Как отличить рабочий конденсатор от пускового: Как отличить пусковые конденсаторы от рабочих? — Общий

Содержание

Чем пусковой конденсатор отличается от рабочего | Энергофиксик

Конденсаторы относятся к пассивным электронным компонентам и служат для накопления и быстрой отдачи накопленного заряда.

Они бывают полярными, когда при подключении следует строго соблюдать полярность и если такой конденсатор включить в сеть с переменным напряжением, то полярный конденсатор быстро разогреется и взорвется. И не полярными, которые можно подключать в цепь, как с переменным напряжением, так и с постоянным.

Так же конденсаторы активно используются для запуска асинхронных двигателей в однофазной сети и там они бывают пусковые и рабочие. А в чем различие между ними давайте разберемся.

Пусковой конденсатор

Итак, начнем с пускового конденсатора и как видно уже из самого названия, такой конденсатор используется лишь в момент запуска электродвигателя. После того, как запущенный двигатель вышел на заданную мощность и частоту, пусковой конденсатор отключают от работы.

Пусковые конденсаторы используются в определенных типах двигателей и в том случае, когда необходимо запустить двигатель, на валу которого присутствует какая-либо нагрузка, мешающая свободному вращению вала.

Как видно из схемы выше, для того, чтобы двигатель запустился, нам нужно нажать на кнопку Кн1, которая подключает конденсатор С1 на время, которое нужно двигателю, чтобы выйти на рабочие параметры.

После этого конденсатор отключается и двигатель продолжает вращаться за счет сдвига фаз в рабочих обмотках. Важно учесть, что рабочее напряжение конденсатора С1 должно быть больше напряжения сети в 1,15 раза.

То есть, например, для домашней однофазной сети нормальное напряжение равно 230 Вольт, что значит у конденсатора рабочее напряжение должно быть не менее 250 Вольт.

Рабочий конденсатор

Теперь давайте перейдем к рассмотрению рабочего конденсатора. Итак, рабочий конденсатор включен в цепь на постоянной основе, и он предназначен для сдвига фаз обмоток электродвигателя.

Для того, чтобы двигатель работал стабильно, параметры конденсатора должны быть подобранны очень тщательно.

Во время работы на рабочем конденсаторе возникает повышенное напряжение, которое превышает рабочее. Поэтому для обеспечения надежной и безаварийной работы нужно использовать конденсатор с рабочим напряжением больше в 2,5-3 раза. То есть 500-600 вольт. Тем самым будет гарантирован необходимый запас по напряжению во время работы.

Так же для рабочего конденсатора крайне важно правильно выбрать емкость и в зависимости от типа соединения обмоток (треугольник или звезда) производится расчет.

Итак, например, у вас есть двигатель с соединенными обмотками в звезду. Формула расчета будет такова:

Если двигатель мощностью 1 кВт с током потребления в 5 Ампер при напряжении 220 Вольт, то конденсатор потребуется емкостью:

4800*5/220 = 109 мФ;

А это значит, что ближайший подходящий конденсатор будет иметь емкость 110 мФ.

При соединении треугольником формула имеет следующий вид:

А это значит, что при тех же параметрах сети и двигателя при таком соединении обмоток потребуется конденсатор емкостью 65 мФ.

Сравниваем пусковой и рабочий конденсаторы

Теперь давайте произведем сравнение пускового и рабочего конденсаторов и запишем это все в форме таблицы.

Это все, что я хотел вам рассказать о том, чем отличается пусковой конденсатор от рабочего.

Если статья оказалась вам полезна или интересна, тогда оцените ее лайком и спасибо, что уделили свое драгоценное внимание!

Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.

Для  запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:

  • Пусковые.
  • Рабочие.

Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Схема подключения пускового конденсатора  к асинхронному двигателю

Для запуска двигателя используют кнопку Кн1, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты. После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т.е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В.

Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.

Рабочий конденсатор

Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.

Под действием этого напряжения конденсатор находится постоянно и при выборе его номинала необходимо учесть этот фактор. В расчетах напряжения рабочего конденсатора берут коофициент 2,5-3. Для сети 220 В напряжение рабочего конденсатора должно быть 550-600 В. Это обеспечит необходимый запас по напряжению в процессе работы.

При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

  1. Треугольник.
  2. Звезда.

Для каждого из этих способов соединения свой расчет.

Треугольник: Ср=4800*Ip/Up.

Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.

Звезда: Ср=2800*Ip/Up.

Пример: двигатель 1000 Вт – ток составляет  примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ.

Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙ ПУСКОВОЙ
Где применяется В цепи рабочих обмоток асинхронного двигателя В пусковой цепи
Выполняемые функции Создание вращающегося электромагнитного поля для работы электромотора Сдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работы От включения до окончания работы Во время запуска до выхода на нужный режим.
Тип конденсатора МБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающего МБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение.

Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут: 

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

53.Однофазные электродвигатели

53.Однофазные электродвигатели 

Однофазными электродвигателями оборудовано большое количество маломощных холодильных агрегатов, используемых в быту (домашние холодильники, морозильники, бытовые кондиционеры, небольшие тепловые насосы. ..).
Несмотря на очень широкое распространение, однофазные двигатели с вспомогательной обмоткой зачастую недооцениваются по сравнению с трехфазными двигателями.
Целью настоящего раздела является изучение правил подключения однофазных электродвигателей, их ремонта и обслуживания, а также рассмотрение узлов и элементов, необходимых для их работы (конденсаторы, пусковые реле). Конечно, мы не будем изучать, как и почему вращаются такие двигатели, но все особенности их использования в качестве двигателей для компрессоров холодильного оборудования мы постараемся изложить.

А) Однофазные двигатели с вспомогательной обмоткой
Такие двигатели, установленные в большинстве небольших компрессоров, питаются напряжением 220 В. Они состоят из двух обмоток (см. рис. 53.1).

► Основная  обмотка  Р,   называемая                      ________
часто рабочей обмоткой, или по-английски Run (R), имеет провод толстого сечения, который в течение всего периода работы двигателя остается под напряжением и пропускает номинальную силу тока двигателя.


► Вспомогательная обмотка А, называемая также пусковой обмоткой, или по-английски S (Start), имеет провод более тонкого сечения, следовательно, большее сопротивление, что позволяет легко отличить ее от основной обмотки.

Вспомогательная или пусковая обмотка, согласно названию, служит для обеспечения запуска двигателя.
Действительно, если попытаться запустить двигатель, подав напряжение только на основную обмотку (и не запитать вспомогательную), мотор будет гудеть, но вращаться не начнет. Если в этот момент вручную крутануть вал, мотор запустится и будет вращаться в том лее направлении, в котором его закрутили вручную. Конечно, такой способ запуска совсем не годится для практики, особенно если мотор спрятан в герметичный кожух.

Пусковая обмотка как раз и служит для того, чтобы запустить двигатель и обеспечить величину пускового момента выше, чем момент сопротивления на валу двигателя.
Далее мы увидим, что последовательно с пусковой обмоткой в цепь вводится, как правило, конденсатор, обеспечивающий необходимый сдвиг по фазе (около 90°) между током в основной и пусковой обмотках. Эта искусственная расфазировка как раз и позволяет запустить двигатель.

Внимание! Все замеры должны быть выполнены с большой аккуратностью и точностью, особенно, если модель двигателя вам незнакома или схема соединения обмоток отсутствует.

Случайное перепутывание основной и вспомогательной обмоток, как правило, заканчивается тем, что вскоре после подачи напряжения мотор сгорает!
Не стесняйтесь повторить измерения несколько раз и набросать схему мотора, снабдив ее максимумом пометок, это позволит вам избежать многих ошибок!
ПРИМЕЧАНИЕ
Если двигатель трехфазный, омметр покажет одинаковые значения сопротивлений между всеми тремя клеммами. Таким образом, представляется, что трудно ошибиться, прозванивая этот тип двигателя (по трехфазным двигателям см. раздел 62).
В любом случае, возьмите в привычку читать справочные данные на корпусе двигателя, а также подумайте о том, как заглянуть вовнутрь клеммной коробки, сняв ее крышку, поскольку там часто приводится схема соединения обмоток двигателя.

Проверка двигателя. Одним из наиболее сложных для начинающего ремонтника вопросов является принятие решения о том, что по результатам проверки двигатель следует считать сгоревшим. Напомним основные дефекты электрического характера, наиболее часто встречающиеся в двигателях (неважно, однофазных или трехфазных). Большинство этих дефектов имеют причиной сильный перегрев двигателя, обусловленный чрезмерной величиной потребляемого тока. Повышение силы тока может быть следствием электрических (продолжительное падение напряжения, перенапряжение, плохая настройка предохранительных устройств, плохой электрический контакт, неисправный контактор) или механических (заклинивание из-за нехватки масла) неполадок, а также аномалий в холодильном контуре (слишком большое давление конденсации, присутствие кислот в контуре…).

Одна из обмоток может быть оборвана . В этом случае омметр при измерении ее сопротивления будет показывать очень большую величину вместо нормального сопротивления. Удостоверьтесь, что ваш омметр исправен и что его зажимы имеют хороший контакт с клеммами обмотки. Не стесняйтесь проверить омметр с помощью хорошего эталона.
Напомним, что обмотка обычного мотора имеет максимальное сопротивление в несколько десятков Ом для небольших двигателей и несколько десятых долей Ома для огромных двигателей. Если обмотка оборвана, нужно будет либо заменить двигатель (или полностью агрегат), либо перемотать его (в том случае, когда такая возможность имеется, перемотка тем более выгодна, чем больше мощность двигателя).
Между двумя обмотками может существовать короткое замыкание. Чтобы выполнить такую проверку, необходимо убрать соединительные провода (и соединительные перемычки на трехфазном двигателе).
Когда вы проводите отсоединение, никогда не стесняйтесь предварительно разработать детальную схему замеров и сделать максимум пометок, чтобы в дальнейшем спокойно и без ошибок вновь поставить на место соединительные провода и перемычки.

В омметр должен показывать бесконечность. Однако, он показывает ноль (или очень низкое сопротивление), что без сомнения означает возможность короткого замыкания между двумя обмотками.
Такая проверка менее показательна для однофазного двигателя с вспомогательной обмоткой в случае, если две обмотки невозможно разъединить (когда общая точка С, соединяющая две обмотки, находится внутри двигателя). Действительно , в зависимости от точного места нахождения короткого замыкания, замеры сопротивлений, осуществленные между тремя клеммами (С —> А, С —> Р и Р —> А), дают пониженные, но достаточно несвязанные между собой величины. Например, сопротивление между точками А и Р, может не соответствовать сумме сопротивлений С —> А + С —> Р.
Также, как и в случае обрыва обмоток, при коротком замыкании между обмотками необходимо либо заменить, либо перемотать двигатель.


Обмотка может быть замкнута на массу. Сопротивление изоляции нового двигателя (между каждой из обмоток и массой) должно достигать 1000 MQ. Со временем это сопротивление уменьшается и может упасть до 10… 100 MQ. Как правило, принято считать, что начиная с 1 MQ (1000 kQ) нужно предусматривать замену двигателя, а при величине сопротивления изоляции 500 kQ и ниже, эксплуатация двигателя не допускается (напомним: 1 MQ = 103kQ = 10°>Q).
Обмотка замкнута на массу
Сопротивление стремится к нулю
Если изоляция нарушена, измерение сопротивления между клеммой обмотки и корпусом мотора дает нулевую ветмчину (или очень низкое сопротивление) вместо бесконечности (см. рис. 53.8). Заметим, что такое измерение должно быть выполнено на каждой клемме двигателя с помощью наиболее точного омметра. Перед каждым измерением убедитесь, что ваш омметр в исправном состоянии, и что его зажимы имеют хороший контакт с клеммой и металлом корпуса двигателя (при необходимости, соскоблите краску на корпусе, чтобы добиться хорошего контакта).
В примере на рис. 53.8 измерение указывает на то, что обмотка несомненно может быть замкнута на корпус.
Рис. 53.8.
Однако контакт обмотки с массой может быть и не полным. Действительно, сопротивление изоляции между обмотками и корпусом может становиться достаточно низким, когда двигатель находится под напряжением, чтобы вызывать срабатывание предохранительного автомата, в то же время оставаясь достаточно высоким, чтобы в отсутствие напряжения не быть обнаруженным с помощью обычного омметра.
В этом случае необходимо использовать мегомметр (или аналогичный прибор), который позволяет контролировать сопротивление изоляции с использованием постоянного напряжения от 500 В, вместо нескольких вольт для обычного омметра
При вращении ручного индуктора мегомметра, если сопротивление изоляции в норме, стрелка прибора должна отклоняться влево (поз. 1) и указывать бесконечность (оо). Более слабое отклонение, например, на уровне 10 MQ (поз. 2), указывает на снижение изоляционных характеристик двигателя, которое хотя и недостаточно для того, чтобы только оно привело к срабатыванию защитного автомата, но, тем не менее, должно быть отмечено и устранено, поскольку даже незначительные повреждения изоляции, вдобавок к уже существующим, в большинстве случаев рано или поздно приведут к полной остановке агрегата.
Отметим также, что только мегомметр может позволить выполнить качественную проверку изоляции двух обмоток между собой, когда их невозможно разъединить (см. выше проблему короткого замыкания между обмотками в однофазном двигателе). В заключение укажем, что проверку подозрительного электродвигателя необходимо проводить очень строго.
В любом случае недостаточно только заменить двигатель, но необходимо также найти, вдобавок к этому первопричину неисправности (механического, электрического или иного характера) с тем, чтобы радикально исключить всякую возможность ее повторения. В холодильных компрессорах, где имеется большая вероятность наличия кислоты в рабочем теле (обнаруживаемой простым анализом масла), после замены сгоревшего мотора необходимо будет предпринять дополнительные меры предосторожности. Не следует пренебрегать и осмотром электроаппаратуры (при необходимости, заменяя контактор и прерыватель, проверяя соединения и предохранители…).

Вдобавок к этому, замена компрессора требует от персонала высокой квалификации и строгого соблюдения правил: слива хладагента, при необходимости промывая после этого контур, возможной установки антикислотного фильтра на всасывающей магистрали, замены фильтра-осушителя, поиска утечек, обезвоживания контура путем вакуумирования, заправки контура хладагентом и полного контроля функционирования. .. Наконец, особенно если изначально установка была заправлена хладагентом типа CFC (R12, R502…), может быть будет возможным и целесообразным воспользоваться заменой компрессора, чтобы поменять тип хладагента?
Б) Конденсаторы
Чтобы запустить однофазный двигатель со вспомогательной обмоткой, необходимо обеспечить сдвиг по фазе переменного тока во вспомогательной обмотке по отношению к основной. Для достижения сдвига по фазе и, следовательно, обеспечения требуемого пускового момента (напомним, что пусковой момент двигателя обязательно должен быть больше момента сопротивления на его валу) используют, в основном, конденсаторы, установленные последовательно со вспомогательной обмоткой. Отныне мы должны запомнить, что если емкость конденсатора выбрана неправильно (слишком малая или слишком большая), достигнутая величина фазового сдвига может не обеспечить запуск двигателя (двигатель стопорится).
В электрооборудовании холодильных установок мы будем иметь дело с двумя типами конденсаторов:
► Рабочие (ходовые) конденсаторы (бумажные) небольшой емкости (редко более 30 мкф), и значительных размеров.
► Пусковые конденсаторы (электролитические), имеющие, наоборот, большую емкость (может превышать 100 мкф) при относительно небольших размерах. Они не должны находиться постоянно под напряжением, иначе такие конденсаторы очень быстро перегреваются и могут взорваться. Как правило, считается, что время их нахождения под напряжением не должно превышать 5 секунд, а максимально допустимое число запусков составляет не более 20 в час.
С одной стороны, размеры конденсаторов зависят от их емкости (чем больше емкость, тем больше и размеры). Емкость указывается на корпусе конденсатора в микрофарадах (др, или uF, или MF, или MFD, в зависимости от разработчика) с допуском изготовителя, например: 15uF±10% (емкость может составлять от 13,5 до 16,5 мкФ) или 88-108 MFD (емкость составляет от 88 до 108 мкФ).
Кроме того, размеры конденсатора зависят от величины напряжения, указанного на нем (чем выше напряжение, тем больше конденсатор). Полезно напомнить, что указанное разработчиком напряжение является максимальным напряжением, которое можно подавать на конденсатор, не опасаясь его разрушения. Так, если на конденсаторе указано 20мкф/360В, это значит, что такой конденсатор свободно можно использовать в сети с напряжением 220 В, но ни в коем случае нельзя подавать на него напряжение 380 В.

 53.1. УПРАЖНЕНИЕ


Попробуйте для каждого из 5 конденсаторов, изображенных на рис. 53.10 в одном и том же масштабе, определить, какие из них являются рабочими (ходовыми), а какие пусковыми.

Конденсатор №1 самый большой по размерам из всех представленных, имеет довольно низкую емкость в сравнении с его размерами. По-видимому, это рабочий конденсатор.
Конденсаторы №3 и №4, при одинаковых размерах, имеют очень небольшую емкость (заметим, что конденсатор №4, предназначенный для использования в сети с напряжением питания, большим, чем конденсатор №3, имеет более низкую емкость). Следовательно, эти два конденсатора также рабочие.
Конденсатор №2 имеет, в сравнении с его размерами, очень большую емкость, следовательно это пусковой конденсатор. Конденсатор №5 имеет емкость несколько меньше, чем №2, но он предназначен для более высокого напряжения: это также пусковой конденсатор.

Проверка конденсаторов. Измерения при помоши омметра, когда они дают те результаты, которые мы только что рассмотрели, являются превосходным свидетельством исправности конденсатора. Тем не менее, они должны быть дополнены измерением фактической емкости конденсатора (вскоре мы увидим, как выполнить такое измерение).
Теперь изучим типичные неисправности конденсаторов (обрыв цепи, короткое замыкание между пластинами, замыкание на массу, пониженная емкость) и способы их выявления. Прежде всего следует заметить, что совершенно недопустимым является вздутие корпуса конденсатора.

В конденсаторе может иметь место обрыв вывода
Тогда омметр, подключенный к выводам и установленный на максимальный диапазон, постоянно показывает бесконечность. При такой неисправности все происходит как в случае отсутствия конденсатора. Однако, если двигатель оснащен конденсатором, значит он для чего-то нужен. Следовательно, мы можем представить себе, что двигатель либо не будет нормально работать, либо не будет запускаться, что зачастую будет обусловливать срабатывание тепловой защиты (тепловое реле защиты, автомат защиты…).
Внутри конденсатора может иметь место короткое замыкание между пластинами
При такой неисправности омметр будет показывать нулевое или очень низкое сопротивление (используйте небольшой диапазон). Иногда компрессор может запуститься (далее мы увидим, почему), но в большинстве случаев короткое замыкание в конденсаторе приводит к срабатыванию тепловой защиты.
Пластины могут быть замкнуты на массу
Пластины конденсатора, также как и обмотки электродвигателя, изолированы от массы. Если сопротивление изоляции резко падает (опасность чего проявляется при чрезмерном перегреве), утечка тока обусловливает отключение установки автоматом защиты.
Такая неисправность может возникать, если конденсатор имеет металлическую оболочку. Сопротивление, измеренное между одним из выводов и корпусом в этом случае стремится к 0, вместо того, чтобы быть бесконечным (проверять нужно оба вывода).
Емкость конденсатора может быть пониженной
В этом случае действительная величина емкости, измеренная на его концах, ниже емкости, указанной на корпусе с учетом допуска изготовителя.

В  измеренная емкость должна была бы находиться в пределах от 90 до 110 мкФ. Следовательно, на самом деле, емкость слишком низкая, что не обеспечит требуемые величины сдвига по фазе и пускового момента. В результате двигатель может больше не запуститься.

Рассмотрим теперь, как осуществить измерение фактической емкости конденсатора с помощью несложной схемы, легко реализуемой в условиях монтажной площадки.
О
ВНИМАНИЕ! Чтобы исключить возможные опасности, необходимо перед сборкой этой схемы проверить конденсатор с помощью омметра.
Внешне исправный конденсатор достаточно подключить к сети переменного тока напряжением 220 В и измерить потребляемый ток (конечно, в этом случае, рабочее напряжение конденсатора должно быть не ниже 220 В).
Схему необходимо защитить либо автоматом защиты, либо плавким предохранителем с рубильником. Измерение  должно быть как можно более коротким (пусковой конденсатор опасно долго держать под напряжением).

При напряжении 220 В действительная емкость конденсатора (в мкФ) примерно в 14 раз больше потребляемого тока (в амперах).

Например, вы хотите проверить емкость конденсатора (очевидно, это пусковой конденсатор, поэтому время его нахождения под напряжением должно быть очень небольшим, см. рис. 53.21). Поскольку на нем указано, что рабочее напряжение равно 240 В, его можно включить в сеть напряжением 220 В.

Если емкость, обозначенная на конденсаторе составляет 60 мкФ ± 10% (то есть от 54 до 66 мкФ), теоретически он должен потреблять ток силой: 60 / 14 = 4,3 А.
Установим автомат или плавкий предохранитель, рассчитанный на такой ток, подключим трансформаторные клещи и установим на амперметре диапазон измерения, например, 10 А. Подадим напряжение на конденсатор, считаем показания амперметра и тотчас отключим питание.

ВНИМАНИЕ, ОПАСНОСТЬ! Когда вы измеряете емкость пускового конденсатора, время его нахождения под напряжением не должно превышать 5 секунд (практика показывает, что при небольших затратах на организацию процесса измерения, этого времени вполне достаточно для выполнения замера).
В нашем примере, фактическая емкость составляет около 4,1 х 14 = 57 мкФ, то есть конденсатор исправный, поскольку его емкость должна находиться между 54 и 66 мкФ.
Если замеренный ток составил бы, например, 3 А, фактическая емкость была бы 3 х 14 = 42 мкФ. Эта величина выходит за пределы допуска, следовательно нужно было бы заменить конденсатор.

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры. ..).

В большинстве случаев (но не всегда) эти реле подключаются непосредственно к компрессору при помощи двух или трех (в зависимости от моделей) гнезд, в которые входят штеккеры обмоток электродвигателя, предотвращая возможные ошибки при подключении реле к вспомогательной и основной обмоткам. На верхней крышке реле, как правило, нанесены следующие обозначения:
Р / М —> Рабочая (Main) —> Основная обмотка А / S -> Пусковая (Start) —> Вспомогательная обмотка L         Линия (Line)     —> Фаза питающей сети
Если реле перевернуть верхней крышкой вниз, можно отчетливо услышать стук подвижных контактов, которые скользят свободно.
Поэтому, при установке такого реле необходимо строго выдерживать его пространственную ориентацию, чтобы надпись «Верх» (Тор) находилась сверху, так как если реле перевернуто, его нормально разомкнутый контакт будет постоянно замкнут.

При проверке омметром сопротивления между контактами пускового реле тока (в случае его правильного расположения) между гнездами A/S и Р/М, а также между гнездами L и A/S, должен иметь место разрыв цепи (сопротивление равно со), поскольку при снятом питании контакты реле разомкнуты.
Между гнездами Р/М и L сопротивление близко к 0, соответствуя сопротивлению катушки реле, которая мотается проводом толстого сечения и предназначена для пропускания пускового тока.
Можно также проверить сопротивление реле в перевернутом состоянии. В таком случае, между гнездами A/S и L вместо бесконечности должно быть сопротивление, близкое к нулю.
При монтаже реле тока в перевернутом положении ) его контакты будут оставаться постоянно замкнутыми, что не позволит отключать пусковую обмотку. В результате возникает опасность быстрого сгорания электродвигателя.

Изучим теперь работу пускового реле тока в схеме, приведенной на  в отсутствие напряжения.
Как только на схему будет подано напряжение, ток пойдет через тепловое реле защиты, основную обмотку и катушку реле. Поскольку контакты A/S и L разомкнуты, пусковая обмотка обесточена и двигатель не запускается — это вызывает резкое возрастание потребляемого тока.
Повышение пускового тока (примерно пятикратное, по отношению к номиналу) обеспечивает такое падение напряжения на катушке реле (между точками L и Р/М), которое становится достаточным, чтобы сердечник втянулся в катушку, контакты A/S и L замкнулись и пусковая обмотка оказалась под напряжением.

Благодаря импульсу, полученному от пусковой обмотки, двигатель запускается и по мере того, как число его оборотов растет, потребляемый ток падает. Одновременно с этим падает напряжение на катушке реле (между L и Р/М). Когда мотор наберет примерно 80% от номинального числа оборотов, напряжение между точками L и Р/М станет недостаточным для удержания сердечника внутри катушки, контакт между A/S и L разомкнётся и полностью отключит пусковую обмотку.
Однако, при такой схеме пусковой момент на валу двигателя очень незначительный, поскольку в ней отсутствует пусковой конденсатор, обеспечивающий достаточную величину сдвига по фазе между током в основной и пусковой обмотках (напомним, что главным назначением конденсатора является увеличение пускового момента). Поэтому данная схема используется только в небольших двигателях с незначительным моментом сопротивления на валу.
Если речь идет о небольших холодильных компрессорах, в которых в качестве расширительного устройства обязательно используются капиллярные трубки, обеспечивающие выравнивание давления в конденсаторе и давления в испарителе при остановках, то в этом случае запуск двигателя происходит при минимально возможном моменте сопротивления на валу {см. раздел 51. «Капиллярные расширительные устройства»).
При необходимости повышения пускового момента последовательно с пусковой обмоткой необходимо устанавливать пусковой конденсатор (Cd). Поэтому часто реле тока выпускаются с четырьмя гнездами, как например, в модели, представленной.
Реле такого типа поставляются с шунтирующей перемычкой между гнездами 1 и 2. При необходимости установки пускового конденсатора шунт удаляется.
Отметим, что при прозвонке такого реле омметром между гнездами М и 2 сопротивление будет близким к нулю и равным сопротивлению обмотки реле. Между гнездами 1 и S сопротивление равно бесконечности (при нормальном положении реле) и нулю (при реле, перевернутом крышкой вниз).

ВНИМАНИЕ! При замене неисправного реле тока новое реле всегда должно быть с тем же индексом, что и неисправное.

Действительно, существуют десятки различных модификаций реле тока, каждая из которых имеет свои характеристики (сила тока замыкания и размыкания, максимально допустимая сила тока. ..). Если вновь устанавливаемое реле имеет отличные от заменяемого реле характеристики, то либо его контакты никогда не будут замыкаться, либо будут оставаться постоянно замкнутыми.

Если контакты никогда не замыкаются, например, из-за того, что пусковое реле тока слишком мощное (рассчитано на замыкание при пусковом токе 12 А, в то время как на самом деле пусковой ток не превышает 8 А), вспомогательная обмотка не может быть запитана и мотор не запускается. Он гудит и отключается тепловым реле защиты.
Заметим, что эти же признаки сопровождают такую неисправность, как поломка контактов реле
В крайнем случае, проверить эту гипотезу можно замкнув накоротко на несколько секунд контакты 1 и S, например. Если мотор запускается, это будет доказательством неисправности реле.
Если контакт остается постоянно замкнутым, например, из-за низкой мощности пускового реле тока (оно должно размыкаться при падении тока до 4 А, а двигатель на номинальном режиме потребляет 6 А), пусковая обмотка окажется все время под напряжением. Заметим, что то же самое произойдет, если вследствие чрезмерной силы тока, контакты реле «приварятся» или если реле установлено верхом вниз*, из-за чего контакты будут оставаться постоянно замкнутыми.
Компрессор будет тогда потреблять огромный ток и, в лучшем случае, отключится тепловым реле защиты (в худшем случае он -сгорит). Если при этом в схеме присутствует пусковой конденсатор, он также будет все время под напряжением и при каждой попытке запуска будет сильно перегреваться, что в конечном счете приведет к его разрушению.

Нормальную работу пускового реле тока можно легко проверить с помощью трансформаторных клещей, установленных в линии конденсатора и пусковой обмотки. Если реле работает нормально, то в момент запуска ток будет максимальным, а когда контакт разомкнётся, амперметр покажет отсутствие тока.
Наконец, чтобы завершить рассмотрение пускового реле тока, нужно остановиться на одной неисправности, которая может возникать при чрезмерном росте давления конденсации. Действительно, любое повышение давления конденсации, чем бы оно ни обусловливалось (например, загрязнен конденсатор), неизбежно приводит к росту потребляемого двигателем тока (см. раздел 10. «Влияние величины давления конденсации на силу тока, потребляемого электромотором компрессора»). Этот рост иногда может оказаться достаточным, чтобы привести к срабатыванию реле и замыканию контактов, в то время как двигатель вращается. Последствия такого явления вы можете себе представить!
* Установка пускового реле в горизонтальной плоскости, как правило, дает такой же результат и также является неверной (прим. ред.).


Когда мощность двигателя растет (становясь выше, чем 600 Вт), возрастает и сила потребляемого тока, и использование пускового реле тока становится невозможным из-за того, что увеличивается потребный диаметр катушки реле. Пусковое реле напряжения тоже имеет катушку и контакты, но в отличие от реле тока, катушка реле напряжения имеет очень высокое сопротивление (наматывается тонким проводом с большим числом витков), а его контакты нормально замкнуты. Поэтому, вероятность перепутать эти два устройства очень незначительна.
 представлен внешний вид наиболее распространенного пускового реле напряжения, представляющего собой герметичную коробку черного цвета. Если прозвонить клеммы реле с помощью омметра, можно обнаружить, что между клеммами 1 и 2 сопротивление равно 0, а между 1-5 и 2-5 оно одинаково и составляет, например 8500 Ом (заметим, что клеммы 4 не включаются в схему и используются только для удобства соединения и разводки проводов на корпусе реле).

Контакты реле наверняка находятся между клеммами 1 и 2, поскольку сопротивление между ними равно нулю, однако к какой из этих клемм подключен один из выводов катушки определить нельзя, так как результат при измерениях будет одинаковым (см. схему на рис. 53.29).
Если у вас есть схема реле, проблем с определением общей точки не будет. В противном случае вам потребуется выполнить дополнительно маленький опыт, то есть подать питание вначале на клеммы 1 и 5, а затем 2 и 5 (измеренное между ними сопротивление составило 8500 Ом, следовательно, один из концов катушки подключен либо к клемме 1, либо к клемме 2).

Допустим, что при подаче напряжения на клеммы 1-5, реле будет работать в режиме «дребезга» (как зуммер) и вы отчетливо различите постоянное замыкание и размыкание его контакта (представьте последствия такого режима для двигателя). Это будет признаком того, что клемма 2 является общей и один из концов катушки подключен именно к ней. В случае
неуверенности вы можете проверить себя, подав питание на клеммы 5 и 2 (контакты 1 и 2
разомкнутся и будут оставаться разомкнутыми).
ВНИМАНИЕ! Если вы подадите напряжение на клеммы 1 и 2 (клеммы нормально замкнутых контактов), то получите короткое замыкание, что может быть очень опасным

Чтобы выполнить такую проверку, вы должны использовать напряжение 220 В, если реле предназначено для оснащения двигателя на 220 В (настоятельно рекомендуем использовать в цепи плавкий предохранитель, чтобы защитить схему от возможных ошибок при подключении). Однако может случиться так, что контакты реле не будут размыкаться ни при подаче питания на клеммы 1 и 5, ни при его подаче на клеммы 2 и 5, хотя катушка будет исправной (при прозвонке омметром сопротивление 1-5 и 2-5 одинаково высокое). Это может быть обусловлено самим принципом, заложенным в основу работы схемы с реле напряжения (сразу после данного абзаца мы его рассмотрим), который требует для срабатывания реле повышенного напряжения. Чтобы продолжить проверку, вы можете увеличить напряжение до 380 В (реле при этом ничего не угрожает, так как оно способно выдержать напряжение до 400 В).

Как только на схему подается питание, ток проходит через тепловое реле защиты и основную обмотку (С—>Р). Одновременно он проходит через пусковую обмотку (С—»А). нормально замкнутые контакты 2-1 и пусковой конденсатор (Cd). Все условия для запуска соблюдены и двигатель начинает вращение.
По мере того, как двигатель набирает обороты, в пусковой обмотке наводится дополнительное напряжение, которое добавляется к напряжению питания.

В конце запуска наведенное напряжение становится максимальным и напряжение на концах пусковой обмотки может достигать 400 В (при напряжении питания 220 В). Катушка реле напряжения сконструирована таким образом, чтобы разомкнуть контакты точно в тот момент, когда напряжение на ней превысит напряжение питания на величину, определенную разработчиком двигателя. Когда контакты I -2 разомкнутся, катушка реле остается запитанной напряжением, наведенным в пусковой обмотке (эта обмотка, намотанная на основную обмотку, представляет собой как бы вторичную обмотку трансформатора).
Во время запуска очень важно, чтобы напряжение на клеммах реле в точности соответствовало напряжению на концах пусковой обмотки. Поэтому пусковой конденсатор всегда должен включаться в схему между точками I и Р, а не между А и 2 Отметим, что при размыкании контактов 1-2 пусковой конденсатор полностью исключается из схемы.
Существует множество различных моделей реле напряжения, отличающихся своими характеристиками (напряжением замыкания и размыкания контактов…).

Поэтому, при необходимости замены неисправного реле напряжения, для этого нужно использовать реле той же самой модели.
Если реле для замены не вполне соответствует двигателю -это значит, что либо его контакты при запуске не будут замкнуты, либо будут замкнуты постоянно.
Когда при запуске контакты реле оказываются разомкнутыми, например из-за того, что реле слишком маломощное (оно срабатывает при 130 В, то есть сразу после подачи напряжения и пусковая обмотка запитана только как вторичная обмотка), двигатель не сможет запуститься, будет гудеть и отключится тепловым реле защиты (см. рис. 53.33).

Отметим, что такие же признаки будут иметь место в случае поломки контакта. В крайнем случае, всегда можно проверить эту гипотезу, замкнув на мгновение накоротко контакты 1 и 2. Если двигатель запустится, значит контакт отсутствует.

Запуск при помощи термистора (СТР)

Термистор, или терморезистор (СТР* — сокращение, в переводе означает положительный температурный коэффициент, то есть повышение сопротивления при росте температуры) включается в цепь так, как показано на рис. 53.37.
При неподвижном роторе мотора СТР холодный (имеет окружающую температуру) и его сопротивление очень низкое (несколько Ом). Как только на двигатель подается напряжение, запитывается основная обмотка. Одновременно ток проходит через низкое сопротивление СТР и пусковую обмотку, в результате чего двигатель запускается. Однако ток, текущий через пусковую обмотку, проходя через СТР, нагревает его, что обусловливает резкое повышение его температуры, а следовательно и сопротивления. По истечении одной-двух секунд температура СТР становится более 100°С, а его сопротивление легко превышает 1000 Ом.
Резкое повышение сопротивления СТР снижает ток в пусковой обмотке до нескольких миллиампер, что эквивалентно отключению этой обмотки так, как это сделало бы обычное пусковое реле. Слабый ток, не оказывая никакого влияния на состояние пусковой обмотки, продолжает проходить через СТР, оставаясь вполне достаточным, чтобы поддерживать его температуру на нужном уровне.
Такой способ запуска используется некоторыми разработчиками, если момент сопротивления при запуске очень малый, например, в установках с капиллярными расширительными устройствами (где при остановке неизбежно выравнивание давлений).
Однако, когда компрессор остановился, длительность остановки должна быть достаточно большой, чтобы не только обеспечить выравнивание давлений, но и, главным образом, охладить СТР (по расчетам для этого нужно как минимум 5 минут).
Всякая попытка запуска двигателя при горячем СТР (имеющим, следовательно, очень высокое сопротивление) не позволит пусковой обмотке запустить двигатель. За такую попытку можно поплатиться значительным возрастанием тока и срабатыванием теплового реле защиты.
Терморезисторы представляют собой керамические диски или стержни и основным видом неисправностей этого типа пусковых устройств является их растрескивание и разрушение внутренних контактов, наиболее часто обусловленное попытками запуска при горячих СТР, что
неизбежно влечет за собой чрезмерное повышение пускового тока.
. Мы часто указывали на важность соблюдения идентичности моделей при замене неисправных элементов электрооборудования (тепловые реле защиты, пусковые реле…) на новые, либо на те, которые рекомендуются для замены разработчиком. Мы советуем также при замене компрессора менять и комплект пусковых устройств (реле + конденсатор(ы)).
* Иногда встречается термин РТС, который означает то же самое, что и СТР {прим. peo.j.

Г) Обобщение наиболее часто встречающихся схем пусковых устройств

В документации различных разработчиков встречается множество схем с несколькими экзотическими названиями, которые мы сейчас разъясним. Воспользовавшись этим случаем, мы пополним наши знания и увидим роль рабочих конденсаторов.
Для лучшего понимания дальнейшего материала напомним, что в отличие от пусковых конденсаторов, рабочие конденсаторы рассчитаны на постоянное нахождение под напряжением и что конденсатор включается в схему последовательно с пусковой обмоткой, позволяя повысить крутящий момент на вачу двигателя.
1) Схема PSC (Permanent Split Capacitor) — схема с постоянно подключенным конденсатором является самой простой, поскольку в ней отсутствует пусковое реле.
Конденсатор, постоянно находясь под напряжением (см. рис. 53.40\ должен быть рабочим конденсатором. Поскольку с ростом емкости такой тип конденсаторов быстро увеличивается в размерах, их емкость ограничивается небольшими значениями (редко более 30 мкФ).
Следовательно, схема PSC используется, как правило, в небольших двигателях с незначительным моментом сопротивления на валу (малые холодильные компрессоры для капиллярных расширительных устройств, обеспечивающих выравнивание давлений при остановках, вентиляторные двигатели небольших кондиционеров).
  При подаче напряжения на схему, постоянно подключенный кон-
денсатор (Ср) дает толчок, позволяя запустить двигатель. Когда двигатель запущен, пусковая обмотка остается под напряжением вместе с последовательно включенным конденсатором, что ограничивает силу тока и позволяет повысить крутящий момент при работе двигателя.
2) Схема СТР. изученная ранее, называется также РТС (Positive Temperature Coefficient) и используется в качестве относительно простого пускового устройства.
Она может быть усовершенствована добавлением постоянно подключенного конденсатор.
При подаче напряжения на схему (после остановки длительностью не менее 5 минут), сопротивление термистора СТР очень низкое и конденсатор Ср, будучи замкнутым накоротко, не влияет на процесс запуска (следовательно, момент сопротивления на валу должен быть незначительным, что требует выравнивания давлений при остановке).
В конце запуска сопротивление СТР резко возрастает, но вспомогательная обмотка остается подключенной к сети через конденсатор Ср, который позволяет повысить крутящий момент при работе двигателя (например, при росте давления конденсации).
Поскольку конденсатор все время находится под напряжением,
пусковые конденсаторы в схемах этого типа использовать нельзя.

 53.2. УПРАЖНЕНИЕ 2

Однофазный двигатель с напряжением питания 220 В, оснащенный рабочим конденсатором с емкостью 3 мкФ, вращает вентилятор кондиционера. Переключатель имеет 4 клеммы: «Вход» (В), «Малая скорость» (МС), «Средняя скорость» (СС), «Большая скорость» (БС), позволяющие скоммутировать двигатель с сетью таким образом, чтобы выбрать требуемое значение (МС, СС или БС) числа оборотов.

Решение


Набросаем, согласно нашему предположению внутреннюю схему двигателя, сверяясь с данными измерения сопротивлений (например, между Г и Ж должно быть 290 Ом, а между Г и 3 — 200 Ом).
Остается только включить в схему переключатель, помня о том, что максимальная скорость вращения (БС) достигается, если двигатель напрямую подключен к сети . И напротив, минимальное число оборотов будет обеспечено при самом слабом напряжении питания, следовательно, при задействовании максимального значения гасящего сопротивления.

Такие двигатели, редко встречающиеся в настоящее время, могут однако использоваться в качестве привода сальниковых компрессоров. Чтобы изменить направление вращения двигателя, достаточно крест-накрест поменять точку соединения пусковой и основной обмоток.
В качестве примера на рис.  показано, как конец пусковой обмотки стал началом, а начало — концом.
Заметим, что в этом случае направление прохождения тока по пусковой обмотке изменилось на противоположное, что позволяет дать в момент запуска импульс магнитного поля в обратном направлении.
Наконец, отметим также двухпроводные двигатели с «витком Фраже» или с «фазосдвигаю-щим кольцом», широко используемые для привода небольших вентиляторов с низким моментом сопротивления (как правило, лопастных). Эти двигатели очень надежные, хотя и имеют малый крутящий момент, и при их включении в сеть отсутствуют какие-либо особые проблемы, поскольку они имеют всего два провода (конечно, плюс заземление).

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры…).

пусковой, рабочий и смешанный варианты включения. Отличия между ними

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником» : Сф=4800 I/U;
  • для соединения «звездой» : Сф=2800 I/U.

Об этих типах соединения можно подробнее ознакомиться :

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70 P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

Как самому установить люстру в доме УЗО – ошибки при подключении

Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей. Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка — помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться.

Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя. В первую очередь рекомендуем определиться с правильной емкостью этого вспомогательного устройства, и способами ее точного расчета.

А, что такое конденсатор?

Его устройство отличается простотой и надежностью — внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Но различные виды конденсаторов для электродвигателей отличаются поэтому легко ошибиться в момент приобретения.

Рассмотрим их по отдельности:

Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации — возгоранию либо появлению короткого замыкания.

Версии неполярного типа отличаются качественным взаимодействием с любым напряжением, что обусловлено универсальным вариантом обкладки — она успешно сочетается с повышенной мощностью тока и различными видами диэлектриков.

Электролитические часто называются оксидными считаются лучшими для работы с электродвигателями на основе низкой частоты, поскольку их максимальная емкость, может, достигать 100000 МКФ. Это возможно за счет тонкого вида оксидной пленки, входящей в конструкцию в качестве электрода.

Теперь ознакомьтесь с фото конденсаторов для электродвигателя — это поможет отличить их по внешнему виду. Такая информация пригодится во время покупки, и поможет приобрести необходимое устройство, поскольку все они похожи. Но помощь продавца тоже, может, оказаться полезной — стоит воспользоваться его знаниями, если не хватает своих.

Если необходим конденсатор для работы с трехфазным электродвигателем

Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или с помощью упрощенного способа. Для этого уточняется мощность электродвигателя на каждые 100 Ватт потребуется около 7-8 мкФ от емкости конденсатора.

Но во время расчетов необходимо учитывать уровень воздействия напряжения на обмоточную часть статора. Нельзя чтобы он превысил номинальный уровень.

Если запуск двигателя, может, происходить лишь на основе максимальной нагрузки придется добавить пусковой конденсатор. Он отличается кратковременностью работы, поскольку используется примерно 3 секунды до момента выхода на пик оборотов ротора.

Необходимо учитывать, что для него потребуется мощность увеличенная в 1,5, а емкость примерно в 2,5 — 3 раза, чем у сетевой версии конденсатора.


Если необходим конденсатор для работы с однофазным электродвигателем

Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть.

Но процесс их использования немного сложнее, поскольку трехфазные электродвигатели работают с помощью конструктивного подключения, а для однофазных версий потребуется обеспечить смещенный вращательный момент у ротора. Это обеспечивается с помощью увеличенного количества обмотки для запуска, а фаза смещается усилиями конденсатора.

В чем сложность выбора такого конденсатора?

В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства. И они отличаются доступными режимами работы электродвигателей:

  • Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора — 70 мкФ для 1 кВт от мощности электродвигателя;
  • Используется рабочий вариант конденсатора с емкостью в 25 — 35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
  • Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.

Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.

В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.

Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.

Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.

Важно: Пусковая версия конденсатора должна обладать рабочим напряжением не менее 400 В, что связано с появлением всплеска увеличенной мощности до 300 — 600 В, происходящего в процессе пуска либо завершения работы двигателя.

Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:

  • Его часто применяют для бытовых приборов;
  • Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы — конденсатор;
  • Подключается на основе множества схем с помощью конденсатора;
  • Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.

Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.

Фото конденсаторов для электродвигателя

Добрый день, уважаемые читатели блога сайт

В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных . У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10 -6 Ф, пикофарады (пФ) одна пФ равняется 10 -12 мкФ. В однофазных асинхронных двигателях в зависимости от мощности используются конденсаторы емкостью от нескольких до сотен мкФ.

Основные электрические параметры и характеристики

К основным электрическим параметрам относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.

Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.

Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, тоТКЕконденсатора характеризуется относительным изменением емкости припереходе от нормальной температуры(20±5°С) к допустимомузначению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.

Тангенс угла потерь (tg d ). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.

Электрическое сопротивление изоляции – электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (I ут ), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.

На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.

Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.

Рабочий и пусковой конденсаторы

В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).

Схема с рабочим и пусковым конденсаторами

В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей .

РАБОЧИЙ

ПУСКОВОЙ

Назначение Для асинхронных электродвигателей
Схема подключения Последовательно с пусковой обмоткой электродвигателя Параллельно рабочему конденсатору
В качестве Фазосмещающего элемента Фазосмещающего элемента
Для чего Для получения кругового вращающееся магнитного поля, необходимого для работы электродвигателя Для получения магнитного поля, необходимого для повышения пускового момента электродвигателя
Время включения В процессе эксплуатации электродвигателя В момент пуска электродвигателя

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен. Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.

Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.

Спасибо за оказанное внимание

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В . Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.


Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

Отличия между ними

Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый) конденсатор служит для сдвига фаз . В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки. Такой электродвигатель стоит, например, в точильном станке.

Пусковой (второй) обеспечивает повышение стартового момента мотора , находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим. Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями. А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

Ёмкость обоих конденсаторов также будет отличаться. Она прямо пропорциональна мощности электродвигателя и обратно — напряжению сети. В зависимости от схемы соединения обмоток вводится поправочный коэффициент. Ёмкость пускового может быть в два раза больше, чем у рабочего.

Способы присоединения

Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной». Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник». Оно различается и по способу соединения, и по сложности.

Второй ёмкостный элемент, в отличие от рабочего, присоединяется параллельно последнему через кнопку или центробежный выключатель. В первом случае управление осуществляется человеком, а во втором — самим приводом. Оба этих коммутатора кратковременно замыкают эту цепь на момент запуска электрического мотора, а после того, как он выйдет на рабочий режим — размыкают.

Условия работы

Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур. Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза. Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500-600 вольт.

Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ. Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

Обычные электролитические конденсаторы, применяемые в различных приборах , и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых. Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток. Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

  • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
  • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

Если перепутать конденсаторы, то возникнут серьёзные проблемы. Ёмкость рабочего также не должна быть слишком большой, иначе мотор будет греться, а рост мощности и крутящего момента от этого повысится незначительно.

Подключение пусковых конденсаторов к электродвигателю.

В одной из прошлых статей мы говорили о подборе рабочих конденсаторов для работы  3 ф.(380 Вольт) асинхронного электродвигателя от 1 ф. сети (220 Вольт). А именно о подборе рабочих конденсаторов  по амперметру . Спасибо Вам мои читатели за  множество отзывов и благодарностей, ведь если бы не Вы  уже давно бы забросил это дело.  В одном из писем  присланных мне на почту были вопросы: « Почему  не рассказал о пусковых конденсаторах?», «Почему у меня не запускается двигатель, ведь я всё сделал, как было написано».  А ведь правда что не всегда хватает «рабочих» конденсаторов для пуска электродвигателя под  нагрузкой, и возникает вопрос: «Что же делать?». А вот что: «Нам нужны пусковые конденсаторы». А вот как их подобрать правильно мы сейчас поговорим. И так что мы имеем: 3 фазный электродвигатель, к которому на основе прошлой статье  мы подобрали ёмкость рабочего конденсатора 60 мкФ. Для пускового конденсатора мы берем емкость в 2 — 2,5 раза больше чем ёмкость рабочего конденсатора. Таким образом, нам понадобится конденсатор ёмкостью 120 – 150 мкФ. При этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Сейчас у многих возникает вопрос: « А почему не 300 мкФ или даже 1000 мкФ, ведь кашу маслом не испортишь?». Но в не этом случае, всего должно быть в меру, при слишком большей ёмкости пусковых конденсаторов  нечего очень страшного не случиться, но эффективность пуска электродвигателя будет хуже. Таким образом не стоит тратить лишние средства на покупку слишком большой ёмкости.

Но какие, же конденсаторы нужны для пуска электродвигателя?

Если нам нужна небольшая ёмкость пускового конденсатора то вполне подойдёт конденсаторы того же типа которые мы использовали для рабочих конденсаторов.  Но если нам нужно довольно таки  большая ёмкость? Для такой цели не целесообразно использовать такой тип конденсаторов через их дороговизну и размеры (при сборе большой батареи конденсаторов размеры её будут велики).  Для таких целей нам служат специальные пусковые (стартовые) конденсаторы, которые сейчас присутствуют в продаже, в большом ассортименте.  Такие конденсаторы встречаются разных форм и типов, но в их названиях присутствует маркировка (надпись): «Start», «Starting»,  « Motor Start» или что-то в этом роде, все они служат для пуска электродвигателя. Но для лучшей убедительности лучше спросить у продавца при покупке, он всегда подскажет.

 


А вот сейчас Вы скажете: «А как же конденсаторы от старых советских ч/б телевизоров, так называемые «электролиты»?»

Да что я Вам могу сказать по этому поводу. Я сам их не использую, и Вам не рекомендую и даже отговариваю. Всё потому что их использование в качестве пусковых конденсаторов не вполне безопасно. Потому что они могут вздуваться или и того хуже взрываться. К тому же такой тип конденсаторов со временем высыхает и теряет  свою номинальную ёмкость, и мы не можем точно знать, какую именно мы применяем в данный момент.

И так у нас есть электродвигатель, рабочий и пусковой конденсатор. Как нам всё это подключить?

Для этого нам понадобится кнопка ПНВС.

  

Кнопка ПНВС (пускатель нажимной с пусковым контактом) имеет три контакта: два крайних –   с фиксацией и один посередине – без фиксации. Он и служит для включения пускового конденсатора, а при прекращении нажатия на кнопку возвращается в исходное положение (пусковой конденсатор «Сп» включается только во время пуска двигателя, а рабочий конденсатор «Ср» постоянно находиться в работе), другие два крайних контакта остаются включенными и отключаются при нажатии кнопки «Стоп». Кнопку «Пуск» нужно удерживаться до тех пор, пока скорость вала не достигнет максимальных оборотов, и только после её отпустить. Также не стоит забывать, что конденсатор имеет свойство иметь заряд электрического тока, и Вы можете попасть под поражения электрическим током. Что бы этого не случилось, по окончанию работы  отключите электродвигатель от сети, и включите на одну две секунды кнопку «Пуск», чтобы конденсаторы могли разрядиться. Либо параллельно пусковому конденсатору поставьте резистор около 100 килоом, чтобы конденсатор разряжался на него.

У нас с двигателя выходят три провода. Первый и третий  мы подключаем к двум крайним контактам кнопки. Второй же провод мы подключаем к одному из контактов пускового конденсатора «Сп», а второй контакт этого конденсатора к средней  клемме копки ПНВС. Ко второму и третьему проводу, как показано на схеме, подключаем рабочий конденсатор  «Ср».  С другой стороны кнопки два крайних контакта подключаем к сети, а к среднему подключаем «перемычку» к контакту, к которому подключен рабочий конденсатор «Ср».

Схематически это выглядит так:

вариант схемы с реверсом:


Удачи Вам в ваших экспериментах.

Конденсатор для пуска электродвигателя, как рассчитать мощность

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Конденсатор для пуска электродвигателя

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Неполярный конденсатор

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий  конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение  частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

  • треугольник;
  • звезда.

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A  до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

C = (k×Iφ)/U

Где

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Трехфазный электродвигатель

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120°. Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить  пусковой момент вращения.

Сравнение рабочего конденсатора

и пускового конденсатора

Все конденсаторы предназначены для хранения энергии. Различия заключается в том, для чего эта энергия хранится и используется.

Если у вас возникла проблема с системой кондиционирования воздуха, конденсатор может быть причиной, но какой из них вам нужен для ремонта?

Когда дело доходит до кондиционирования воздуха, существует два основных типа конденсаторов, рабочих конденсаторов и пусковых конденсаторов. Различия между рабочий конденсатор и пусковой конденсатор могут сбить с толку.Однако с четким понимание того, что такое каждый тип конденсатора, эта путаница может быть легко устранена. решено.

Рабочие конденсаторы

Рабочие конденсаторы чаще используются в системах кондиционирования воздуха. систем, чем пусковые конденсаторы. Рабочий конденсатор в вашем AC используется для хранения энергии, которая используется для вращения двигателя вентилятора, важный компонент вашего рабочего переменного тока. Без рабочего конденсатора вентилятор не может повернуться.

Пусковые конденсаторы

Пусковые конденсаторы — вторые по распространенности конденсатор в системе переменного тока.Без начала конденсатор, ваш переменный ток вообще не запустится, так как это пусковой конденсатор который обеспечивает начальную энергию, необходимую для запуска. Большой крутящий момент необходимо для запуска системы переменного тока, поэтому пусковой конденсатор будет иметь большую емкость, чем рабочий конденсатор.

Конденсаторы переменного тока

Термин «AC конденсатор »обычно относится к конденсатору запуска вашего кондиционера, просто потому что рабочие конденсаторы чаще встречаются в системах кондиционирования воздуха. Если у вас неисправный рабочий конденсатор, ваша система переменного тока не сможет охлаждать ваш дом правильно или эффективно, что приводит к потере энергии и денег.Если у тебя есть неисправный пусковой конденсатор, ваш переменный ток может вообще не работать.

Есть несколько ключевых признаков, на которые следует обратить внимание, Укажите, что ваш конденсатор переменного тока неисправен.

  • Ваш кондиционер больше не дует холодным воздухом
  • Ваш кондиционер издает тихий гудящий звук, которого не было там до
  • Ваши счета за электроэнергию увеличиваются
  • Ваш кондиционер иногда не включается или не включается включается вообще
  • Ваш переменный ток неожиданно отключается

Помните, если вы не уверены, нужен ли ваш конденсатор переменного тока заменив, вы можете использовать мультиметр для проверки конденсатора переменного тока.

Конденсатор генератора

Аналогично всем описанным конденсаторам выше, генератор конденсатор также сохраняет электрический заряд. Конденсатор генератора обеспечивает напряжение и регулирует напряжение внутри генератора. Показания низкого напряжения может указывать на неисправность конденсатора генератора.

Вы можете проверить свой генератор конденсатор с помощью мультиметра.

Конденсатор холодильника

Холодильник конденсатор чаще всего относится к более распространенному рабочему конденсатору в холодильнике.

Скорее всего, рабочий конденсатор в вашем холодильнике находится рядом с компрессором, так что признаки того, что рабочий конденсатор в вашем холодильнике может быть К неисправным относятся:

  • Слышен щелчок при включении холодильника компрессор работает
  • Кажется, что компрессор холодильника работает слишком часто (несколько раз в час нормально, чаще при частом использовании)
  • Компрессор холодильника не работает работает достаточно часто

Замените рабочий конденсатор в ремонтной мастерской

В ремонтной мастерской

есть инструкции и детали, необходимые для простой замены рабочего конденсатора или пускового конденсатора переменного тока, генератора или холодильника.

МАГАЗИН РАБОЧИХ КОНДЕНСАТОРОВ МАГАЗИН ПУСКОВЫХ КОНДЕНСАТОРОВ

Часто задаваемые вопросы о конденсаторах двигателя

Моторный конденсатор FAQ
Обзор

Напряжение
Емкость
Частота (Гц)
Тип соединительной клеммы
Форма корпуса
Размер корпуса
Пусковые и рабочие конденсаторы

Пусковые конденсаторы

Приложения
Технические характеристики
Как узнать, неисправен ли мой пусковой конденсатор?
Мой двигатель медленно заводится.Мой пусковой конденсатор плохой?
На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?
Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Рабочие конденсаторы

Как заменить пробку в кондиционере? Приложения

Технические характеристики
Когда заменять
Почему вышел из строя рабочий конденсатор?
Как долго должен работать рабочий конденсатор?
Двойные рабочие конденсаторы
Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

Обзор

Напряжение

Конденсатор будет иметь обозначенное напряжение, указывающее его допустимое пиковое напряжение, а не рабочее напряжение.Следовательно, вы можете выбрать конденсатор с номинальным напряжением, равным или выше исходного конденсатора. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт, хотя на самом деле блок на 440 вольт прослужит дольше. Однако вы не можете заменить конденсатор на 440 В на конденсатор на 370 В без значительного сокращения срока его службы.

Емкость

Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

Частота (Гц)

Выберите конденсатор с номинальной частотой Гц оригинала. Почти все конденсаторы будут иметь маркировку 50/60.

Тип соединительной клеммы

Почти каждый конденсатор будет использовать вставной соединитель «типа флажка. При замене конденсатора вам необходимо знать, сколько клемм на клеммную колодку требуется для вашего двигателя. Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство из них работают Конденсаторы будут иметь 3 или 4 клеммы на стойку.Убедитесь, что заменяемая имеет, по крайней мере, количество клемм на клемму подключения, как у оригинального конденсатора двигателя.

Форма корпуса (круглая или овальная)

Практически все пусковые конденсаторы имеют круглый корпус. Круглые корпуса являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

Размер корпуса

Как и форма корпуса, электрические габариты не имеют значения. Выберите конденсатор, который поместится в отведенном для этого месте.

Start vs.Рабочие конденсаторы

Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого периода времени (обычно секунд). Они предназначены только для прерывистого режима работы и катастрофически выйдут из строя, если будут находиться под напряжением слишком долго. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.

В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать оригинальной спецификации пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно.

Просмотрите наш видеоурок ниже, чтобы узнать больше о различиях между пусковыми и рабочими конденсаторами.


Пусковые конденсаторы

Приложения

Пусковые конденсаторы

используются для кратковременного сдвига фазных пусковых обмоток в однофазных электродвигателях с целью увеличения крутящего момента.Они обладают очень большими значениями емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. По этой причине пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи двигателя.


Технические характеристики

Большинство пусковых конденсаторов рассчитаны на 50–1200 мкФ и 110/125, 165, 220/250 или 330 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ «с двумя клеммами на каждый соединительный столб.


Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов пускового конденсатора бывает одного из двух типов. Катастрофический отказ обычно вызывается пусковой цепью электродвигателя, которая задействована слишком долго для номинальной кратковременной работы пускового ограничения. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены. Точно так же на стартовой крышке может быть только разорванный блистер для сброса давления .В любом случае легко сказать, что стартовый колпачок нуждается в замене.


Мой мотор медленно заводится. Мой пусковой конденсатор плохой?

Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя. Чтобы выяснить это, вам нужно измерить емкость пускового конденсатора.


На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?

В большинстве сменных пусковых крышек резистор отсутствует. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.


Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Да. Щелкните здесь для получения более подробной информации.


Рабочие конденсаторы

Приложения

Рабочие конденсаторы используются для непрерывной регулировки тока или фазового сдвига обмоток двигателя с целью оптимизации крутящего момента двигателя и эффективности.Они предназначены для непрерывного режима работы и, как следствие, имеют гораздо меньшую частоту отказов, чем пусковые конденсаторы. Они обычно используются в установках HVAC.


Технические характеристики

Большинство рабочих конденсаторов рассчитаны на 2,5–100 мкФ (микрофарад) при номинальном напряжении 370 или 440 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса имеют круглую или овальную форму, чаще всего используются стальной или алюминиевый корпус и крышка. Концевые заделки обычно представляют собой нажимные-дюймовые клеммы с 2–4 клеммами на каждую клемму подключения.


Когда заменять

Как правило, рабочий конденсатор намного дольше, чем пусковой конденсатор того же двигателя. Пробка также выйдет из строя или изнашивается иначе, чем стартовая, что немного усложняет поиск и устранение неисправностей.

Когда рабочий конденсатор начинает работать за пределами допустимого диапазона, это чаще всего обозначается падением значения номинальной емкости (значение микрофарад уменьшилось). Для большинства стандартных двигателей рабочий конденсатор будет иметь «допуск», описывающий, насколько близко к номинальному значению емкости может быть фактическое значение.Обычно это от +/- 5 до 10%. Для большинства двигателей, пока фактическое значение находится в пределах 10% от номинального значения, вы в хорошей форме. Если он выходит за пределы этого диапазона, вам необходимо заменить его.

В некоторых случаях из-за дефекта в конструкции конденсатора или иногда из-за неисправности двигателя, не связанной с конденсатором, рабочий конденсатор выпирает из-за внутреннего давления. Для большинства современных конструкций рабочих конденсаторов это приведет к размыканию цепи и отключению внутренней спиральной мембраны в качестве защитной меры, чтобы предотвратить вскрытие конденсатора.

Если она вздулась, пора заменить. Если вы не измерили целостность клемм, пришло время заменить.


Почему вышел из строя рабочий конденсатор?

Ниже приведены некоторые распространенные причины выхода из строя рабочих конденсаторов, но в зависимости от того, насколько близок рабочий конденсатор к его расчетному сроку службы, может быть трудно определить причину по одному фактору.

Время — Все конденсаторы имеют расчетный срок службы. Несколько факторов можно поменять местами или объединить, чтобы увеличить или уменьшить срок службы рабочего конденсатора, но как только расчетный срок службы превышен, внутренние компоненты могут начать более быстро разрушаться и снижаться производительность.Проще говоря, отказ можно отнести к тому, что он «просто старый».

Heat — Превышение расчетного предела рабочей температуры может иметь большое влияние на ожидаемый срок службы рабочего конденсатора. Как правило, у двигателей, которые работают в жарких условиях или с недостаточной вентиляцией, срок службы конденсаторов значительно сокращается. То же самое может быть вызвано излучением тепла от обычно горячего двигателя, которое приводит к перегреву конденсатора. В общем, если вы можете держать свой рабочий конденсатор холодным, он прослужит намного дольше.

Ток — Когда двигатель перегружен или имеет сбой в обмотках, это вызывает нарастание тока, что может привести к перегрузке конденсаторов. Этот сценарий встречается реже, поскольку обычно сопровождается частичным или полным отказом двигателя.

Напряжение — Напряжение может иметь экспоненциальный эффект, сокращая расчетный срок службы конденсатора. Рабочий конденсатор должен иметь указанное номинальное напряжение, которое нельзя превышать. Например, конденсатор рассчитан на 440 вольт.При 450 вольт срок службы может сократиться на 20%. При 460 вольт срок службы может сократиться на 50%. При 470 вольт срок службы сокращается на 75%. То же самое можно применить и в обратном порядке, чтобы увеличить расчетный срок службы за счет использования конденсатора с номинальным напряжением, значительно превышающим необходимое, хотя эффект будет менее драматичным.


Как долго должен работать рабочий конденсатор?

Срок службы послепродажного рабочего конденсатора хорошего качества (который не входит в комплект поставки вашего двигателя) составляет от 30 000 до 60 000 часов работы.Установленные на заводе рабочие конденсаторы иногда имеют гораздо меньший расчетный срок службы. В отраслях с высокой конкуренцией, где каждая деталь может иметь значительное влияние на стоимость или где предполагаемое использование двигателя, вероятно, будет прерывистым и нечастым, можно выбрать рабочий конденсатор более низкого класса с расчетным сроком службы всего 1000 часов. Кроме того, все факторы из раздела выше («Почему вышел из строя мой рабочий конденсатор?») Могут значительно изменить разумный ожидаемый срок службы рабочего конденсатора.


Конденсаторы двойного действия

Двойные рабочие конденсаторы — это два рабочих конденсатора в одном корпусе. У них нет ничего, что делало бы их электрически особенными. Обычно они имеют соединения, отмеченные буквой «C» для «общего», «H» или «Herm» для «герметичного компрессора» и «F» для «вентилятора». У них также будет два разных номинала конденсатора для двух разных частей. Вы можете увидеть 40/5 MFD, что означает, что одна сторона составляет 40 микрофарад (измерение емкости), а другая сторона — 5 микрофарад. Меньшее значение всегда будет подключено к вентилятору.Соединение большего размера всегда будет подключено к компрессору.


Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

Единственное преимущество конструкции двойного рабочего конденсатора заключается в том, что он поставляется в небольшом корпусе всего с 3 подключениями. Другой разницы нет. Если места для монтажа достаточно, использование двух отдельных рабочих конденсаторов вместо исходного двойного рабочего конденсатора является приемлемой практикой.

Объяснение пускового и рабочего конденсатора

— HVAC How To


Что такое пусковые конденсаторы?
Двигатели, используемые в системах отопления, вентиляции и кондиционирования воздуха, такие как двигатели вентилятора конденсатора или двигатели вентилятора нагнетателя, иногда нуждаются в помощи, чтобы начать движение и продолжать работать в стабильном темпе, без резких скачков вверх и вниз.

Для этого в установках HVAC используются так называемые пусковые и пусковые конденсаторы.

  • Пусковой конденсатор имеет дополнительную плату для запуска двигателя.
  • Рабочий конденсатор обеспечивает плавную работу двигателя без скачков вверх и вниз.
  • Не все двигатели имеют пусковой или рабочий конденсатор, некоторые могут запускаться и работать сами по себе.




    Конденсаторы в HVAC могут быть разделены двумя конденсаторами или могут быть в одном корпусе.

    Когда они разделены, их просто называют «одиночными», а когда они объединены в один пакет, они называются «двойными раундами».

    Вот двойной круглый конденсатор



    Вот одиночный конденсатор

    Двойные круглые конденсаторы — это просто способ, которым инженеры пытаются сэкономить на месте и стоимости.

    Они могли бы разместить два отдельных конденсатора в блоке HVAC, но объединить их в один корпус.

    Двойной конденсатор чаще всего имеет одну сторону для запуска компрессора (Herm), а другую — для запуска двигателя вентилятора конденсации.Третья одиночная ветвь сдвоенного конденсатора является общей общей ветвью.

    Как они работают в системе HVAC?
    Пусковой или рабочий конденсатор можно объединить в один конденсатор, называемый двойным конденсатором, с тремя выводами, но его можно разделить между двумя отдельными конденсаторами. Пусковой конденсатор дает двигателю вентилятора крутящий момент, необходимый для начала вращения, а затем останавливается; в то время как рабочий конденсатор продолжает давать двигателю дополнительный крутящий момент, когда это необходимо.




    При выходе из строя пускового конденсатора двигатель, скорее всего, не включится.Если рабочий конденсатор выходит из строя, двигатель может включиться, но рабочая сила тока будет выше, чем обычно, что приведет к перегреву двигателя и короткому сроку службы.

    После замены неисправного двигателя вентилятора конденсатора необходимо всегда устанавливать новый пусковой конденсатор.

    Двойной конденсатор имеет три подключения: HERM, FAN и COM.

  • HERM, подключается к герметичному компрессору.
  • FAN, подключается к двигателю вентилятора конденсатора.
  • COM, подключается к контактору и обеспечивает питание конденсатора.
  • Если в блоке два конденсатора, то один из них является рабочим конденсатором, а другой — пусковым. Имейте в виду, что компрессору также часто требуется конденсатор, который будет HERM (компрессор).

    Покупка нового конденсатора HVAC
    Новый конденсатор всегда следует устанавливать вместе с новым двигателем. Конденсатор можно купить в компании-поставщике систем отопления, вентиляции и кондиционирования воздуха, обычно их по крайней мере несколько даже в небольшом городке, также хорошее место для поиска — онлайн-магазин Amazon.

    Вот два обычных конденсатора, один слева — это двойной круглый конденсатор, а тот, что справа, — это конденсатор Run Oval.

    Двойной конденсатор — это не что иное, как два конденсатора в одном корпусе; в то время как овал хода представляет собой один конденсатор, а в системе отопления, вентиляции и кондиционирования воздуха обычно их два.

    Конденсаторы измеряются микрофарадами, иногда обозначаемыми буквами uf и Voltage. В любом блоке HVAC конденсатор должен соответствовать двигателю.

    Напряжение может быть выше, если необходимо, но никогда не понижаться, в то время как MFD (uf) всегда должен быть одинаковым.На картинке это двойной рабочий конденсатор, показывающий 55 + 5 MFD (мкФ) 440 В переменного тока. Большее число 55 MFD соответствует компрессору, а меньшее число 5 MFD (uf) соответствует двигателю вентилятора. Меньшее число всегда будет для двигателя вентилятора. Затем напряжение 440 Вольт переменного тока.

    (+ -5 после MFD показывает, насколько допустимый допуск конденсатора будет повышаться или понижаться.)

    Чтобы заказать замену для этого конденсатора, это будет 55 + 5 MFD (мкФ) и конденсатор двойного действия на 440 В переменного тока.

    Пример сдвоенного конденсатора HVAC на Amazon
    MAXRUN 55 + 5 MFD uf 370 или 440 VAC Конденсатор двойного хода с круглым двигателем для конденсатора кондиционера переменного тока — 55/5 uf MFD 440V с прямым охлаждением или тепловым насосом — будет работать двигатель переменного тока и вентилятор — 1 год гарантии


    Тестирование конденсатора HVAC
    Тестирование конденсатора HVAC выполняется с помощью мультиметра HVAC, мультиметр должен иметь кабель для считывания диапазона, который может иметь конденсатор HVAC. Многие небольшие электронные счетчики не имеют этого диапазона.

    Здесь я использую мультиметр Fieldpeice HS36 с зажимом усилителя.

    Этот тест проводится на двойном рабочем конденсаторе 55 + 5 MFD (мкФ). Мультиметр находится на Фарадах, а провода на C и FAN (положительный и отрицательный значения не имеют). Нижнее число соответствует двигателю вентилятора, который рассчитан на 5 MFD (мкФ), и он читается как 5,3 MFD (мкФ), так что это хорошо. Также можно прочитать выводы C к Herm, которые предназначены для компрессора.

    Чтобы проверить рабочий овальный конденсатор, просто коснитесь двух выводов.Он показывает 4,5 MFD (мкФ) и рассчитан на 5 MFD (мкФ), так что он плохой и требует замены.



    Как заменить пусковой конденсатор
    При установке нового двигателя всегда следует устанавливать новый конденсатор вентилятора. Всегда полезно сфотографировать или записать расцветку проводов и соединения.

    1. Отключите питание блока HVAC и убедитесь, что оно отключено с помощью измерителя.
    2. Найдите боковую панель, где электричество подводится к устройству, и снимите панель.
    3. Найдите конденсатор статического хода, если это конденсатор двойного хода, то он будет только один. Если их два, то нужно будет заменить только конденсатор двигателя вентилятора.
    4. Проверьте MFD и напряжения, затем подключите новые соединения от старого конденсатора к новому конденсатору по одной ножке за раз, чтобы убедиться, что соединения правильные.
    5. (Если у вас два конденсатора, один предназначен для компрессора, а другой — для двигателя вентилятора.)





    Как определить, что конденсатор вашего двигателя выходит из строя

    Если вы читаете это, то, вероятно, подозреваете, что что-то не так с конденсатором вашего двигателя.

    Вам интересно, как определить, что ваш конденсатор вышел из строя?

    В этой полезной статье вы узнаете:

    — Что такое конденсатор

    — Что конденсатор делает для вашего двигателя

    — Два основных типа конденсаторов двигателя

    — Как определить, неисправен ли ваш конденсатор

    Во-первых, давайте поговорим о том, что такое конденсатор и что он делает для вашего двигателя.

    Что такое конденсатор?

    Конденсатор — это устройство, накапливающее электричество.Он может быть большим или маленьким, в зависимости от его использования. Конденсаторы можно найти в чем угодно, от электронной схемы до силовой установки.

    Что делает конденсатор двигателя?

    В однофазных двигателях конденсаторы используются для облегчения их запуска и для экономии энергии.

    Существует два основных типа конденсаторов двигателя:

    1. Пусковые конденсаторы

    2. Рабочие конденсаторы

    Теперь, когда вы знаете два основных типа конденсаторов двигателя, давайте поговорим о том, что делает каждый тип конденсатора и как он влияет. твой мотор.

    Пусковые конденсаторы

    Пусковой конденсатор используется для придания двигателю дополнительного электрического толчка для запуска его вращения. Пусковой конденсатор используется в цепи двигателя только на секунду или две, когда он впервые начинает вращаться.

    Когда двигатель набирает скорость, пусковой конденсатор отключается и не используется снова до следующего запуска двигателя. Если пусковой конденсатор выйдет из строя, двигатель не сможет начать вращаться.

    Рабочие конденсаторы

    Рабочие конденсаторы — это энергосберегающее устройство, которое постоянно находится в цепи двигателя.

    Если рабочий конденсатор выходит из строя, двигатель может отображать различные проблемы, включая отсутствие запуска, перегрев и вибрацию. Плохой рабочий конденсатор лишает двигатель полного напряжения, необходимого для правильной работы.

    Разница между пусковыми и рабочими конденсаторами

    Пусковые и рабочие конденсаторы сделаны одинаково, но рабочие конденсаторы намного более надежны, чем пусковые конденсаторы, поскольку рабочий конденсатор всегда используется при работающем двигателе.

    По этой причине нельзя использовать пусковой конденсатор для замены рабочего конденсатора.В двигателях могут использоваться конденсаторы одного или обоих типов в зависимости от того, для чего они предназначены.

    Отказ конденсатора: неисправен ли ваш конденсатор?

    Если вы подозреваете, что у вас неисправный конденсатор, есть несколько симптомов неисправности конденсатора двигателя, на которые следует обратить внимание.

    Признаки неисправности конденсатора

    — Ваш двигатель медленно запускается

    — Ваш двигатель не перестанет гудеть

    Это не ваш конденсатор, когда …

    Если ваш двигатель полностью мертв (не движется) и вообще не шумит) то проблема больше, чем конденсатор.

    Как проверить свой конденсатор

    Вы хотите определить, правильно ли работает ваш конденсатор?

    Вы можете проверить свой конденсатор с помощью высококачественного электросчетчика.

