В чем измеряются единицы емкости конденсаторов
Конденсатор представляет собой электрическое устройство, которое обладает возможностью накапливать заряд, состоит из обкладок и слоя диэлектрика между ними. Одной из важнейших характеристик прибора является ёмкость.
Конденсатор
Единица измерения емкости
В Международной системе СИ за единицу измерения ёмкости конденсатора принимают фарад:
[C] = Ф, где С – обозначение ёмкости устройства.
Международное обозначение – F. Названа в честь английского физика М.Фарадея и используется в Международной системе СИ с 1960г.
Формула для расчёта электроёмкости записывается следующим образом:
С = Dq / U (1), где:
- Dq – заряд (измеряется в кулонах, или Кл),
- U – разность потенциалов между обкладками (измеряется в вольтах или В).
Следовательно, 1Ф = 1Кл / 1В.
То есть конденсатор ёмкостью в 1 фарад накапливает на обкладках заряд, равный 1 кулон, создавая напряжение между ними, равное 1 вольт.
В фарадах измеряются электроёмкости проводников и конденсаторов.
Согласно правилам написания, принятых в СИ, если название происходит от фамилии учёного, то полное её название «фарад» пишется с маленькой (строчной) буквы, а её сокращённое название «Ф» – с прописной.
Единица измерения электроёмкости в других системах
Помимо СИ, есть ещё устаревшая система СГС, которой пользовались ранее. Первые три символа в названии обозначают:
- С – сантиметр,
- Г – грамм,
- С – секунда.
Существует две разновидности системы: СГСЭ и СГСМ. Символ Э в СГСЭ обозначает электростатическую систему, а символ М – магнитную. В системе СГСЭ емкость конденсатора измеряется в сантиметрах, или см. Для пересчёта используют соотношение:
- 1см » 1,1126 · 10-12Ф,
- 1Ф » 8,99 · 1011 статФ.
Сантиметр по-другому может называться статфарад, или статФ.
В системе СГСМ единицей измерения является абфарад, или абФ. Абфарад связан с фарадом следующим образом:
1абф = 1·109 Ф = 1ГФ.
Для перевода из СГСЭ и СГСМ в СИ в сети Интернет имеются специальные сервисы, которые позволяют автоматизировать эти действия.
Онлайн переводчик из СГС в СИ
Фарады через основные единицы системы СИ
Для выражения фарады через основные единицы СИ воспользуемся следующими формулами.
Единица измерения заряда вычисляется как:
Dq = I · Dt (2), где:
- I – сила тока (измеряется в амперах или А),
- Dt – время прохождения заряда (измеряется в секундах или с).
В свою очередь, напряжение определяется как работа, которую нужно выполнить для перемещения заряда в электростатическом поле:
U = А / Dq (3), где А – работа по перемещению заряда, определяется в джоулях, или Дж.
Из механики известно, что:
А = F · s = m · a · s (4), где:
- m – масса, измеряется в килограммах, или кг,
- s – перемещение, рассчитывается в метрах, или м,
- a – ускорение, определяется в м/с2.
Из формул 1-4 имеем:
Таким образом, 1 фарад через единицы СИ определяется как:
Кратные единицы ёмкости
При покупке радиодеталей невозможно купить конденсатор с электроёмкостью даже в несколько единиц фарад. Они выпускаются с гораздо меньшими параметрами. Это объясняется тем, что ёмкость в 1 фарад является очень большой величиной. Например, такую электроёмкость может иметь изолированный проводник в форме шара с радиусом в 13 раз больше радиуса Солнца.
Именно по этой причине для характеристики емкостных устройств применяют дольные единицы, которые рассчитываются как доля от определённого числа фарад. Для обозначения используют приставки, которые применяются для сокращения длины записываемого числа.
Таблица перевода дольных единиц
Приставка | Обозначение | Множитель | |
---|---|---|---|
деци | дФ | dF | 10^-1 |
санти | сФ | sF | 10^-2 |
милли | мФ | mF | 10^-3 |
микро | мкФ | F или uF | 10^-6 |
нано | нФ | nF | 10^-9 |
пико | пФ | pF, mmF, uuF | 10^-12 |
фемто | фФ | fF | 10^-15 |
атто | аФ | aF | 10^-18 |
зепто | зФ | zF | 10^-21 |
йокто | иФ | yF | 10^-24 |
Таким образом, если параметр указывается равным 5 uF, то для перевода в фарады необходимо умножить цифру 5 на соответствующий множитель. Получаем 5 uF = 5 · 10-6 F.
В радиотехнике наиболее популярны модели, ёмкость которых измеряется в микрофарадах, нанофарадах (микромикрофарадах) или пикофарадах.
Также промышленность выпускает устройства ионисторы, которые представляют собой конденсаторы, имеющие двойной электрический слой. У некоторых ионисторов ёмкость может измеряться в килофарадах.
Ионистор с характеристикой в 1F
Маркировка конденсаторов в зависимости от ёмкости
Кодировка маленьких по размерам устройств
Существует специальная цифровая кодировка. Её используют для маркировки маленьких по размерам приборов. Кодировка электроёмкости выполняется согласно стандарту EIA.
Внимание! Ёмкость небольших конденсаторов, например, керамических или танталовых, обычно измеряется в пикофарадах, а больших, например, алюминиевых электролитических, в микрофарадах.
Существует специальная таблица таких обозначений, с помощью которой можно быстро подобрать такую же или аналогичную радиодеталь по соответствующему коду. Её можно свободно найти в Интернете.
В старых маркировках использовалась следующая кодировка. Если нанесено целое двузначное число, значит, значение ёмкость измеряется в пикофарадах, а если нанесена десятичная дробь, значит, параметр определяется в микрофарадах.
Например, радиодеталь с параметром 1000 nF =1 uF будет иметь маркировку 105, с параметрами 820 nF = 0, 82 uF – маркировку 824, а 0,27 uF = 270nF будет обозначено кодом 274.
В настоящее время, если на устройстве нанесено значение, не содержащее буквы, то оно обозначает ёмкость в пикофарадах. Если перед цифрами или после них стоит символ «н» («n»), то это означает, что значение даётся в нанофарадах, если «мк» («m», «u») – микрофарадах. В том случае, когда символ располагается перед числом, цифры в нём обозначают сотые доли. Например, n61 расшифровывается как 0,61нФ. Если символ располагается посередине значения, то на место символа нужно поставить запятую. Сам символ покажет единицы измерения. Например, 5u2 обозначает 5,2 мкФ.
Также в настоящее время используется цифровая кодировка, содержащая три числа. Первые две цифры являются числовыми характеристиками ёмкости. Параметр при этом измеряется в пикофарадах. Если значение меньше 1, то первая цифра – 0. Третья цифра определяет множитель, на который нужно умножить число, получаемое из первых двух цифр.
В случае, когда последнее число находится в диапазоне от 0 до 6, к значению дописывают количество нулей, равное третьей цифре. Например, если указано число 270, то устройство имеет параметр 27 пФ, если 271 – то на 270 пФ.
Трёхзначная кодировка
Если число равно 8, то в этом случае множитель равен 0,01. То есть если указано число 278, то ёмкость будет равна 27 · 10-2 = 0,27. Когда третье число равно 9, то множитель будет 0,1. Например, маркировка 109 указывает на электроёмкость в 1 пФ.
Если в кодировке присутствует символ «R», то параметр указывается в пикофарадах, а символ показывает место расположения запятой. Например, 4R1 расшифровывается как 4,1пФ.
Кодировка больших по размерам устройств
На больших по габаритным размерам конденсаторах маркировка наносится сверху на корпус, причём в данном случае будет присутствовать полная информация о параметрах устройства.
В обозначениях может встречаться значение MF. В приставках Международной системы единиц СИ если перед единицей измерения располагается большая буква М, то это обозначает, что должен использоваться множитель 106. В случае с конденсатором это всё равно будет обозначать микрофарады.
Также может встречаться обозначение МFD или mfd. В данном случае сочетание символов «fd» обозначает farad. Таким образом, если на корпусе написано 5 mfd, то значит, что конденсатор используется на 5 микрофарад.
Маркировка больших по размерам конденсаторов
Таким образом, при ремонте электросхемы, содержащей конденсатор, нужно правильно читать маркировку устройства и соответственно информации подбирать нужный прибор.
Видео
Оцените статью:В чём измеряется ёмкость конденсатора: как измерить
Конденсаторы являются важнейшими пассивными компонентами электрических цепей. Любая электрическая схема содержит в своем составе такие элементы различных типов и номиналов.
Что это такое
Конденсатор — электрический двухполюсник (элемент с двумя выводами) с постоянным или изменяемым значением емкости. Обладает бесконечно большим сопротивлением постоянному току.
Простейший конденсатор
Важно! Бесконечно большим сопротивлением обладает идеальный конденсатор. Реальные устройства имеют ток утечки, который необходимо учитывать во многих случаях применения.
Основное назначение устройства — накопление энергии электрического поля и заряда.
Обратите внимание! Несмотря на то, что конденсаторы являются самостоятельными элементами, емкостью обладают любые другие устройства, даже диод и транзистор.
Характеристики
Как элемент электрической цепи, конденсатор имеет такие параметры:
- Электрическая емкость, которая характеризует свойство накапливания электрического заряда.
- Номинальное напряжение. Значение напряжения на обкладках, при котором элемент в течении срока службы сохраняет свои параметры.
При работе с электрическими цепями необходимо учитывать паразитные параметры, которые являются нежелательными:
- Ток утечки, который появляется из-за несовершенства диэлектрика, качества изоляции обкладок.
- Последовательное эквивалентное сопротивление, которое складывается из сопротивления выводов, сопротивление контакта вывод-обкладка, внутренних свойств диэлектрика.
- Эквивалентная индуктивность, в которую входят индуктивность выводов и обкладок.
- Тангенс угла диэлектрических потерь, характеризующий электрические потери в конденсаторе на высоких частотах.
- Температурный коэффициент емкости, показывающий, как она меняется в зависимости от температуры.
- Паразитный пьезоэффект, проявляющийся как генерация напряжения при физическом воздействии на диэлектрик (тряска, вибрация).
Эквивалентная схема
Устройство конденсатора
Простейший конденсатор состоит из двух металлических пластин (обкладок), разделенных слоем диэлектрика. Емкость (способность накапливать электрический заряд) увеличивается с ростом площади пластин и с уменьшением толщины изолирующего слоя.
Параметры простейшей конструкции слишком малы. Для ее увеличения есть два пути:
- Увеличение площади обкладок, что приводит к увеличению габаритов.
- Уменьшение толщины диэлектрика, приводящее к снижению номинального рабочего напряжения из-за электрического пробоя.
Для того, чтобы избежать перечисленных проблем, разработаны специальные конструкции. Например, если сделать обкладки небольшой ширины и большой длины, то их можно вместе с гибким диэлектриком свернуть в плотный цилиндр, получится цилиндрический конденсатор. Размещая пластины с диэлектриком попеременно, в виде слоеного пирога и чередуя подключение к выводам, получается прямоугольный компонент с большой эффективной площадью обкладок.
Разные типы конструкции
Еще один путь — использование в качестве диэлектрика тонкого оксидного слоя на поверхности металлической фольги и раствора проводящего электролита в качестве второй обкладки. Таким образом получается электролитический конденсатор, конструкция которого обладает самой большой емкостью.
Важно! Такие устройства имеют недостаток — соблюдение полярности подключения, что ограничивает их применение только в цепях постоянного тока в качестве сглаживающих фильтров.
В чем измеряется
Единицей емкости служит фарада. Но это очень большая величина и лишь некоторые специальные типы устройств имеют величину несколько фарад.
Обычно используются кратные величины:
- Микрофарада — 10-6 фарады— мкФ, µF.
- Нанофарада — 10-9 фарады— нФ, nF.
- Пикофарада — 10-12 фарады— пФ, pF.
Довольно часто в устройствах встречается последовательное и параллельное соединение. Как определить емкость соединенных конденсаторов? Результирующее значение для таких соединений рассчитывается по-разному.
Параллельное и последовательное соединение
Параллельное соединение
При параллельном соединении емкости всех элементов суммируется. Номинальное рабочее напряжение равняется наименьшему из соединенных элементов
Последовательное соединение
В данном случае, чтобы узнать результирующую емкость, придется прибегнуть к расчетам.
Для двух элементов:
С = С1·С2/(С1+С2)
Для трех элементов:
С=(С1·С2+С1·С3+С2·С3)/(С1+С2+С3)
Напряжение равняется сумме напряжений на каждом элементе.
Важно! Напряжение на отдельных конденсаторах распределяется неравномерно, а пропорционально емкости.
Приборы для измерения емкости
Специальные приборы для измерения емкости используют различные принципы. Наиболее распространены такие:
- Измерение реактивного сопротивления;
- Измерение частоты резонанса колебательного контура.
Первый тип приборов наиболее распространен. Принцип их работы основан на том, что конденсатор обладает реактивным сопротивлением, обратно пропорциональным частоте приложенного напряжения. То есть, чем выше частота сигнала, тем меньше сопротивление.
На клеммах прибора присутствует напряжение заданной величины и частота, а шкала уже откалибрована в единицах емкости, поэтому никаких вычислений производить не надо, за исключением учета положения входных переключателей.
Цифровые приборы для измерения емкости в эксплуатации еще проще. На цифровом индикаторе сразу показывается значение измеряемого параметра.
Цифровой измеритель
Для устройств второго типа используется явление резонанса — скачкообразное измерение параметров колебательного контура из соединенных конденсатора и катушки индуктивности.
Для определения емкости измеряемый элемент подключается к катушке индуктивности с точно определенными параметрами. Изменяя частоту сигнала, добиваются резонанса и отсчитывают в этот момент емкость конденсатора на шкале прибора.
Также как и первые, эти устройства могут быть аналоговыми или цифровыми.
Наиболее часто используются комбинированные измерительные устройства, которыми можно измерять дополнительно индуктивность и сопротивление — RLC-метры.
Измеритель RLC
Специальный измеритель может определять эквивалентное последовательное сопротивление (ЭПС, ESR) и тангенс угла потерь.
Оценить емкость электролитического конденсатора можно, используя обычный мультиметр в режиме измерения сопротивления. Время заряда косвенно будет свидетельствовать о величине емкости (Чем больше величина, тем медленнее будут изменения показаний).
Как правильно измерять емкость
Как измерить ёмкость конденсатора, не имея специального оборудования? Нужно определить величину тока, протекающую через цепь с конденсатором и падение напряжения на нем. Значение измеряемого параметра вычисляют на основании формулы:
Xc = 1/2·π·f·C,
Где Хс — реактивное сопротивление конденсатора,
π — число пи, равное 3.14,
f — частота тока.
Из приведенной формулы можно найти значение емкости:
С = 1/2·π·f·Хс
Реактивное сопротивление Хс находят из показаний измерительных приборов:
Хс = U/I.
Самостоятельное измерение емкости конденсаторов при помощи простейших приборов достаточно трудоемкое и не дает необходимой точности. Лучшие результаты можно получить, используя специализированные измерительные устройства.
В чем измеряется емкость конденсатора?
Давайте начнем с предложенной Вами задачи. Основой для ее решения является формула, определяющая емкость:
Переведем данные из задачи в единицы системы СИ: нКл=Кл; кВ=В. Теперь можно вычислить емкость конденсатора:
Теперь разберемся, в чем измеряется емкость конденсатора. Емкость конденсатора, как и емкость любого другого проводящего тела, измеряется в фарадах. Обозначается фарада буквой (Ф). Название данная единица получила в честь М. Фарадея. 1Ф равен емкости конденсатора, если заряд его пластин равен 1 Кл, а напряжение между обкладками 1 В. Если фарад выражать через основные единицы системы СИ, то получим: Ф=Aкг м.
Поэтому часто на практике используют пикофарады (пФ): 1 пФ=Ф; нанофарады: 1 нФ=Ф; микрофарфды 1 мкФ=Ф.
Тогда ответ в нашей задаче удобнее записать как пФ.
Подробнее о конденсаторах можно прочитать в ответах на вопросы: «Как работает конденсатор?», «Каково обозначение конденсаторов на схеме?», «Для чего нужен конденсатор?», «Как измерить емкость конденсатора?».
Ответы@Mail.Ru: единицы измерения энергии конденсатора?(W)
Электроемкость. В системе СИ измеряется в фарадах.
в фарадах и микрофарадах…
Накопленой энергии или все-таки емкости? В первом случае Джоуль (Дж) , во втором Фарада (Ф) и их производные единицы
Вопрос напоминает мне мою школьную учительницу по химии в шестом классе. Ее первый вопрос — если выжать воду из творога, она будет такая же, как из под крана, или другая? Я ответил другая, потом долго было стыдно 🙂
В чем еще помимо Кулонов измеряется заряд конденсатора? Пишется так «C». Равны ли они между собой?
Заряд всегда измеряется в кулонах чувак. «Равны ли они между собой? » — кто и кто равны ли?
Он измеряется не кулонами, а ФАРАДАМИ, МИКРОФАРАДАМИ и тд….
может энергия запасенная конденсатором?
ЗАРЯД КОНДЕНСАТОРА — электрический заряд на одной из обкладок конденсатора (так как на обкладках конденсатора заряды равны по величине, но противоположны по знаку, то сумма их всегда равна нулю) . Величина заряда есть Q = CU, где С — ёмкость конденсатора, а U — разность потенциалов мезжу его обкладками. Словарь Бензаря
С — это емкость конденсатора, которая зависит только от формы его и среды между пластинами. заряд на нем равен q=Cu, где u разность потенциалов на пластинах. там написанно С=100пФ=100*10^(-12)Ф=10^(-10)Ф
С — это не заряд, а ёмкость конденсатора. Измеряется в Фарадах.
C — ёмкость. G — заряд. Емкость конденсатора определяют по формуле: C=g/U, где g-заряд на одной обкладке конденсатора, а U-напряжение между обкладками. Заряды на обкладках равны, но противоположны по знаку. Ёмкость конденсатора можно рассчитать окольным путём. Для этого через конденсатор пропускают переменный ток частотой «w» и измеряют реактивное сопротивление: <img src=»//otvet.imgsmail.ru/download/42c614ddaf1fb116698ea3ed1ff0b464_i-82.jpg» > <img src=»//otvet.imgsmail.ru/download/42c614ddaf1fb116698ea3ed1ff0b464_i-83.jpg» > <img src=»//otvet.imgsmail.ru/download/42c614ddaf1fb116698ea3ed1ff0b464_i-84.jpg» >
заряд может измерятся в Абсолютных электростатических единицах заряда Абсолютная электростатическая единица заряда – это такой заряд, который действует на равный ему заряд, расположенный на расстоянии 1 см в вакууме, с силой в 1 дину По вашей ссылке перешел и там какая то фигня ))
Qc(t) * v C, náboj kondenzátoru v čase t ПЕРЕВОД — в кулонах, заряд конденсатора в момент t