Какие виды конденсаторов бывают: Виды конденсаторов и их применение – Что такое конденсатор, его конструкция, принцип работы и виды простым языком

Типы конденсаторов

Конденсатор — один из самых распространенных электронных компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

В основном типы конденсаторов разделяют:

  • По характеру изменения емкости — постоянной емкости, переменной емкости и подстроечные.
  • По материалу диэлектрика — воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
  • По способу монтажа — для печатного или навесного монтажа.

Керамические конденсаторы

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром).

Карамические конденсаторы

Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере. Диапазон емкости этого типа конденсаторов — от нескольких пикоФарад (пФ или pF) до нескольких микроФарад (мФ или uF). Однако их номинальное напряжение, как правило, невысокое.

Маркировка керамических конденсаторов обычно представляет собой трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить.

Например, маркировка 103 на керамическом конденсаторе означает 10 000 пикоФарад или 10 наноФарад. Соответственно, маркировка 104 будет означать 100 000 пикоФарад или 100 наноФарад и.т.д. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%.

Пленочные конденсаторы

Емкость конденсатора зависит от площади обкладок. Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.

В качестве диэлектрика пленочных конденсаторов обычно используют тефлон, металлизированную бумагу, майлар, поликарбонат, полипропилен, полиэстер. Диапазон емкости этого типа конденсаторов составляет примерно от 5pF (пикофарад) до 100uF (микрофарад). Диапазон номинального напряжения пленочных конденсаторов достаточно широк . Некоторые высоковольтные конденсаторы этого типа достигают более 2000 вольт.

Различают два вида пленочных конденсаторов по способу размещения слоев диэлектрика и обкладок – радиальные и аксиальные.

Радиальный и аксиальный тип пленочных конденсаторов

Маркировка емкости пленочных конденсаторов происходит по тому же принципу что и керамических. Это трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%. Например 103J означает 10 000 пикоФарад +/- 5% или 10 наноФарад +/-5%.

Однако довольно часто разные производители кроме значения емкости и точности добавляют символы номинального напряжения, температуры, серии, класса, корпуса, и других особых характеристик. Данные символы могут отличатся и быть размещены в разном порядке, в зависимости от производителя.

Поэтому для разшифровки маркировки пленочных конденсаторов желательно пользоваться документацией (Datasheets).

Электролитические конденсаторы

Электролитические конденсаторы обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.

Обратим внимание, что электролит хорошо проводит электрический ток! Это полностью противоречит принципу устройства конденсатора, где два проводника должны быть разделены диэлектриком.

Дело в том, что слой диэлектрика создается уже после изготовления конструкции компонента. Через конденсатор пропускают ток, и в результате электролитического окисления на одной из обкладок появляется тонкий слой оксида алюминия или оксида тантала (в зависимости из какого металла состоит обкладка). Этот слой представляет собой очень тонкий и эффективный диэлектрик, позволяющий электролитическим конденсаторам превосходить по емкости в сотни раз «обычные» пленочные конденсаторы.

Электролитические конденсаторы

Недостатком вышеописанного процесса окисления является полярность конденсатора. Оксидный слой обладает свойствами односторонней проводимости. При неправильном подключении напряжения оксидный слой разрушается, и через конденсатор может пойти большой ток. Это приведет к быстрому нагреву и разширению электролита, в результате чего может произойти взрыв конденсатора! Поэтому

необходимо всегда соблюдать полярность при подключении электролитического конденсатора. В связи с этим на корпусе компонента производители указывают куда подключать минус.

По причине своей полярности электролитические конденсаторы не могут быть использованы в цепях с переменным током. Но иногда можно встретить компоненты состоящие из двух конденсаторов, соединенными минус-к-минусу и формирующие «не полярные» конденсаторы. Их можно использовать в цепях с переменным током малого напряжения.

Емкость алюминиевых электролитических конденсаторов в колеблется основном от 1 мкФ до 47000 мкФ. Номинальное напряжение — от 5В до 500В. Допуск обычно довольно большой — 20%.

Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия — у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.

Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.

Переменные конденсаторы

Переменные конденсаторы широко используются в устройствах, где часто требуется настройка во время работы — приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала (форму, частоту, амплитуду и т.д.).

Емкость может менятся механическим способом, электрическим напряжением (вариконды), и с помощью температуры (термоконденсаторы). В последнее время во многих областях вариконды вытесняются варикапами (диодами с переменной емкостью).

Под названием «переменные конденсаторы» обычно имеют ввиду компоненты с механическим изменением емкости. Управление емкостю здесь достигается путем изменения площади обкладок. Обкладки в переменных конденсаторах состоят из множества пластин с воздушным пространством между ними в качестве диэлектрика.

Часть пластин фиксированная, часть подвижная. Положение подвижных пластин по отношению к фиксированным определяет общую емкость конденсатора. Чем больше общая площадь пластин тем больше емкость.

Переменные конденсаторы

Подстроечные конденсаторы

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Способ монтажа конденсаторов

Конденсаторы разделяют по способу монтажа на компоненты для навесного монтажа и для печатного монтажа (SMD или чип-конденсаторы). У компонентов для навесного монтажа есть выводы в виде «ножек». У конденсаторов для печатного монтажа выводами служит часть их поверхности.

Виды конденсаторов — какие типы конденсаторов существуют?

Конденсаторы очень широко применяются в электронных, радиотехнических устройствах и приборах. Они по количеству и ёмкости в электронных схемах может различаться, но они есть практически везде. Столь широкое использование приборов объясняется тем, что в схемах такие устройства могут выполнять различные функции и задачи.

В первую очередь, конденсаторы используются в фильтрах различных стабилизаторов и выпрямителей напряжения, кроме того, с их помощью осуществляется передача сигнала между каскадами, работают высокочастотные и низкочастотные фильтры, подбирается частота колебаний и интервалы выдержки времени на разных генераторах. Чтобы лучше разобраться в особенностях и применении таких устройств, следует подробно разобрать существующие типы и характеристики конденсаторов.

Характеристики и параметры

Исчерпывающую информацию о типе и технических характеристиках конденсатора любой пользователь может получить на корпусе устройства, где также иногда указывается производитель прибора и дата его изготовления.

Важнейшим параметром любого конденсатора является его номинальная ёмкость. Правила обозначения номиналов ёмкости описываются в действующих нормативах ГОСТа. Согласно положениям ГОСТа, номинальная ёмкость конденсаторов до 9999 пФ обозначается на схемах без указания единицы измерения. Ёмкость устройств номиналом более 9999 пФ и до 9999 мкФ обозначается на схемах с указанием единицы измерения. Следующая характеристика, указываемая на корпусе устройства – допустимое отклонение от номинальных значений.

Второй по важности величиной конденсатора является его номинальное напряжение. Они могут быть предназначены для работы в сетях с разным напряжением: от 5 до 1000 В и более. Специалисты рекомендуют выбирать устройства с запасом по номинальному напряжению. Использование устройств низкого номинала может приводить к возникновению пробоев диэлектрика и выходу из строя приборов.

Остальные параметры считаются дополнительными и не всегда важными, потому на корпусах некоторых устройств описание может ограничиваться ёмкостью и номинальным напряжением. Если дополнительные технические характеристики указаны, то на корпусе можно найти также рабочую температуру устройства, рабочий номинальный ток и другие данные.

Следует учитывать также, что представленные сегодня на рынке конденсаторы могут быть трехфазными и однофазными, предназначенными для внешней или внутренней установки.

Какие типы конденсаторов бывают?

Существуют различные варианты классификации конденсаторов, используемых в электронных схемах. Чаще всего такие устройства разделяют на типы по виду используемого в них диэлектрика. По особенностям диэлектрика можно выделить следующие типы:

  • с жидкими диэлектриками.
  • вакуумные, в которых отсутствует диэлектрик.
  • с твердым органическим диэлектриком.
  • с газовым диэлектриком.
  • электролитические или оксид-полупроводниковые с электрлитом или оксидным металлическим слоем.
  • с твердым неорганическим диэлектриком.

Второй вариант классификации – по вероятности колебания величины ёмкости. По этой характеристике можно выделить следующие устройства:

  • Переменные – которые могут менять ёмкость из-за воздействия напряжения или температурных условий.
  • Постоянные – величина ёмкости не изменяется на протяжении срока службы.
  • Подстроечные – с изменяемой ёмкостью, используемые для периодической или разовой подстройки схем.

По сфере эксплуатации все конденсаторы разделяются на следующие типы:

  • Низковольтные, используемые в сетях с малым напряжением.
  • Высоковольтные, применяемые в сетях высокого напряжения.
  • Импульсные – способные выделять краткосрочный импульс.
  • Пусковые – для стартового запуска электрического мотора.
  • Помехоподавляющие.

Существуют и другие классы по сферам применения, но на практике они встречаются крайне редко.

В таблице ниже представлены наиболее распространенные конденсаторы и их обозначения на схемах.

 

Следующая статья будет про соединение конденсаторов.

Виды конденсаторов, теория и примеры задач

Определение и основные виды конденсаторов

Любой конденсатор состоит из двух металлических обкладок, которые разделяет диэлектрик. Допустим, что обкладками конденсатора являются две замкнутые металлические оболочки: наружная и внутренняя. При этом внутренняя обкладка полностью окружена наружной. В таком случае электрическое поле внутри этой системы абсолютно не зависимо от внешних электрических полей. Заряды, распределенные по поверхностям данных обкладок, обращенных одна к другой по теореме Фарадея, будут равны по модулю и противоположны по знаку. Описанная выше картина для реального конденсатора является приближенной, так как его обкладки не являются полностью замкнутыми, однако, следует отметить, что приближение к идеальной картине довольно большое. На практике независимости внутреннего поля внутри конденсатора от внешних полей добиваются тем, что пластины конденсатора располагают на очень малом расстоянии. Тогда заряды будут находится на внутренних поверхностях обкладок.

Основной характеристикой конденсатора является его емкость (C):

   

q – заряд одной из обкладок конденсатора, – разность потенциалов между обкладками конденсатора. Емкость конденсатора – величина зависящая только от размеров, устройства конденсатора.

Конденсаторы делят по разным параметрам. Так, например, существуют:

  1. Конденсаторы с постоянной и переменной емкостью и подстроечные.
  2. Конденсаторы с различным типом диэлектрика (электролит, поликарбонат, воздух, тефлон и тд).
  3. По типу материала корпуса: керамические, пластиковые, металлические.
  4. В соответствии с геометрическим строением (плоские, цилиндрические, шаровые (сферические) конденсаторы).

Кроме этого конденсаторы можно разделить по их предназначению, способу монтажа (для печатного, навесного, поверхностного монтажа; с защелкивающимися выводами; выводами под винт), принципам защиты от внешних воздействий (с защитой и без нее; изолированные и неизолированные; уплотненные и герметизированные).

В задачах по общей физике рассматривают обычно три типа конденсаторов: плоские, цилиндрические и сферические. Кроме того могут варьироваться типы диэлектрика между обкладками.

Формулы емкости базовых видов конденсаторов

Емкость плоского конденсатора:

   

Емкость цилиндрического конденсатора:

   

где l – высота цилиндров; – радиус внешнего цилиндра; – радиус внутреннего цилиндра. По формуле (3) вычисляют емкость коаксиального кабеля.

Емкость сферического конденсатора:

   

где – радиусы обкладок конденсатора.

Примеры решения задач

Физика .Конденсаторы. Какие виды конденсаторов бывают?!

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др. По виду диэлектрика различают: Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме) . Конденсаторы с газообразным диэлектриком. Конденсаторы с жидким диэлектриком. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные) , слюдяные, керамические, тонкослойные из неорганических плёнок. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых) , нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка. Кроме того, конденсаторы различаются по возможности изменения своей ёмкости: Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы) . Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы) . Применяются, например, в радиоприемниках для перестройки частоты резонансного контура. Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости. В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Конденсатор: применение и виды

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Конденсатор с обкладками

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Модульный конденсатор

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Комбинированные конденсаторы

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Конденсатор с диэлектриком

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

Емкостные конденсаторы

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Конденсатор минимальной емкости

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Оцените статью:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *