Электролитические конденсаторы какой фирмы лучше. Черный и белый список производителей конденсаторов
Всем привет!
Обладаю опытом по ремонту TV/DVD/Audio-с 1998 года,PC с 2004 года
Прошу внести изменения в список «»самые часто встречаемые серии конденсаторов «»
Описываю из собственного(и не только) опыта и практики:
Многие именитые производители очень качественных конденсаторов,в этом списке имеют низкие позиции и якобы невысокую надежность из-за применения их основном в audio высококлассной аппаратуре(ONKYO,Nakamichi,Marantz,LUXMAN,DENON,SONY,Rotel,Revox,NAIM,Philips,Pioneer…итд) это CD плеера,кассетные и бабинные магнитофоны и усилители с 1983 по 1998 год в основном имеющие высокую стоимость от 200….>$
Опишу конденсаторы которые очень часто применяються в продукции вышеперечисленных фирм,так-же отмечу что применение таких кондеров это не понты,а действительно одно из составляющих имеющее сильное влияние на качество звука в целом.
Такой производитель как ELNA серии Duorex(красного цвета) ставят например в цепи питания цапов и ОУ по цифре и аналоговой части.
Sanyo в аудио продукции редко применяеться,за исключением OS CON,которые ставят в по питанию цифры.
Исследователи Фраунгофера разработали конденсатор, способный выдерживать температуры до 300 градусов Цельсия. Они используют новую смесь материалов — и специальный трюк. Конденсатор устойчив к температурам до 300 градусов по Цельсию.
Крошечные отверстия увеличивают площадь пластины.
Тепловые, пылевые и влажные электронные компоненты. Против пыли и влаги они могут быть хорошо защищены. Но тепло остается проблемой, потому что оно генерируется в самом компоненте. Тепло генерируется везде, где протекает электричество. И в электронном компоненте не всегда достаточно места для рассеивания отработанного тепла охлаждающими ребрами или вентиляторами. Еще труднее, когда устройство работает в жаркой среде, например, буровая долота в нефтяной промышленности, которая вращается с высокой скоростью в несколько тысяч метров.
Vichay много делает деталей под аудио,фирма которая делает не только кондеры,качество выше среднего,на 4 не более.
Nippon-Chemi con часто применяються в недорогих и в дорогих аппаратах в неответственных цепях,на мамках частенько вздутые,подозреваю это из-за уж очень хреновых БП.
Epcos нечасто попадаются,в основном в аппаратуре Европы до 1993года.
Rubycon он делает легендарные кондеры для audio Black Gate,впрочем это не панацея
Из лично моего опыта по ремонту мат плат и видеокарт,oтличились надежностью:Sanyo,Matsushita(Panasonic),Nippon Chemi-con,Rubycon-кстати до 1990 года делали среднего качества продукцию,но после 1990 надежность и долговечность подросла.
Кондеры.Nichicon неплохие,но похуже предыдущих-часто втыкали в телевизорах и др аппаратуре,а на мат платах в местах нагрева часты случаи отказа.
OST и Teapo ставлю если нет вышеперечисленных,к слову в блоках питания в цепях 3.3,5,12v все из черного списка мертвые а эти живые,не беременные и не греються.
Это приводит к температуре до 250 градусов. Кроме того, существует огромная механическая нагрузка на электронные компоненты. Исследователи разработали конденсатор, способный выдерживать температуры до 300 градусов. Для сравнения: обычная электроника может выдерживать температуры до 125 градусов.
Конденсаторы хранят носители заряда и входят в число наиболее часто используемых пассивных устройств в электронике. Конструкция конденсатора проста: две проводящие пластины действуют как плюс-минус электрод, соответственно, и между ними расположен изолирующий слой, так называемый диэлектрик.
1:Sanyo(OScon)/Rubycon/ELNA-примерный паритет
2:Nippon-Chemi con/Panasonic(Matsushita)/Hitachi-соизмеримого качества
3:EPCOS/Fujitsu/Nichicon примерно одного уровня
4:OST/Teapo/Capxon
5:Samwha/Samsung/Jamicon
6:Hitano/Elite-единственный незаслуженно попавший в Black-list,они не настолько плохи,уровня Teapo/OST
При изготовлении проводящих металлических слоев мелкие отверстия вытравливаются в основание для увеличения площади. Трехмерный трюк увеличивает емкость, позволяя использовать более толстый диэлектрик. Более толстый слой, в свою очередь, более устойчив к высоким температурам и может уменьшить неконтролируемые токи утечки в конденсаторе.
Эксперты также ломают новые основания в производстве изоляционного диэлектрика. Они используют пентаоксид тантала, соединение металлического тантала и кислорода, а также оксид алюминия. Смесь материалов сохраняет носители заряда лучше, чем обычно используемый оксид кремния, и, следовательно, приводит к более высокой емкости конденсатора конденсатора.
Вот мои наблюдения и знания накопленные не за один год,если вы считаете эти данные нужными и имеюцими ценность-внесите изменения в список.
Cпасибо,по мере возможности буду вносить полезный вклад в фонд форума!
Как правило выполняются в форме “подушечек”, достаточно яркого желтого цвета. (Показаны на рисунке сверху)
Чрезвычайно точный: слои с одним атомным слоем
Однако высокотемпературная способность не является единственным преимуществом полупроводников из лаборатории Фраунгофера. Конденсаторы производятся в процессе металл-оксид-полупроводник. В этом случае обрабатываются слои с толщиной всего одного атомарного слоя. Это позволяет точно настроить полную толщину слоев. Это делает производство очень гибким. Производитель может изготавливать компоненты точно в соответствии с требованиями заказчика, без необходимости изменять последовательность процессов, — говорит Диц.
Рабочее напряжение этих конденсаторов не менее 50В.
Номинал обозначен 3-мя цифрами, последняя из которых означает количество нолей.
Например, 101 = 100 пФ, 332 = 3300 пФ, 104 = 100000 пФ/0.1 мкФ.
Как правило, емкость для многослойников — от 0,1 мкФ до 1.0 мкФ.
Такие конденсаторы имеют ограниченное применение в аудио приложениях, они годятся разве только на срез сигнала по ВЧ.
Ноу-хау в области высокотемпературной электроники можно применять ко многим другим пассивным или активным компонентам, таким как резисторы, диоды или транзисторы. Это означает, что конденсатор может быть установлен не только в буровом долоте, но и в системах впрыска двигателей или авиационных турбин, т.е. везде, где требуются чрезвычайно жаростойкие и прочные компоненты.
Конденсаторы хранят электрические заряды. Можете ли вы использовать его в качестве аккумулятора?
Электрическая схема конденсатора — здесь с мощностью 100 нФ. Электролитический конденсатор емкостью 470 мкФ. Чем больше пакетов дисков пересекаются, тем выше емкость. Эти пластины полностью погружены: достигается полная мощность. Носители заряда в металле, электронах, движутся при движении электрическим полем. Если это так, мы говорим о «электрическом токе». Электрическое поле является «двигателем» электронов. Если в одной точке у нас много положительных зарядов, их электрическое поле привлекательно для электронов, и они хотят мигрировать к положительным зарядам.
Однослойные керамические
Как правило выполняются в форме “таблеточек”, достаточно тонкие, грязно-желтого/грязно-оранжевого или грязно-бордового цвета.
Рабочее напряжение чаще всего до 50В (все современные — точно до 50В), номиналы обозначены по той же системе что и для многослойных.
Чем больше положительных зарядов, тем сильнее сила, которая управляет электронами. Для количества электрических зарядов была определена мера, это «электрическое напряжение». Это просто указывает на разницу в электрических зарядах между двумя точками. Конденсатор представляет собой простое электрическое устройство, способное хранить электрические заряды. Простой конденсатор состоит из двух металлических пластин, которые очень близки друг к другу, но не могут касаться друг друга. Чем больше пластин и чем меньше расстояние между ними, тем больше электрических зарядов конденсатор может забрать.
Однослойные керамические отлично подходят для полупроводниковых аудиоустройств в определенных ”местах”, как то: тонкомпенсация, отфильтровка крайних ВЧ в пассивных, активных и активно-пассивных темброблоках, в активных ВЧ фильтрах и наилучшим образом работают в различных EMI фильтрах, снабберах и как шунты по питанию. Максимальная емкость для однослойников как правило 0,22 мкФ.
Когда к конденсатору приложено электрическое напряжение, ток течет очень коротко, между емкостными пластинами создается электрическое поле. Также сказано, что конденсатор заряжен. Напряжение на конденсаторе такое же, как источник напряжения, даже если источник напряжения удален из конденсатора. Электрическое напряжение на конденсаторе можно измерить с помощью измерителя напряжения, «вольтметра».
Заряд, который может принимать конденсатор, зависит от используемого напряжения и «емкости» конденсатора. Кстати, символ переключения конденсатора символизирует две противоположные металлические пластины. Что отличает конденсатор от батареи? В батарее анод и катод реагируют друг с другом, и между ними передаются электрические заряды. Ионный ток в электролите протекает от катода к аноду, что является непрерывным процессом. Конденсатор может поставлять только те электрические заряды, которые были предварительно перенесены на металлические пластины.
Подсказки по выбору электролитических конденсаторов.
По электролитам потенциальным пользователям точно не помешает знать всех официальных производителей.
Да извинят меня некоторые новые производители, но пока в список можно уверенно внести:
Nippon Chemi-Con
Matsushita (Panasonic)
Samsung / SAMWHA
Я не привел некоторые марки, которые очень редки для рынка СНГ, типа Cornell Dubilier и т.п.
Закрывая планшеты ненадолго, т.е. если они электрически соединены, происходит балансировка заряда, конденсатор «разряжается». Другие носители заряда больше не доступны. Конденсатор способен мгновенно мигать лампой накаливания или коротко управлять электрическим двигателем, если заряд достаточно велик. Но он не может заменить батарею! Параллельное подключение конденсаторов.
Отдельные конденсаторы можно объединить в большие емкости, просто переключая их параллельно. Суммарная емкость полученного большого конденсатора тогда соответствует сумме отдельных емкостей. Существуют конденсаторы, чья емкость является переменной. Для этой цели используется металлическая пластина, которая «погружается» в неподвижную пластинчатую упаковку. Чем больше площадь перекрытия дисков, тем больше емкость. Такие вращающиеся конденсаторы ранее использовались в радиостанциях для настройки передатчика.
А вот теперь, черный список — “ фирм — призраков” изделия которых приобретать не только бесполезно, но и морально вредно.
D.S
Chssi (HK(M), WG(M))
Li-con (Licon)
JunFu (WG, HK)
В списке подозрительных могут оказаться конденсаторы с начертанием VENT, на самом деле, VENT — это не фирма, а тип исполнения корпуса. Нет повода для беспокойства по VENT.
От металлических пластин до фольги. На практике металлические пластины с воздухом как изолятор между ними очень непрактичны. Большие металлические пластины необходимы для большой емкости. Таким образом, были разработаны два интеллектуальных трюка для увеличения емкости конденсатора при сохранении малых размеров.
Чем лучше это изолируется, тем больше емкость конденсатора. Эти слои также называются «диэлектриком». Трюк 2: жесткие большие пластины заменяются металлической фольгой, которая может быть плотно обернута вокруг друг друга. В первые дни разработки таких конденсаторов бумага использовалась в качестве изолятора. Некоторые по-прежнему называют такие конденсаторы «обмотки конденсаторов». Они теперь доступны как «пластиковые конденсаторы».
*Название темы на форуме должно соответствовать виду: Заголовок статьи [обсуждение статьи]
Конденсаторы для «чайников» / Хабр
Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.
Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.
Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.
Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.
Паразитные индуктивность и сопротивление реального конденсатора
С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.
Алюминиевые электролитические
Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.
На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.
У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.
Танталовые электролитические
Танталовый конденсатор поверхностного размещения
Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.
Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.
В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.
Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.
Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.
Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.
Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.
Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.
В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.
Керамика
История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.
Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.
C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.
X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.
Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.
Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.
Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.
Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.
Что такое конденсатор? Какой принцип работы конденсатора?
Конденсатор или как в народе говорят – “кондер”, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”. Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.
Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.
Из чего состоит конденсатор
Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.
подстроечные конденсаторы
Переменный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)
На схемах обозначаются так.
переменный конденсатор обозначение на схеме
Слева -переменный, справа – подстроечный.
Пленочные конденсаторы
Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда
А также по принципу рулета
Давайте рассмотрим К73-9 советский пленочный конденсатор.
к73-9 советский конденсатор
Что же у него внутри? Смотрим.
Как и ожидалось, рулончик из фольги с диэлектриком-пленкой
что внутри конденсатора
Керамические конденсаторы
Керамические конденсаторы – это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.
Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость
Выглядеть керамические конденсаторы могут вот так:
керамические конденсаторы
керамические каплевидные конденсаторы
SMD конденсаторы
строение SMD конденсатора
Они используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.
Полярные конденсаторы
Для полярных конденсаторов очень важно не путать выводы местами при монтаже. Плюсовая ножка должны подключаться к плюсу на схеме, а минусовая – к минусу. Обозначается полярные конденсаторы также, как и их собратья. Единственное отличие – это указание полярности такого конденсатора. Выглядеть на схемах они могут вот так.
обозначение полярных конденсаторов на схеме
Электролитические конденсаторы
Электролитические конденсаторы используется в электронике и электротехнике, где требуются большие значения емкости. Также повелось название “электролиты”.
электролитические конденсаторы
Строение электролитических конденсаторов очень похоже на пленочные конденсаторы, которые также собраны по принципу рулета, но с одной только разницей. Вместо диэлектрика здесь используется оксид алюминия.
строение электролитического конденсатора
Давайте разберем один из таких электролитических конденсаторов во благо науки.
Снимаем его корпус и видим тот самый рулетик
Разматываем “рулетик” и видим, что между двумя обкладками металлической фольги у нас находится бумага, пропитанная каким-то раствором.
что внутри электролитического конденсатора
Некоторые ошибочно полагают, что бумага – это и есть тот самый диэлектрик, хотя это в корне неверно. Как она может быть диэлектриком, если она смочена в растворе, который проводит электрический ток?
На самом же деле диэлектриком в данном случае является тончайший слой оксида алюминия, который производится электрохимическим способом еще на производстве. Все это выглядит приблизительно вот так:
схема строения электролитического конденсатора
Слой оксида алюминия настолько тонкий, что можно изготавливать конденсаторы бешеной емкости с малыми габаритами. Вы ведь не забыли формулу емкости для плоского конденсатора?
где d – это и есть тот самый слой оксида алюминия. Чем он тоньше, тем больше емкость.
На полярных конденсаторах часто можно увидеть вот такой значок-стрелку, которая указывает на минусовый вывод конденсатора.
обозначение минусового вывода электролитического конденсатора
То есть в электрических схемах с постоянным током вы должны обязательно соблюдать правило: плюс на плюс, а минус на минус. Если перепутаете, то конденсатор может бахнуть.
Танталовые конденсаторы
Танталовые конденсаторы доступны как в мокром так и в сухом исполнении. Хотя, в сухом исполнении они намного более распространены. Здесь в качестве диэлектрика используется оксид тантала. Оксид тантала обладает более лучшими свойствами, по сравнению с оксидом алюминия. Если самый большой минус электролитических конденсаторов – это их большой ток утечки, то танталовые конденсаторы лишены такого недостатка. Минус танталовых конденсаторов в том, что они рассчитаны на более низкое напряжение, чем их собраться – электролиты. Танталовые конденсаторы также полярные, как и электролитические конденсаторы.
Выглядеть танталовые конденсаторы могут вот так
танталовые конденсаторы
ну или так
танталовые конденсаторы капли
Ионисторы
Есть также особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что там есть золото. Сам принцип работы ионистора ценее, чем золото. Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик) тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!
Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!
ионистор
большой ионистор
В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).
Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами. А исходя из закона Ома, чем меньше сопротивление проводника, тем большая сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно почти бесконечно.
Конденсатор в цепи постоянного тока
Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение 12 Вольт. Лампочку берем тоже на 12 Вольт. Теперь в разрыв цепи вставляем конденсатор.
Нет, лампочка не горит.
А вот если исключить конденсатор из цепи и подключить напрямую к лампочке, то лампа горит.
Отсюда напрашивается вывод: постоянный ток через конденсатор не течет! То есть в цепи постоянного тока идеальный конденсатор оказывает бесконечно большое сопротивление.
Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доыли секунды. Все зависит от емкости конденсатора.
Конденсатор в цепи переменного тока
Для того, чтобы узнать, как ведет себя конденсатор в цепи переменного тока, нам надо собрать простейшую схему, которая представляет из себя делитель напряжения. Смысл опыта такой: с помощью генератора частоты мы будем менять только частоту, а амплитуду оставим неизменной. По сути красная точка нам будет показывать сигнал с генератора частоты, а желтая – сигнал на резисторе. Снимая сигнал с резистора, мы можем косвенно узнать, как ведет себя конденсатор исходя из законов делителя напряжения.
С помощью осциллографа мы будем снимать сигнал с красной и желтой точек относительно земли.
Думаю, этот генератор частоты вполне пойдет.
Для начала возьмем конденсатор на 1мкФ и резистор на 100 ом.
Далее за дело берется цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем здесь. Будем использовать сразу два канала, то есть на одном экране будут высвечиваться сразу два сигнала. Здесь на экране уже видны наводки от сети 220 Вольт. Не стоит на это обращать внимание.
Красная осциллограмму снимаем с красной точки в цепи, а желтую – с желтой точки в цепи.
Зависимость сопротивления от частоты и сдвиг фаз
Поехали. Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать переменный ток с частотой в 100 Герц?
На дисплее осциллографа были выведены такие параметры, как частота сигнала и его амплитуда (эти параметры помечены белой стрелочкой).
F – это частота
Ma – амплитуда
Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.
Как вы видите на осциллограмме, с генератора выходит синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта, а на резисторе напряжение всего каких-то 136 мВ.
Как вы могли заметить, амплитуда желтого сигнала стала меньше. Это говорит нам о том, что конденсатор стал пропускать переменный ток, но его сопротивление до сих пор очень большое.
Но здесь можно заметить еще одну особенность: осциллограмма напряжения на резисторе сигнала сдвинулась влево, то есть она опережает сигнал с генератора частоты, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.
Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае – напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:
Давайте увеличим частоту на генераторе до 500 Гц
На резисторе уже получили 560 мВ. Сдвиг фаз уменьшается. Получается, что мы чуть-чуть увеличили частоту, и сопротивление конденсатора стало меньше.
Увеличиваем частоту до 1 КГц
На резисторе у нас напряжение 1 Вольт. Напряжение не резисторе растет с увеличением частоты. Это говорит о том, что сопротивление конденсатора стало еще меньше.
Ставим частоту 5 КГц
Амплитуда 1,84 Вольта и сдвиг фаз явно становится меньше
Увеличиваем до 10 КГц
Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.
Ставим 100 КГц.
Сдвига фаз почти нет. Напряжение не резисторе почти сравнялось с напряжением генератора частоты. Это говорит о том, что конденсатор почти не оказывает сопротивление на высоких частотах.
Получился парадокс. Постоянный ток конденсатор не пропускает, а вот токи высокой частоты – без проблем!
Отсюда делаем глубокомысленные выводы:
Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.
Если построить обрезок графика, то получится типа что-то этого:
Зависимость сопротивления от номинала конденсатора
Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.
Смотрим и анализируем значения:
Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Гц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт (в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.
Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление становится больше.
Формула сопротивления конденсатора
С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:
где, ХС – это сопротивление конденсатора, Ом
П – постоянная и равняется приблизительно 3,14
F – частота, измеряется в Герцах
С – емкость, измеряется в Фарадах
Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.
Последовательное и параллельное соединение конденсаторов
При последовательном соединении конденсаторов
последовательное соединение конденсаторов
Их общая емкость будет вычисляться по формуле
последовательное сопротивление конденсаторов формула
а при параллельном соединении
параллельное соединение конденсаторов
их общая емкость будет вычисляться по формуле
формула параллельного соединения конденсаторов
Также в интернете нашел очень интересное видео по теме конденсаторов
Похожие статьи по теме “конденсатор”
ESR конденсатора
Как проверить конденсатор мультиметром
RC цепь
Проверка и замена пускового конденсатора
Для чего нужен пусковой конденсатор?
Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
Поэтому их ещё называют фазосдвигающими.
Место установки — между линией питания и пусковой обмоткой электродвигателя.
Условное обозначение конденсаторов на схемах
Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.
Основные параметры конденсаторов
Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).
Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
- 400 В — 10000 часов
- 450 В — 5000 часов
- 500 В — 1000 часов
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
- обесточиваем кондиционер
- разряжаем конденсатор, закоротив еговыводы
- снимаем одну из клемм (любую)
- выставляем прибор на измерение ёмкости конденсаторов
- прислоняем щупы к выводам конденсатора
- считываем с экрана значение ёмкости
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Замена и подбор пускового/рабочего конденсатора
Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.
Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.
Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:
Собщ=С1+С2+…Сп
То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
Разъединяющие конденсаторы: какой размер и сколько?
Конденсаторы из X7R (а тем более Y5V) имеют огромную зависимость емкости / напряжения. Вы можете проверить это самостоятельно в превосходном онлайн-браузере характеристик продуктов Murata (Simsurfing) по адресу ttp: //ds.murata.co.jp/software/simsurfing/en-us/
Поразительная зависимость керамического конденсатора от напряжения. Для конденсатора X7R является нормальным иметь не более 30% номинальной емкости при номинальном напряжении. Например, конденсатор Murata 10 мкФ GRM21BR61C106KE15 (комплект 0805, X5R), рассчитанный на 16 В, даст вам емкость всего 2,3 мкФ при напряжении 12 В постоянного тока при температуре 25 ° С. Y5V намного хуже в этом отношении.
Чтобы получить емкость, близкую к 10 мкФ, необходимо использовать GRM32DR71E106K номиналом 25 В (корпус 1210, X7R), который дает 7,5 мкФ при тех же условиях.
Помимо зависимостей постоянного напряжения (и температуры), реальный «керамический чип-конденсатор» имеет сильную частотную зависимость, выступая в качестве разъединителей мощности. На сайте Murata представлены графики | Z |, R и X частотных зависимостей для их конденсаторов, просмотр их дает вам представление о реальных характеристиках части, которую мы называем «конденсатором» на разных частотах.
Настоящий керамический конденсатор может быть смоделирован идеальным конденсатором (C), соединенным последовательно с внутренним сопротивлением (Resr) и индуктивностью (Lesl). Существует также R-изоляция параллельно с C, но если вы не превысите номинальное напряжение конденсатора, это не имеет значения для приложений с разделением мощности.
смоделировать эту схему — схема, созданная с использованием CircuitLab
Таким образом, чиповые керамические конденсаторы будут действовать как конденсаторы только до определенной частоты (саморезонирующей для последовательного LC-контура, которым фактически является реальный конденсатор), выше которой они начинают действовать как индукторы. Эта частота Fres равна sqrt (1 / LC) и определяется как составом керамики, так и геометрией конденсатора — как правило, меньшие упаковки имеют более высокий Fres. Кроме того, конденсаторы имеют чисто резистивный компонент (Resr), который возникает в основном из-за потерь в керамике. и определяет минимальное сопротивление, которое может обеспечить конденсатор. Обычно он находится в диапазоне мили-ом.
На практике для хорошей развязки я использую 3 типа конденсаторов.
Более высокая емкость около 10 мкФ в корпусе 1210 или 1208 на интегральную микросхему, которая покрывает от 10 кГц до 10 МГц с шунтом менее 10-15 мОм для шума линии электропередачи.
Затем на каждый вывод питания микросхемы я поместил два конденсатора — один 100 нФ в корпусе 0806, охватывающий от 1 МГц до 40 МГц с шунтом 20 миль, и один 1 нФ в корпусе 0603, охватывающий 80 МГц до 400 МГц с шунтом 30 мОм. Это более или менее охватывает диапазон от 10 кГц до 400 МГц для фильтрации шума в линии электропередачи.
Для чувствительных цепей питания (таких как цифровая PLL и особенно аналоговая мощность) я поставил ферритовые шарики (опять же, у Murata есть характеристики браузера для них) с номиналом от 100 до 300 Ом при 100 МГц. Также неплохо разделить заземление между чувствительными и обычными цепями питания. Таким образом, общая схема схемы питания микросхемы выглядит следующим образом, с 10 мкФ C6 на каждый пакет IC и 1 нФ / 100 нФ C4 / C5 на каждый вывод питания:
смоделировать эту схему
Говоря о маршрутизации и размещении — питание и земля сначала направляются на конденсаторы, только на конденсаторах мы подключаемся к силовым и заземляющим плоскостям через переходные отверстия. Конденсаторы емкостью 1 нФ расположены ближе к выводам микросхемы. Конденсаторы должны быть расположены как можно ближе к контактам питания, но не более 1 мм длины трассы от контактной площадки к контактной площадке.
Разрывы и даже короткие следы на плате создают значительную индуктивность для частот и емкости, с которыми мы имеем дело. Например, диаметр 0,5 мм через печатную плату толщиной 1,5 мм имеет индуктивность 1,1 нГн от верхнего до нижнего слоя. Для конденсатора 1 нФ, что приводит к Fres, равному только 15 МГц. Таким образом, при подключении через конденсатор конденсатор с низким сопротивлением 1 нФ становится непригодным для использования на частотах выше 15 МГц. Фактически реактивное сопротивление 1,1 нГн при 100 МГц составляет целых 0,7 Ом.
Трасса длиной 1 мм, шириной 0,2 мм, 0,35 мм над плоскостью питания будет иметь сравнимую индуктивность 0,4 нГн, что снова делает конденсаторы менее эффективными, таким образом, пытаясь ограничить длину трассы конденсаторов долями миллиметра и делая их как можно более широкими, много смысла.
Конденсатор | Класс робототехники
Электрический конденсатор (англ. capacitor) — это устройство, которое может накапливать электрический заряд и хранить его некоторое время. Конденсаторы можно найти практически в любом электронном устройстве. Они бывают разных типов и размеров.
На электрических схемах конденсаторы обозначают двумя параллельными черточками. При этом, у полярных конденсаторов около положительного электрода дополнительно ставится плюсик.
Для чего нужен конденсатор?
У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.
1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.
2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).
3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.
4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.
И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!
Устройство простейшего конденсатора
Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.
Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.
Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.
Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.
Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.
Полярные и неполярные конденсаторы
Очень важным является разделение конденсаторов на полярные и неполярные.
Приборы на основе оксидов: электролитические алюминиевые и танталовые обычно являются полярными, а значит если перепутать их полярность — они выйдут из строя. Причём этот выход из строя будет сопровождаться бурной электрохимической реакций вплоть до взрыва конденсатора.
На полярных конденсаторах всегда имеется маркировка. Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод (катод), у танталовых (в желтых прямоугольных корпусах) полоской помечается положительный вывод (анод). Если есть сомнения в маркировке, то лучше найти документацию на этот конденсатор и убедиться.
Неполярные же конденсаторы можно включать в цепь какой угодно стороной. К примеру, многослойные керамические конденсаторы — неполярные.
Ёмкость и напряжение конденсатора
Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.
Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.
Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.
Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад! Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.
Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.
Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.
А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?
Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ
Параллельное и последовательное подключение конденсаторов
Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.
Параллельное подключение
В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ
Последовательно подключение
При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:
Суммарная ёмкость Ctot = 50 мкФ.
Заряд и разряд конденсатора — RC-цепочка
Теперь разберёмся с процессами, происходящими внутри конденсатора во время заряда и разряда. Для этого рассмотрим самую простую электрическую цепь с конденсатором. С левой стороны схемы подключим источник питания. Сверху разместим ключ и резистор, а справа сам конденсатор. Участок цепи, на котором есть конденсатор и резистор называют RC-цепью.
При замыкании ключа, в такой цепи образуется электрический ток, сила которого зависит от сопротивления резистора и внутреннего сопротивления самого конденсатора. Заряженные частицы устремятся к конденсатору, но не смогут преодолеть слой диэлектрика (по крайней мере все разом). Вследствие чего, с одной стороны конденсатора накопятся отрицательно заряженные частицы, а с другой стороны — положительно заряженные. Концентрация заряженных частиц на обкладках создаст мощное электрическое поле между ними.
С течением времени, напряжение на конденсаторе растет, а сила тока падает. После завершения процесса заряда, ток в цепи упадет почти до нуля. Останется только очень маленький ток утечки, который образуется благодаря тому, что некоторым заряженным частицам всё же удается проскочить через слой диэлектрика. Напряжение, напротив, станет практически равным напряжению источника.
Когда мы отключим конденсатор от источника питания, этот самый ток утечки постепенно разрядит конденсатор. Эта особенность электрических конденсаторов не даёт нам сделать из них контейнер для длительного хранения энергии. Хотя частично эту проблему решают ионисторы.
Резистор и время заряда конденсатора
Зачем в цепи нужен резистор? Что на мешает подключить его напрямую к источнику? Тому есть две причины.
Резистор ограничивает ток, протекающий через конденсатор. Чем меньше заряженных частиц за единицу времени прибывает в конденсатор, тем больше времени для заряда ему потребуется.
Конденсатор заряжается и разряжается по экспоненциальному закону. Зная это, мы можем легко рассчитать время заряда/разряда в зависимости от его ёмкости и от сопротивления резистора.
По картинке можно понять, что за время T конденсатор заряжается на 63,2%. А вот за время 3T уже на 95%. Время T здесь равно произведению ёмкости конденсатора C на сопротивление R, последовательно соединенного резистора:
Например, у нас есть конденсатор ёмкостью 100 мкФ, соединенный с резистором 1 кОм. Посчитаем за сколько секунд он зарядится хотя бы до 95%:
Теперь умножаем это на 3 и получаем 3T = 0,3 секунды — за такое время конденсатор почти полностью будет заряжен.
Таким образом, меняя ёмкость конденсатора и резистора мы можем управлять временем его заряда, что нам ещё пригодится в будущем.
Вторая важная причина, по которой в цепи присутствует резистор — защита источника питания. Дело в том, что разряженные конденсаторы имеют очень низкое внутреннее сопротивление, которое составляет доли Ома. По сути, их можно рассматривать как обычные проводники. А что будет, если замкнуть выводы питания проводником? Будет короткое замыкание! Такой режим работы цепи является аварийным для источника питания, и его нужно всячески избегать.
Плавное выключение светодиода при помощи конденсатора
Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.
Принципиальная схема
Внешний вид макета
Подключим Ардуино к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?
Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.
Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается 🙁 Напряжение на нем близко к нулю.
С течением времени конденсатор насыщается, благодаря чему ток начинает постепенно переходить в параллельную цепь — через светодиод. Напряжение на светодиоде начинает расти. Наступает момент, когда напряжение на светодиоде принимает критическое значение (для красного светодиода около 1,8 В), при котором он стремительно отбирает остатки тока у конденсатора и вспыхивает!
Когда мы отпускаем кнопку, ситуация становится гораздо проще. Конденсатор становится источником питания для светодиода с резистором. Светодиод начинает медленно высасывать заряд из конденсатора, пока тот не разрядится. Тут мы и наблюдаем медленно угасание.
Меняя сопротивление R1, мы можем влиять на скорость вспыхивания светодиода. Однако, следует учитывать, что увеличивая R1 мы будем снижать ток в цепи, тем самым уменьшая максимальный заряд конденсатора и яркость светодиода.
Увеличивая C1, мы получим более длительное время работы светодиода после выключения источника. Это как поставить более ёмкую батарейку.
Наконец, меняя R2 можно регулировать яркость светодиода, и соответственно, время его работы. Ведь чем меньше тока мы забираем из конденсатора, тем на большее время его хватит.
К размышлению
Итак, мы познакомились с конденсатором — интересным и порой опасным жителем любой электронной платы. В следующих уроках уделим внимание резистору и индуктивности, а также более сложному их собрату — транзистору.
Вконтакте
Как отличить пусковой конденсатор от рабочего?
Смотрите также обзоры и статьи:
В целом конденсаторы необходимы для того, чтобы, например, к электросети однофазной подключить двух- и трёхфазный асинхронный двигатель.
Научиться отличать пусковой конденсатор от рабочего, зная некоторые их особенности и характеристики, не так уж и сложно. Давайте попробуем в этом разобраться.
Чем именно отличаются конденсаторы?Рабочий и пусковой конденсаторы отличаются как емкостью, так условиями применения, способом установки и закрепления. А кроме того – самим предназначением.
Так, собственно первый необходим для того, чтобы качественно сдвигать фазу в цепи. Таким образом он способствует тому, что между обмотками двигателя вырабатывается магнитное поле, которое и приводит мотор к движению. Для этого не приходится прикладывать механику. Примером этому может служить любой электродвигатель в инструментах или установках.
А вот пусковой предназначен для того, чтобы усилить старт двигателя, на который воздействуют механически. Он как бы добавляет мотору оборотов, чтобы тот начал крутиться на нужной скорости с нужным режимом. Такие конденсаторы активно применяются в схемах тяжелых подъемочных механизмов, в наносах и т.п.
По емкости также можно легко отличать рабочий конденсатор от пускового, ведь данная величина обычно раза в два минимум больше у второго. Это объясняется тем, что емкость напрямую зависит от мощности электромотора и обратно пропорциональна величине напряжения в электросети.
Отличия по способу присоединенияПервый подключается обычно во вспомогательную обмотку двигателя, а именно в ее разрыв. При этом вторая обмотка напрямую подключается к сети, а третья – остается свободной. Так получается схема под названием звезда или треугольник.
А пусковой конденсатор присоединяется после рабочего параллельно ему. Для подключения понадобится кнопка (если управление будет вручную) или переключатель (если управлять будет привод).
По условиям эксплуатацииРабочий конденсатор не зря получил такое свое название – ему приходится постоянно быть задействованным в схеме и держать высокие нагрузки напряжения, ведь он работает в самой обмотке электродвигателя. Из-за этого на концах обмотки рабочего может образоваться в определенные моменты напряжение в 500 и даже 600 вольт, а это в два-три раза выше входящего значения. Словом, рабочие более выносливые, чем пусковые.
Пусковые же не берут на себя нагрузку, превышающую входящие 220 вольт, задействуются только время от времени и ненадолго. Поэтому напряжение максимально допустимое не превышает 1,15 раз. Пусковые могут оставаться работоспособными обычно намного дольше рабочих.
Словом, первый конденсатор – настоящая рабочая «лошадка», благодаря которой происходит сдвиг фаз и собственно трехфазные моторы могут работать от однофазной электросети. А второй – носит скорее вспомогательный характер и имеет кратковременный период занятости. Крайне важно не перепутать эти два элемента, ведь пусковой не сможет выдержать нагрузку рабочего, что может привести к печальным последствиям.
Опубликовано: 2020-11-13 Обновлено: 2021-08-30
Автор: Магазин Electronoff
ПОДХОДЯЩИЕ ТОВАРЫ
Поделиться в соцсетях
Что такое конденсатор (C)
Что такое конденсатор и расчет конденсатора.
Что такое конденсатор
Конденсатор — это электронный компонент, который хранит электрический заряд. Конденсатор состоит из двух замкнутых проводников (обычно пластин), которые разделены диэлектрическим материалом. Пластины накапливаются электрический заряд при подключении к источнику питания. Одна тарелка накапливает положительный заряд, а другая пластина накапливает отрицательный заряд.
Емкость — это количество электрического заряда, которое сохраняется в конденсаторе при напряжении 1 Вольт.
Емкость измеряется в единицах Фарад (Ф).
Конденсатор отключает ток в цепях постоянного (DC) и короткое замыкание в цепях переменного (AC).
Фотографии конденсатора
Символы конденсаторов
Емкость
Емкость (C) конденсатора равна электрическому заряду (Q), деленному на напряжение (В):
C — емкость в фарадах (Ф)
Q — это электрический заряд в кулонах (Кл), накопленный на конденсаторе
В — напряжение между пластинами конденсатора в вольтах (В)
Емкость пластин конденсатора
Емкость (C) пластин конденсатора равна диэлектрической проницаемости (ε), умноженной на площадь пластины (A), деленную на зазор или расстояние между пластинами (d):
C — емкость конденсатора в фарадах (Ф).
ε — диэлектрическая проницаемость диалектического материала конденсатора в фарадах на метр (Ф / м).
А — площадь пластины конденсатора в квадратных метрах ( 2 м).
d — расстояние между пластинами конденсатора в метрах (м).
Конденсаторы серии
Суммарная емкость конденсаторов, включенных последовательно, C1, C2, C3, ..:
Конденсаторы параллельно
Суммарная емкость конденсаторов, включенных параллельно, C1, C2, C3 ,.. :
C Итого = C 1 + C 2 + C 3 + …
Ток конденсатора
Мгновенный ток конденсатора i c (t) равен емкости конденсатора
раз производная мгновенного напряжения конденсатора v c (t):
Напряжение конденсатора
Мгновенное напряжение конденсатора v c (t) равно начальному напряжению конденсатора
плюс 1 / C, умноженный на интеграл мгновенного тока конденсатора i c (t) за время t:
Энергия конденсатора
Накопленная энергия конденсатора E C в джоулях (Дж) равна емкости C в фарадах (Ф)
раз больше напряжения конденсатора квадратной формы В C в вольтах (В) разделенных на 2:
E C = C × V C 2 /2
Цепи переменного тока
Угловая частота
ω = 2 π f
ω — угловая скорость, измеренная в радианах в секунду (рад / с)
f — частота, измеренная в герцах (Гц).
Реактивное сопротивление конденсатора
Импеданс конденсатора
Декартова форма:
Полярная форма:
Z C = X C ∟-90º
Типы конденсаторов
Конденсатор переменной емкости | Конденсатор переменной емкости с изменяемой емкостью |
Конденсатор электролитический | Электролитические конденсаторы используются, когда требуется большая емкость.Большинство электролитических конденсаторов поляризованы |
Конденсатор сферический | Сферический конденсатор сферической формы |
Конденсатор силовой | Силовые конденсаторы используются в высоковольтных энергосистемах. |
Керамический конденсатор | Керамический конденсатор имеет керамический диэлектрический материал. Имеет функцию высокого напряжения. |
Танталовый конденсатор | Диэлектрический материал из оксида тантала.Имеет высокую емкость |
Слюдяной конденсатор | Конденсаторы высокой точности |
Конденсатор бумажный | Бумажный диэлектрический материал |
См. Также:
4.1 Конденсаторы и емкость — Введение в электричество, магнетизм и схемы
ЦЕЛИ ОБУЧЕНИЯ
К концу этого раздела вы сможете:
- Объясните понятие конденсатора и его емкости
- Опишите, как оценить емкость системы проводов
Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии.Он состоит как минимум из двух электрических проводников, разделенных расстоянием. (Обратите внимание, что такие электрические проводники иногда называют «электродами», но, точнее, они «обкладки конденсатора».) Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор будет известен как «Вакуумный конденсатор». Однако пространство обычно заполняется изолирующим материалом, известным как диэлектрик . (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе.) Объем накопителя в конденсаторе определяется свойством, называемым емкостью , , о котором вы узнаете больше чуть позже в этом разделе.
Конденсаторыимеют различные применения: от фильтрации статического электричества, от радиоприема до накопления энергии в дефибрилляторах сердца. Обычно у промышленных конденсаторов две проводящие части расположены близко друг к другу, но не соприкасаются, как на рисунке 4.1.1. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к первоначально незаряженному конденсатору, потенциал батареи перемещает небольшой заряд величины от положительной пластины к отрицательной.Конденсатор в целом остается нейтральным, но заряжается и находится на противоположных пластинах.
(рисунок 4.1.1)
Рисунок 4.1.1 Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них есть заряды и (соответственно) на своих тарелках. (a) Конденсатор с параллельными пластинами состоит из двух пластин противоположного заряда с площадью A, разделенной расстоянием d. (b) Катаный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).Система, состоящая из двух идентичных параллельно проводящих пластин, разделенных расстоянием, называется конденсатором с параллельными пластинами (рисунок 4.1.2). Величина электрического поля в пространстве между параллельными пластинами равна, где обозначает поверхностную плотность заряда на одной пластине (напомним, что это заряд на площадь поверхности). Таким образом, величина поля прямо пропорциональна.
(рисунок 4.1.2)
Рисунок 4.1.2 Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности пластин конденсатора.Линии электрического поля в конденсаторе с параллельными пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами. Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.Конденсаторы с разными физическими характеристиками (такими как форма и размер пластин) накапливают разное количество заряда для одного и того же приложенного напряжения на своих пластинах. Емкость конденсатора определяется как отношение максимального заряда, который может храниться в конденсаторе, к приложенному напряжению на его пластинах.Другими словами, емкость — это наибольшая величина заряда на вольт, которая может храниться на устройстве:
(4.1.1)
Единица измерения емкости в системе СИ — фарад (), названная в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или
.По определению, конденсатор способен накапливать заряд (очень большой заряд), когда разность потенциалов между его пластинами равна всего.Следовательно, одна фарада — это очень большая емкость. Типичные значения емкости варьируются от пикофарад () до миллифарад (), включая микрофарады (). Конденсаторы могут быть разных форм и размеров (рисунок 4.1.3).
(рисунок 4.1.3)
Рисунок 4.1.3 Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно зависит от его емкости.Расчет емкости
Мы можем рассчитать емкость пары проводов с помощью следующего стандартного подхода.
Стратегия решения проблем: расчет емкости
Чтобы показать, как работает эта процедура, мы теперь вычисляем емкости параллельных пластин, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.
Конденсатор с параллельными пластинами
Конденсатор с параллельными пластинами (рисунок 4.1.4) имеет две идентичные проводящие пластины, каждая из которых имеет площадь поверхности, разделенную расстоянием.Когда на конденсатор подается напряжение, он накапливает заряд, как показано на рисунке. Мы можем увидеть, как его емкость может зависеть от и , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить. Таким образом, должно быть больше для большего значения. Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов.Следовательно, должно быть больше за меньшее.
(рисунок 4.1.4)
Рис. 4.1.4 В конденсаторе с параллельными пластинами, обкладки которых разнесены на расстояние, каждая пластина имеет одинаковую площадь поверхности.Определим поверхностную плотность заряда на пластинах как
Из предыдущих глав мы знаем, что когда оно мало, электрическое поле между пластинами довольно однородно (без учета краевых эффектов) и что его величина определяется как
.где постоянная — диэлектрическая проницаемость свободного пространства,.Единица СИ эквивалентна. Поскольку электрическое поле между пластинами однородно, разность потенциалов между пластинами составляет
.Следовательно, уравнение 4.1.3 дает емкость конденсатора с параллельными пластинами как
(4.1.3)
Обратите внимание на это уравнение, что емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора. Фактически, это верно не только для конденсатора с параллельными пластинами, но и для всех конденсаторов: емкость не зависит от или.Если заряд изменяется, соответственно изменяется и потенциал, так что он остается постоянным.ПРИМЕР 4.1.1
Емкость и заряд в конденсаторе с параллельными пластинами
(a) Какова емкость пустого конденсатора с параллельными пластинами с металлическими пластинами, каждая из которых имеет площадь, разделенную на? (б) Сколько заряда хранится в этом конденсаторе, если к нему приложено напряжение?
Стратегия
Определение емкости — это прямое приложение уравнения 4.1.3. Как только мы найдем, мы сможем найти накопленный заряд, используя уравнение 4.1.1.
Решение
а. Ввод данных значений в уравнение 4.1.3 дает
Это небольшое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью.
г. Обращение уравнения 4.1.1 и ввод известных значений в это уравнение дает
Значение
Этот заряд лишь немного больше, чем в типичных приложениях статического электричества.Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около, на этом конденсаторе больше не может храниться заряд при увеличении напряжения.
ПРОВЕРЬТЕ ПОНИМАНИЕ 4.1
Емкость конденсатора с параллельными пластинами составляет. Если площадь каждой пластины равна, каково расстояние между пластинами?
ПРОВЕРЬТЕ ПОНИМАНИЕ 4.2
Убедитесь, что у вас одинаковые физические единицы.
Сферический конденсатор
Сферический конденсатор — это еще один набор проводников, емкость которых можно легко определить (Рисунок 4.1.5). Он состоит из двух концентрических проводящих сферических оболочек радиусов (внутренняя оболочка) и (внешняя оболочка). Снарядам придаются равные и противоположные заряды и соответственно. Из-за симметрии электрическое поле между оболочками направлено радиально наружу. Мы можем получить величину поля, применив закон Гаусса к сферической гауссовой поверхности радиусом r , концентричной оболочкам. Вложенная плата есть; следовательно, у нас
Таким образом, электрическое поле между проводниками равно
.Мы подставляем это в уравнение 4.1.2 и интегрировать по радиальному пути между оболочками:
В этом уравнении разность потенциалов между пластинами равна. Мы подставляем этот результат в уравнение 4.1.1, чтобы найти емкость сферического конденсатора:
(4.1.4)
(рисунок 4.1.5)
Рисунок 4.1.5 Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды на проводнике находятся на его поверхности.ПРИМЕР 4.1,3
Емкость изолированной сферы
Рассчитайте емкость одиночной изолированной проводящей сферы радиуса и сравните ее с уравнением 4.1.4 в пределе как.
Стратегия
Мы предполагаем, что на сфере есть заряд, и поэтому выполняем четыре шага, описанные ранее. Мы также предполагаем, что другой проводник представляет собой концентрическую полую сферу бесконечного радиуса.
Решение
На внешней стороне изолированной проводящей сферы электрическое поле задается уравнением 4.1.2. Величина разности потенциалов между поверхностью изолированной сферы и бесконечностью составляет
.Таким образом, емкость изолированной сферы равна
.Значение
Тот же результат может быть получен, если взять предел уравнения 4.1.4 как. Таким образом, одиночная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.
ПРОВЕРЬТЕ ПОНИМАНИЕ 4.3
Радиус внешней сферы сферического конденсатора в пять раз превышает радиус его внутренней оболочки.Какие размеры у этого конденсатора, если его емкость?
Цилиндрический конденсатор
Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рисунок 4.1.6). Внутренний цилиндр радиуса может быть либо оболочкой, либо полностью твердым. Внешний цилиндр представляет собой оболочку внутреннего радиуса. Мы предполагаем, что длина каждого цилиндра равна и что избыточные заряды и находятся на внутреннем и внешнем цилиндрах соответственно.
(рисунок 4.1.6)
Рисунок 4.1.6 Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров. Здесь заряд на внешней поверхности внутреннего цилиндра положительный (обозначен), а заряд на внутренней поверхности внешнего цилиндра отрицательный (обозначен).Без учета краевых эффектов электрическое поле между проводниками направлено радиально наружу от общей оси цилиндров. Используя гауссову поверхность, показанную на рисунке 4.1.6, мы имеем
Следовательно, электрическое поле между цилиндрами равно
(4.1,5)
Здесь \ hat {\ mathrm {r}} — единичный радиальный вектор по радиусу цилиндра. Мы можем подставить в уравнение 4.1.2 и найти разность потенциалов между цилиндрами:
Таким образом, емкость цилиндрического конденсатора составляет
(4.1.6)
Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 4.1.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов.Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом. (Здесь мы предполагаем наличие вакуума между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Эта конфигурация экранирует электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к проводнику. кабель. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен.Теперь из уравнения 4.1.6 емкость коаксиального кабеля на единицу длины равна
.В практических приложениях важно выбрать конкретные значения. Это может быть достигнуто за счет соответствующего выбора радиусов проводников и изоляционного материала между ними.
ПРОВЕРЬТЕ ПОНИМАНИЕ 4.4
Когда цилиндрический конденсатор заряжается, между цилиндрами измеряется разность потенциалов.а) Какова емкость этой системы? б) Если цилиндры длинные, каково соотношение их радиусов?
Несколько типов практических конденсаторов показаны на рисунке 4.1.3. Обычные конденсаторы часто состоят из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. Рисунок 4.1.1 (b)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторые распространенные изоляционные материалы — это слюда, керамика, бумага и антипригарное покрытие Teflon ™.
Другой популярный тип конденсатора — электролитический конденсатор . Он состоит из окисленного металла в проводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов. Например, емкость одного типа алюминиевого электролитического конденсатора может достигать. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста.Когда возникает обратная поляризация, электролитическое действие разрушает оксидную пленку. Этот тип конденсатора не может быть подключен к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет свою полярность (см. Схемы переменного тока в цепях переменного тока).
Переменный воздушный конденсатор (рисунок 4.1.7) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначается как «ротор»).Поворачивая вал, можно изменять площадь поперечного сечения в перекрытии пластин; следовательно, емкость этой системы может быть настроена на желаемое значение. Настройка конденсатора находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств. Каждый раз, когда вы настраиваете автомобильное радио на любимую станцию, думайте о емкости.
(рисунок 4.1.7)
Рисунок 4.1.7. В конденсаторе переменного тока емкость можно регулировать, изменяя эффективную площадь пластин.(кредит: модификация работы Робби Спрула)Символы, показанные на рисунке 4.1.8, представляют собой схемные изображения различных типов конденсаторов. Обычно мы используем символ, показанный на рис. 4.1.8 (а). Символ на Рисунке 4.1.8 (c) представляет конденсатор переменной емкости. Обратите внимание на сходство этих символов с симметрией конденсатора с параллельными пластинами. Электролитический конденсатор представлен символом на рис. 4.1.8 (b), где изогнутая пластина обозначает отрицательный вывод.
(рисунок 4.1.8)
Рисунок 4.1.8 Здесь показаны три различных схемных представления конденсаторов. Символ в (а) является наиболее часто используемым. Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет конденсатор переменной емкости.Интересный прикладной пример модели конденсатора взят из клеточной биологии и имеет дело с электрическим потенциалом в плазматической мембране живой клетки (рис. 4.1.9). Клеточные мембраны отделяют клетки от окружающей их среды, но позволяют некоторым отобранным ионам проходить внутрь или из клетки.Разность потенциалов на мембране составляет около. Клеточная мембрана может быть слишком толстой. Рассматривая клеточную мембрану как наноразмерный конденсатор, оценка наименьшей напряженности электрического поля на его «пластинах» дает значение.
Этой величины электрического поля достаточно, чтобы вызвать электрическую искру в воздухе.
(рисунок 4.1.9)
Рис. 4.1.9 Полупроницаемая мембрана биологической клетки имеет различные концентрации ионов на внутренней поверхности, чем на внешней.Диффузия перемещает ионы (калия) и (хлорида) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя поверхность мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая разность потенциалов на мембране. Мембрана обычно непроницаема для (ионов натрия).Кандела Цитаты
Лицензионный контент CC, конкретная атрибуция
- Загрузите бесплатно по адресу http: // cnx.org/contents/[email protected]. Получено с сайта : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution
Что такое конденсатор и как он работает?
В этом руководстве мы узнаем, что такое конденсатор, как он работает, и рассмотрим некоторые основные примеры применения. Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.
РЕКОМЕНДУЕТСЯ Обзор
Практически нет схемы без конденсатора, и вместе с резисторами и индукторами они являются основными пассивными компонентами, которые мы используем в электронике.
Что такое конденсатор?
Конденсатор — это устройство, способное накапливать энергию в виде электрического заряда. По сравнению с батареей того же размера, конденсатор может хранить гораздо меньшее количество энергии, примерно в 10 000 раз меньше, но достаточно полезен для многих схем.
Конструкция конденсатора
Конденсатор состоит из двух металлических пластин, разделенных изоляционным материалом, называемым диэлектриком. Пластины являются проводящими, и они обычно изготавливаются из алюминия, тантала или других металлов, в то время как диэлектрик может быть сделан из любого изоляционного материала, такого как бумага, стекло, керамика или что-либо, что препятствует прохождению тока.
Емкость конденсатора, измеряемая в фарадах, прямо пропорциональна площади поверхности двух пластин, а также диэлектрической проницаемости ε диэлектрика, в то время как чем меньше расстояние между пластинами, тем больше емкость. При этом давайте посмотрим, как работает конденсатор.
Как работает конденсатор
Во-первых, мы можем отметить, что металл обычно имеет равное количество положительно и отрицательно заряженных частиц, что означает, что он электрически нейтрален.
Если мы подключим источник питания или батарею к металлическим пластинам конденсатора, ток будет пытаться течь, или электроны от пластины, подключенной к положительному выводу батареи, начнут двигаться к пластине, подключенной к отрицательному выводу. батареи. Однако из-за наличия диэлектрика между пластинами электроны не смогут проходить через конденсатор, поэтому они начнут накапливаться на пластине.
После того, как определенное количество электронных компонентов накопится на пластине, у батареи будет недостаточно энергии, чтобы подтолкнуть любую новую электронику к пластине из-за отталкивания той электроники, которая уже там.
На этом этапе конденсатор фактически полностью заряжен. Первая пластина выработала чистый отрицательный заряд, а вторая пластина выработала равный результирующий положительный заряд, создавая электрическое поле с силой притяжения между ними, которая удерживает заряд конденсатора.
Принцип работы диэлектрика конденсатора
Давайте посмотрим, как диэлектрик может увеличить емкость конденсатора. Диэлектрик содержит полярные молекулы, что означает, что они могут изменять свою ориентацию в зависимости от зарядов на двух пластинах.Таким образом, молекулы выравниваются с электрическим полем таким образом, что позволяет большему количеству электронов притягиваться к отрицательной пластине, отталкивая больше электронов из положительной пластины.
Итак, после полной зарядки, если мы удалим аккумулятор, он будет удерживать электрический заряд в течение длительного времени, действуя как накопитель энергии.
Теперь, если мы укоротим два конца конденсатора через нагрузку, ток начнет течь через нагрузку. Накопленные электроны с первой пластины начнут двигаться ко второй пластине, пока обе пластины снова не станут электрически нейтральными.
Итак, это основной принцип работы конденсатора, а теперь давайте взглянем на некоторые примеры применения.
Приложения
Конденсаторы развязки (байпаса)
Конденсаторы развязки или конденсаторы байпаса являются типичным примером. Они часто используются вместе с интегральными схемами и размещаются между источником питания и землей ИС.
Их задача — фильтровать любой шум в источнике питания, например пульсации напряжения, которые возникают, когда в источнике питания на очень короткий период времени падает напряжение или когда часть цепи переключается, вызывая колебания в источнике питания.В момент падения напряжения конденсатор временно действует как источник питания, минуя основной источник питания.
Преобразователь переменного тока в постоянный
Другой типичный пример применения — конденсаторы, используемые в адаптерах постоянного тока. Для преобразования переменного напряжения в постоянное обычно используется диодный выпрямитель, но без помощи конденсаторов он не сможет справиться с этой задачей.
Выходной сигнал выпрямителя представляет собой форму волны. Таким образом, в то время как на выходе выпрямителя увеличивается заряд конденсатора, а на выходе выпрямителя уменьшается, конденсатор разряжается и, таким образом, сглаживает выход постоянного тока.
Связано: что такое триггер Шмитта и как он работает
Фильтрация сигналов
Фильтрация сигналов — еще один пример применения конденсаторов. Из-за своего особого времени отклика они могут блокировать низкочастотные сигналы, позволяя проходить более высоким частотам.
Используется в радиоприемниках для настройки нежелательных частот и в схемах кроссовера внутри громкоговорителей для разделения низких частот для вуфера и высоких частот для твитера.
Конденсаторы как накопители энергии
Еще одно довольно очевидное применение конденсаторов — для хранения и подачи энергии. Хотя они могут накапливать значительно меньше энергии по сравнению с батареями того же размера, их срок службы намного выше, и они способны передавать энергию намного быстрее, что делает их более подходящими для приложений, где требуется большой всплеск мощности.
Вот и все для этого урока, не стесняйтесь задавать любой вопрос в разделе комментариев ниже.
КонденсаторОбласти применения и применения »Электроника
Особенно важно выбрать правильный конденсатор или любое конкретное приложение — понимание ключевых требований для любого конкретного применения конденсатора или использования конденсатора обеспечит правильную работу схемы.
Capacitor Tutorial:
Использование конденсатора
Типы конденсаторов
Электролитический конденсатор
Керамический конденсатор
Танталовый конденсатор
Пленочные конденсаторы
Серебряный слюдяной конденсатор
Супер конденсатор
Конденсатор SMD
Технические характеристики и параметры
Как купить конденсаторы — подсказки и подсказки
Коды и маркировка конденсаторов
Таблица преобразования
Конденсаторы используются практически во всех областях электроники и выполняют множество различных задач.Несмотря на то, что конденсаторы работают одинаково, независимо от их применения или использования, конденсаторы могут использоваться в схемах по-разному.
Для того, чтобы выбрать правильный тип конденсатора, необходимо иметь представление о конкретном применении конденсатора, чтобы его свойства можно было согласовать с конкретным применением, для которого он будет использоваться.
У каждой формы конденсатора есть свои собственные атрибуты, и это означает, что он будет хорошо работать при использовании или применении конденсатора твердых частиц.
Выбор подходящего конденсатора для конкретного применения является частью процесса проектирования схемы. Использование неправильного конденсатора может легко означать, что схема не будет работать.
Применение конденсатора и схема
Конденсаторымогут использоваться в электронных схемах по-разному. Хотя их режим работы остается точно таким же, различные формы конденсаторов могут использоваться для обеспечения множества различных функций схемы.
Для различных цепей потребуются конденсаторы с определенными номиналами, а также с другими атрибутами, такими как допустимый ток, диапазон значений, точность значений, температурная стабильность и многие другие аспекты.
Некоторые типы конденсаторов будут доступны в разных номиналах, некоторые конденсаторы могут иметь большие диапазоны значений, другие — меньшие. Другие конденсаторы могут иметь высокие токи, другие — высокий уровень стабильности, а другие по-прежнему доступны с очень низкими значениями температурного коэффициента.
Понимание различных способов использования конденсаторов помогает выбрать лучший тип конденсатора для конкретного применения.
Выбрав правильный конденсатор для конкретного использования или применения, можно добиться максимальной производительности схемы.
Использование конденсатора связи
В этом конденсаторе компонент позволяет только сигналам переменного тока проходить от одной секции схемы к другой, блокируя любое статическое напряжение постоянного тока. Такая форма применения конденсатора часто требуется при соединении двух каскадов усилителя вместе.
Возможно, что постоянное напряжение постоянного тока будет присутствовать, скажем, на выходе одного каскада, и только переменный сигнал, звуковая частота, радиочастота или что-то еще, что требуется.Если бы составляющие постоянного тока сигнала на выходе первого каскада присутствовали на входе второго, то смещение и другие рабочие условия второго каскада изменились бы.
Транзисторная схема с входными и выходными разделительными конденсаторамиДаже при использовании операционных усилителей, схема которых была разработана для обеспечения малых напряжений смещения, часто бывает разумным использовать разделительные конденсаторы из-за наличия высоких уровней усиления постоянного тока. Без разделительного конденсатора высокие уровни усиления по постоянному току могут означать, что операционный усилитель перейдет в режим насыщения.
Для конденсаторов такого типа необходимо обеспечить достаточно низкое полное сопротивление конденсатора. Обычно выходной импеданс предыдущей схемы выше, чем та, которую она возбуждает, за исключением ВЧ-цепи, но об этом позже. Это означает, что номинал конденсатора выбирается таким же, как импеданс цепи, обычно входной импеданс второй цепи. Это дает падение отклика на 3 дБ на этой частоте.
Важные параметры для конденсатора связи | |
---|---|
Параметр | Указания по использованию конденсатора |
Номинальное напряжение конденсатора | Должно быть больше пикового напряжения на конденсаторе.Обычно конденсатор может выдерживать напряжение на шине питания с запасом для обеспечения надежности. |
Значение емкости | Достаточно высокий, чтобы передавать самые низкие частоты с небольшим затуханием или без него. |
Допуск | Конденсаторыс широким допуском часто можно использовать, потому что точное значение не имеет значения. |
Диэлектрик | Некоторые конденсаторы, например электролитические, имеют ограниченную частотную характеристику, часто только до частот около 100 кГц максимум.Это следует учитывать. Также для приложений с высоким импедансом не следует использовать электролитические конденсаторы, поскольку они имеют относительно высокий уровень утечки, который может нарушить работу второй ступени. |
Использование развязывающего конденсатора
В этом приложении конденсатор используется для удаления любых сигналов переменного тока, которые могут быть в точке смещения постоянного тока, шине питания или другом узле, который должен быть свободен от конкретного изменяющегося сигнала.
Как указывает название этого конденсатора, он использовался для развязки узла от изменяющегося на нем сигнала.
Схема транзистора с развязывающими конденсаторами линии и коллектораВ этой схеме есть два способа использования конденсатора для развязки. C3 используется для развязки любого сигнала, который может быть на шине напряжения. Конденсатор этого типа должен выдерживать напряжение питания, а также обеспечивать и поглощать уровни тока, возникающие из-за шума на шине. Также во время выключения, когда питание отключено, этот конденсатор может потреблять большой ток в зависимости от его значения.Танталовые конденсаторы для этой позиции не подходят.
Развязка также обеспечивается комбинацией конденсатора и резистора C4, R5. Это гарантирует, что коллекторный сигнал не просочится на сигнальную шину. Постоянная времени C4 и R5 обычно является доминирующим фактором, и постоянная времени должна быть выбрана больше, чем ожидаемая самая низкая частота.
Тип развязки, используемый с C5, служит для хорошей изоляции этого конкретного каскада от любого шума на шине, а также предотвращения передачи шума от цепи на шину питания.Во время отключения ток конденсатора ограничивается резистором R5.
Важные параметры для развязывающего конденсатора | |
---|---|
Параметр | Указания по использованию конденсатора |
Номинальное напряжение конденсатора | Должно быть больше пикового напряжения на конденсаторе. Обычно конденсатор может выдерживать напряжение узла с некоторым запасом для обеспечения надежности. |
Значение емкости | Достаточно высокий, чтобы передавать самые низкие частоты с небольшим затуханием или без него.Иногда это может привести к тому, что требуются относительно большие значения. Однако необходимо учитывать используемые частоты. Для низких частот обычно требуются большие уровни емкости, и часто используются электролитические конденсаторы. Если это слаботочная цепь, как в случае C4, R5, танталовый конденсатор также может быть подходящим, но обычно изолируется от шины основного напряжения через последовательный резистор, чтобы предотвратить слишком большой ток, потребляемый, как в случае C4. Для более высоких частот также могут подойти керамические конденсаторы. |
Допуск | Конденсаторыс широким допуском часто можно использовать, потому что точное значение не имеет значения. |
Диэлектрик | Некоторые конденсаторы, такие как электролитические конденсаторы, имеют относительно низкий верхний предел частоты. Часто, чтобы преодолеть это, конденсатор, такой как керамический конденсатор с меньшим номиналом, может использоваться для обеспечения высокочастотной характеристики, в то время как электролитический конденсатор большего номинала используется для пропускания более низкочастотных компонентов.Керамический или другой конденсатор более низкого номинала по-прежнему имеет низкий импеданс на более высоких частотах, потому что реактивное сопротивление обратно пропорционально частоте. |
ВЧ-соединения и развязка
ВЧ связь и развязка следуют тем же основным правилам, что и для обычных конденсаторов связи и развязки. Часто используются схемы, подобные показанным для стандартной связи и развязки, и они работают в основном одинаково.
Однако при использовании конденсаторов для ВЧ приложений необходимо учитывать их ВЧ характеристики. Это может отличаться от производительности на более низких частотах.
Обычно электролитические конденсаторы не используются — их характеристики падают с увеличением частоты, и они редко используются для приложений с частотой выше примерно 100 кГц. Керамические конденсаторы особенно популярны, поскольку они обладают хорошими ВЧ-характеристиками, особенно конденсаторы MLCC для поверхностного монтажа.
Последовательная индуктивность, присутствующая во всех конденсаторах, в большей или меньшей степени проявляется на некоторых частотах, образуя резонансный контур с емкостью.
Обычно керамические конденсаторы имеют высокую собственную резонансную частоту, особенно конденсаторы для поверхностного монтажа, которые очень малы и не имеют выводов, создающих индуктивность.
Могут быть использованы некоторые другие типы конденсаторов, но керамические конденсаторы наиболее широко используются в этом приложении.
Применения сглаживающего конденсатора
Фактически это то же самое, что и разделительный конденсатор, но этот термин обычно используется в связи с источником питания.
Когда входящий линейный сигнал проходит через трансформатор и выпрямитель, результирующая форма волны не является гладкой.Оно варьируется от нуля до пикового напряжения. При применении к цепи маловероятно, что это сработает, поскольку обычно требуется постоянное напряжение. Чтобы преодолеть это, используется конденсатор для развязки или сглаживания выходного напряжения.
Схема выпрямителя со сглаживающим конденсаторомПри таком использовании конденсатор заряжается, когда пиковое напряжение превышает выходное напряжение, и обеспечивает заряд, когда напряжение выпрямителя падает ниже напряжения конденсатора.
В этом конденсаторе компонент развязывает шину и подает заряд там, где это необходимо.
Обычно для обеспечения необходимого уровня тока требуются относительно большие значения емкости. В результате наиболее широко используемой формой конденсатора для этого приложения является электролитический конденсатор.
Важные параметры для сглаживающего конденсатора | |
---|---|
Параметр | Указания по использованию конденсатора |
Номинальное напряжение конденсатора | Должно быть больше пикового напряжения на конденсаторе.Конденсатор должен выдерживать максимальное пиковое напряжение шины с некоторым запасом для обеспечения надежности. |
Значение емкости | Зависит от требуемого тока, но обычно может составлять несколько тысяч микрофарад. |
Допуск | Конденсаторыс широким допуском часто можно использовать, потому что точное значение не имеет значения. |
Диэлектрик | Электролитические конденсаторы обычно используются из-за их высокой стоимости.Танталовые конденсаторы, хотя они могут иметь достаточно высокие значения, не подходят из-за низкого уровня тока пульсаций, которые они могут выдерживать. Керамические конденсаторы с требуемой емкостью не выпускаются. |
Пульсации тока | В дополнение к конденсатору, имеющему достаточную емкость, чтобы удерживать необходимое количество заряда, он также должен быть сконструирован таким образом, чтобы обеспечивать необходимый ток. Если конденсатор становится слишком горячим при подаче тока, он может выйти из строя.Номинальные значения пульсирующего тока особенно важны для конденсаторов, используемых для сглаживания. Обычно используются электролитические конденсаторы, но даже для них необходимо проверить соответствие номинального тока пульсации. |
Использование конденсатора в качестве синхронизирующего элемента
В этом приложении конденсатор может использоваться с резистором или катушкой индуктивности в резонансной или зависимой от времени цепи. В этой функции конденсатор может присутствовать в фильтре, цепи настройки генератора или в элементе синхронизации для такой цепи, как a-stable, время, необходимое для зарядки и разрядки, определяет работу схемы
. Генераторы и фильтрыLC или RC широко используются во множестве схем, и, очевидно, одним из основных элементов является конденсатор.
В данном конкретном случае использования конденсатора одним из основных требований является точность, и поэтому исходный допуск важен для обеспечения того, чтобы схема работала на требуемой частоте. Температурная стабильность также важна для обеспечения того, чтобы рабочие характеристики контура оставались неизменными в требуемом диапазоне температур.
Важные параметры для временного использования конденсатора | |
---|---|
Параметр | Указания по использованию конденсатора |
Номинальное напряжение конденсатора | Фактическое пиковое напряжение на конденсаторе будет варьироваться в зависимости от конкретной цепи и напряжения шины.Необходимо оценивать каждый случай по существу, отмечая, что в некоторых случаях оно может быть выше ожидаемого. В большинстве случаев превышение напряжения на шине маловероятно. |
Значение емкости | Зависит от используемых частот и от катушки индуктивности или резистора, необходимых для получения требуемой рабочей частоты. |
Допуск | Жесткий допуск, обычно необходимый для обеспечения требуемой рабочей частоты.В этом приложении конденсаторы с хорошим выбором значений в пределах каждой декады могут быть преимуществом. |
Диэлектрик | Во многих приложениях для синхронизации важны потери в конденсаторе. Высокие потери приравниваются к низкому Q, и значения Q обычно должны быть как можно более высокими. Есть много диэлектриков, обеспечивающих подходящий уровень производительности. Многие керамические диэлектрики конденсаторов в наши дни способны обеспечить высокий уровень стабильности. Конденсаторы с пластиковой пленкой также могут предложить высокий уровень производительности.Также используются конденсаторы из серебряной слюды, особенно в ВЧ-цепях. Хотя эти серебряные слюдяные конденсаторы довольно дороги, они обладают высокими характеристиками: высокая добротность; высокая стабильность; низкие потери; и высокая терпимость. |
Температурная стабильность | Температурная стабильность конденсатора должна быть высокой для этих конденсаторных применений, потому что схема должна будет сохранять свою частоту в диапазоне рабочих температур. Если значение изменяется в зависимости от температуры, даже на небольшую величину, это может существенно повлиять на работу контура. |
Применения удерживающего конденсатора
В этом конкретном применении конденсатора заряд, удерживаемый конденсатором, используется для обеспечения питания цепи на короткое время.
В прошлом, возможно, использовались небольшие перезаряжаемые батареи, но они часто страдали от проблем с памятью и ограничением срока службы, поэтому конденсаторы могут стать жизнеспособной альтернативой.
В настоящее время суперконденсаторы обладают огромной емкостью, и теперь они достаточно велики, чтобы позволить многим схемам оставаться под напряжением в периоды отсутствия сетевого питания.Они относительно дешевы и предлагают отличный уровень производительности.
Важные параметры для удерживающего конденсатора | |
---|---|
Параметр | Указания по использованию конденсатора |
Номинальное напряжение конденсатора | Должен выдерживать максимальное рабочее напряжение с хорошим запасом надежности. |
Значение емкости | Может быть до нескольких фарадов. |
Допуск | Суперконденсаторы, широко используемые для этого конденсатора, имеют большой допуск.К счастью, это не проблема, так как это в первую очередь влияет на время, в течение которого может поддерживаться задержка. |
Варианты применения конденсаторов
Выбор конденсатора часто важен для работы схемы. Знание того, как будет использоваться конденсатор и как его характеристики и параметры связаны с работой схемы, означает, что некоторые конденсаторы работают лучше, чем другие, в различных приложениях.Выбор подходящего конденсатора для любого конкретного применения является важной и очень важной частью схемы.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
Что такое конденсатор? — Основы схемотехники
Конденсатор представляет собой электрический компонент, используемый для хранения энергии в электрическом поле. Он имеет два электрических проводника, разделенных диэлектрическим материалом, которые накапливают заряд при подключении к источнику питания. Одна пластина получает отрицательный заряд, а другая — положительный.
Конденсатор не рассеивает энергию, в отличие от резистора. Его емкость характеризует идеальный конденсатор.Это количество электрического заряда на каждом проводнике и разность потенциалов между ними. Конденсатор отключает ток в цепях постоянного и короткого замыкания в цепях переменного тока. Чем ближе два проводника и чем больше площадь их поверхности, тем больше его емкость.
Общие типы конденсаторов
- В керамических дисковых конденсаторах в качестве диэлектрического материала используется керамика. Керамический конденсатор заключен в капсулу с двумя выводами, которые выходят снизу и образуют диск. Керамический дисковый конденсатор не имеет полярности и подключается в любом направлении на печатной плате.В керамических конденсаторах относительно высокая емкость достигается при небольшом физическом размере из-за их высокой диэлектрической проницаемости. Его значение колеблется от пикофарад до одной или двух микрофарад, но его номинальное напряжение относительно низкое.
Трехзначный код, напечатанный на их корпусе, используется для определения емкости конденсатора в пикофарадах. Буквенные коды используются для обозначения их значения допуска, например: J = 5%, K = 10% или M = 20%. Например, керамический дисковый конденсатор выше с маркировкой 154 указывает на то, что имеется 15 и 4 нуля пикофарад, или 150 000 пФ (150 нФ).
Значение допуска керамического дискового конденсатора
- Электролитические конденсаторы часто используются, когда требуются большие значения емкости. Они обычно используются для уменьшения пульсаций напряжения или для приложений связи и развязки. Электролитические конденсаторы изготовлены из двух тонких пленок алюминиевой фольги с оксидным слоем в качестве изолятора. Они поляризованы и при неправильном подключении могут выйти из строя или взорваться. Этот тип конденсатора имеет большой допуск, но плохо работает на высоких частотах.
- Танталовые конденсаторы обычно используются для средних значений емкости. Их лучше всего использовать, когда имеют значение размер и производительность, но они обычно не имеют высоких рабочих напряжений и не обладают очень высокой допустимой нагрузкой по току. Танталовые конденсаторы поляризованы и могут взорваться под нагрузкой. У них очень низкая терпимость к обратному смещению. Маркировка танталовых конденсаторов с выводами
Маркировка танталовых конденсаторов SMD обычно состоит из трех цифр.Последний — множитель, а первые два — значащие цифры. Его значения указаны в пикофарадах. Таким образом, танталовый конденсатор SMD, показанный выше, имеет значение 47 x 10 6 пФ, что соответствует 47 мкФ.
Маркировка танталовых конденсаторов SMD Танталовые конденсаторытакже могут иметь прямую маркировку, как показано на рисунке выше.
- Серебряные слюдяные конденсаторы используются во многих радиочастотных цепях, таких как генераторы и фильтры. Серебряная слюда дает очень высокие характеристики с жесткими допусками, но с небольшими изменениями температуры.В нем используются серебряные электроды, которые наносятся непосредственно на слюду. Несколько слоев помогают получить требуемый уровень емкости, и на эту емкость влияет площадь, покрытая электродами.
- В пленочных конденсаторах в качестве диэлектрика используется тонкая пластиковая пленка. Пленочные конденсаторы используются во многих приложениях из-за их стабильности, низкой индуктивности и низкой стоимости. Они не поляризованы, поэтому подходят для сигналов переменного тока и питания. Они также сделаны с очень точными значениями емкости и сохраняют ее дольше, чем любой другой тип конденсатора.
- Конденсаторы переменной емкости — это конденсаторы с емкостью, которую можно изменять в зависимости от требований к определенному диапазону значений. Переменные конденсаторы состоят из металлических пластин. Среди этих пластин одна неподвижная, а другая подвижная. Емкость Thier может составлять от 10 до 500 пикофарад. Эти переменные резисторы находят множество применений, например, для настройки LC-цепей в радиоприемниках, для согласования импедансов в антеннах и т. Д.Есть два типа переменных конденсаторов — подстроечный конденсатор и подстроечный конденсатор.
Каркас этого конденсатора обеспечивает поддержку конденсатора, сделанного из слюды, и находящегося в нем «статора». С помощью вала ротор стремится вращаться, когда статор неподвижен. Когда пластины подвижного ротора входят в неподвижный статор, емкость, возможно, достигает максимального уровня. В противном случае значение емкости будет минимальным.
Подстроечный конденсаторКонденсатор этого типа имеет три вывода.Один соединен с неподвижной частью, другой — с частью, которая отвечает за движение, называемое поворотным, а другой вывод является общим.
Поляризованные и неполяризованные конденсаторы
Когда дело доходит до хранения и разгрузки, оба они работают по одному и тому же принципу. Однако есть много факторов, которые отличают их друг от друга.
- Различные диэлектрики — Диэлектрик — это материал между двумя пластинами конденсатора. В поляризованных конденсаторах в качестве диэлектрика используется электролит, что дает им большую емкость, чем у других конденсаторов того же объема.Однако полярные конденсаторы, произведенные из разных материалов и процессов электролита, будут иметь разные значения емкости. Использование полярных и неполяризованных конденсаторов зависит от обратимых свойств диэлектрика.
- Различные конструкции — чаще всего используются электролитические конденсаторы круглой формы; квадратные конденсаторы встречаются редко. Существуют также невидимые конденсаторы или распределенные конденсаторы, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.
- Условия использования и использование — внутренние материалы и конструкции обеспечивают большую емкость и высокочастотные характеристики полярных конденсаторов, что делает их очень подходящими для фильтров источников питания и т.п. Однако есть полярные конденсаторы с хорошими высокочастотными характеристиками — танталовый электролизный, который обычно не используется из-за своей дороговизны.
- Различная производительность — Максимальная производительность — одно из основных требований при выборе конденсатора.Если в источнике питания телевизора в качестве фильтра используется металлооксидный пленочный конденсатор, емкость и выдерживаемое напряжение должны соответствовать требованиям фильтра; внутри корпуса можно установить только блок питания. Следовательно, в фильтре можно использовать только полярные конденсаторы, а полярная емкость необратима. Обычно электролитические конденсаторы имеют емкость более 1 МФ; лучше всего использовать для связи, развязки, фильтрации источника питания и т. д. Неполярные конденсаторы, как правило, менее 1 MF, что включает только резонанс, связь, выбор частоты, ограничение тока и т. д.Однако существуют также неполярные высоковольтные конденсаторы большой емкости, которые в основном используются для компенсации реактивной мощности, фазового сдвига двигателя и фазового сдвига мощности с преобразованием частоты.
- Различная емкость — конденсаторы одинаковой емкости имеют разную емкость в зависимости от их диэлектриков.
Общее применение конденсаторов
- Связь по переменному току / блокировка по постоянному току — компонент позволяет только сигналам переменного тока проходить от одного участка цепи к другому, блокируя любое статическое напряжение постоянного тока.Они обычно используются для разделения компонентов переменного и постоянного тока в сигнале. В этом методе необходимо убедиться, что полное сопротивление конденсатора достаточно низкое. Номинальное напряжение конденсатора должно быть больше пикового напряжения на конденсаторе. Обычно конденсатор может выдерживать напряжение питающей шины с некоторым запасом для обеспечения надежности.
- Развязка источника питания — Конденсатор используется для развязки одной части схемы от другой.Развязка выполняется, когда входящий линейный сигнал проходит через трансформатор и выпрямитель; результирующая форма волны не является гладкой. Оно варьируется от нуля до пикового напряжения. При применении к цепи маловероятно, что это сработает, потому что обычно требуется постоянное напряжение.
- Фильтрация шума переменного тока от цепей постоянного тока — Любые сигналы переменного тока, которые могут быть в точке смещения постоянного тока, шине питания или других узлах, которые должны быть свободны от определенного изменяющегося сигнала, должны быть удалены конденсатором.Он также должен выдерживать напряжение питания, подавая и поглощая уровни тока, возникающие из-за шума на рельсе.
- Фильтрация аудиосигнала — необходимо учитывать ВЧ характеристики конденсатора. Эта производительность может отличаться на более низких частотах. Здесь обычно используются керамические конденсаторы, поскольку они имеют высокую частоту собственного резонанса, особенно конденсаторы для поверхностного монтажа, которые очень малы и не имеют выводов, которые могут вызвать какую-либо индуктивность.
Что такое суперконденсаторы?
Он также известен как двухслойный электролитический конденсатор или ультраконденсатор. Суперконденсатор может хранить большое количество энергии. В частности, от 10 до 100 раз больше энергии на единицу массы или объема по сравнению с электролитическими конденсаторами. Он имеет более низкие пределы напряжения, которые перекрывают разрыв между электролитическими конденсаторами и аккумуляторными батареями.
Некоторые общие области применения суперконденсаторов
- Ветряные турбины — суперконденсаторы помогают сгладить прерывистую энергию, вырабатываемую ветром.
- Двигатели, приводящие в движение электромобили, работают от источников питания, рассчитанных на сотни вольт, что означает, что для хранения нужного количества энергии в типичном рекуперативном тормозе необходимы сотни последовательно соединенных суперконденсаторов.
- Электрические и гибридные транспортные средства — суперконденсаторы используются в качестве временных накопителей энергии для рекуперативного торможения, при этом энергия транспортного средства, как правило, тратится впустую при остановке, кратковременно сохраняется и затем повторно используется, когда он снова начинает движение.
Суперконденсаторы и кривая разряда батареи
Кривая разряда батареи экспоненциальная. Как видите, экспоненциальный разряд обеспечивает стабильную мощность до конца. Энергия остается высокой на протяжении большей части заряда, а затем быстро падает, когда заряд иссякает .
Кривая разряда суперконденсатора линейная. Как видите, линейный разряд не позволяет полностью использовать энергию. Он обеспечивает самую высокую мощность в начале .
Что такое емкость? | Fluke
Емкость — это способность компонента или схемы собирать и накапливать энергию в виде электрического заряда.
Конденсаторы — это устройства накопления энергии, доступные во многих размерах и формах. Они состоят из двух пластин из проводящего материала (обычно тонкого металла), зажатых между изолятором из керамики, пленки, стекла или других материалов, даже воздуха.
Изолятор, также известный как диэлектрик , увеличивает зарядную емкость конденсатора.Конденсаторы иногда называют конденсаторами в автомобильной, морской и авиационной промышленности.
Внутренние пластины подключены к двум внешним клеммам, которые иногда бывают длинными и тонкими и могут напоминать крошечные металлические антенны или ножки. Эти клеммы можно включить в цепь.
Конденсаторы и батареи накапливают энергию. В то время как батареи выделяют энергию постепенно, конденсаторы разряжают ее быстро.
Как работает конденсатор?
Конденсатор собирает энергию (напряжение) при протекании тока через электрическую цепь.Обе пластины содержат одинаковые заряды, и когда положительная пластина накапливает заряд, равный заряд стекает с отрицательной пластины.
Когда цепь отключена, конденсатор сохраняет собранную им энергию, хотя обычно происходит небольшая утечка.
Различные конденсаторы (показаны цветом) в печатной плате.Емкость выражается как отношение электрического заряда на каждом проводе к разности потенциалов (т. Е. Напряжению) между ними.
Емкость конденсатора измеряется в фарадах (F), единицах, названных в честь английского физика Майкла Фарадея (1791–1867).
Фарад — это большая емкость. Большинство бытовых электрических устройств содержат конденсаторы, которые производят только доли фарада, часто тысячные доли фарада (или микрофарады, мкФ) или даже пикофарады (триллионные доли, пФ).
Суперконденсаторы, тем временем, могут накапливать очень большие электрические заряды в тысячи фарад.
Как увеличить емкость
Емкость можно увеличить, если:
- Пластины (проводники) конденсатора расположены ближе друг к другу.
- Пластины большего размера обеспечивают большую площадь поверхности.
- Диэлектрик — лучший изолятор для данной области применения.
В электрических цепях конденсаторы часто используются для блокировки постоянного тока (dc), позволяя протекать переменному току (ac).
Некоторые цифровые мультиметры предлагают функцию измерения емкости, поэтому технические специалисты могут:
- Определить неизвестный или немаркированный конденсатор.
- Обнаружение обрыва или короткого замыкания конденсаторов.
- Измерьте конденсаторы напрямую и отобразите их значение.
Ссылка: Принципы цифрового мультиметра Глен А. Мазур, American Technical Publishers.
Роль конденсатора в электронных компонентах?
Идеальный партнер для электроники
В большинстве электронных устройств используются конденсаторы, которые являются бесценной частью электронных продуктов. Конденсаторы очень популярны во многих приложениях, таких как электронные схемы, силовые цепи и блоки питания.
Конденсатор упоминается как «Большая тройка пассивных компонентов» вместе с сопротивлением и катушкой, которые составляют основу электронных схем. Пассивные компоненты — это электронная часть, которая получает энергию для потребления, хранения и поставки.
В отличие от интегральных схем (ИС), у него нет активной операции, когда малая мощность усиливается для постоянного вывода мощности. Вы также можете рассматривать конденсатор как простую деталь для приема и подачи электричества. Однако, что более важно, такие пассивные компоненты являются незаменимыми частями для точной работы активных компонентов.
Три пассивных компонента также называются LCR, что означает катушка, конденсатор и сопротивление.
Состоит из двух металлических пластин и изолятора, базовая модель конденсатора
[Рис.1] Основная структура конденсатораКонденсатор в основном состоит из изолятора и двух металлических пластин, которые прикреплены с обеих сторон изолятора. Изоляторы не проводят ток. Изолятор, используемый для конденсаторов, называется диэлектриком. Пока электричество течет, положительные и отрицательные заряды переносятся внутри проводника.
Заряженный электричеством, поток заряда запускается, но он блокируется, поскольку между металлическими пластинами находится изолятор. Затем заряды накапливаются только на одной из двух металлических пластин. Между тем, другая металлическая пластина, прикрепленная к изолятору, имеет противоположный заряд.
Таким образом, конденсаторы имеют структуру для хранения электричества между двумя металлическими пластинами. В качестве изоляционных материалов используются газы, масла, керамика и смолы. Что касается форм металлических пластин, существует большое разнообразие типов с параллельными пластинами, пленкой, многослойной и т. Д.Количество накопленных зарядов, а также поддерживаемые частоты различаются в зависимости от типов изоляторов или конструкции конденсаторов. Итак, необходимо выбрать подходящий конденсатор, отвечающий вашим требованиям.
Значение конденсаторов
В принципе конденсаторы состоят из двух важных частей.
- Накопление электрического заряда (электричества)
- переменный ток протекает, но не постоянный ток
Подробнее о хранении электроэнергии см. В вышеупомянутой базовой конструкции конденсатора.
Поскольку электрический заряд накапливается между металлическими пластинами, передача электрического заряда прекращается, и постоянный ток перестает течь. Однако, другими словами, до тех пор, пока конденсаторы не будут полностью заряжены, даже постоянный ток может протекать в течение короткого периода времени. В случае переменного тока направление тока переключается с определенным интервалом, а затем конденсатор заряжается и разряжается. Таким образом, электричество выглядит как проходящее через конденсатор.
Соответственно, чем выше частота переменного тока, тем легче проходит через конденсаторы.Таким образом, конденсаторы играют в электронной схеме следующие три важные роли.
1) Зарядка и разрядка электрических зарядов
Конденсаторы могут заряжаться и разряжаться благодаря своей конструкции. Конденсаторы, обладающие электрическим зарядом и разрядом, также могут использоваться в качестве источника питания. Вспышки камеры используют эту особенность конденсаторов.
Чтобы получить сильный свет, к нему должно быть немедленно приложено высокое напряжение. Между тем, такое высокое напряжение в цепи для работы камеры не требуется.Кроме того, имеется подходящая конструкция конденсатора, в которой такое высокое световое излучение обеспечивается мгновенной разрядкой электрического заряда, накопленного в конденсаторе.
2) Поддержание напряжения на прежнем уровне
Помимо вышеупомянутой особенности, конденсаторы также имеют функции для поддержания напряжения на определенном уровне. Конденсаторы полезны для уменьшения пульсации напряжения. Когда на параллельную цепь подается высокое напряжение, конденсатор заряжается, а с другой стороны, он разряжается низким напряжением.
В то время как электричество выходит переменным током, большинство электронных схем работает с постоянным током. Следовательно, переменный ток преобразуется в постоянный ток через схему выпрямителя, которая преобразует переменный ток в постоянный, но преобразованный постоянный ток представляет собой нестабильный ток с пульсациями на этой стадии. Чтобы справиться с этим, используется конденсатор для коррекции пульсаций и постоянного поддержания напряжения.
3) Удаление шума
Что касается шумоподавления, то функция конденсатора, пропускающего переменный ток, но постоянный ток, полезна для удаления шума.В общем, поскольку шум в постоянном токе является высокочастотной составляющей переменного тока, он имеет тенденцию легко проходить через конденсатор.
Путем вставки ответвленной цепи между входом и выходом формируется земля для подключения к конденсатору. После этого переменная составляющая проходит только через конденсатор, а затем постоянный ток течет в выходной цепи.
Типы конденсаторов
- Алюминиевый электролитический конденсатор
- Конденсатор изготовлен из алюминия и другого металла.Поскольку оксидная пленка блокирует электричество, она используется в качестве диэлектрического материала, образуя поверхность алюминия. Конденсаторы этого типа обладают большой емкостью по доступной цене. Поэтому он широко используется в качестве конденсатора большой емкости. Однако у него есть некоторые слабые места, такие как плохие частотные характеристики, больший размер, потеря диэлектрика из-за утечки жидкости.
- Танталовый конденсатор
- В конденсаторе в качестве анода используется тантал, а в качестве диэлектрического материала — пятиокись тантала.Он имеет относительно большую емкость и меньше по размеру, чем алюминиевый электролитический конденсатор. Кроме того, конденсатор превосходит алюминиевый конденсатор по характеристикам тока утечки, частотным характеристикам, конденсаторам и температурным характеристикам.
- Электрический двухслойный конденсатор
- Конденсаторы с двойным электрическим слоем имеют чрезвычайно большую емкость. Он более чем в 1000–10 000 раз превосходит алюминиевые электролитические конденсаторы, и его можно использовать многократно в течение длительного периода без ограничений, таких как количество циклов заряда / разряда.Благодаря уникальной особенности конденсатор можно использовать многократно. Конденсаторы с двойным электрическим слоем имеют электрические заряды, ориентированные на границе электролита и электрода, который называется «двойным электрическим слоем» и имеет размер одной молекулы. Слой используется в качестве диэлектрического материала конденсаторов с двойным слоем. Цена на конденсаторы с двойным электрическим слоем относительно высока по сравнению с другими.
- Керамический конденсатор
- Конденсатор в основном делится на три типа в зависимости от типа керамики, используемой в качестве диэлектрического материала: тип с низкой диэлектрической проницаемостью, тип с высокой диэлектрической проницаемостью и тип полупроводника.Основная особенность конденсатора заключается в том, что увеличение напряжения приводит к изменению его емкости. Небольшой конденсатор термостойкий, хотя он хрупкий и может быть поврежден или сломан.
- Пленочный конденсатор
- В этом типе пленки, такие как полиэстер и полиэтилен, используются в качестве диэлектрического материала. Полиэфирные, полипропиленовые и другие пленки зажаты между электродной фольгой с обеих сторон, и они намотаны в цилиндрическую форму. Неполярный конденсатор, который больше керамического, имеет высокое сопротивление изоляции и отсутствие электрических потерь.Он также обеспечивает высокую надежность с отличными частотными и температурными характеристиками.
- Конденсатор слюдяной
- В качестве диэлектрического материала конденсатора используется слюда — природный минерал. Слюда идеально подходит для конденсатора, так как обладает высокими диэлектрическими свойствами и может отслаиваться. Слюдяные конденсаторы обладают превосходными характеристиками, такими как сопротивление изоляции, тангенс угла диэлектрических потерь, частотные и температурные характеристики, хотя есть некоторые недостатки в том, что они дороги и имеют большой размер.
Для получения дополнительной информации о типах конденсаторов перейдите по ссылке ниже.
Виды конденсаторов. Базовые знания компонентов