поскольку это было его первым применением на заре электричества постоянного тока и электроскопа Уильяма Гилберта, изобретенного в XV веке.

Назначение конденсатора

Такие термины, как развязывающий и байпасный (шунтирующий) конденсатор, часто используются как синонимы – я сам совершал эту ошибку бесчисленное количество раз.

Это приводит к большой путанице, поскольку для разных целей часто требуются конденсаторы с разными электрическими и физическими параметрами, такими как форм-фактор, номинальное напряжение, ESR (эквивалентное последовательное сопротивление), ESL (эквивалентная последовательная индуктивность) и профиль собственного резонанса.

Конденсаторы называют по-разному не только исходя из технологии, по которой они созданы (керамический, электролитический), но и их назначения.

В следующих разделах рассмотрено несколько из наиболее распространенных назначений конденсаторов.

Рис. 1. Конденсаторы на современной плате. Если присмотреться, вы заметите различные типы конденсаторов, используемые в цепях разного назначения. Изображение от Michael Dziedzic

Байпасный конденсатор

Назначением байпасного конденсатора является передача радиочастотной энергии (переменного тока достаточно высокой частоты) от одной части платы к другой. Соответственно, о хранении заряда речи не идет вообще. Байпасный конденсатор предназначен для проведения, а не для хранения.

Для этого необходим тщательный подбор конденсатора с минимально возможным импедансом на нужных частотах. Этого можно достичь максимально близким соответствием собственной резонансной частоты конденсатора и частоты сигнала.

Собственная резонансная частота – это частота, на которой резонирует емкость и паразитная индуктивность и на которой конденсатор имеет наименьшее возможное сопротивление. Математически емкость и индуктивность как будто пропадают и остается только эквивалентное последовательное сопротивление.

Для частот выше собственной резонансной частоты конденсатор начинает всё меньше работать как конденсатор и всё больше – как индуктивность.

Рис. 2. Зависимость импеданса от частоты для различных конденсаторов. Изображение от Elcap, Jens Both

На что следует обращать внимание

Одна из наиболее распространенных ошибок, которые допускаются при использовании байпасных конденсаторов для контроля электромагнитного излучения (особенно при шунтировании экранов земли), заключается в том, что их размещение ограничивается только источником шума, который нужно устранить.

Для постоянного тока это имело бы смысл – закоротить сигнал максимально близко к источнику, чтобы получить как можно более низкие его значения, минимизировать сопротивление (импеданс) между коротким замыканием (конденсатором) и источником.

Для переменного тока и особенно для радиочастотного диапазона, из-за волновой природы электрических сигналов быстрое увеличение импеданса между областью рядом с источником шума и остальной частью заземляющего слоя может быть источником отражений, т.е. энергии, отраженной из-за несоответствия импедансов. Опять же, это противоречит традиционному описанию “энергии, отраженной из-за рассогласования линий”, которое верно лишь отчасти.

При использовании байпасных конденсаторов нужно попытаться снизить импеданс экранов питания и земли, распределив конденсаторы по плате. В зависимости от используемой частоты, структуры слоев и диэлектрического материала платы, могут понадобиться конденсаторы в диапазоне от пикофарад до нанофарад

Развязывающий конденсатор

У линейных регуляторов, таких как широко используемый 7805, есть внутренний контур обратной связи, который сравнивает выходное и опорное напряжение и соответствующим образом регулирует ток для поддержания стабильного выходного сигнала.

Теоретически линейные регуляторы можно использовать без внешнего конденсатора – по крайней мере, если мы игнорируем любые проблемы, связанные с автоколебаниями. Чтобы получить стабильный выходной сигнал, требуемый ток должен изменяться с достаточно медленной скоростью нарастания, чтобы линейный регулятор мог успевать за ним. Учитывая, что большинство из них построено на технологии BJT начала 80-х годов, эти скорости нарастания совсем не высокие.

Рис. 3. Пример внутренней схемы типового линейного регулятора, подобного 7805

Аналогичным образом, импульсные преобразователи DC-DC имеют основную частоту переключения и не могут регулировать выходной сигнал быстрее этой частоты.

Многие современные цифровые устройства генерируют переходные процессы тока с частотными составляющими в сотни мегагерц, что намного больше, чем может обеспечить любой регулятор (если мы не говорим об экзотических драйверах лазерных диодов).

Развязывающие конденсаторы работают на границе между стабильным напряжением, регулируемым схемой источника питания постоянного тока, и потреблением прерывистого тока современными цифровыми устройствами.

Даже небольшой импеданс между источником питания и устройством быстро приведет к выходу напряжения питания за пределы допустимого диапазона при возникновении пика тока.

Развязывающие конденсаторы действуют как временные локализованные накопители энергии, что уменьшает импеданс источника для значений в диапазоне между нескольких мегагерц и нескольких сотен мегагерц.

Для частот выше сотен мегагерц большинство SMD-конденсаторов имеют высокий импеданс и являются неэффективными. Вместо этого необходимо использовать такие методы, как скрытая емкость (buried capacitance) в стеке слоев.

На что следует обращать внимание

Развязывающие конденсаторы полезны только в относительно узком частотном диапазоне, в основном из-за ограничений, связанных с их паразитными свойствами.

Главный параметр, на который следует обратить внимание – это, опять же, собственная резонансная частота. Разделительные конденсаторы эффективны только на частотах ниже их собственной резонансной частоты.

При выборе конденсатора часто бывает полезно придерживаться следующих эмпирических правил:

  • От постоянного тока до килогерц – конденсатор не требуется, источник питания может работать сам по себе.
  • От килогерц до мегагерц – электролитические конденсаторы высоких номиналов полезны для более низкого диапазона частот, но их высокое последовательное сопротивление ограничивает их работу из-за низкой резонансной частоты. В диапазоне МГц многие электролитические конденсаторы уже являются сильно индуктивными.
  • От мегагерц до 200 МГц – керамические конденсаторы, в зависимости от диэлектрика, размера корпуса и технологии изготовления, обычно подходят для этого диапазона.
  • Свыше 200 Мгц – керамические конденсаторы становятся неэффективными. В этих случаях, будет лучше использовать вместо них скрытую емкость.

Сглаживающий конденсатор

Сглаживающие конденсаторы используются для поддержания стабильного напряжения во время недостающих циклов линии питания и поддержки пикового тока.

Для этого нужны конденсаторы высокой емкости, и поэтому они обычно являются электролитическими.

Их можно считать маленькими источниками бесперебойного питания.

Чему не учат о керамических конденсаторах

Керамические конденсаторы, несомненно, являются фундаментальными пассивными компонентами в современной электронной промышленности, и их удельная емкость увеличивается со скоростью, сравнимой с плотностью транзисторов в кремнии, что делает доступными многие современные конструкции с высокой плотностью.

Они действительно являются чудом техники, но у них также есть несколько особенностей, о которых нужно знать.

Чем меньше, тем лучше

Керамика – замечательный, но хрупкий материал. Керамические конденсаторы могут треснуть из-за изгиба печатной платы, например, при сборке больших плат (или панелей), неправильном разделении плат скрайбированием или неправильном обращении во время транспортировки.

Растрескивание при изгибе – опасное явление, поскольку если конденсатор используется в силовых устройствах с высокими токами, он зачастую может выйти из строя и вызвать возгорание.

Вопреки распространенному мнению, конденсатор меньшего размера имеет превосходные электрические и механические характеристики. Они с меньшей вероятностью треснут, и они имеют более высокую собственную резонансную частоту.

Если вашему продукту требуется высокая надежность при механических нагрузках, есть несколько методов, которые вы можете использовать для уменьшения соответствующих отказов:

  • Не размещайте конденсаторы длинной стороной в том же направлении, в котором изгибается плата.
  • Используйте конденсаторы минимально возможного размера, например 0402.
  • Используйте конденсаторы типа “soft-terminated”, которые не замыкаются под нагрузкой, и/или керамические конденсаторы X2/Y2.
  • Размещайте трассировку вокруг конденсаторов для снятия механического напряжения.
  • Если вы выбрали конденсаторы, которые размыкаются, всегда используйте параллельно как минимум два из них, чтобы ваша схема могла иметь достаточную емкость для нормальной работы при выходе из строя одного из них.

Типы диэлектриков

C0G, X7R… У диэлектриков странные названия и набор самых разных свойств. Далее представлены их характеристики и случаи, когда их использовать лучше всего:

  • C0G/NP0 – самые модные керамические конденсаторы на рынке. Обычно они доступны в диапазоне от 1 пФ до 100 нФ и имеют допуск 5%. NP0 означает “положительный-отрицательный-ноль”, для формы графика ТКЕ конденсатора, которая выглядит плоской во всем диапазоне температур. Именно их следует использовать, когда требуются точные значения и стабильность.
  • X7R – современная рабочая лошадка. Они имеют отличные коэффициенты напряжения и температуры и популярны в диапазоне от 100 пФ до 22 мкФ. Они наиболее широко используются для развязки и имеют широкий диапазон температур от -55°C до 125°C.
  • X5R – аналогичен X7R, но рассчитан на 85°C вместо 125°C.
  • Y5V – может достигать чрезвычайно высокого значения емкости, но при низких отклонениях от номинального напряжения и температуры (допускается потеря до 82% емкости).
  • Z5U – аналогично Y5V, конденсаторы Z5U имеют плохие характеристики по напряжению и температуре и стоят очень дешево. Допускается использование только до -10°C и применяются только для развязки в недорогом бытовом оборудовании.

На что следует обращать внимание

Использование конденсаторов с разными диэлектриками может привести к неожиданным результатам.

Например, конденсаторы Z5U очень дешевы и используют диэлектрик из титаната бария. Этот материал имеет высокую диэлектрическую постоянную, что обеспечивает отличное отношение емкости к объему, а также собственную резонансную частоту, обычно от 1 до 20 МГц.

Конденсаторы NP0 лучше работает на частотах выше 10 МГц, так почему бы не использовать их вместе для работы в более широком диапазоне частот?

К сожалению, когда конденсаторы Z5U и NP0 соединены параллельно, материал с более высокой диэлектрической проницаемостью снижает резонансную частоту NP0, и это сочетание приводит к худшим общим характеристикам, чем просто качественный Z5U.

Однако вопрос «почему» определенно выходит за рамки моей компетенции. Если вы понимаете это явление, пожалуйста, напишите мне.

Диэлектрические потери

Если вы закоротите выход заряженного конденсатора, то обнаружите, что полностью разряженный конденсатор сидит на скамейке и смотрит на вас печальными глазами. Однако это не всегда так. Почти все конденсаторы, за единственным заметным исключением вакуумных конденсаторов, сохраняют часть своего заряда после разрядки.

Это происходит потому, что случайно ориентированные молекулярные диполи со временем выравниваются электрическим полем, и их новая ориентация сохраняется даже в отсутствии этого поля.

Керамические конденсаторы могут удерживать до 0,6% заряженного напряжения для NP0 и до 2,5% для X7R.

Емкость, зависящая от напряжения

Конденсаторы Y5V могут терять до 82% своей емкости при номинальном напряжении, в то время как конденсаторы NP0 имеют практически горизонтальную характеристику.
Если у вас есть устройства, в которых нужно изменять выходное напряжение, например, с помощью настраиваемого источника напряжения, требуемого стандартом USB-PD, который Марк Харрис обсуждал в своей недавней статье, вы можете столкнуться с непредсказуемой работой схемы.

Инструменты проектирования в Altium Designer® включают в себя всё необходимое, чтобы идти в ногу с новыми технологиями. Поговорите с нами сегодня и узнайте, как мы можем улучшить ваш процесс проектирования.

Разделительный конденсатор

Создание связи по переменному току необходимо, чтобы запретить протекание постоянного тока между определенными точками схемы и обес­печить при этом свободное прохождение переменного тока. Электрон­ные компоненты, обеспечивающие связь по переменному току, например конденсаторы или трансформаторы, обычно устанавливаются на входе и выходе усилителя. Таким образом, заданный режим покоя (статический режим) транзистора не влияет на статические режимы предыдущего и последующего каскадов.

В схеме, приведенной на рис. 23.1. конденсатор связывает точки А и В по переменному току, aR – нагрузочный резистор. Для постоянного тока конденсатор действует как разрыв цепи, полностью блокируя протекание постоянного тока между точками А и В. По этой причине конденсатор связи называют блокировочным или разделительным конденсатором.

Удовлетворительное качество связи по переменному току достигается только в том случае, когда реактивное сопротивление Хс конденсатора на рабочей частоте много меньше сопротивления нагрузочного резистора R. Тогда на этом конденсаторе падает (и теряется) очень малая часть напряжения входного сигнала. Например, если Vвх = 100 мВ, то связь по переменному току можно считать удовлетворительной, когда выходное напряжение          Vвых = 95 мВ и на разделительном конденсаторе падает 5 мВ (5%). Требуемую емкость разделительного конденсатора определяют два фактора.

1.                    Сопротивление загрузочного резистора R. Считая, что удовлетвори­тельная связь но переменному току достигается, когда Хс = R/20, для R = 1 кОм получаем Хс = 50 Ом.

 

 

Рис. 23.1. Установка разделительного                                      Рис. 23.2.  Влияние развязывающего конденсатора.                                                                          конденсатора.

                                                           

Указаны потен­циалы точки А без развязывающего конденсатора (а) и с развязывающим конденсатором (б).

Предположим, что рабочая частота f = 300 Гц. Поскольку Хc = 1/2πfC1, то

Если сопротивление нагрузочного резистора увеличить до 100 кОм, то Хc= R/20 = 1/20·100 = 5 кОм

Таким образом, если сопротивление нагрузочного резистора увеличить в 100 раз (с 1 кОм до 100 кОм), то емкость разделительного конденсатора можно уменьшить в той же пропорции (с 10 мкФ до 0,1 мкФ).

Вообще, чем больше сопротивление нагрузочного резистора, тем мень­ше требуемая емкость разделительного конденсатора.

2. Рабочая частота. Возьмем в качестве исходного вышеприведенный пример, где удовлетворительная связь по переменному току достига­лась при С = 10 мкФ и R = 1 кОм для f = 300 Гц.

Если теперь рабочую частоту увеличить до 300 кГц, то с учетом усло­вия Хс = R/20 = 50Ом получаем

Таким образом, если рабочую частоту увеличить в 1000 раз (с 300 Гц до 300 кГц), то емкость разделительного конденсатора можно уменьшить в 1000 раз (с 10 мкФ до 0,01 мкФ).

Вообще, при заданном сопротивлении нагрузочного резистора для низ­ких рабочих частот необходимо использовать разделительные конденсаторы большой емкости, и наоборот.

Когда речь идет о рабочем диапазоне частот, емкость разделительно­го конденсатора определяется наименьшей частотой из этого диапазона. Обращаясь к рассмотренным выше примерам, мы видим, что конденсатор) емкостью 10 мкФ в соответствии с расчетами обеспечивает адекватную связь по неременному току при частоте 300 Гц и тем более при частоте 300 кГц. .1) в точке А постоянный потенциал равен 10 В, а переменный потенциал сигнала — 10 мВ. Кон­денсатор, представляющий собой разрыв цени для постоянного тока, не оказывает никакого влияния на постоянный потенциал точки А, Одна­ко если емкость этого конденсатора такова, что па рабочей частоте его реактивное сопротивление существенно меньше сопротивления резистора R, то конденсатор будет эффективно осуществлять короткое замыкание сигнала переменного тока на землю. Таким образом, потенциал точки А по переменному току будет равен нулю. ёмкость конденсатора С, обес­печивающая удовлетворительную развязку, определяется сопротивлени­ем резистора R и рабочей частотой — но тем же самым формулам, ко­торые использовались для расчета емкости разделительного конденса­тора.

Усилитель с ДС-связью

На рис. 23.3 приведена схема усилителя с ДС-связыо, где С} — входной разделительный конденсатор. Емкость этого конденсатора должна быть сравнительно велика в силу низкого входного сопротивления транзистора в схеме с ОЭ (это сопротивление становится еще меньше за счет шунтиро-вания входа, усилителя резистором R^}. связывает выход усилителя с нагрузкой или следующим каскадом, его емкость сравнима с емкостью конденсатора Ci. Типичные значения емкостей разделитель-ьшх конденсаторов следующие:

10-50 мкФ. 0.01-0,1 мкФ.

для звуковых частот:

для радиочастот:

 

Рис. 23.3. Усилитель с RC-связью с

развязывающим конденсатором С3 в цепи эмиттера.            Рис. 23.4. Инвертирование (измене­ние на 180°) фазы сигнала в усили­теле с ОЭ.

Развязывающий конденсатор

Отрицательная обратная связь через резистор R4 в усилителе на рис. 23.3, с одной стороны, обеспечивает необходимую стабильность усилителя по постоянному току, а с другой стороны, снижает его коэффициент усиле­ния до очень малой величины (2-3). Снижение коэффициента усиления связано с действием отрицательной обратной связи по переменному току, обусловленной падением напряжения сигнала на резисторе R4. Для устранения этой отрицательной обратной связи по переменному току и одновременного сохранения стабильности по постоянному току применя­ется эмиттерный развязывающий конденсатор С3.

Типичные значения емкости эмиттерного развязывающего конденса­тора того же порядка, что и для разделительного конденсатора.

Усиление

Схема, приведенная на рис. 23.3, является законченной схемой однокас­кадного усилителя с ОЭ. При подаче сигнала (например, синусоидальной формы) на вход усилителя этот сигнал передается через конденсатор С1 на базу транзистора. В начале положительного полупериода входного сигнала потенциал базы возрастает относительно потенциала эмиттера, напряжение VBEувеличивается, ток эмиттера Ie, а с ним и ток коллек­тора Ic, возрастают, в результате уменьшается напряжение на коллекторе Vc. Это означает, что положительному полу периоду входного сигнала со­ответствует отрицательный полупериод выходного сигнала. С другой сто­роны, отрицательному полупериоду входного сигнала соответствует поло­жительный полупериод изменения коллекторного напряжения. Таким образом, сигналы на входе и выходе усилителя противофазны, как по­казано на рис. 23.4. Усиление сигнала происходит в силу того, что очень малый размах напряжения VBEприводит к большому размаху тока транзистора, который, проходя через резисторR3, вызывает большой размах коллекторного напряжения.

Линия нагрузки

Выходные характеристики транзистора дают общее представление о рабо­те транзистора. Для того чтобы получить представление о работе транзи­стора в конкретной схеме, нужно начертить линию нагрузки. На рис. 23.5 изображены семейство выходных характеристик транзистора, работаю­щего в схеме усилителя на рис. 23.3, и линия нагрузки XY.

Прежде чем проводить линию нагрузки, нужно сначала зафиксиро­вать две точки, попадающие на эту линию. Лучше всего использовать точку Х на оси х, где ток Ic = 0, и точку Y на оси у, где Vc = 0. Через эти две точки проводится прямая линия — линия нагрузки. Предполагается, что Vc = VCE.

Точка X. В этой точке ток транзистора Ic = 0. Транзистор находится в состоянии отсечки. Следовательно, напряжение на коллекторе Vc = VCC.

Точка Y. Здесь коллекторное напряжение Vc = 0. Подставляя Vc = 0 в уравнение               VCC = Vc + VR3, получаем VCC = VR3. Но VR3 = Ic R3, поэтому VCC = Ic R3. Следовательно,

Ic = VCC / R3.

Рис. 23.5. Линия нагрузки.

Для величин, указанных на рис. 23.3, положение точек Х и Y будет определяться следующими параметрами:

Точка Х          Ic = 0, Vc = VCC = 10 В.

Точка Y         Vc = 0, Ic = VCC/ R3 = 10/3,3 = 3 мА.

Таким образом, XY — это линия нагрузки для нагрузочного резистора сопротивлением        R3 = 3,3 кОм.

При использовании нагрузочного резистора меньшего номинала (2,2 кОм) получаем линию нагрузки ХYa. Положение точки Х не изменяется по сравнению с предыдущим случаем, поскольку напряжение VСС остается тем же самым — 10 В. Для точки Yb получаем Ic = VCC / R3 = 10 В/2,2кОм = 4,55мА.

Нагрузочному резистору более высокого номинала, например 4,9 кОм, соответствует линия нагрузки ХYb с точкой Yb при Ic = 10 В/4, 9 кОм ≈ 2 мА.

Графический анализ

Процесс усиления сигнала осуществляется вдоль линии нагрузки и может быть представлен графически, как показано на рис. 23.6. Точка Q есть статическая рабочая точка, представляющая режим работы усилителя по постоянному току, т. е. в отсутствие сигнала. Рабочая точка задает смещение транзистора в статическом режиме. В рассматриваемом случае смещение определяется следующими величинами:

Ib = 20 мкА, Ic = 1,5 мА, Vc = 5 В.

Рис. 23.6. Графическое представление работы усилителя.

 

Рис. 23.7. Перегрузка усилителя, приводящая к ограничению выходного сиг­нала.

При подаче сигнала базовый ток изменяется по синусоиде с амплитудой 20 мкА (от 0 до 40 мкА). Это приводит к изменению коллекторного тока Ic с размахом 2,8 мА и изменению коллекторного напряжения с размахом около 9 В.

С одной стороны размах входного сигнала ограничен линией Ib = 0, соответствующей отсечке транзистора (точка М на линии нагрузки), а с другой стороны – линией Ib = 40 мкА, соответствующей насыщению транзистора (точка N на линии нагрузки). Для рассматриваемого уси­лителя рабочая точка Q выбирается в середине линии нагрузки. В этом случае при подаче сигнала с амплитудой 20 мкА на базу транзистора базовый ток изменяется в пределах от 0 до 40 мкА, обеспечивая максимальную величину неискаженного выходного сигнала.

 

Рис. 23.8. Графическое представление работы усилителя с использованием пе­редаточной характеристики.

Любая попыт­ка превышения этой величины входного сигнала приводит к искажению формы выходного сигнала. Это хорошо видно на рис. 23.7, где иллюстри­руется случай перегрузки усилителя с результирующим ограничением синусоидального сигнала. Входной и выходной сигналы могут быть так­же представлены графически с помощью передаточной характеристики транзистора (рис. 23.8). Рабочий диапазон усилителя ограничен линей­ным участком характеристики передачи, выход за границы этого участка приводит к искажениям.

Добавить комментарий

Конденсатор связи

По мере развития сети высоковольтных линий электропередачи, увеличения их протяженности и оснащения автоматикой возникает необходимость в надежной диспетчерской и административно-хозяйственной связи между отдельными пунктами, передаче сигналов телеизмерения, аварийного отключения выключателей, релейной защиты и других данных. Обычно такая связь осуществляется непосредственно по высоковольтным ЛЭП. Одним из элементов оборудования такой связи являются конденсаторы, которые отделяют аппаратуру связи от высокого напряжения частоты 50 Гц, пропуская сигналы высокой частоты по каналам связи. На основе этих же конденсаторов делаются устройства отбора мощности при частоте 50 Гц непосредственно от ЛЭП для питания измерительной аппаратуры и силового оборудования, а также измерительные устройства (делители, трансформаторы напряжения) — для измерения напряжения ЛЭП.

 

Назначение

 

  • для обеспечения высокочастотной связи на частотах от 16 до 1500 кГц в линиях электропередачи номинальным напряжением 35, 110, 150, 220, 330, 500, 750 кВ переменного тока частоты 50 и 60 Гц.
  • для присоединения аппаратуры связи к линиям электропередачи от 6 до 35 кВ и грозозащитным тросам.
  • конденсатор подвесного исполнения для отбора активной электрической мощности из сетей переменного тока частоты 50 Гц напряжением 110 кВ.

Конденсаторы изготовлены в фарфоровых покрышках и пропитаны экологически безопасной жидкостью.

 

Конструкция

 

  • Конденсаторы изготавливаются с применением плёночного диэлектрика. По согласованию с заказчиком возможно изготовление конденсаторов на номинальное напряжение 110/√3 кВ с бумажно-плёночным диэлектриком. В этом случае в обозначении типономинала конденсатора указывают буквы «БП».
  • Конденсаторы связи пропитаны экологически безопасной диэлектрической жидкостью, которая не входит в список запрещенных Стокгольмской конвенцией о стойких органических загрязнителях (2001 г.).

Дополнительную информацию по конденсаторам связи можно найти в каталоге ВЧ-связи

 

 

Что такое конденсатор, как он работает и для чего его назначение

Рубрика: Статьи обо всем, Статьи про радиодетали Опубликовано 29.02.2020   ·   Комментарии: 0   ·   На чтение: 5 мин   ·   Просмотры:

Post Views: 1 363

Конденсатор — это вторая по популярности радиодеталь после резистора. Он важен и незаменим, участвует в формировании сигналов и фильтрации питания. А ведь изначально, самым первым конденсатором была лейденская банка, которая была изобретена в 1745 году. С тех пор конденсаторы стали неотъемлемой частью электроники.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.


Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.

Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.


Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.


Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Post Views: 1 363

О помехах и не только…X- и Y-конденсаторы

Проблема электромагнитной совместимости и электромагнитных помех становится с каждым годом актуальнее. Связано это в первую очередь с увеличением числа потребителей и изменением схемотехники источников питания. Причем происходит как количественный рост (увеличение уровня помехи), так и качественный (меняется ее спектр). Помехи, как физическое явление присутствовали в электрических сетях всегда. Если раньше основным источником были коллекторные электродвигатели, с неизбежным искрообразованием на щетках, то сегодня – это импульсные источники питания с характерными для них ключевыми каскадами.

Как известно, помехи возникающие при работе устройства бывают двух видов: дифференциальные – когда ток помехи протекает в питающих проводах в разных направлениях и синфазные, когда ток помехи протекает в одну сторону, то есть дифференциальная помеха – это помеха между двумя проводами питания, а синфазная – между проводами питания и землей. Чтобы снизить влияние на электрическую сеть, между источником и потребителем устанавливается фильтр, типовая схема которого показана на рисунке слева.

 Дифференциальные помехи в этой схеме подавляются дросселями Ld и конденсатором Сх, а синфазные помехи – дросселем Lc и конденсаторами Cy. 

Остановимся подробнее на особенностях этих конденсаторов и попытаемся разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов».

Начнем с дифференциальной помехи.

Для её подавления используются конденсаторы класса X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке это конденсатор – Cх.

К конденсаторам данного класса предъявляются повышенные требования – они должны выдерживать максимально допустимые в сети электропитания всплески, не загораться при выходе из строя и не поддерживать горение.

Сейчас используются два основных подкласса X-конденсаторов – X1 и X2:

Основные свойства конденсаторов типа Х

Подкласс Пиковое тестовое напряжение (Up), кВ Область применения
Х1 2.5 < Up ≤ 4.0 Трехфазные сети
Х2 Up ≤ 2.5 Общее применение
  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения не менее 4кВ.
  • X2 – самый распространенный подкласс конденсаторов. Используется в бытовых приборах с номинальным напряжением сети до 250В, выдерживают всплеск до 2.5кВ.

Величина ёмкости X-конденсаторов варьируется от 0.1мкФ до 1мкФ. Для каждого конкретного случая она рассчитывается в зависимости от потребляемой мощности нагрузки и уровня помех в линии. Как правило, противофазная составляющая комплексной помехи — это напряжение помехи между фазой и нейтралью.

Для подавления синфазной помехи применяется конденсатор класса Y — CY. Схема их включения напоменает букву Y. Отсюда и название класса таких конденсаторов. 

В качестве примера появления синфазной помехи рассмотрим структурную схему AC/DC преобразователя. 

Все гальванически развязанные AC/DC преобразователи напряжения имеют в своём составе трансформатор. Ему присущ такой существенный недостаток, как паразитная межобмоточная ёмкость (Спар). Так как силовой ключ преобразователя напряжения гальванически связан с входным напряжением, а частота преобразования составляет порядка нескольких десятков килогерц, то величина сопротивления паразитной ёмкости трансформатора на этой частоте мала и будет являться причиной появления синфазной помехи на выходе, на обоих проводах сразу. В некоторых случаях напряжение помехи может достичь опасных для человека величин. Ток синфазной помехи обязательно отводится в провод заземления.

Для подавления синфазной помехи применяются конденсаторы – СY — конденсаторы класса Y. Ток синфазной помехи, который просочился через паразитную ёмкость трансформатора на выход устройства, стекает по более короткому пути в нейтраль через помехоподавляющие конденсаторы и исключает воздействие на выходные цепи.

Обратим внимание на то, что в данном случае конденсаторы CY связывают один из проводов питающей сети с выходом преобразователя. Это накладывает дополнительные требования к конденсаторам по его надёжности. Конденсаторы класса Y предназначены для работы в тех местах, где выход их из строя угрожает безопасности людей.

Конденсаторы класса Y – типа делятся на 2 основных подкласса:

Основные свойства конденсаторов типа Y

Подкласс Пиковое тестовое напряжение (UP), кВ Номинальное переменное напряжение (UR), В
Y1 UP ≤ 8.0 UR ≥ 250
Y2 UP ≤ 5.0 150 ≤  UR ≤ 250
  • Y1 – Работают при номинальном сетевом напряжении более 250В и выдерживают импульсное напряжение до 8кВ
  • Y2 – Самый популярный тип, может быть использован при сетевом напряжении до 250В и выдерживает импульсы до 5кВ.

Подведем итог:

  • Конденсаторы класса Y можно использовать вместо конденсаторов класса X, но нельзя использовать конденсаторы класса X вместо конденсаторов класса Y.
  • Конденсаторы класса Y имеют обычно намного меньшую ёмкость, чем конденсаторы класса X.
  • Если для конденсаторов класса X типа чем больше ёмкости, тем лучше, то ёмкость конденсаторов класса Y нужно выбирать как можно меньшей. Типовое значение обычно не превышает 2.2нФ.
  • Если на конденсаторе присутствует обозначение X и Y, то возможно его применение для подавления противофазных и синфазных помех.

На сегодняшний день в группе компаний «Промэлектроника» конденсаторы классов X и Y широко представлены продукцией таких ведущих фирм, как Epcos и Vishay, Murata.

Примеры расшифровки партнамберов EpcosПримеры расшифровки партнамберов VishayПримеры расшифровки партнамберов Murata

Классификация конденсаторов

Конденсаторы делятся на конденсаторы общего и специального назначения, а также группируются по некоторым характеристикам.

Конденсаторы общего назначения широко применяются в различной аппаратуре. Обычно это низковольтные конденсаторы, к которым не предъявляются особые требования по классу точности, ТКЕ, напряжению и т.п.

Конденсаторы специального назначения — это все остальные конденсаторы. Как понятно из названия, эти конденсаторы предназначены для выполнения специфических функций (подавление помех, пуск электродвигателя и т.п.) или для работы в особых условиях (высокое напряжение, импульсный ток и т.п.).

Итак, классификация конденсаторов определяет группы по следующим признакам:

  • По назначению:
  1. Конденсаторы общего назначения
  2. Конденсаторы специального назначения
  • По характеру изменения ёмкости:
    1. Конденсаторы постоянной ёмкости (постоянные конденсаторы)
    2. Конденсаторы переменной ёмкости (переменные конденсаторы)
    3. Подстроечные конденсаторы
  • По способу защиты:
    1. Незащищённые конденсаторы
    2. Защищённые конденсаторы
    3. Неизолированные конденсаторы
    4. Изолированные конденсаторы
    5. Уплотнённые конденсаторы
    6. Герметизированные конденсаторы
  • По виду диэлектрика:
    1. C газообразным диэлектриком
    2. C оксидным диэлектриком
    3. C неорганическим диэлектриком
    4. C органическим диэлектриком
    Конденсаторы постоянной ёмкости (постоянные конденсаторы) подразделяются на высокочастотные и низкочастотные. Постоянные конденсаторы не могут изменять свою ёмкость в процессе работы, то есть их ёмкость является постоянной (точнее, она может колебаться в небольших пределах в зависимости от температуры, но это в пределах допуска).

    Конденсаторы переменной ёмкости (переменные конденсаторы) могут изменять свою ёмкость в процессе работы. Как известно, ёмкость конденсатора зависит от площади его обкладок и расстояния между ними. Эти параметры можно изменять различными способами. Вы наверняка пользовались аналоговыми радиоприёмниками, в которых переменные конденсаторы используются для настройки на радиостанцию.

    Подстроечные конденсаторы также могут изменять свою ёмкость. Переменные конденсаторы отличаются от подстроечных тем, что их ёмкость можно изменять во время работы устройства, в то время как подстроечные конденсаторы используются обычно только при настройке аппаратуры на заводе.

    Кроме этого конденсаторы можно разделить на полярные и неполярные (хотя по этим признакам их обычно не классифицируют).

    Полярные конденсаторы могут работать только в цепях постоянного тока и требуют строгого соблюдения полярности при подключении (плюс подключается к выводу со знаком плюс, минус, соответственно — к выводу со знаком минус). При не соблюдении этого требования такой конденсатор может выйти из строя.

    Неполярные конденсаторы могут работать в цепях как постоянного, так и переменного тока. Такие конденсаторы можно подключать без учёта полярности напряжения.

    Какова роль конденсатора в цепях переменного и постоянного тока? Электрические технологии

    Какова роль конденсатора в цепях переменного и постоянного тока?

    Роль конденсатора в цепях переменного тока:

    В цепи переменного тока конденсатор меняет свои заряды на противоположные по мере того, как ток изменяется и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

    Роль конденсатора в цепях постоянного тока:

    В цепи постоянного тока конденсатор, заряженный приложенным напряжением, действует как размыкающий переключатель.

    Роль конденсатора в системах переменного и постоянного тока

    Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

    Что такое конденсатор?

    Конденсатор представляет собой электрическое устройство с двумя выводами, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единица измерения его емкости в системе СИ — Фарад «Ф», где Фарад — большая единица емкости, поэтому в настоящее время используются микрофарады (мкФ) или нанофарады (нФ).

    Конденсатор похож на батарею, поскольку оба накапливают электрическую энергию. Конденсатор — гораздо более простое устройство, которое не может производить новые электроны, но накапливает их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (например, вощеной бумагой, слюдой и керамикой), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

    Конденсаторы

    могут пригодиться для накопления заряда и быстрого разряда в нагрузку.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Символ электрического эквивалента различных типов конденсатора приведен ниже:

    Теперь мы знаем концепцию зарядки конденсатора и его структуру, но знаете ли вы, что такое емкость? емкость — это способность конденсатора накапливать в нем заряд. На емкость влияют несколько факторов.

    • Площадь пластины
    • Зазор между пластинами
    • Проницаемость изоляционного материала

    Соответствующий пост: Конденсатор и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

    Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, регулирование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

    В этом руководстве мы объясним вам, как можно использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора к электронной схеме:

    • Последовательный конденсатор
    • Параллельный конденсатор
    • Конденсатор в цепях переменного тока
    • Конденсатор в цепях постоянного тока

    Связанный пост: Конденсаторы MCQ с пояснительными ответами

    Как работает конденсатор?
    Работа и конструкция конденсатора

    Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), начинает течь ток и продолжается до тех пор, пока напряжение не появится как на отрицательном, так и на положительном (анодном и положительном) контактах. Катод) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

    Когда мы подключаем заряженный конденсатор к небольшой нагрузке, он начинает подавать напряжение (накопленную энергию) на эту нагрузку до тех пор, пока конденсатор полностью не разрядится.

    Конденсаторы бывают разных форм, и их значение измеряется в фарадах (Ф). Конденсаторы используются как в системах переменного, так и постоянного тока (мы обсудим это ниже).

    Емкость (C):

    Емкость — это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда источник питания на один вольт подключен к его клемме.

    Математически,

    Уравнение емкости:

    C = Q / V

    Где,

    • C = емкость в фарадах (F)
    • Q = электрический заряд в кулонах V = Напряжение в вольтах

    Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения — объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим типы конденсаторов позже в другом посте, потому что это не связано с вопросом).

    Связанные сообщения:

    Серийные конденсаторы

    Как последовательно соединить конденсаторы?

    Последовательно ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, вам необходимо соединить их встык, как показано на рисунке ниже:

    При последовательном соединении конденсаторов общая емкость уменьшается.Следовательно, соединение выполняется последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от соседней пластины конденсатора.

    Следовательно,

    I T = I 1 + I 2 + I 3 +… + I n

    и

    Q Q T 33 + Q 2 + Q 3 +… + Q n

    Теперь, чтобы найти значение емкости вышеуказанной схемы, мы применим закон Кирхгофа по напряжению (KVL), тогда у нас будет

    V T = V C1 + V C2 + V C3

    Как мы знаем, Q = CV

    И V = Q / C

    Итак,

    (Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

    Следовательно,

    1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

    Для n th no.конденсаторов, соединенных последовательно,

    Для двух последовательно соединенных конденсаторов формула будет

    C T = (C1 x C2) / (C1 + C2)

    Теперь вы можете найти емкость приведенная выше схема, используя формулу,

    Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

    Итак, C T = (10 x 4,7) / (10 + 4,7)

    C T = 47 / 14,7

    C T = 3,19 мкФ

    Параллельные конденсаторы

    Как подключить конденсаторы параллельно?

    Параллельно каждый конденсатор напрямую подключается к источнику, как вы можете видеть на изображении ниже,

    Когда вы подключаете конденсаторы параллельно, общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, из-за этого площадь пластины также увеличивается.

    Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

    Применяя закон Кирхгофа,

    I T = I 1 + I 2 + I 3

    Теперь ток через конденсатор выражается как,

    I = C (dV / dt)

    Итак,

    Решив приведенное выше уравнение

    C T = C 1 + C 2 + C 3

    And, для n th no.конденсатора, соединенного последовательно,

    C T = C 1 + C 2 + C 3 +… + C n

    Теперь вы можете определить емкость цепи, используя приведенную выше формулу,

    Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

    Итак, C T = 10 мкФ + 1 мкФ

    C T = 11 мкФ

    Связанные сообщения:

    Полярный и неполярный конденсатор
    Неполярный конденсатор: (используется в системах переменного и постоянного тока)

    Неполярные конденсаторы могут использоваться как в системах переменного, так и постоянного тока.Их можно подключать к источнику питания в любом направлении, и их емкость не зависит от смены полярности.

    Полярный конденсатор: (используется только в цепях и системах постоянного тока)

    Конденсаторы этого типа чувствительны к их полярности и могут использоваться только в системах и сетях постоянного тока. Конденсаторы Polar не работают в системе переменного тока из-за смены полярности после каждого полупериода в сети переменного тока.

    Типы конденсаторов: полярные и неполярные конденсаторы с символами

    Роль конденсаторов в цепях переменного тока

    Конденсатор имеет множество применений в системах переменного тока, и ниже мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока.

    Бестрансформаторный источник питания:

    Конденсаторы используются в бестрансформаторных источниках питания. В таких схемах конденсатор включен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют мощность. Они просто берут мощность в одном цикле и возвращают ее в другом цикле к нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями мощности.

    Асинхронные двигатели с расщепленной фазой:

    Конденсаторы также используются в асинхронных двигателях для разделения однофазного источника питания на двухфазный источник питания для создания вращающегося магнитного поля в роторе для улавливания этого поля.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, которым для работы требуется как минимум две фазы.

    Коррекция и улучшение коэффициента мощности:

    Есть много преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он обеспечивает реактивную мощность, которая ранее передавалась из энергосистемы, следовательно, снижает потери и повышает эффективность системы.

    Конденсаторы в цепи переменного тока

    Как подключить конденсатор в цепи переменного тока?

    В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не сравняется с напряжением питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после полной зарядки.

    И, когда вы подключаете конденсатор к источнику переменного тока, он непрерывно заряжается и разряжается из-за постоянного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите векторную диаграмму идеальной цепи конденсатора переменного тока, вы можете заметить, что ток опережает напряжение на 90 °.

    В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как:

    I = dQ / dt

    I = C (dV / dt)

    Теперь мы рассчитаем емкостное реактивное сопротивление в цепи переменного тока .

    Как мы знаем, I = dQ / dt и Q = CV

    И входное напряжение переменного тока в приведенной выше схеме будет выражено как,

    V = V m Sin wt

    Итак, I м = d (CV м Sin wt ) / dt

    I м = C * V м Cos wt * w (после дифференцирования)

    I м = wC V m Sin (wt + π / 2)

    At, w = 0, Sin (wt + π / 2) = 1

    Следовательно,

    I m = wCV m

    V m / I м = 1 / wC (где w = 2π f и V м / I м = X C )

    Емкостное реактивное сопротивление (X C ) =

    Теперь, для расчета емкостного реактивного сопротивления вышеуказанной цепи

    X C = 1 / [2π (50 Гц) (10 -6 F)]

    XC = 3183.09 Ом

    Связанный пост: В чем разница между батареей и конденсатором?

    Роль конденсаторов в цепях постоянного тока
    Кондиционирование питания:

    В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование — преобразование источника питания переменного тока в постоянный при выпрямлении (например, в мостовом выпрямителе). Когда мощность переменного тока преобразуется в колеблющуюся (с пульсациями, то есть не в устойчивое состояние с помощью схем выпрямителя) мощность постоянного тока (пульсирующая мощность постоянного тока), чтобы сгладить и отфильтровать эти пульсации и колебания, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения в системе и потребляемого тока нагрузки.

    Конденсатор развязки:

    Конденсатор развязки используется, где мы должны развязать две электронные схемы. Другими словами, шум, создаваемый одной схемой, заземляется разделительным конденсатором и не влияет на работу другой схемы.

    Конденсатор связи:

    Как мы знаем, Конденсатор блокирует постоянный ток и позволяет переменному току проходить через него (мы обсудим это в следующем сеансе, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в схемах фильтров для той же цели). Его значение рассчитывается таким образом, чтобы его реактивное сопротивление было минимизировано на основе частоты, которую мы хотим передать через него. Конденсатор связи также используется в фильтрах (схемах устранения пульсаций, таких как RC-фильтры) для разделения сигналов переменного и постоянного тока и удаления пульсаций из пульсирующего напряжения питания постоянного тока для преобразования его в чистое переменное напряжение после выпрямления.

    Вы также можете прочитать:

    Как работают конденсаторы? — Объясни, что это за штука

    Смотрите в небо большую часть дней, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой с помощью цифрового камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов. В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же накапливают энергию.Давайте подробнее рассмотрим конденсаторы и как они работают!

    Фотография: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

    Что такое конденсатор?

    Возьмите два электрических провода (то, что пропускает электричество через них) и разделите их изолятором (материал что не пропускает электричество очень хорошо) и вы делаете конденсатор: то, что может хранить электрическую энергию.Добавление электрической энергии к конденсатору называется зарядка ; высвобождая энергию из конденсатор известен как разрядный .

    Фото: Малый конденсатор в транзисторной радиосхеме.

    Конденсатор немного похож на батарею, но у него другая работа делать. Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее — часто за секунды или меньше.Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за долю секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку-вспышку. Зап!

    Конденсаторы

    бывают всех форм и размеров, но обычно они те же основные компоненты.Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения на внешней стороне называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

    Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними.Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ! Открывать конденсаторы может быть опасно. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

    Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом).Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

    Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

    Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в области электротехники. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

    Что такое емкость?

    Количество электроэнергии, которое может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них — увеличить размер тарелок.Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

    Фотография: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

    Как измерить емкость?

    Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

    Почему конденсаторы накапливают энергию?

    Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите у подножия ступенек. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

    То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-то еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов — или как ваше тело и Земля. Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз она называется электрической потенциальной энергией . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

    Работа: Раздвигание положительных и отрицательных зарядов сохраняет энергию. Это основная принцип конденсатора.

    Почему у конденсаторов две пластины?

    Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году.Точное расстояние между пластины можно регулировать (и измерять) с помощью микрометрического винта. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

    Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы не у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

    Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка. Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разрушится, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини- заряд молнии.Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q) и емкость связаны очень простым уравнением:

    C = Q / V

    Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

    Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим запасом заряда (Q) точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу в , что Вот почему все конденсаторы на практике имеют две пластины.

    Как увеличить емкость?

    Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин тоже увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это ведь чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

    Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении — и это то, что уменьшает поле.

    Последнее, что мы можем сделать, чтобы увеличить емкость, — это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом на одной стороне и с другой стороны, больше отрицательного электрического заряда).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

    Диаграмма. Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.

    Почему конденсаторы являются важными компонентами электронных схем

    Подпишитесь на обновления Отписаться от обновлений

    С развитием технологий конденсаторы стали важными компонентами почти каждого электронного устройства. Они способны накапливать электрический заряд, но ненадолго.

    По Потшангбам июля

    Подобно перезаряжаемой батарее, конденсаторы накапливают и выделяют энергию.Конденсаторы хранят потенциальную энергию в электрическом поле, тогда как батареи накапливают энергию в форме химической энергии, которая позже превращается в электрическую. Конденсаторы обладают такими функциями, как возможность простой зарядки и разрядки. Сегодня растет спрос на более качественные конденсаторы для носимых устройств, бытовой электроники и промышленного применения.

    Важность конденсаторов
    Конденсатор, также известный как конденсатор, является одним из основных компонентов, необходимых для построения электронных схем.Конструкция схемы является неполной или она не будет функционировать должным образом без базовых компонентов, таких как резисторы, катушки индуктивности, диоды, транзисторы и т. Д. Основная функция конденсаторов заключается в хранении электростатической энергии в электрическом поле и передаче этой энергии в схему. , когда необходимо. Они пропускают переменный ток, но блокируют прохождение постоянного тока, чтобы избежать опасного выхода из строя цепи.

    Хотя конденсаторы крошечные, они обеспечивают различные преимущества в электронных схемах.

    • Они накапливают энергию непосредственно на пластинах, что значительно ускоряет процесс зарядки / разрядки.
    • Они эффективны при фильтрации нежелательных частот.
    • Конденсаторы
    • могут эффективно справляться с потерями мощности и делать производство электроэнергии более экономичным.
    • Они менее чувствительны к температуре.
    • Конденсаторы разряжают ток практически мгновенно.
    • Конденсаторы предпочтительнее для приложений переменного тока.
    • Они могут работать с приложениями с высоким напряжением и, следовательно, подходят для высокочастотных применений.
    • Конденсаторы имеют длительный срок службы почти от десяти до 15 лет.

    Типы конденсаторов и их применение
    Существует несколько типов конденсаторов разной конструкции, для разных применений и функций. Ниже приведены наиболее распространенные типы конденсаторов, используемых в электронных схемах.

    Пленочные конденсаторы: К ним относятся полиэфирная пленка, металлизированная пленка, полипропиленовая пленка, пленка PTE и конденсаторы на основе полистирольной пленки. Что отличает их друг от друга, так это материал, используемый в качестве диэлектрика.

    ] Диэлектрик следует выбирать с осторожностью, исходя из его свойств. Пленочные конденсаторы имеют несколько преимуществ — они очень надежны и имеют длительный срок службы. Их предпочитают в условиях высоких температур.

    Пленочные конденсаторы

    используются в автомобильных электронных блоках, поскольку они демонстрируют стабильность во время работы при высоких температурах и в условиях вибрации. Широкое применение пленочных конденсаторов также можно объяснить их способностью выдерживать высокое напряжение.

    Керамические конденсаторы: Эти конденсаторы не имеют полярности и имеют фиксированную емкость. В качестве диэлектрического материала они используют керамическое вещество. Обычно используются два типа керамических конденсаторов — многослойный керамический конденсатор (MLCC) и керамический дисковый конденсатор. Следует отметить, что керамические материалы плохо проводят электричество; поэтому электрические заряды не могут проходить через них. Обратной стороной керамических конденсаторов является то, что незначительное изменение температуры приводит к изменению их емкости.

    Низкая индуктивность керамических конденсаторов делает их пригодными для высокочастотных применений. Они бывают небольших размеров и используются в различных электронных продуктах, включая телевизоры, мобильные телефоны, цифровые видеокамеры, ноутбуки и т. Д.

    Электролитические конденсаторы: Их можно разделить на две категории — материал электрода (алюминий, тантал или ниобий) и свойства электролитов (влажный, твердый или гибрид влажный / твердый). Большинство электролитических конденсаторов имеют полярность; поэтому при постоянном напряжении важно исправлять полярность на обоих концах.Из-за своего небольшого размера и высокой емкости электролитические конденсаторы подходят для использования в цепях питания постоянного тока. Их применение — соединение и развязка. Недостатком электролитических конденсаторов является их относительно низкое напряжение.

    Бумажные конденсаторы: Они сконструированы с использованием бумаги в качестве диэлектрика и способны накапливать достаточный электрический заряд. Диапазон емкости для них варьируется от 0,001 до 2 000 мкФ, а напряжение очень высокое — до 2000 В.Этот конденсатор поглощает влагу из воздуха, что снижает сопротивление изоляции диэлектрика. Бумажные конденсаторы используются в фильтрах. Их также можно использовать для приложений, требующих высокого напряжения и большого тока.

    Общие проблемы при использовании неподходящих конденсаторов
    Плохой конденсатор может привести к различным проблемам. Когда в цепи используется неправильный конденсатор, он не может стабилизировать высокое напряжение, что может отрицательно повлиять на систему, вызывая ее выход из строя раньше ожидаемого срока службы.Следует помнить, что все конденсаторы не сделаны из одних и тех же материалов. Следовательно, использование конденсатора плохого качества или конденсатора с неправильным номиналом может серьезно повлиять на работу схемы.

    Другие проблемы, которые возникают из-за неправильного выбора конденсаторов, — это ненужная потеря мощности и нестабильные цепи. Кроме того, неправильный физический размер и тип конденсатора могут вызвать такие проблемы, как нежелательный шум, механическое напряжение, отказ цепи и т. Д. Также следует учитывать толщину внешнего слоя диэлектрика конденсатора.На этом слое обычно появляются трещины; поэтому толщина диэлектрика имеет большое значение для увеличения механической прочности, а также увеличения срока службы изделий.

    Также, когда конденсатор низкого качества или когда в цепи более высокое напряжение, высока вероятность утечки химического изолятора. В таких случаях на печатную плату воздействует слабореактивное соединение, которое, в свою очередь, может повлиять на близлежащие компоненты и медную фольгу печатной платы.

    Некоторые конденсаторы, имеющиеся на рынке
    Модель: Конденсаторы полипропиленовые пленочные; Производитель: Panasonic
    В этих конденсаторах, специально разработанных для подавления помех, используется негорючий пластиковый корпус
    и негорючая смола; они полностью соответствуют требованиям RoHS. В серии есть механизм безопасности
    , соответствующий требованиям UL / CSA и европейского стандарта безопасности класса X2.
    Основные характеристики
    • Влагостойкость проверена при 240 В переменного тока при 85 ° C / 85% в течение 1000 часов (C <1.0 мкФ)
    • Имеет номинальное напряжение 275 В переменного тока, номинальную емкость от 0,10 мкФ до 4,7 мкФ и допуск емкости
      ± 10% (K), ± 20% (M).
    • Диапазон температур категории от -40 ° C до + 110 ° C

    Контакт: www.panasonic.eu

    Модель: Серия пленочных конденсаторов EPCOS B3277X / Y / Z; Производитель: TDK
    Серия подходит для использования в цепях промежуточного контура, в качестве фильтров постоянного тока, для коррекции коэффициента мощности в промышленных преобразователях, а также для источников питания с повышенными требованиями к надежности.Эти области применения включают рентгеновское оборудование, светодиодное уличное освещение, индукционные плиты и электрические зарядные устройства
    .
    Основные характеристики
    • Разработан для напряжений от 500 В до 1200 В постоянного тока со стандартной емкостью от 1,5 до 170 мкФ
    • Максимальный ток до 36,5 А
    • Максимальная рабочая температура компонентов, совместимых с RoHS, составляет 105 ° C.

    Контакт: www.tdk-electronics.tdk.com

    Модель: керамический конденсатор MLCC, 100 нФ; Производитель: Murata
    Компания утверждает, что это самый маленький в мире керамический конденсатор MLCC 100 нФ для смартфонов 5G.Его максимальная емкость составляет 0,1 мкФ (100 нФ). Компания добилась площади монтажной поверхности, которая примерно на 50 процентов меньше, а объем — примерно на 80 процентов меньше, чем у ее собственных обычных продуктов (размер 2552,7 см) с емкостью 0,1 мкФ. Более того, емкость этого продукта примерно в десять раз больше, чем у других продуктов такого же размера (размер 20330,16 см), изначально выпускаемых компанией серийно.
    Контакт: www.murata.com
    Модель: Vishay BC Компоненты 257 серии PRM-SI; Производитель: Vishay Intertechnology
    Эта серия миниатюрных вставных алюминиевых электролитических конденсаторов позволяет создавать конструкции с более высокой плотностью мощности.Серия представляет собой цилиндрический алюминиевый корпус, изолированный синей гильзой. Конденсаторы серии 257 PRM-SI имеют номинальное напряжение до 500 В в 25 компактных корпусах размером от 22 мм x 25 мм до 35 мм x 60 мм. Устройства, соответствующие требованиям RoHS, также доступны с защелкивающимися клеммами с 3-контактным ключом.

    Основные характеристики

    • Размер корпуса (Д x Д в мм): от 22 x 25 до 35 x 60
    • Диапазон емкости: от 56 мкФ до 3300 мкФ
    • Допуск: ± 20%
    • Срок службы при + 85 ° C: 5 000 часов.vishay.com
    Модель: серия KXF; Производитель: United Chemi-Con
    Серия KXF включает сверхминиатюрные алюминиевые электролитические сквозные конденсаторы. Гарантия на эту серию составляет от 15 000 до 20 000 часов работы для цепей светодиодного освещения и других долговечных высоковольтных источников питания. Эти конденсаторы идеально подходят для высоконадежных приложений, таких как светодиоды, зарядные устройства, повышающие преобразователи и миниатюрные импульсные источники питания.

    Основные характеристики
    • Диапазон номинального напряжения от 160 В до 450 В постоянного тока
    • Диапазон емкости от 5,6 мкФ до 68 мкФ
    • Поляризованные конденсаторы, не устойчивые к растворителям
    • Диаметр от 10 до 18 мм
    • Соответствие RoHS2

    Контакт: www.chemi-con.com

    Что такое разделительные конденсаторы за 5 минут | ОРЕЛ

    Для начинающих разработчиков электроники довольно стандартно забывать, насколько нестабильными могут быть входные напряжения, несмотря на то, насколько прочным может выглядеть этот блок питания.А когда вы работаете с микроконтроллерами или микропроцессорами в своей цифровой схеме, малейшие колебания напряжения могут привести к нежелательным результатам. Итак, что вы можете сделать, чтобы ваши ИС работали с плавным и чистым напряжением? Используйте развязывающие конденсаторы! Вот что они собой представляют и как использовать их в сегодняшнем Electronic Byte.

    Что такое развязывающие конденсаторы

    Разделительный конденсатор, также называемый байпасным конденсатором, действует как своего рода резервуар энергии. Вы найдете этих парней, которые обычно помещают как можно ближе к интегральной схеме (ИС) на макете печатной платы.После полной зарядки их задача — просто противодействовать любому неожиданному изменению входного напряжения источника питания. Когда разделительный конденсатор установлен, он выполняет одно из двух:

    1. Если входное напряжение падает, то развязывающий конденсатор сможет обеспечить достаточную мощность для ИС, чтобы поддерживать стабильное напряжение.
    2. Если напряжение увеличивается, то развязывающий конденсатор сможет поглощать избыточную энергию, пытающуюся пройти через ИС, что снова поддерживает стабильное напряжение.

    Все это необходимо, потому что на типичной печатной плате присутствует тонна электрических шумов, а постоянные 5 В, которые, как мы думаем, протекают повсюду, на самом деле прыгают, перемещаясь от компонента к компоненту.

    Некоторые компоненты, такие как интегральные схемы, полагаются на то, чтобы их входное напряжение было как можно более стабильным, поэтому, когда вы поместите развязывающий конденсатор рядом с ИС, вы сможете защитить эти чувствительные микросхемы, отфильтровав любой избыточный шум и создав приятный внешний вид. устойчивый источник энергии.Что произойдет, если вы не используете разделительные конденсаторы рядом с микросхемой? Что ж, вы, скорее всего, столкнетесь с процессором, который начнет пропускать инструкции и вести себя ненормально.

    Посмотрите на ИС на любой печатной плате, и вы обязательно найдете несколько конденсаторов поблизости. (Источник изображения)

    Как использовать разделительные конденсаторы

    Посмотрите схему ниже; он демонстрирует типичное применение того, как вы можете использовать развязывающие конденсаторы при размещении рядом с ИС. Как видите, у вас есть конденсатор 10 мкФ, расположенный дальше всего от ИС, который помогает сглаживать любые низкочастотные изменения входного напряжения.

    Типичное применение разделительных конденсаторов рядом с ИС. (Источник изображения)

    И затем у вас есть конденсатор 0,1 мкФ, расположенный ближе всего к ИС. Это поможет сгладить любой высокочастотный шум в вашей цепи. Когда вы объедините эти два конденсатора вместе, вы обеспечите плавное, непрерывное напряжение на ИС, с которой она будет работать. При работе с разделительными конденсаторами собственной конструкции помните следующие три вещи:

    • Размещение. Вам всегда нужно подключать развязывающие конденсаторы между источником питания, будь то 5 В или 3,3 В, и землей.
    • Расстояние . Вы всегда должны размещать развязывающие конденсаторы как можно ближе к микросхеме. Чем дальше они будут, тем менее эффективны.
    • Рейтинги. В качестве общей рекомендации мы всегда рекомендуем добавлять один керамический конденсатор емкостью 100 нФ и электролитический конденсатор емкостью 0,1–10 мкФ большего размера для каждой интегральной схемы на вашей плате.

    Сохранение жизни интегральной схемы

    Вот и все, что вам может понадобиться знать о разделительных конденсаторах, всего за 5 минут в сегодняшнем электронном байте. Интегральные схемы — это очень чувствительная группа, и без бесперебойного источника питания вы, вероятно, столкнетесь с пропущенными инструкциями и другим странным поведением. Разместив набор развязывающих конденсаторов рядом с одной из ваших микросхем, вы убедитесь, что они всегда будут получать плавное входное напряжение, независимо от того, какие электрические помехи присутствуют на вашей печатной плате.

    Готовы начать свой следующий проект по разработке электроники с разделительных конденсаторов? Попробуйте Autodesk EAGLE бесплатно сегодня!

    Назад к основам: что такое Y-конденсаторы?

    Когда электронное оборудование подключено к сети переменного тока, оно может создавать синфазные электрические помехи. Если ему позволить течь обратно в линию электропитания, это может нарушить работу другого оборудования, также подключенного к той же линии.

    Какое решение?

    Производители проектируют конденсаторные фильтры для линий электропередач в свои системы, чтобы разъединить любой такой синфазный шум, производимый источником питания оборудования, не позволяя им достичь другого оборудования через линию электропитания.Надежность этих конденсаторов имеет решающее значение для безопасности пользователей оборудования.

    Когда надежность конденсаторов становится критичной для безопасности?

    Конденсаторы сетевого фильтра классифицируются как X-конденсаторы или Y-конденсаторы. Х-конденсаторы подключены между линией и нейтралью для защиты от помех в дифференциальном режиме. Их выход из строя не создает условий для опасного поражения электрическим током, но может создать опасность пожара. Однако Y-конденсаторы предназначены для фильтрации синфазного шума и подключаются между линией и шасси; при коротком замыкании они создают для пользователя опасность поражения электрическим током.

    Как проектируются и устанавливаются Y-конденсаторы для обеспечения безопасности?

    Y-конденсаторы

    разработаны в соответствии с повышенными стандартами электрической и механической надежности. Значения емкости также ограничиваются, чтобы уменьшить ток, проходящий через конденсатор при приложении переменного напряжения, и уменьшить запасенную энергию до безопасного предела при приложении постоянного напряжения. Конденсаторы должны быть испытаны на соответствие применимым стандартам, чтобы квалифицировать их для использования в качестве Y-конденсаторов.

    Какие европейские стандарты применимы?

    Стандарт EN 132400 был выпущен 26 июня 1995 года и заменил все европейские национальные стандарты, действовавшие на тот момент.Он был идентичен международному стандарту IEC 60384-14, 2-е издание 1993 года. С тех пор, чтобы сделать стандарты CENELEC и IEC идентичными по названию и спецификации, европейский стандарт EN 132400 был заменен стандартом EN 60384-14, который идентичен стандарту Международный стандарт IEC 60384-14. Любой европейский национальный орган может выдавать разрешения, срок действия которых признается органами всех других стран-членов CENELEC, без необходимости повторения испытаний.

    Как насчет действующих стандартов в других регионах?

    США: UL 1414 для линейных приложений и UL 1283 для фильтров электромагнитных помех Канада: CAN / CSA C22.2N ° 1 и CAN / CSA 384-14 Китай: GB / T14472

    Существуют ли какие-либо подклассы для конденсаторов X и Y?

    EN 60384-14 определяет подклассы для обоих типов. Конденсаторы X1 используются для приложений с высокими импульсами, в то время как типы X2 и X3 используются для приложений общего назначения с различными пиковыми импульсными рабочими напряжениями и пиковыми значениями импульсных напряжений. Y-конденсаторы, которые используются для перекрытия рабочей изоляции, классифицируются как Y1, Y2, Y3 или Y4 в зависимости от типа мостовой изоляции, а также номинальных значений переменного и пикового напряжения.Конденсаторы класса Y1 рассчитаны на напряжение до 500 В AC с пиковым испытательным напряжением 8 кВ. Конденсаторы Y2 имеют номиналы от 150 до 300 В переменного тока и пиковое испытательное напряжение 5 кВ. Конденсаторы Y3 рассчитаны на 250 В AC без указания пикового испытательного напряжения. Конденсаторы Y4 рассчитаны на 150 В AC с пиковым испытательным напряжением 2,5 кВ.

    Какие важные испытания относятся к IEC / EN 60384-14?

    Сюда входят испытания импульсным напряжением, выносливостью и активной воспламеняемостью.Применение и параметры этих испытаний зависят от классификации и подкласса конденсаторов.

    Какие типы конденсаторов используются в сетевых фильтрах?

    Два распространенных типа — металлизированная бумага / пленка и керамика. Что касается Y-конденсаторов, керамические типы менее дороги, чем металлизированные пленки, но нестабильны во времени и температуре и менее механически стабильны. Режим разрушения керамики также имеет тенденцию к короткому замыканию, тогда как типы металлизированной бумаги и пленки имеют тенденцию к разрыву цепи.

    Как Y-конденсаторы используются с продуктами Vicor?

    Продукты

    Vicor, включая FARM, ARM и AC Front End, имеют фильтры с Y-конденсаторами. Обратитесь к Руководству по проектированию и применению FARM для примера интегрального входного фильтра, состоящего из синфазного дросселя, Y-конденсаторов и X-конденсаторов.

    Объяснение

    конденсаторов — Инженерное мышление

    Объяснение конденсаторов

    . Узнайте, как работают конденсаторы, где мы их используем и почему они важны.

    Прокрутите вниз, чтобы просмотреть руководство YouTube.

    Помните, что электричество опасно и может привести к летальному исходу. Вы должны быть квалифицированными и компетентными для выполнения электромонтажных работ. Не прикасайтесь к клеммам конденсатора, так как это может вызвать поражение электрическим током.

    Что такое конденсатор?

    Конденсатор и батарея

    Конденсатор накапливает электрический заряд. Это немного похоже на батарею, за исключением того, что она по-другому накапливает энергию. Он не может хранить столько энергии, хотя может заряжаться и высвобождать свою энергию намного быстрее.Это очень полезно, поэтому конденсаторы можно встретить практически на каждой печатной плате.

    Как работает конденсатор?

    Я хочу, чтобы вы сначала представили водопроводную трубу, по которой течет вода. Вода будет продолжать течь, пока мы не закроем вентиль. Тогда вода не сможет течь.

    Если после клапана мы позволим воде течь в резервуар, тогда резервуар будет хранить часть воды, но мы продолжаем получать воду, вытекающую из трубы. Когда мы закроем клапан, вода перестанет поступать в резервуар, но мы все равно будем получать постоянный приток воды, пока резервуар не опустеет.После того, как резервуар снова наполнится, мы можем открывать и закрывать клапан, и до тех пор, пока мы не опорожняем резервуар полностью, мы получаем непрерывную подачу воды из конца трубы. Таким образом, мы можем использовать резервуар для воды для хранения воды и сглаживания перебоев в подаче.

    В электрических цепях конденсатор действует как резервуар для воды и накапливает энергию. Он может освободить его, чтобы сгладить перебои в подаче электроэнергии.

    Если мы очень быстро выключим простую схему без конденсатора, то свет будет мигать.Но если мы подключим конденсатор в цепь, то свет будет гореть во время прерываний, по крайней мере, на короткое время, потому что теперь конденсатор разряжается и питает цепь.

    Внутри основного конденсатора у нас есть две проводящие металлические пластины, которые обычно делают из алюминия или алюминия, как его называют американцы. Они будут разделены диэлектрическим изоляционным материалом, например керамикой. Диэлектрик означает, что материал поляризуется при контакте с электрическим полем.Мы скоро увидим, что это значит.

    Внутри конденсатора

    Одна сторона конденсатора подключена к положительной стороне схемы, а другая сторона подключена к отрицательной. На стороне конденсатора вы можете увидеть полоску и символ, указывающие, какая сторона у отрицательного полюса, кроме того, отрицательная сторона будет короче.

    Если подключить конденсатор к аккумулятору. Напряжение подталкивает электроны от отрицательного вывода к конденсатору. Электроны накапливаются на одной пластине конденсатора, в то время как другая пластина, в свою очередь, высвобождает некоторые электроны.Электроны не могут проходить через конденсатор из-за изоляционного материала. В конце концов, конденсатор имеет то же напряжение, что и батарея, и электроны больше не будут течь.

    Теперь на одной стороне скопилось скопление электронов, это означает, что мы накопили энергию и можем высвободить ее, когда это необходимо. Поскольку на одной стороне больше электронов по сравнению с другой, и электроны заряжены отрицательно, это означает, что у нас есть одна сторона, которая отрицательна, а другая — положительная, поэтому между ними есть разница в потенциале или разница напряжений.Мы можем измерить это с помощью мультиметра.

    Что такое напряжение?

    Напряжение похоже на давление: когда мы измеряем напряжение, мы измеряем разность или разность потенциалов между двумя точками. Если вы представите трубу с водой под давлением, мы сможем увидеть давление с помощью манометра. Манометр также сравнивает две разные точки: давление внутри трубы по сравнению с атмосферным давлением снаружи трубы. Когда резервуар пуст, манометр показывает ноль, потому что давление внутри резервуара равно давлению снаружи резервуара, поэтому манометру не с чем сравнивать.Оба давления одинаковы. То же самое и с напряжением, мы сравниваем разницу между двумя точками. Если мы измеряем через батарею 1,5 В, то мы читаем разницу в 1,5 В между каждым концом, но если мы измеряем один и тот же конец, мы читаем ноль, потому что разницы нет, это то же самое.

    Хотите изучить основы электричества? НАЖМИТЕ ЗДЕСЬ

    Возвращаясь к конденсатору, мы измеряем и считываем разницу напряжений между ними из-за скопления электронов. Мы все еще получаем это показание, даже когда отсоединяем аккумулятор.

    Если вы помните, с магнитами противоположности притягиваются и притягиваются друг к другу. То же самое происходит с накоплением отрицательно заряженных электронов, они притягиваются к положительно заряженным частицам атомов на противоположной пластине, но никогда не могут добраться до них из-за изоляционного материала. Это притяжение между двумя сторонами представляет собой электрическое поле, которое удерживает электроны на месте, пока не появится другой путь.

    Объяснение основ работы с конденсаторами

    Если мы затем поместим в цепь небольшую лампу, то теперь существует путь, по которому электроны могут течь и достигать противоположной стороны.Таким образом, электроны будут проходить через лампу, питая ее, и электроны достигнут другой стороны конденсатора. Это будет длиться недолго, пока количество электронов не выровняется с каждой стороны. Тогда напряжение равно нулю, поэтому нет толкающей силы и нет потока электронов.
    Как только мы снова подключим аккумулятор, конденсатор начнет заряжаться. Это позволяет нам прервать подачу питания, и конденсатор будет обеспечивать питание во время этих прерываний.

    Примеры

    Мы везде используем конденсаторы.Они выглядят немного иначе, но их легко заметить. На печатных платах они, как правило, выглядят примерно так, и мы можем видеть их представленными на инженерных чертежах вот так. Мы также можем получить конденсаторы большего размера, которые используются, например, в асинхронных двигателях, потолочных вентиляторах или установках кондиционирования воздуха, и мы можем даже получить такие огромные конденсаторы, которые используются для коррекции низкого коэффициента мощности в больших зданиях.

    Пример обозначения конденсатора

    На стороне конденсатора мы найдем два значения.Это будут емкость и напряжение. Мы измеряем емкость конденсатора в единицах фарад, которые мы показываем с заглавной буквы F, хотя обычно мы измеряем конденсатор в микрофарадах, поэтому у нас есть микро-символ непосредственно перед ним, который выглядит примерно как буква U с хвостом.

    Пример емкости

    Другое значение — это наше напряжение, которое мы измеряем в вольтах с заглавной буквой V, на конденсаторе значение напряжения — это максимальное напряжение, которое может выдержать конденсатор.

    Этот конденсатор рассчитан на определенное напряжение, и если я превышу это значение, он взорвется.

    Пример напряжения конденсатора

    Большинство конденсаторов имеют положительную и отрицательную клеммы. Нам нужно убедиться, что конденсатор правильно включен в схему.

    Пример платы конденсатора

    Почему мы их используем

    Одно из наиболее распространенных применений конденсаторов в больших зданиях — коррекция коэффициента мощности. Когда в цепь помещается слишком много индуктивных нагрузок, формы сигналов тока и напряжения не будут синхронизироваться друг с другом, и ток будет отставать от напряжения.Затем мы используем батареи конденсаторов, чтобы противодействовать этому и вернуть их в соответствие.

    Еще одно распространенное применение — сглаживание пиков при преобразовании переменного тока в постоянный.
    Когда мы используем полный мостовой выпрямитель, синусоидальная волна переменного тока переворачивается, чтобы заставить отрицательный цикл течь в положительном направлении, это заставит схему думать, что она получает постоянный ток.

    через GIPHY

    Но, одна из проблем этого метода — промежутки между пиками. Таким образом, мы используем конденсатор, чтобы выделять энергию в цепь во время этих прерываний, и это сгладит питание, чтобы оно больше походило на постоянный ток.

    Как измерить емкость мультиметром

    Мы можем измерить емкость и накопленное напряжение с помощью мультиметра. Не все мультиметры имеют функцию измерения емкости.

    Вы должны быть очень осторожны с конденсаторами, поскольку они накапливают энергию и могут удерживать высокие значения напряжения в течение длительного времени, даже когда они отключены от цепи. Чтобы проверить напряжение, мы переключаемся на постоянное напряжение на нашем измерителе, а затем подключаем красный провод к положительной стороне конденсатора, а черный провод к отрицательной стороне.Если мы получаем показание в несколько вольт или более, мы должны разрядить его, безопасно подключив клеммы к резистору, и продолжить считывание напряжения. Мы хотим убедиться, что он упал до диапазона милливольт, прежде чем обращаться с ним, иначе мы можем получить электрический ток.

    Чтобы измерить емкость, мы просто переключаем измеритель на функцию конденсатора. Подключаем красный провод к положительной стороне, а черный провод к отрицательной стороне. После небольшой задержки счетчик покажет нам показания.Вероятно, мы получим значение, близкое к заявленному, но не точное.

    Например, этот показатель рассчитан на 1000 микрофарад, но мы читаем около 946.

    Пример показания 1000 микрофарад на конденсаторе

    Этот конденсатор рассчитан на 33 микрофарад, но мы измеряем около 36.

    Пример конденсатора

    Признаки неисправности конденсатора переменного тока (удобный список!)

    Признаки неисправности конденсатора переменного тока (удобный список!)

    Вы когда-либо сталкивались с тем, что кондиционер дует теплым воздухом или показывает проблемы с электричеством — в таком случае вы могли видеть симптомы неисправного конденсатора переменного тока.Системы кондиционирования воздуха состоят из множества компонентов, обеспечивающих работу системы. Отказ компонента сигнализирует домовладельцам о необходимости ремонта с такими симптомами, как нестабильная работа.

    Одним из таких компонентов является конденсатор. В этом блоге мы расскажем о симптомах неисправного конденсатора переменного тока, которые вам необходимо знать. Мы также рассмотрим, что делает конденсатор переменного тока, как тестировать конденсаторы переменного тока и как конденсаторы выходят из строя в кондиционере.

    Обзор: что такое конденсатор переменного тока? Как работает конденсатор переменного тока?

    Конденсатор переменного тока — это компонент наружного конденсаторного блока кондиционера или теплового насоса.Он передает мощность на двигатель, приводящий в действие систему кондиционирования воздуха. Конденсатор обеспечивает начальный всплеск энергии для включения системы, когда наступает время цикла охлаждения. Затем он поддерживает его непрерывную работу с электричеством до завершения цикла.

    Начальный всплеск мощности составляет от 300 до 500 процентов от нормального количества электроэнергии, требуемого системой. Как только двигатель кондиционера достигает надлежащей рабочей скорости, конденсатор ограничивает избыточную мощность и подает постоянное количество в течение всего цикла охлаждения.В некотором смысле это похоже на батарею, которая накапливает энергию и распределяет ее во время использования.

    Что вызывает симптомы неисправности конденсатора переменного тока?

    Проблемы с конденсатором переменного тока мешают вашей системе кондиционирования воздуха работать должным образом. Признаки неисправности конденсатора переменного тока обычно вызываются следующими причинами:

    • Перегрев схемы системы
    • Короткие замыкания в системе охлаждения
    • Скачки напряжения
    • Удары молнии
    • Чрезвычайно высокие температуры наружного воздуха
    • Износ оборудования

    Каков срок службы конденсаторов переменного тока?

    Большинство прослужит 20 лет.Опять же, если ваш переменный ток перегружен, испытывает резкие перепады температуры или скачки, или если конденсатор имеет дефектную часть, он не прослужит так долго.

    Проблемы, вызванные неисправными конденсаторами переменного тока

    Во-первых, неисправность конденсатора переменного тока вызывает проблемы с работой вашей системы кондиционирования воздуха. Плохой конденсатор мешает нормальному функционированию внешнего блока, что мешает процессу охлаждения в целом.

    Во-вторых, неправильная подача напряжения на компоненты внешнего блока заставляет систему работать усерднее, поскольку она пытается выполнить свою работу.

    Дополнительные компоненты часто выходят из строя из-за неисправного конденсатора. Наконец, ваши счета за электроэнергию могут стать выше из-за увеличения спроса на электроэнергию для охлаждения вашего дома.

    Контрольный список симптомов неисправности конденсатора переменного тока

    По мере развития проблемы система охлаждения продолжает работать, хотя и плохо, и домовладельцы могут этого не заметить сразу. В других случаях основным признаком неисправного конденсатора переменного тока, который замечает человек, является то, что кондиционер полностью отключается.

    Эти признаки неисправного конденсатора переменного тока предупреждают о проблеме с системой охлаждения.Свяжитесь с нами для ремонта кондиционера, если заметите:

    • Дым или запах гари от внешних компонентов системы кондиционирования воздуха
    • Гудящий шум кондиционера
    • Вашему кондиционеру требуется некоторое время, чтобы начать цикл охлаждения после его включения
    • Система кондиционирования воздуха отключается наугад
    • Во время работы кондиционера в дом не поступает холодный воздух
    • Система кондиционирования не включается вообще
    • Ваши счета за электроэнергию увеличиваются без объяснения причин

    Как проверить конденсатор переменного тока Подрядчики

    HVAC используют инструмент, называемый мультиметром, для проверки конденсаторов переменного тока.Также известный как мультитестер или VOM, он объединяет несколько функций измерения в одном устройстве. Большинство мультиметров измеряют ток, напряжение и сопротивление. Аналоговые мультиметры используют микроамперметр с вращающейся стрелкой для отметки показаний.

    Вот видео, показывающее два типа:

    Когда наши специалисты обращаются к внутренней части вашего конденсаторного агрегата для поиска источника проблемы, эти признаки неисправности конденсатора переменного тока помогают специалистам изучить этот компонент дальше:

    • Трещины
    • Выпуклость
    • Из конденсатора и печатной платы вытекает жидкость
    • Недостаточно заряда при проверке мультиметром

    Устраните симптомы неисправности конденсатора переменного тока с помощью службы кондиционирования воздуха Sanborn

    Если у вас возникнут какие-либо из этих симптомов неисправности конденсатора переменного тока, немедленно позвоните в компанию Sanborn для ремонта кондиционера.Мы приступим к работе, чтобы диагностировать проблему и быстро произвести необходимый ремонт, чтобы уменьшить дискомфорт для вашей семьи.

    Если вашему кондиционеру десять или более лет, возможно, пришло время подумать о новой установке переменного тока. Мы будем рады отправить кого-нибудь для проведения необходимых измерений, чтобы ваша система охлаждения подходила по размеру для вашего дома.

    Мы предлагаем бесплатные оценки и варианты финансирования, чтобы вы сразу почувствовали себя комфортнее и эффективнее.

    Свяжитесь с нами сегодня, чтобы запланировать обслуживание или запросить бесплатную смету для вашего дома Inland Empire.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *