Асинхронный двигатель не возбуждается от конденсаторов: Однофазный двигатель с конденсатором — Всё о электрике в доме – Однофазный двигатель с конденсатором — советы электрика

Содержание

Конденсаторный двигатель — Википедия

Конденсаторные двигатели — разновидность асинхронных двигателей, в обмотки которого включены конденсаторы для создания сдвига фазы тока.[1] Подключаются в однофазную сеть посредством специальных схем. По количеству фаз статора делятся на двухфазные и трёхфазные.

Существует разные схемы подключения, больше вариантов для трёхфазных двигателей, различающиеся способом соединения обмоток двигателя и составом дополнительных элементов, но минимальная работоспособная схема содержит один конденсатор, от чего и происходит название.

Как правило, одна из обмоток («фаза двигателя») запитывается напрямую от однофазной сети, а другие обмотки запитывается через электрический конденсатор, который сдвигает фазу подводимого тока почти на +90°, или через катушку индуктивности, которая сдвигает фазу почти на −90°. Чтобы результирующее вращающееся магнитное поле не было эллиптическим, последовательно с конденсатором включается переменный проволочный резистор, с помощью которого добиваются кругового вращающегося магнитного поля.

Питание трёхфазного двигателя от однофазной электрической сети

Промышленные конденсаторные двигатели имеют в основе, как правило, двухфазный двигатель (проще производство и схема подключения). Трёхфазные двигатели переделываются под однофазную сеть обычно в частном порядке или мелкосерийном производстве в силу массовости таких типов двигателей и сетей, выбирая при этом между сложностью схемы и недоиспользованием мощности двигателя.

Такие двигатели используются в основном в бытовой технике малой мощности: активаторных стиральных машинах, механизмах катушечных и стационарных кассетных магнитофонов, недорогих проигрывателях виниловых дисков, вентиляторах и другой подобной технике.

Также такие двигатели применяются в циркуляционных насосах водопроводных и отопительных систем (напр. компании Grundfos), и в воздуходувках и дымососах отопительных и водонагревательных агрегатов (напр. Buderus).

Трёхфазные асинхронные двигатели в однофазную электрическую сеть включают через фазосдвигающий конденсатор.

Первый вывод обмотки электродвигателя подключается к «фазовому» проводу, второй вывод — к нейтральному проводу. Третий вывод обмотки подключается через конденсатор, ёмкость которого подбирается по формулам, в зависимости от того, как соединены обмотки двигателя — звездой или треугольником.

Если обмотки соединены звездой, тогда ёмкость «рабочего» конденсатора должна быть

CWORK/STAR=2800IU{\displaystyle C_{WORK/STAR}=2800{\frac {I}{U}}}.

Если обмотки соединены треугольником, тогда ёмкость «рабочего» конденсатора должна быть

CWORK/TRIANGLE=4800IU{\displaystyle C_{WORK/TRIANGLE}=4800{\frac {I}{U}}}, где

U{\displaystyle U} — напряжение сети, вольт;

I{\displaystyle I} — рабочий ток двигателя, ампер;

C{\displaystyle C} — электрическая ёмкость, микрофарад.

При пуске двигателя кнопкой подключается пусковой конденсатор CLAUNCH{\displaystyle C_{LAUNCH}}, ёмкость которого должна быть в два раза больше ёмкости рабочего. Как только двигатель наберёт нужные обороты, кнопку «Пуск» отпускают.

Переключатель B2{\displaystyle B_{2}} позволяет изменять направление вращения электродвигателя. Выключатель B1{\displaystyle B_{1}} отключает электродвигатель.

Используя паспортные данные электродвигателя, можно определить его рабочий ток I{\displaystyle I} по формуле:

I=P1,73 U η cos⁡φ{\displaystyle I={\frac {P}{1{,}73~U~\eta ~\cos \varphi }}}, где

P{\displaystyle P} — электрическая мощность двигателя, Ватт;

U{\displaystyle U} — напряжение сети, вольт;

η{\displaystyle \eta } — коэффициент полезного действия;

cos⁡φ{\displaystyle \cos \varphi } — коэффициент мощности.

Практически единственный способ реализации асинхронного двигателя в обычной бытовой однофазной сети.

Ёмкость конденсатора подобрана для случая оптимальной частоты вращения двигателя. В случае, если частота вращения ниже оптимальной (пуск или большая механическая нагрузка, особенно переменная) противо-ЭДС в обмотке, подключенной через конденсатор, отклоняется от идеального значения, что разбалансирует всю схему и приводит к появлению эллиптического магнитного поля с сильным падением мощности.

Поэтому схема применима только для небольших или для практически постоянных нагрузок, как, например, в проигрывателе виниловых дисков или же отопительном циркуляционном насосе. В пылесосе же, например, это невозможно, и потому там применяется коллекторный двигатель.

Кроме того, конденсаторный двигатель, как и любой асинхронный, предъявляет довольно высокие требования к качеству синусоиды и частоте питающего напряжения. Потому устройства, содержащие такие двигатели нельзя подключать к дешёвому «компьютерному» ИБП — в режиме работы от батарей такой ИБП дает часто не синус, а меандр, иногда с частотой куда выше 50 Гц. Такие устройства требуют online UPS.

Марки конденсаторных электродвигателей[править | править код]

  • КД-5
  • КД-6-4 — лицензионная копия с японского конденсаторного двигателя (применялся на магнитофонах серии «Маяк»)

50.Конденсаторные асинхронные двигатели.

Конденсаторным называют асинхронный электродвигатель, который питается от однофазной сети, имеет на статоре 2 обмотки: первая питается от сети непосредственно, а вторая — последовательно с электроконденсатором, чтобы создавать вращающееся магнитное поле. Конденсаторы образуют сдвиг по фазе токов обмоток, оси у которых повернуты в пространстве.

Максимальная величина вращающегося момента достигается при сдвиге фаз токов на 90°, причем именно в тот момент, когда их амплитуды подбираются так, чтобы вращающееся поле было круговым. Во время пуска конденсаторных асинхронных двигателей оба конденсатора подключены, но сразу же после разгона один из них обязательно отключают. Это объясняется тем, что для номинальной частоты вращения необходима значительно меньшая емкость, нежели при самом пуске. Конденсаторный асинхронный электродвигатель по своим пусковым и рабочим параметрам очень похож на трехфазный асинхронный двигатель. Его используют в электроприводах небольшой мощности; если необходима мощность свыше 1 кВт, такой электродвигатель использовать нецелесообразно, ввиду высокой стоимости и размеров конденсаторов.

Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске К. а. д. оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. К. а. д.

по пусковым и рабочим характеристикам близок к трёхфазному асинхронному двигателю.

Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов.

Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть.

Рабочая ёмкость конденсатора для 3-фазного двигателя определяется по формуле Ср = 2800 1/U мкф, если обмотки соединены по схеме «звезда», или Ср = 48001/U (мкф), если обмотки соединены по схеме «треугольник». Ёмкость пускового конденсатора Сп=(2,5 — 3)Ср. Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети; конденсаторы устанавливаются обязательно бумажные.

51. Асинхронные исполнительные двигатели

Эти двигатели используются в устройствах автоматики, служат для преобразования подводимого к ним электрического сигнала в механическое перемещение вала. Исполнительные двигатели являются управляемыми двигателями. При заданном моменте нагрузки скорость двигателя должна строго соответствовать подводимому напряжению и меняться при изменении его величины и фазы. В качестве исполнительных двигателей применяются, главным образом, двухфазные асинхронные двигатели с короткозамкнутым ротором (рис. 2.19а).

Рис. 2.19. Принципиальная схема асинхронного исполнительного двигателя (а)

и векторные диаграммы его напряжений при амплитудном (б) и фазовом (в) методах управления.

 Одна из обмоток статора B, называемая обмоткой возбуждения, подключается к сети переменного тока с постоянным действующим значением напряжения . Ко второй обмотке статора У, называемой обмоткой управления, подключается напряжение управления 

, от управляющего устройства УУ.

Различают три основных способа изменения напряжения на обмотке управления: амплитудное, фазовое и амплитудно-фазовое.

При амплитудном управлении изменяется лишь величина амплитуды напряжения управления или пропорциональное ей действующее значение этого напряжения (рис.2.19б). Величина напряжения управления может быть оценена коэффициентом сигнала .

Векторы напряжений управления и возбуждения при всех значениях коэффициента образуют угол 

.Фазовое управление характерно тем, что напряжение управления остается неизменным по величине, а регулирование скорости достигается изменением угла сдвига фаз между векторами управления и возбуждения (рис. 2.19в). В качестве коэффициента сигнала при фазовом управлении принимается величина, равная синусу угла сдвига фаз между векторами напряжений управления и возбуждения , т. е. 
.

При амплитудно-фазовом управлении изменяется как амплитуда напряжения управления, так и угол сдвига фаз между напряжениями и , подаваемыми на обмотки статора. Этот способ осуществляется практически путем включения в цепь обмотки возбуждения конденсатора, поэтому схема амплитудно-фазового управления часто называется конденсаторной.

При всех методах управления скорость асинхронного двигателя изменяется за счет создания несимметричного эллиптического магнитного поля.

Подключение однофазного двигателя через конденсатор

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Как подключить однофазный асинхронный двигатель через конденсатор?

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

{SOURCE}

ОСОБЕННОСТИ РАБОТЫ КОНДЕНСАТОРНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ. — РЕМОНТ ЭЛЕКТРОДВИГАТЕЛЕЙ —

Подключение электродвигателя на 220 вольт и эффективность использования конденсаторного асинхронного электродвигателя зависит от ряда факторов:
Должна быть правильно выбрана рабочая емкость и соответствующая нагрузка на валу двигателя. В этом случае токи главной и конденсаторной обмоток примерно равны и не должны превышать номинального значения.

Напряжение питания конденсаторного электродвигателя. Напряжение на двигателе должно быть равно номинальному. При снижении напряжения сети в квадратичном отношении уменьшается вращающий момент электродвигателя. Например, понижение напряжения на 30% вызывает уменьшение его момента в 2 раза. В результате двигатель может либо остановится, либо будет продолжать вращаться с повышенным скольжением (потребляя большой ток). Это может вызвать недопустимый перегрев статорных обмоток, составляющих главную фазу. При длительной работе двигателя с пониженным напряжением необходимо соответствующим образом уменьшить нагрузку.

Холостой ход конденсаторного электродвигателя. Однако то же самое происходит с конденсаторной фазой, только в случае работы двигателя с недогрузкой. Ток конденсаторной фазы в режиме холостого хода при выборе рабочей емкости достигает 120… 140% номинального. Это означает, что электрические потери возрастают в 2 раза по сравнению с потерями при номинальном токе. Другими словами, холостой ход конденсаторного электродвигателя с постоянной рабочей емкостью не только нежелателен, но и опасен, так как ток конденсаторной фазы, достигая в этом случае наибольшего значения, может вызвать недопустимый перегрев обмотки.
Таким образом, нельзя допускать как длительную перегрузку, так и длительную работу двигателя без нагрузки. При работе двигателя с недогрузкой рабочую емкость конденсаторов необходимо уменьшать. Ток конденсаторной фазы при этом не будет превышать номинального значения.

Зависимость величины емкости рабочего конденсатора от нагрузки на валу двигателя является линейной . Она представлена на рисунке. Эта зависимость позволяет легко определить значение рабочей емкости конденсаторов для произвольной нагрузки при известной номинальной. Для этого по заданному относительному значению нагрузки двигателя Р/Рн находят соответствующую относительную величину емкости Ср/Срн, а по ней — искомое значение емкости. 
ПРИМЕР:
для Р= 0,2Рн отношение Ср/Срн = 0,75. Это означает, что при такой длительной нагрузке величина рабочей емкости должна быть снижена на 25%. Для этой цели в некоторых случаях применяют системы автоматического регулирования емкости конденсатора в функции от нагрузки.


Зависимость величины рабочей емкости от нагрузки асинхронного электродвигателя. 

Выбор величины пусковой емкости конденсаторного электродвигателя. Для создания необходимого пускового момента приходится включать в цепь конденсаторной фазы дополнительную — пусковую емкость, отключаемую после пуска. Включение и отключение пусковой емкости создает проблемы, связанные с толчками момента электродвигателя. Характер изменения тока конденсаторной фазы с изменением нагрузки приводит к ухудшению использования мощности двигателя и уменьшению его перегрузочной способности.
Принципиальный подход к выбору величины пусковой емкости заключается в следующем: Пусковую емкость, равную двум-трем значениям величины рабочей емкости, выбирают для обеспечения пускового момента, не меньшего, чем номинальный момент двигателя в трехфазном режиме. Для тех случаев, когда конденсаторный двигатель запускается вхолостую или нагрузка на его валу невелика, ограничиваются только рабочей емкостью, включаемой постоянно.

Источник:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *