Масляный конденсатор — Большая Энциклопедия Нефти и Газа, статья, страница 1
Масляный конденсатор
Cтраница 1
Масляные конденсаторы обычно используются в мощных электронных, например радиопередающих, устройствах; они по конструкции выполнены так же, как и бумажные конденсаторы, но диэлектриком является специальное масло. Пропитанная этим маслом бумага обладает хорошими диэлектрическими свойствами и. [1]
Масляные конденсаторы имеют одно явное преимущество перед электролитическими: их рабочие напряжения выше. Поэтому масляные конденсаторы часто используют в источнике питания со средними и высокими уровнями выходных напряжений. Рабочее напряжение конденсатора, стоящего на выходе источника питания, должно быть не меньше выходного напряжения. Практические соображения определяют, что рабочее напряжение конденсаторов должно примерно на 25 % превышать максимальное значение выходного напряжения источника питания. Например, в источнике питания с выходным постоянным напряжением 12 В должен использоваться фильтровый конденсатор, имеющий, по крайней мере, рабочее напряжение 15 В. [2]
Масляные конденсаторы обычно применяются на длинных волнах, когда это позволяют потеря в масле. Наполнителями являются так называемые белые-масла ( парафино-компаундные), у которых 82.2. Конструктивно они похожи на воздушные конденсаторы. Применение масла благодаря его более высокой диэлектрической прочности наряду с значительным увеличением электрической прочности конденсатора позволяет также значительно уменьшить его размеры. [4]
Бумажно — масляные конденсаторы
Температура масла для масляного конденсатора должна быть не более 50 С. [7]
Постоянная времени разряда плоского масляного конденсатора через некоторое сопротивление равна TI. [8]
На бумажно — масляных конденсаторах, изготовленных из материалов, для которых были предварительно определены величины kj, k2 и k3 [ 21] на основе скоростей старения конденсаторной бумаги и масла, была определена константа скорости k при их старении в условиях одновременного воздействия электрического и теплового полей. [9]
Для увеличения пробивной прочности масляных конденсаторов масло перед заливкой подвергается сушке, очистке и обезгаживанию. Наличие примесей ухудшает изоляционные свойства масла. [10]
Савицкого [106] предлагается решение трехмерной анизотропной задачи для бумажно — масляных конденсаторов. [11]
Обкладки конденсаторов изготовляются из алюминиевой фольги толщиной около 0 01 мм, а изолирующие прослойки — из тончайшей ( от 0 007 до 0 012 мм) высокосортной конденсаторной бумаги, которая пропитывается жидким диэлектриком: в
Обкладки косинусных конденсаторов изготовляются из алюминиевой фольги толщиной около 0 01 мм, а изолирующие прослойки — из тончайшей ( 0 007 — 0 012 мм) высокосортной конденсаторной бумаги, которая пропитывается жидким диэлектриком: в
Обкладки конденсаторов изготовляются из алюминиевой фольги толщиной около 0 01 мм, а изолирующие прослойки — из тончайшей ( от 0 007 до 0 012 мм) высокосортной конденсаторной бумаги, которая пропитывается жидким диэлектриком: в масляных конденсаторах — маслом, а в соволовых конденсаторах — специальной синтетической жидкостью соволом. Весьма малая толщина и высокосортность конденсаторной бумаги обусловливают относительно высокую ее стоимость, от которой зависят технико-экономические показатели конденсаторов, выполненных на различные рабочие напряжения. [14]
Масляные конденсаторы имеют одно явное преимущество перед электролитическими: их рабочие напряжения выше. Поэтому масляные конденсаторы часто используют в источнике питания со средними и высокими уровнями выходных напряжений. Рабочее напряжение конденсатора, стоящего на выходе источника питания, должно быть не меньше выходного напряжения. Практические соображения определяют, что рабочее напряжение конденсаторов должно примерно на 25 % превышать максимальное значение выходного напряжения источника питания. Например, в источнике питания с выходным постоянным напряжением 12 В должен использоваться фильтровый конденсатор, имеющий, по крайней мере, рабочее напряжение 15 В. [15]
Страницы: 1 2 3
Большой конденсатор с 3 выводами. Масляные конденсаторы с пропитками. Техническое исполнение конденсаторов
Конденсатор
Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик
Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические.
Различные конденсаторы для объёмного монтажа
Свойства конденсатора
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.
где — мнимая единица , — частота протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно:
На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 10 6 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для , а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24 , т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.
Характеристики конденсаторов
Основные параметры
Ёмкость
Основной характеристикой конденсатора является его ёмкость . В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (
Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).
Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.
Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.
При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна
или
Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.
Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.
Удельная ёмкость
Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
Номинальное напряжение
Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.
Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.
Полярность
Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.
Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.
Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.
Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью . С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:
Электрическое сопротивление изоляции конденсатора — r
Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / I ут , где U — напряжение, приложенное к конденсатору, I ут — ток утечки.
Эквивалентное последовательное сопротивление — R
Эквивалентное последовательное сопротивление (ЭПС, англ. ESR ) обусловлено главным образом эле
великая тайна бумажной конденсаторной алхимии / Pult.ru corporate blog / Habr
Одним из многочисленных заблуждений, касающихся аудиокомпонентов, является подход к выбору конденсаторов. Так известно, что некоторой частью сообщества аудиофилов высоко котируются определенные виды этих элементов для накопления заряда. Тут необходимо отметить, что использование тех или иных конденсаторов в усилителях и кроссоверах акустических систем действительно может существенно отразиться на верности воспроизведения, но…Ярые приверженцы “альтернативной конденсаторной теории” стараются доказать, что те или иные виды бумажных конденсаторов (а в ряде случаев, самодельные бумажные конденсаторы) — это априори лучшее, что можно использовать в схеме усилителя или фильтра. Аргументация безапелляционна и проста — “у них более мягкий звук”.
Также в среде слабо знакомых со схемотехникой, но при этом знакомых с “запахом канифольной дымки” по инерции появилась мода на замену всех конденсаторов в усилителях и фильтрах АС для получения “божественного звука”.
Про абсурдность самого по себе “слушания конденсаторов”, равно как выслушивания вешалок-кабелей и теплых ламповых фрактальных додекаэдров я умолчу, дабы не оскорблять чувства верующих. В этом посте сжигаем бумажный миф о конденсаторах, разбираемся с линейностью этих, бесспорно, важных элементов и немного коснемся того когда нужно. а когда не стоит менять конденсаторы.
Ценность промасленной бумаги и волшебство конденсаторных замен
Итак, приступим. Корни мифа, изложенного ниже, к сожалению найти не удалось, но полагаю, что к его созданию приложил усилия достопочтенный господин Лихницкий (прошу учитывать, что многие считают подобные заявления уважаемого инженера очень тонким пранком и троллингом), некогда высоко оценив качество бумажно-масляных конденсаторов немецкой фирмы Telefunken образца 30-х годов (еще АМЛ очень котировал их триоды, как самые “теплые” и “одухотворенные”).
Утверждается, что в силу технических (физических), а в ряде источников метафизических особенностей, различные типы бумажных конденсаторов обладают огромной ценностью при формировании “качественного звука», так как более линейны по сравнению с другими типами. Пересказ всех мифов о причинах “более высокой” линейности займет не одну статью, и я позволю себе этим не утруждаться.
В метафизических объяснениях влияния этих конденсаторов на звук приводятся аргументы в пользу благородности бумаги, как материала для использовании в создании звукового тракта. Но все описанные выше аргументы применяются сравнительно редко, даже метафизические. Основной посыл в опусах поднаторевших в ”златоухом слушании” сторонников промасленной бумаги и фольги сводится к тому, что звук с такими конденсаторами становится “мягче”, “натуральнее” и “честнее”.
Коснусь ещё одного конденсаторного мифа. При покупке винтажной аудиотехники или с целью улучшения звука в бюджетном усилителе или АС нередко рекомендуют замену всех конденсаторов устройства. В первом случае замена может быть вполне объективно оправдана высохшими и раздутыми электролитами. Второй случай представляет менее приглядную картину.
Аудиоманьяки с паяльниками особенно часто проводят “трансплантацию” конденсаторов выпрямителей, отвечающих за питание выходных каскадов УМЗЧ. При этом любители исследования “глубин низкочастотного диапазона” стараются до предела увеличить номинал емкости. Аргументация также есть:
“Хочу больше низа, усилитель не может раскрыть НЧ-потенциал моей АС. Ща поставлю нормальную емкость и НЧ станут более насыщенными”.
Пепел бумажной тайны
Едва ли эта статья заставит истинных приверженцев бумажной конденсаторной теории каким-то образом отойти от своих взглядов, но по крайней мере заставит задуматься тех, кто гипотетически может поверить в этот бред.
Часть любителей “божественного” звука говорят о линейности конденсаторов. При этом в их стандартных характеристиках нет такого понятия как “линейность”. Конденсаторы характеризуются емкостью, удельной емкостью, номинальным напряжением, плотностью энергии.
Выделяют также паразитные параметры:
- электрическое сопротивление изоляции диэлектрика конденсатора;
- поверхностные утечки, саморазряд;
- эквивалентное последовательное сопротивление;
- температурный коэффициент ёмкости;
- тангенс угла диэлектрических потерь;
- эквивалентная последовательная индуктивность;
- диэлектрическая абсорбция.
Считается, что описанные выше параметры способны влиять на линейность при использовании в акустически значимых цепях усилителя и кроссоверах. И тут возникает проблема, практически все описанные характеристики у бумажных конденсаторов хуже чем у других типов.
Итак, мифотворцами утверждается, что бумажные конденсаторы более линейный элемент и, соответственно, его имеет смысл применять вместо керамических, пленочных, электролитических и пр. Я не первый, кто задался вопросом о правильности этих выводов о линейности. Так на форуме electroclub.info один из участников сообщества (в далёком 2008-м году) провёл несколько тестов, сравнив типы конденсаторов на предмет коэффициента гармонических искажений, которые они могут вносить.
Несмотря на некоторые неточности в методике измерений, о которых автор предупредил, его тесты демонстрируют вполне реалистичную картину. Если резюмировать: металлобумажный К42У-2 ( Кг = 0.0023%, К’г = 0.0078%) оказался значительно линейнее керамических, но уступил плёночным. Учитывая, что в сравнении пленочных конденсаторов с бумажными линейность отличалась на тысячные доли % Кг, можно смело говорить о том, что разница в их линейности находится в пределах величин, которыми можно пренебречь. Кроме того, тот же автор утверждает (на основании проведенного теста), что линейность конденсатора в большей степени зависит от емкости, нежели от использованного типа. А проблема линейности у “керамики” возникает в связи с использованием небольшого объема для большой ёмкости и не является обязательной для всех керамических конденсаторов.
Можно сделать грубый и не бесспорный вывод, что металлобумажные конденсаторы (в идеальных равных условиях), вероятно, более линейный элемент, нежели керамические, но при этом не превосходят по линейности пленочные и другие типы.
Иными словами нет прямой зависимости между искажениями которые способен внести конденсатор и его типом. Более того, в большинстве современных конденсаторов искажения настолько малы, что их величинами можно смело пренебрегать, особенно если речь идёт о создании бюджетной аппаратуры.
Кроме того, бумажные конденсаторы обладают рядом недостатков, благодаря которым были практически вытеснены с рынка другими типами. Эти недостатки способны отражаться, как на звуке (особенно в случаях с разделительными — межкаскадными элементами), так и в принципе на стабильность работы усилителя или фильтра. Так например, для бумажных конденсаторов свойственна высокая гигроскопичность, что в свою очередь приводит к повышению диэлектрических потерь, снижению сопротивления изоляции, пагубно отражается на термостабильности *(по ряду источников линейность зависит в т.ч. от термостабильности).
Описанных недостатков и наличие альтернатив в виде различных типов пленочных конденсаторов вполне достаточно для того, чтобы забыть о всех типах «бумаги» навсегда. Иными словами, так любимые некоторыми металлобумажные, бумаго-масляные и прочие архаичные конденсаторы действительно обладают достаточно низкой нелинейностью, пока не впитают некоторого количества влаги.
Об изменении характера звучания спорить бессмысленно, так как спор будет происходить с людьми из категории “вы ничего не понимаете — я это слышу”. На заявление о “мягкости” в звучании бумажных конденсаторов на одном из радиолюбительских форумов был дан один превосходный ироничный ответ:
“Конечно! Ведь бумага очень мягкий диэлектрик))”
Полагаю это лучший ответ.
Менять не всё или не менять вообще
Необходимость в замене конденсаторов при покупке аудио винтажа действительно имеет смысл, особенно это касается электролитов. Однако менять все, по меньшей мере финансово нерационально (бесспорно следует учитывать возраст аппарата, возможно и все, но не факт). Более того, делать это надо точно понимая, что и где менять. Если такого понимания нет — следует обращаться к специалистам, которые могут определить высохшие и вздутые электролиты, наличие пробоя и т.п. Если аппарат работает без сбоев и нет нареканий на звук ничего не нужно.
Относительно изменения характера звучания путем внедрения “инноваций” в схемотехнику серийного устройства следует сказать отдельно. Например, при повышении емкости конденсаторов питания выходного каскада в погоне за “глубоким низом”, как правило, забывают о растущем токе заряда. Такая беспечность приводит к скоропостижной смерти диодных мостов в результате пробоя. Любые изменения в серийной схемотехнике — риск, и реально её улучшить может человек, который скорее спаяет собственный усилитель.
Фильтры АС также часто страдают от трансплантационных надругательств, что в случае несоответствия параметров конденсатора конструкции фильтра приводит к плачевным результатам. Умные люди рекомендуют, если менять, то весь фильтр (с катушкой, резисторами и т.п.), рассчитывая новый под параметры АС.
Итог
Из всего изложенного выше можно сделать несколько простых и полезных выводов. Распространение мифа о бумажных конденсаторах выгодно лишь немногочисленным компаниям, которые используют их в аудиокомпонентах или сами производят бумажные конденсаторы. Фактически это эксплуатация невежества потенциальной целевой аудитории и навязывание заведомо устаревшей и фактически не нужной технологии.
Замена конденсаторов в старой аппаратуре может стать полезной профилактической мерой, но только в том случае, если выполняется человеком, который понимает, что менять, а что нет. Игры с ёмкостью и типами конденсаторов в фильтрах и усилителях серийного производства с высокой вероятностью приведут вместо “божественного звука” к внушительным вложениям в ремонт.
О трансформаторном масле в конденсаторах. — Личный опыт, вопросы, советы
Хочу поделиться с коллегами,результатами моих экспериментов по изготовлению меднофольговых-бумагомасляных конденсаторов.
Давно занимаюсь ремонтом рентгеновской техники,напряжения везде высокие и очень высокие,пробивается абсолютно всё,вопрос только времени.Такая специфика у киловольт.
Дык вот,я не могу этого объяснить,но конденсатор Дженерал Электрик 0,6 мкф на 15 Киловольт,начинает греться уже при 12 Киловольтах,за пару часов нагревается градусов до 50,хотя сассчитан на постоянное напряжение,наши К75-15 и К75-48 будучи заявлены на 25 Киловольт,греются уже при 16,а при 18 начинают потрескивать,но тем не менее,даже почтенные фирмы применяют в своих изделиях конденсаторы на пределе возможностей.На наши МБГВ 100мкф на 1000 вольт,в паспорте написано-не выше 600-700 вольт при постоянном напряжении,у кого то работают и выше,у кого то греются.
Покупать высоковольтные конденсаторы накладно,они и по 300 Евро бывают и даже по 800,заказчик оплатит,но ждать приходилось до 4-х месяцев,решили мотать сами.Бумага стандартная конденсаторная,трансформаторная,кабельная,разницы не обнаружили,вернее не искали,толщиной 22-50 мкм.
Медная фольга для печатных плат,с одной стороны матированная,другой просто не смогли найти,толщиной 25 мкм.Фольга после резки прокатывается между двумя поршневыми пальцами от каких то чудовищных ярославских дизелей,пальцы сидят на подшипниках и поджимаются пружинами от жигулёвских клапанов,внутренняя пружина от кастрюли с первой по седьмую модель.Процесс намотки стандартный,каждый слой бумаги и фольги на своей катушке,и конденсатор в процессе намотки сразу обжимается тремя подпружиненными роликами из фторопласта.
Теперь о пропитке,в фирменных конденсаторах залита какая то едкая и вонючая жижа,правда бывают и конкретно маслянные,мы тоже поначалу покупали её,но потом попробовали трансформаторное масло ГК и ТКП.
Правда его нужно обезвоживать,ибо вместо заявленных 50 Киловольт держит в лучшем случае 14.Обезвоживается впрыскиванием в вакуумную камеру,кипячение совершенно бесполезно,помогает процентов на 15-20,вакуумирование-вразы,до 65 Киловольт доводили.
В итоге размотали фирменный,измерили толщины слоёв,намотали столько же,просушили в вакууме трое суток,залили в вакууме маслом.
В итоге при тех же параметрах,конденсатор держит напряжение на 20 процентов выше указанного на корпусе,никакого нагрева и раздутия корпуса.Наверное всевозможные тангенсы ула…..стали хуже,но конденсаторы замечательно работают и в фильтрах питания и в жёстком импульсном режиме.Наши МБГВ 100 х 1000 для эксперимента промыли в вакууме обезвоженным трансформаторным маслом,правда процесс довольно длительный,но держал неделю 1700 вольт,потом его заказчику в аппарат установили,не вернулся пока с претензиями.
Дык я о чём собственно,процесс сушки в вакууме и масла и самого конденсатора,до того момента когда параметры дальше уже не улучшаются,занимает трое суток,что в условиях массового производства не все себе могут позволить,по этому видимо рекомендуют использовать свои изделия при заниженном напряжении,то есть диэлектрик потенциально держит киловольт,а часто и больше,но в пропитке начинается электролиз,со всеми вытекающими.Может быть ДЖЕНСЕН и ему подобные и делаются трое суток,оттого и цена приличная,и звук хорош,а может в нём просто воды нет?
Может быть и мнения наши об одних и тех же конденсаторах так сильно расходятся из за того,что масло подвезли заводу изготовителю из другой бочки,осушить забыли,или не стали?
О конденсаторах vol.3 / workshop / Jablog.Ru
Несколько слов о базовых параметрах конденсатора, определяющих его влияние на сигнал. Читай — НА ТВОЙ САУНД!Обстоятельно изучив предыдущую статью, нашел что ни одного слова не сказано об устройстве и параметрах конденсатора. А ведь многие из нас или уже забыли школьный курс физики, или прогуляли или вовсе столь любознательны, что он у них еще не начался по школьной программе (( а может и не начнётся — не знаю что теперь там происходит, в этой школе).
К делу!
И так, дорогой читатель для начала предлагаю найти конденсатор. Нашел?
Теперь расковыряй его, дружок. Что ты видишь?
Вариантов не так много:
1) Керамический конденсатор — ты увидишь 2 металлические пластины с малюсенькой прослойкой этой самой керамики (т.е. практически глины, специального состава). Сверху он был покрыт защитным слоем. Керамические конденсаторы не дороги и практичны. Звук? А это как с фломастерами — каждый на вкус и цвет разный. (Читай предыдущую статью)
2) Плёночный конденсатор — тут твоему взору, скорее всего, предстанет фольга с прослойкой плёнки. Этот вид конденсаторов наиболее распространён в гитарах. Да и не только гитарах. Видов плёночных конденсаторов множество — разных составов и форм. Сверху они также покрыты защитным слоем. Этот вид конденсаторов дороже керамических. Насколько? Зависит от состава (т.е. материалов) и параметров конденсатора. Дороже может быть от 2 до 100 раз.
3)Бумажно-масляный конденсатор.
Поздравляю, ты разобрал самый культовый из всех конденсаторов! :)) Эти конденсаторы представляют частный вид плёночных. Фольга в них используется в качестве обкладок, диэлектрик — бумага, пропитанная маслом. Имеют основной недостаток — старение. Т.к. масло испаряется и бумага (т.е. диэлектрик) меняет свои свойства. Эти конденсаторы применяют также при производстве ламповых усилителей (раньше — за неимением других, сейчас — в силу культовости, стараясь сделать под винтаж).
Возвратимся к плёночным конденсаторам в целом! — в них бумага, пропитанная маслом, заменена на плёнку из полимеров и различных других материалов. Они лишены недостатков бумажных, топовые модели применяются в производстве Hi-end аппаратуры.
Да!
А еще ты скорее всего обратил внимание на надписи, которые были на конденсаторе.
Например: .022 50V
Таким образом производитель показывает параметры своих изделий.
Первый — емкость. Второй — максимальное напряжение.
Емкость — параметр, влияющий на частоту среза. Чем больше емкость тем ниже частота среза. Т.е. грубо говоря — чем больше это значение, тем меньше высоких частот будет в сигнале на выходе (если тон включен).
Вот таблица емкостей конденсаторов и их обозначений:
Остались вопросы?
Почему на Fender, как правило 0,022 мкФ (микро Фарада)?
Потому-что ВЧ у синглов больше, соответственно меньшей емкостью можно срезать эти ВЧ так, чтобы было заметно.
А почему на Gibson 0,047 мкФ (микро Фарада)?
А потому-что резонанс и ВЧ составляющая меньше на хамбакерах. И не всегда, установив конденсатор в 0,022 мкФ вы сможете заметить, что ручка тона есть. А 0,047 мкФ — нормально, уже заметно срезает.
А можно ли поставить конденсатор еще большей емкости?
Можно. Срез ВЧ будет еще больше.
А как же напряжение?
Напряжение — для гитарного темброблока, особенно с пассивной электроникой, фактор второстепенный. Т.к. напряжения в этих цепях значительно меньше максимального значения.
_____________________________________________________________
Для более дотошных хочу добавить еще несколько слов.
Теперь обратим свой взор на общее устройство:
Любой конденсатор — это 2 металлические пластины, разделённые диэлектриком, который не проводит электрический ток.
Принцип — с одной и с другой стороны диэлектрика, на пластинах скапливаются противоположные заряды, создавая разность потенциалов (т.е. количества носителей заряда) между обкладками. Свойство накапливать заряд называют — емкостью.
Чем длиннее пластины и меньше расстояние — тем больше зарядов конденсатор может накопить, тем больше емкость (Вспоминаем формулу!).
Далее:
Материал — важный фактор. Т.к. заряды в конденсаторе между собой взаимодействуют посредством электрического поля, это электрическое поле между обкладками в свою очередь зависит от материала.
От материалов и расстояния также зависит и максимальное напряжение, которое конденсатор может выдержать.
Третье — активное сопротивление конденсатора (т.е. зависящее от частоты сигнала):
Где C — это емкость в фарадах (да, нужно будет не забыть перевести), W — угловая частота. W=2пF п=3,14, F — это частота сигнала в герцах. Теперь, зная емкость конденсаторы, вы можете посчитать — какое сопротивление он оказывает для каждой конкретной частоты.
Теперь — всё!
Спасибо за внимание!
Кирилл Труфанов
Гитарная мастерская: Pretty Underground
Технический инфо-портал: gitarnaya-furnitura.ru
P.S. Вот еще статьи на эту тему:
О схеме темброблока и как конденсатор включён в неё:
jablog.ru/blog/workshop/2782.html
О видах и фирмах конденсаторов на брендовых инструментах:
jablog.ru/blog/workshop/2572.html
Бумажно-масляный конденсатор — Большая Энциклопедия Нефти и Газа, статья, страница 4
Бумажно-масляный конденсатор
Cтраница 4
По этой формуле легко можно было определить в ценах 1950 г. стоимость единицы емкости вновь проектируемого бумажно-масляного конденсатора, предназначенного для улучшения коэффициента мощности, рассчитанного на иное номинальное напряжение, чем выпускаемые в настоящее время. [46]
Для применения в электрических схемах питания электроискровых установок при постоянном напряжении 220 в выпускается комплект бумажно-масляных конденсаторов типа ИМ 0 22 — 500, состоящий из трех блоков: 1 — С 2000 мкф; II-С ( 100 100) мкф и III — С ( 45 25 10 6 4 2 1 мкф; допуск по емкости 20 %; допускается применение в закрытых помещениях при 35 С. [47]
Электрическая схема машины обеспечивает двухполупериодное выпрямление переменного тока двумя кенотронами, установленными в цепи заряда батареи бумажно-масляных конденсаторов. [49]
Наблюдение за флюоресценцией может быть использовано для контроля идентичности масел при их смешении и определения герметичности кожухов бумажно-масляных конденсаторов. В первом случае капля добавляемого масла, внесенная в середину поверхности основного масла, равной нескольким см., не должна вызывать в ультрафиолетовом свете изменения цвета. [50]
Следует отметить, что способность масла к газовыделению приводит к опасным последствиям лишь в том случае, когда бумажно-масляный конденсатор подвергается воздействию перенапряжений, превышающих начальное ионизирующее напряжение ( § 24) и способных снизить его до минимального уровня, который лежит уже ниже обычного значения рабочего напряжения. Поэтому во многих случаях батареи бумажномасляных конденсаторов работают длительное время, не показывая признаков развития ионизации. В случае надежной герметизации, когда доступ воздуха внутрь конденсатора исключен, способность масла к окислению также не представляет большой опасности. Тем не менее в мировой практике производства силовых конденсаторов наметилась определенная тенденция к замене масла хлорированным дифенилом, который при переменном напряжении обладает улучшенной устойчивостью как против окисления, так и против действия поля, а кроме того, благодаря своей полярности дает выигрыш в удельной емкости. [52]
Учитывая, что улучшение коэффициента мощности широко применяется и имеет большое народнохозяйственное значение, промышленность выпускает специальный тип бумажно-масляного конденсатора ( КМ) с большой допустимой реактивной мощностью. Рабочее напряжение таких конденсаторов рассчитано на включение в цепь переменного тока с частотой 50 гц. Эти конденсаторы выпускают на емкости до 10 мкф, поэтому в нашем случае необходимо соединить параллельно не менее 101 конденсатора. [53]
У качественных конденсаторов величина tg6 при комнатной температуре не должна превышать 0 20 — 0 25 % для бумажно-масляных конденсаторов и 0 30 — 0 35 % для бумажно-соволовых. Указанные значения tg6 конденсаторов могут быть значительно снижены, если применить более высокий вакуум и продлить процесс сушки. [54]
После разъединения крышки с корпусом отпаивают отводы выемной части от выводов изоляторов, удаляют верхние изоляционные прокладки, из бумажно-масляных конденсаторов сливают масло и извлекают выемную часть из корпуса на рабочий стол для выявления дефектов. В том случае, когда выемная часть состоит из нескольких пакетов, ее расчленяют на отдельные пакеты. [55]
Закалочные установки серии МГЗ и установки для Гсквознсго нагрева деталей серии МГН состоят из двигатель-генератора, агрегата возбудителя, батареи бумажно-масляных конденсаторов и шкафа с коммутационной и изме-рителы. Установки серии МГЗ снабжаются, кроме того, понизительным высокочастотным трансформатором. [56]
Используемые иногда в ЕН электролитические конденсаторы выполняются сухими из рулонных секций, которые наматываются из трехслойной полосы по типу рулонных секций бумажно-масляных конденсаторов или конденсаторов с пленочным диэлектриком. Один слой полосы представляет собой алюминиевую или танталовую фольгу с оксидной пленкой, нанесенной на фольгу электрохимическим способом. [58]
В Щвеции в 1949 г. для испытания аппаратуры электропередачи на 380 кв построен генератор на 3 600 кв одно-колонной конструкции, состоящий из девяти бумажно-масляных конденсаторов в корпусе из бакелизированной бумаги. [60]
Страницы: 1 2 3 4
Выбираем конденсаторы в гитару / workshop / Jablog.Ru
Всем привет!Я довольно давно хочу немного агрейдить свою Burny LP: Звучки поменять, заэкранировать, развести все труЪ проводами, поставить труЪ пуш-пулы, и труЪ конденсаторы.
Поэтому читаю всякое, прикидываю. Ну, и само собой, думал и о том, какие кондеры в темброблок ставить.
Ну, для начала бы неплохо представлять, какие кондеры ставили в брэндовые инструменты прошлого и какие из них считаются труЪ.
Эту инфу я откопал на сайте в статье Dirk Wacker (singlecoil.com), и он еще ведет рубрику в Premierguitar.com. Так что, давайте для начала ее вам приведу.
Конденсаторы в гитарах
Вообще, ведется множество дискуссий о старых конденсаторах и их влияние на звук гитары. Я на этом «собаку съел» и пробовал буквально каждый конденсатор и сравнивал их друг с другом, поэтому я и решил, что пришло время поделиться этой информацией с вами. Для начала я расскажу про самые обсуждаемые типы конденсаторов, чтобы вы знали из-за чего все сыр-бор.
Sprague «Black Beauties» (бумага-масло)
Это, пожалуй, самые обсуждаемые кондеры с почти магическим к ним отношением. Эти конденсаторы родом из конца 1950-х и их можно найти во многих гитарах той эпохи, но они знамениты тем, что стояли в Gibson Les Paul ’58 и Les Paul ’59 (Burst). Некоторые даже говорят, что именно они ответственны за магический звук тех гитар. Black Beauties можно найти с желтыми и красными надписями на 400 и 600 вольт и именно их ставили в гитары того времени.
Конденсаторы «Bumblebee» (Шмель) (бумага-масло)
Шмели довольно схожи с Black Beauities, и я полагаю, что не трудно догадаться, почему они так называются. =) Эти кондеры можно найти в Les Paul конца 1950-х и в других гитарах той эпохи.
Конденсаторы «Tropical Fish» (Тропические рыбки) (пленка)
Эти конденсаторы называются «тропическими рыбками» из-за своих полосок. Они действительно выглядят похожими на тропические рыбки. «Тропических рыбок» часто путают со «шмелями», но это не верно. Эти кондеры можно найти внутри винтажных примочек, квакушек, других эффектов, усилителей…. И также внутри гитар.
«Flat Disc» (Плоский диск). Керамика
Эти старые кондеры в виде диска делали Sprague или Erie. Их можно встретить практически в каждом Fender. И они также встречаются в примочках и усилителях. Их звук сильно отличается от современной керамики.
Sprague «Orange Drop» (Оранжевые капли) (пленка)
Эти конденсаторы до сих пор выпускают Spargue/Vishay и их можно встретить в некоторых высококачественных гитарах, например, PRS. Старые оранжевые каплевидные конденсаторы можно найти в гитарах Fender и, в качестве высокочастотного фильтра, почти в каждом винтажном Telecaster. Более высоковольтные кондеры можно встретить в высококачественных усилителях.
Кондесаторы Silver Mica (Слюденой конденсатор)
Эти конденсаторы имеют типичных «горб» в средних частотах. Их можно встретить в высококачественных усилителях и примочках. Они также используются в качестве фильтра на потенциометрах громкости и, если вам удастся найти нужных номинал, совместно с потенциометром тона. Высокие номиналы найти довольно сложно и они не дешевы.
Конденсаторы Oil-Paper (бумага-масло) (Jensen)
Эти конденсаторы от Jensen можно встретить в high-end и hi-fi аппаратуре, а также в высококачественных усилителях. Они дороги, но многие буквально молятся на них. Их можно использовать в гитарах, если там достаточно места для них.
Ну и к чему весь этот разговор?
Конденсаторы звучат очень по-разному и влияют на конечный звук гитары. Даже если потенциометр тона полностью открыт, то кондер все равно в цепи и можно довольно легко услышать разницу. Не существует правильных или неправильных, плохих или хороших конденсаторов, все зависит от личных предпочтений. Я предлагаю, попробовать самому различные конденсаторы и решить для себя, что же лучше. Я всегда беру конкретную гитару, припаиваю два длинных провода с «крокодилчиками» на концах к тому месту, где должен стоять кондер. Такое приспособление дает возможность сравнивать конденсаторы друг с другом довольно просто и быстро.
Я всегда подбираю конденсаторы под конкретную гитару, т.к. общий звук формируется комбинацией электроники, звукоснимателей для гитары, проводов, примочек и усилителя. Не бойтесь пробовать дешевые и «исторически не верные», не аутентичные конденсаторы с «неправильными» номиналами. Я никогда не использую номиналы, которые рекомендует производитель. Для меня они слишком большие, я использую номиналы от 3300 пФ до 6800 пФ, что делает регулировку тона более удобной.
The End
Автор: Dirk Wacker singlecoil.com
Не знаю, как вам, а мне статья оставила какое-то неполное впечатление. То есть, я так и не понял, что лучше поставить лично мне на мой LP?
По всей видимости, если нужно приближаться к винтажному звучанию, то нужно выбирать из того, что описал Дирк.
А вот после этой видяхи:
Я понял, что париться, в принципе, не стоит. Т.к. уж очень незначительные (но вполне слышимые) изменения в звук вносят различные типы конденсаторов.
Хотя, вот да с дистом, ИМХО, различия более заметны.
А вот как различаются звук в зависимости от номиналов:
Вывод из всего этого такой, что если хочется повозиться, то стоит выбрать кондер самому, тем более что это действительно не так сложно. А если нет, то купить, как сказал AZG на GP:
любую качественную пленку или бумаго-масло на соотвествующий номинал. Шибко высоковольтные не рекомендую, ибо там толстый диэлектрик, который тоже на звук влияет. Оптимал для гитары 50-250В.
И не парить себе мозг.
Как-то так…
PS: Надеюсь, если я что-то где-то упустил или неправильно истолковал, то наши DIY-щики меня поправят.