    Единица измерения емкости — микрофарада. На конденсаторах указано, какое значение микрофарад (сокращенно mfd или uf) должно быть.

    Если ваш электросчетчик показывает слишком высокое или слишком низкое значение в микрофарадах, это признак того, что ваш конденсатор неисправен.

    Перед проверкой конденсатора обязательно закоротите клеммы с помощью отвертки с изолированной ручкой. Это поможет вам удалить любую накопленную мощность.

    Емкость конденсатора должна быть в пределах указанного диапазона, чтобы она была хорошей.

    Имейте в виду, что у конденсаторов нет полярности, поэтому не имеет значения, с какой стороны идут провода.

    Однако, если у вас было более двух проводов, идущих к конденсатору, провода, спаренные вместе с одной стороны, всегда должны быть спарены вместе.

    Напоминание о безопасности конденсаторов

    Как и в случае любого электрического устройства, отключите питание двигателя перед его обслуживанием и разрядите конденсаторы перед тем, как обращаться с ними.

    По-прежнему испытываете проблемы с конденсатором?

    Pumps Plus компании Cape Coral — ведущий поставщик услуг для электродвигателей на юго-западе Флориды.

    Если у вас все еще возникают проблемы с конденсатором двигателя, позвоните нам сейчас по телефону 239-574-4499 или посетите наш магазин по адресу 958 Country Club Blvd.в Кейп-Корал, Флорида.

    Как определить и заменить вышедший из строя конденсатор переменного тока

    Сейчас лето — и это лучшее время для подрядчика по ОВК. Поскольку кондиционеры работают на полную мощность, звонки накапливаются, чтобы исправить те, которые вышли из строя или не работают должным образом. Одной из наиболее частых причин неисправности системы переменного тока является выход из строя конденсатора. Конденсаторы являются неотъемлемым компонентом системы переменного тока, передавая энергию компрессору, нагнетателю и внешнему вентилятору. Как подрядчик, вы можете искать по множеству признаков, чтобы определить причину проблемы с переменным током и при необходимости отключить конденсатор, прежде чем это станет более серьезной проблемой.

    В то время как неисправный конденсатор довольно легко идентифицировать визуально, кондиционер будет проявлять определенные симптомы по мере разрушения конденсатора. Если в системе переменного тока клиента наблюдаются следующие симптомы, важно, чтобы конденсатор был отключен сразу же, прежде чем компрессор или вентилятор выйдет из строя или перестанет работать.

    Симптомы применения

    Первым признаком выхода из строя конденсатора часто является то, что кондиционер не подает холодный воздух. Также может потребоваться некоторое время для запуска кондиционера после включения, и компрессор будет издавать гудящий шум.Конденсатор также может издавать слышимый щелчок. Рост счетов за электроэнергию является еще одним показателем, поскольку системе переменного тока придется использовать больше энергии для работы в случае выхода из строя конденсатора. В конце концов, кондиционер перестанет работать или вообще не включится.

    Если у клиента возникают какие-либо из перечисленных выше проблем с переменным током, визуальная проверка конденсатора может многое выявить. Независимо от типа конденсатора, все они будут иметь одинаковые визуальные признаки.

    Визуальные симптомы

    По мере разрушения конденсатора он будет иметь выпуклый вид, а обычно плоский верх становится куполообразным.Это верный признак того, что конденсатор необходимо заменить. Если маслянистое вещество также просочилось через верхнюю часть, оставив липкий остаток, конденсатор достиг или приближается к концу своего срока службы.

    Выпуклый конденсатор

    Хороший конденсатор

    Необходимые меры безопасности

    Многие конденсаторы HVAC рассчитаны на высокое напряжение при полной зарядке, поэтому неправильное обращение может вызвать поражение электрическим током. При замене конденсатора необходимо соблюдать несколько правил безопасности:

    • Никогда не прикасайтесь к клеммам конденсатора.
    • Никогда не закорачивайте клеммы металлическими предметами. (Это может вызвать сильную искру, которая может вызвать возгорание при правильных условиях).
    • Разряд должен производиться через резистивную нагрузку, выполняемую специалистом.
    Этапы замены конденсатора

    Замена неисправного конденсатора до того, как он повредит двигатель, от которого он питается. Вот краткий обзор того, как заменить конденсатор.

    1. Отключите питание или отключите питание AC .
    2. Снимите съемную панель .
      После снятия найдите и осмотрите старый конденсатор, чтобы выяснить, не является ли он причиной проблемы.
    3. Обратите внимание на емкость и номинальное напряжение старого конденсатора .
      Запишите марку и модель оборудования переменного тока, чтобы обеспечить правильную замену. Если вы замените конденсатор на конденсатор с более низким номинальным напряжением, на конденсатор будет оказана чрезмерная нагрузка, что значительно сократит срок его службы.
    4. Разрядите и снимите старый конденсатор .
      Перед тем, как демонтировать, обязательно пометьте провода, чтобы убедиться, что вы подключаете новый конденсатор к правильным клеммам.
    5. Установить новый конденсатор .
      Установите новый конденсатор вместо старого и снова подсоедините провода к правильным клеммам.
    6. Включите питание и проверьте .
      Если он не работает, снова выключите питание, разрядите конденсатор и проверьте провода, чтобы убедиться, что они правильно подключены.

    Установка качественного конденсатора на замену для вашего клиента будет иметь решающее значение.

    Пусковой конденсатор компрессора работает?

    Это третья страница об устранении неисправностей воздушного компрессора Craftsman, который не запускается, и на этой странице основное внимание уделяется — работает ли пусковой конденсатор компрессора?

    Если вы хотите повторить шаги с самого начала, вот первая страница, на которой вы узнаете, почему ваш воздушный компрессор Craftsman не запускается.

    Что такое пусковой конденсатор?

    Это устройство (а иногда и два), которое обычно находится снаружи двигателя компрессора, часто покрытое металлическим кожухом, рядом с концом вала двигателя.Пусковой конденсатор предназначен для помощи компрессору в работе. Если в двигателе компрессора есть рабочий конденсатор, он помогает двигателю работать.

    Крышка пускового конденсатора на двигателе компрессора может выглядеть так же, как показано на фотографии, или может немного отличаться.

    Поскольку мы пытались выяснить, почему наш воздушный компрессор Craftsman не запускается, на предыдущих страницах мы успешно отследили источник питания до цепи двигателя.

    Если конденсатор запуска двигателя компрессора вышел из строя, подача питания на двигатель прекращается, и двигатель не запускается.

    Если вам это удобно, снимите крышку пускового конденсатора. Ваш конденсатор может выглядеть примерно так, как на следующей фотографии.

    Снимите крышку и осмотрите конденсатор. Мы ожидаем, что на этом этапе вы вытащили шнур питания компрессора. Пожалуйста, будьте осторожны, не касайтесь клемм конденсатора, так как конденсатор — это устройство с высокой разрядкой, и вы можете получить сильный толчок от накопленной в нем энергии.

    Обратите внимание на обесцвечивание, волдыри на внешней стороне корпуса конденсатора, подключенные клеммы, на которых нет сильной коррозии, все, что может создать впечатление, что с конденсатором не все в порядке.

    Даже если конденсатор двигателя выглядит хорошо, вы все равно захотите проверить его, чтобы убедиться, что он работает правильно. См. Встроенное видео «Как проверить конденсаторы запуска и работы двигателя»

    Замена конденсатора двигателя компрессора

    Если этикетка не стерта, вы увидите надпись на стороне конденсатора. Он покажет рейтинг в MFD (микрофарадах) и диапазон напряжения.

    Если вы приобретете заменяющий конденсатор двигателя, который имеет тот же номинал MFD, что и старый, и тот же диапазон напряжений, и вы можете подключать клеммы, вы можете использовать этот конденсатор независимо от формы или размера.Конечно, лучше всего подобрать такой, который поместится под имеющуюся крышку конденсатора.

    Если вы не видите надписи на стороне конденсатора, то пора проверить характеристики двигателя, чтобы найти, какой конденсатор необходим, и вы можете использовать свой поисковый браузер, чтобы узнать, какой конденсатор предназначен для такого-то двигателя HP , с напряжением xxx и т. д.

    Что теперь?

    Если вы проверили конденсатор и он в порядке, то, возможно, сам электродвигатель вышел из строя, особенно если при включении воздушного компрессора с пустым баком и подачей мощности на проверенный пусковой конденсатор двигатель вашего компрессора не работает. звук вообще.

    Как проверить двигатель компрессора — это довольно сложная тема, выходящая за рамки многих домашних мастеров среди нас.

    Эта ссылка приведет вас на страницу за пределами сайта, которая даст вам некоторое представление о этапах тестирования электродвигателя.

    На этом этапе мы бы сняли электродвигатель с воздушного компрессора и отнесли его в местную ремонтную мастерскую для тестирования и, при необходимости, для ремонта.

    Расскажите своим друзьям об этой странице:

    Как определить неисправный конденсатор переменного тока и как его заменить

    Все мы знаем это удивительное чувство, когда вы приходите из жаркого летнего дня в свой прекрасный кондиционер.Но однажды вы можете войти и обнаружить, что ваш дом не такой крутой, как вы ожидаете.

    Некоторым людям также знакомо чувство опускания при поломке блока переменного тока. Однако знать, что вам предстоит дорогостоящий ремонт, не должно быть никому.

    Лето становится жарче, а июнь 2021 года бьет рекорды, поэтому вам понадобится исправный кондиционер.

    Перед тем, как пойти и заняться серьезной работой, вам, возможно, придется задать себе вопрос: «У меня плохой конденсатор переменного тока?».Если вы это сделаете, есть хорошие новости — вы можете заменить его самостоятельно.

    Ознакомьтесь с симптомами и руководством по замене, чтобы убедиться, что это вы.

    Предупреждения о безопасности

    Многие блоки переменного тока имеют конденсаторы, которые несут достаточно высокий заряд, поэтому вы должны быть абсолютно осторожны при их замене или проверке. Однако, если вы примете разумные меры предосторожности, у вас не должно возникнуть проблем.

    • Никогда не касайтесь клемм на конце конденсатора
    • Не используйте какие-либо металлические предметы для разрядки нагрузки на конденсаторе

    При работе с высоковольтным оборудованием, например с блоком переменного тока, всегда убедитесь, что оно выключено.Если ваш блок переменного тока является съемным, убедитесь, что вилка полностью отключена. Если ваш AC подключен к автоматическому выключателю, убедитесь, что он отключен или выключен.

    Признаки неисправности или выхода из строя конденсатора

    Блоки переменного тока

    с плохими конденсаторами могут вызывать несколько интересных симптомов. Хотя это не всегда стопроцентная гарантия неисправного конденсатора переменного тока, велика вероятность того, что у вас возникнут проблемы, если вы увидите что-либо из этого.

    Вы можете заметить:

    • Гудящие шумы
    • Проблемы с включением и выключением
    • Запах гари или электрического разряда
    • Счета выше обычных
    • Устройство может отключиться случайным образом
    • Без охлаждения
    • Щелчки или гудящие звуки

    Если что-то из этого звучит знакомо, есть большая вероятность, что с конденсатором переменного тока что-то не так, и вам следует подумать о его замене.

    Если ни один из этих симптомов не подходит, обратитесь к нашему руководству по устранению неполадок, чтобы найти проблему.

    Без охлаждения

    Как только ваш кондиционер перестанет подавать холодный воздух, это верный признак того, что что-то не так. Возможно, это не долгосрочная проблема. Вы можете проверить, включив и снова выключив устройство, чтобы увидеть, исчезнет ли проблема.

    Щелчки или жужжание

    Это снова связано с двигателем. Когда двигатель пытается запуститься, но не может, он может издавать щелкающий или гудящий звук.Это хороший признак того, что конденсатор сломан.

    Теперь, когда у вас есть хорошее представление о симптомах, которые вы можете увидеть, давайте узнаем немного о том, как работают конденсаторы. Таким образом, вы сможете понять, как их безопасно и эффективно заменить.

    Счета за высокую энергию

    Когда конденсатор переменного тока неисправен, двигатель вентилятора конденсатора должен работать больше и потреблять больше ампер. Поэтому, когда вы внезапно замечаете, что ваши счета за электроэнергию увеличиваются, у вас может быть плохой конденсатор. Чтобы понять, почему плохой конденсатор означает более высокий счет за электроэнергию, см. Раздел ниже о том, что делает конденсатор.

    Случайные отключения

    Вы можете обнаружить, что ваш блок переменного тока отключается, и вы время от времени ничего не делаете.

    Проблема с включением или выключением

    Эта проблема почти всегда связана с неисправным конденсатором. Когда система пытается сделать что-то, для чего требуется больше энергии, неисправный конденсатор может вызвать проблемы. Этот симптом также может проявляться в том, что устройству требуется много времени для начала работы после его включения. Конденсатор дает начальный заряд энергии, и когда он выходит из строя, блок переменного тока изо всех сил пытается запуститься.Обычный обходной путь, хотя иногда и опасный, — это толкать лопасть вентилятора палкой. Это может быть опасно и привести к повреждению устройства, поэтому следует делать это только в экстренных случаях.

    Запах гари или электрического разряда

    Это немного сложнее, так как может быть много причин (ни одна из них не является хорошей), по которым ваш блок переменного тока может пахнуть гари. В вашем блоке переменного тока конденсатор приводит в движение двигатель. Когда конденсатор неисправен, двигатель имеет тенденцию к перегреву, и это может вызвать запах.

    Что на самом деле делает конденсатор?

    Если вы думаете о конденсаторе как о большом хранилище энергии, вы на правильном пути. Самый простой конденсатор состоит всего из нескольких компонентов. Это два проводника, которые пропускают электричество, и промежутки, которые блокируют поток электричества. Когда электричество проходит через конденсатор, электроны накапливаются в двух проводниках. Один проводник хранит отрицательно заряженные электроны, а другой — положительно заряженные.

    Любой крупный прибор, такой как блок переменного тока, требует для работы много электроэнергии.И когда компрессор и двигатель вентилятора запускаются, им требуется большое количество энергии. Вы не захотите постоянно платить за электроэнергию по высокой цене — здесь на помощь приходят конденсаторы.

    Конденсаторы

    используют накопленную энергию, чтобы дать большой толчок мощности вашему компрессору и двигателю вентилятора при запуске. Возможно, вы слышали шум, когда начинается этот процесс.

    После запуска блока конденсатор уже не нужен, и он может снова накапливать энергию для следующего большого толчка.

    Что такое номинал конденсатора

    Конденсатор имеет много разных номиналов, но для наших целей нас интересуют только два:

    1. Рабочее напряжение
    2. Значение емкости. На вашем конденсаторе переменного тока будет 2 значения емкости. Один приводит в движение компрессор, другой — двигатель вентилятора.

    Рабочее напряжение

    Это действительно просто индикатор того, какое напряжение может пройти через конденсатор. Одна из причин, по которой конденсатор может выйти из строя быстрее, чем ожидалось, — это нестабильная подача электроэнергии в вашем доме.При замене конденсатора вы можете увеличить напряжение, так как это максимальное напряжение, с которым он может работать. Как правило, вы увидите конденсаторы на 370 или 440 В, но многие производители увеличивают запасы только до 440 В.

    Значение емкости

    Измеряется в микрофарадах и показывает, сколько энергии может хранить конденсатор. Обычно это будет написано 50 + 5 MFD или 50 + 5 μ. Здесь есть и другие сложности, но все будет в порядке, если вы можете указать микрофарады.

    Примеры этикеток конденсаторов. Обратите внимание, как некоторые производители используют МФД для отображения рейтинга микрофарад, тогда как другие используют символ μ.

    Как определить, неисправен ли конденсатор

    Наиболее частым признаком неисправности конденсатора является гудение двигателя вентилятора конденсатора на внешнем блоке, или двигатель не запускается. В доме вы заметите, что холодный воздух не выходит из вентиляционных отверстий. Когда это происходит, конденсатор не работает и не может обеспечить достаточное количество накопленной энергии для работы двигателя вентилятора или компрессора.

    Помимо всех симптомов из нашего списка, могут быть визуальные признаки того, что с конденсатором что-то не так. Если вы видите конденсатор на своем блоке переменного тока, его достаточно легко проверить на предмет повреждений или других функциональных проблем.

    Визуальные признаки неисправного конденсатора

    Внимательно посмотрите на конденсатор в вашем устройстве. Он выглядит гладким и безупречным? Если есть заметный прогиб или выпуклость, конденсатор необходимо заменить. Таким же образом, если масло выходит из верхней части конденсатора, срок его службы подошел к концу, и его необходимо заменить.

    Пример неисправного конденсатора кондиционера: вздутие Пример неисправного конденсатора кондиционера: ржавчина

    Как проверить конденсатор с помощью мультиметра

    Использование функции емкости на мультиметре

    Включите счетчик

    Поверните циферблат на функцию емкости (см. Ниже). В этом случае мы используем мультиметр Клейна, и мы должны нажимать кнопку выбора, пока не увидим, что это емкостной режим.

    Установка емкости на мультиметре
    Проверка секции вентилятора конденсатора конденсатора

    Поместите один щуп мультиметра на C (общий)

    Поместите другой датчик на ВЕНТИЛЯТОР.

    Считывание емкости секции двигателя вентилятора конденсатора

    Подождите несколько секунд, и на дисплее должно появиться значение емкости. При хорошем чтении микрофарады находятся в пределах 10% от указанной на этикетке спецификации.

    Проверка секции вентилятора компрессора конденсатора

    Поместите один щуп мультиметра на C (общий)

    Поместите другой датчик в HERM. (HERM — сокращение от «герметичный», обозначающее герметичный компрессор)

    Считывание емкости компрессорной секции конденсатора

    Подождите несколько секунд, и на дисплее должно появиться значение емкости.При хорошем чтении микрофарады находятся в пределах 10% от указанной на этикетке спецификации.

    Использование функции сопротивления на мультиметре

    Конденсатор

    А также можно проверить путем измерения сопротивления, но лучше всего это работает с аналоговым измерителем. Цифровые измерители обычно не показывают скачок вверх и вниз в омах, что указывает на исправный конденсатор.

    Включите счетчик

    Установите шкалу Ом. (Похож на символ омега)

    Получите быстрое считывание показаний сопротивления между клеммами

    Наденьте датчик на C, а другой на ВЕНТИЛЯТОР.Вы должны увидеть значение сопротивления на стрелке и вернуться к бесконечности

    Ом.

    Переверните щупы и найдите то же поведение на стрелке мультиметра.

    Повторите это для C и HERM.

    Получите показания сопротивления между выводами и корпусом конденсатора

    Поместите один щуп на C, а другой на внешний металлический корпус конденсатора. Если вы получаете показания, указывающие на целостность цепи, то конденсатор неисправен.

    Повторите это для терминала FAN и терминала HERM

    Проверка на короткое замыкание между выводами и корпусом конденсатора

    Как заменить конденсатор кондиционера

    Замена конденсатора переменного тока

    несложна и в большинстве моделей может быть сделана своими руками.Каждая модель отличается, поэтому процесс может немного отличаться в зависимости от вашей марки.

    Основные шаги:

    1. Выключите и отсоедините блок переменного тока
    2. Откройте или снимите панель, которая дает вам доступ
    3. Обычно находится на боковой стороне блока и имеет маркировку
    4. Проверьте, какой номинал сломанного конденсатора составляет
    5. Снимите старый конденсатор
    6. Установите новый конденсатор
    7. Включите блок переменного тока и проверьте его

    Хотя это относительно простая установка, мы рекомендуем прочитать инструкции до конца.У вас будет полное представление о том, что вы будете делать таким образом.

    Шаг 1: Собрать Ваши инструменты

    Вам нужна отвертка, чтобы снять съемную панель? Когда вы доберетесь до снятия конденсатора, вам могут понадобиться как отвертка 1/4 дюйма, так и отвертка 5/16.

    Шаг 2. Выключите и отсоедините блок переменного тока

    Убедитесь, что вы правильно выключили блок переменного тока. Мы рекомендуем выключить прерыватель, который идет к сети переменного тока, и извлечь блок предохранителей из коробки отключения кондиционера.

    Шаг 3. Откройте или снимите панель доступа

    Это должна быть маленькая распашная дверь. Обычно он появляется сбоку или снизу блока переменного тока. Для открытия некоторых панелей требуется отвертка, в то время как у других есть защелка.
    Будьте осторожны, открывая панель, чтобы у вас было безопасное место для ее хранения, если она полностью выйдет.

    Шаг 4: Найдите конденсатор

    Типичное расположение конденсатора в раздельной системе кондиционирования

    Конденсатор в вашем блоке переменного тока будет выглядеть как металлический цилиндр.Он будет иметь два или три контакта наверху и к нему должны быть подключены провода.

    Шаг 5: Осмотрите конденсатор

    Сделайте быстрый визуальный осмотр конденсатора. Вы видите выпуклость? Нет ли утечек масла по бокам? Если что-то в конденсаторе выглядит деформированным или странным, скорее всего, это плохо.

    Это также хорошее время для проверки остальных компонентов шкафа переменного тока. Есть ли на контакторе следы ожогов или точечной коррозии? Пробка компрессора в хорошем состоянии?

    Шаг 6: Проверьте номинал конденсатора

    Внимательно посмотрите на конденсатор.Вот пример, показывающий этикетку. Сбоку на нем должна быть этикетка, на которой будет рассказано все, что вам нужно знать о нем. Кроме того, предоставив нам вашу модель и серийный номер, мы можем помочь вам найти подходящий конденсатор для вашего кондиционера. Помните, из того, что мы видели выше; нас интересуют два рейтинга:

    1. Рабочее напряжение
    2. Емкость
    Рабочее напряжение

    Обычно это печатается в верхней части этикетки, а после нее идут буквы VAC.Вы можете увидеть текст, похожий на «370VAC» или «440VAC».

    Номинальная емкость

    Обычно он печатается под номинальным напряжением и имеет после него буквы мкФ или мкФ. Вы можете увидеть текст, похожий на «50uF» или «40 + 5MFD».

    Шаг 7: Снимите старый конденсатор

    Сначала сфотографируйте старый конденсатор на месте. Это поможет вам позже, когда вы вставите новую. Должно быть три разъема — HERM, вентилятор и C. Важно, чтобы, когда вы снова вставляете новый конденсатор, вы подключаете его таким же образом.

    ПРЕДУПРЕЖДЕНИЕ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ: Не прикасайтесь к клеммам конденсатора, так как он все еще может удерживать заряд.

    После того, как вы сфотографировали разъемы, осторожно отключите их. Отсоединенные провода следует отложить в сторону, чтобы они не мешали.
    Конденсатор должен легко сниматься. Обычно для их удаления требуется всего один или два винта, а некоторые из них являются защелкивающимися. Если винты удерживают конденсатор, убедитесь, что вы храните их в безопасном месте.

    Шаг 8: Установите новый конденсатор

    Один за другим присоедините провода, как на старом конденсаторе.Убедитесь, что правильные провода идут к разъемам HERM, вентилятора и C. Перед тем, как продолжить, проверьте их правильность.

    Как только вы убедитесь, что у вас есть подходящие разъемы в нужном месте, пора снова установить конденсатор. Возьмите ранее снятые винты и установите конденсатор, приложив твердое усилие. Будьте осторожны, чтобы не повредить винты при установке.

    Если для установки конденсатора не используются винты, он должен просто снова встать на место.

    Шаг 9: Закройте и закрепите панель доступа

    Не забудьте ввернуть все винты, которые могли удерживать дверь закрытой. Панель с открытым доступом может быть опасной и должна быть закрыта должным образом.

    Шаг 10: Включите блок переменного тока и проверьте

    Пора вернуть все обратно. Если вы отключили или нажали прерыватель, подключите его снова. Если ваш блок переменного тока является вставным, снова вставьте вилку в розетку и включите ее.
    Как только все вернется на свои места, вы можете включить кондиционер, как обычно, и посмотреть, работает ли он.

    Шаг 11: Тестирование

    Тестирование так же просто, как включение блока переменного тока и установка его на охлаждение.

    Вы не должны слышать гудение или щелчки, а компрессор и двигатель вентилятора должны запускаться легко. Если эти два компонента все еще не запускаются, возможно, они были безвозвратно повреждены из-за неисправного конденсатора, который только что был заменен.

    Вы должны увидеть заметную разницу. Теперь все должно работать должным образом, и ваша комната должна начать охлаждаться.

    Простая замена конденсатора переменного тока

    Итак, теперь, когда вы получили эту новую способность ремонтировать свой собственный блок переменного тока, что еще осталось? Что ж, для начала вам нужно хорошее и надежное место для замены неисправного конденсатора переменного тока.

    К счастью, это действительно просто. Вы можете связаться с нашими специалистами по запасным частям или позвонить нам напрямую, чтобы поговорить с дружелюбным техником.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *