Ветрогенератор это: Ветрогенераторы для загородного дома — компания Светон

Содержание

Ветрогенераторы: вопросы и ответы — Энергетика и промышленность России — № 09 (101) май 2008 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 09 (101) май 2008 года

Ветрогенераторы – это генераторы электрической энергии, работающие под действием энергии ветра. Сегодня ветрогенераторы – высокотехнологичные изделия мощностью от 5 кВт до 4500 кВт единичной мощности. Ветрогенераторы современных конструкций позволяют экономически эффективно использовать энергию даже самых слабых ветров – от 4 метров в секунду. С помощью ветрогенераторов можно не только поставлять электроэнергию в централизованные сети, но и решать задачи электроснабжения локальных объектов.

Как работает ветрогенератор?

Набегающие потоки ветра на высоте башни ветрогенератора – от 40 до 100 метров – вращают лопасти ветрогенератора. Энергия вращения передается по валу ротора на мультипликатор, который, в свою очередь, вращает асинхронный или синхронный электрический генератор.

Широко распространены конструкции ветрогенераторов, не имеющих мультипликатора, что существенно увеличивает их производительность.

При изменении направления ветра сенсоры на башне ветрогенератора подают команду, и механизм ориентации поворачивает башню ветрогенератора по ветру.

Стабилизация вращения ветроколеса ветрогенератора достигается различными методами, один из которых – поворот лопастей или их фрагментов вокруг своей оси под углом к направлению ветра.

Ветрогенераторы могут работать как по одиночке (единичный комплекс), так и группами (ветропарк). Часто один или несколько ветрогенераторов работают параллельно с дизель-генераторами в качестве средства экономии расходов на дизельное топливо.

Что дает ветрогенератор?

Ветрогенератор мощностью 800 кВт при среднегодовой скорости ветра 6 м/с произведет за год 1500000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с – 1100000 кВт-часов электроэнергии.

Ветрогенератор мощностью 2000 кВт при среднегодовой скорости ветра 6 м/с произведет за год 3700000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с –2300000 кВт-часов электроэнергии.

Где применяются ветрогенераторы?

В самых разных местах: это открытые территории с хорошим ветропотенциалом, поля, острова, мелководье, горы. В России применение ветрогенераторов очень перспективно там, где подключение к существующим сетям дороже ветроэнергетического проекта или доставка дизельного топлива обходится дорого. А таких мест, изолированных или удаленных от централизованного энергоснабжения, у нас немало.

Какой силы ветер нужен для работы ветрогенератора?

Использование ветрогенератора экономически эффективно в местности со среднегодовой скоростью ветра от 4 м/с.

Для чего нужны ветрогенераторы?

Аргументов в пользу применения ветроэнергетических установок множество. Вот основные из них:
это независимый от внешних факторов источник электроэнергии;

после достижения срока окупаемости ветрогенератор требует затрат только на его обслуживание;
применение ветрогенераторов позволяет до 80 процентов сократить затраты на дизельное топливо в тех местах, где дизель-генераторы являются основным источником электроэнергии. Следовательно, экономятся расходы на хранение и транспортировку дизельного топлива, а энергоснабжение таких объектов перестает зависеть от случайных факторов;
капитальные затраты на ветроэнергетический комплекс по сравнению с традиционными источниками электроэнергии достаточно низки. Ориентировочно это 1300 евро на 1 кВт установленной мощности «под ключ»;
сроки ввода в эксплуатацию ветрогенераторов достаточно коротки. После изготовления оборудования (6‑8 месяцев) по заказу поставка и монтаж длятся 1‑2 месяца. В случае применения ветрогенераторов «с пробегом» срок поставки ограничивается 1‑2 месяцами;
ветроэнергетические установки не загрязняют окружающую среду. Этот аргумент становится все более актуальным при согласовании новых промышленных проектов в России.

Как влияют высота мачты и диаметр ротора на выработку энергии?

Увеличение высоты мачты до 18‑26 метров позволяет повысить среднегодовую скорость ветра на высоте оси на 15‑30 процентов и тем самым увеличить выработку энергии в 1,3‑1,5 раза.

Это особенно эффективно при среднегодовых скоростях ветра меньше 4 м/с.

Высокая мачта также позволяет устранить влияние деревьев и построек. Мощность зависит от диаметра в квадрате. Диаметр ротора выбирается исходя из среднегодовой скорости ветра. При ветре до 6‑7 м/с выработка ротора диаметром 5 метров выше, чем у ротора 4,2 метра. При больших среднегодовых скоростях ветра выработка выравнивается.

как сталь помогает альтернативной энергетике

Мир переходит на чистую энергетику. Энергия ветра сейчас считается одной из самых дешевых по способу производства электроэнергии. По данным Глобального совета по ветроэнергетике (Global Wind Energy Council (GWEC), в прошлом году мощности ветряных электростанций впервые превысили объемы ископаемого топлива на многих развитых и развивающихся рынках.

Последние пять лет ветряная энергетика растет примерно на 50 гигаватт в год. Сегодня все ветроэлектростанции планеты генерируют 591 гигаватт. GWEC ожидает, что еще через пять лет в мире станет больше на 300 гигаватт новых мощностей.  

Топ стран-лидеров в ветроэнергетике, 2018 год, GWEC, гигаватты 

Номер два в Европе и Украине 

Ветроэнергетика – вторая по объему мощностей отрасль энергетики в Европе. Ветропарки Европейского союза вырабатывают около 180 гигаватт энергии. Это почти половина от всей европейской энергетики. По прогнозам ассоциации Wind Europe, в этом году ветроэнергетика может перерасти газовую промышленность. В 2018 году в Европе введены в эксплуатацию установки с ветрогенераторамы мощностью почти 12 гигаватт. Из всех энергетических объектов, построенных в прошлом году, на долю возобновляемых источников энергии приходится 95%. А вот газ, нефть и уголь теряют свои позиции: новые установки по добыче газа и угля в ЕС достигли рекордно низкого уровня. 

Каждый год в зеленую энергетику в Европе вкладывают миллиарды евро. 2018 год стал рекордным по финансированию проектов ветроэнергетики: инвестиции составили почти 27 млрд евро. Самые крупные инвесторы – Великобритания и Швеция.

Украина с 1,2 млрд евро входит в десятку по объему инвестиций в зеленую энергетику.    

Топ стран-лидеров по инвестициям в ветроэнергетику в 2018 году, Wind Europe, млрд евро

В первой половине этого года в Европе построили  ветрогенераторы мощностью почти 5 гигаватт. Украина вошла в пятерку самых продвинутых стран.

Топ стран-лидеров по количеству установок ветроэлектростанций, 1-е полугодие 2019 г., Wind Europe, мегаватты

Среди альтернативных источников энергии в Украине ветер пока уступает солнцу. В 2018 году было построено 68 ветропарков общей мощностью 533 мегаватта. Это 22 ветрогенератора, мощность каждого из которых – около 3 мегаватт. На конец июня этого года общие мощности украинских ветроэлектростанций достигли почти 777 мегаватт.  

Мегаконструкции из металла

Ветроэлектростанция состоит из нескольких ветрогенераторов, объединенных в одну сеть. Самые большие ветропарки расположены в Китае, Индии и Великобритании. К примеру, в китайской провинции Ганьсу работает целый комплекс ветроэлектростанций мощностью почти 8 гигаватт, который может потягаться с крупнейшими атомными и гидроэлектростанциями. 

Ветрогенератор – установка, которая превращает энергию ветра в электрическую. По данным Wind Europe, в среднем мощность одного ветрогенератора колеблется от 2 до 3,6 мегаватт.
Самая мощная турбина ветрогенератора в мире установлена у берегов Шотландии. Диаметр лопастей ветряка составляет 164 метра – больше, чем размах крыльев любого самолета, высота – 191 метр. Мощность установки – 8,8 мегаватт. Ветряной  энергии от одного оборота лопастей ветрогенератора хватит для того, чтобы освещать одну квартиру целый день.

Конструкция ветряка весит сотни тонн, его мачта выполняется из толстолистового проката, а фундамент – из арматуры крупных диаметров – 20-32 мм.

На один фундамент может уйти от 60 до 130 тонн арматуры. Стальной сплав делает установку прочной и устойчивой к нагрузкам. 

Производителям башен и гондол ветроэлектрических установок Метинвест поставляет прокат шириной до 3300 мм и толщиной до 200 мм, произведенный по ведущим мировым стандартам на украинских и европейских заводах компании. Практически весь материал ветрогенератора – это лист конструкционных марок стали с преобладанием класса прочности S355. Больше половины проката проходит ультразвуковой контроль качества, чтобы гарантировать требуемую сплошность материала для дальнейшей сборки. В 2018 году Метинвест поставил 68 тыс. тонн горячекатаного листа для производства башен ветрогенераторов. Большую часть продукции выпустил Trametal, итальянский завод группы.

Метинвест участвует в ветроэнергетических проектах по всему миру. Италия, Испания, Португалия, Германия, Израиль, Турция, Иордания, Египет, США, Украина – это далеко не полный перечень стран, в которых построены или строятся ветропарки из украинской стали.  

Ветропарк в Барвице, Польша

Среди клиентов Метинвеста – мировой лидер в отрасли ветроэнергетики, компания Siemens Gamesa. Для строительства ветроэлектростанции в Польше комбинат «Азовсталь» поставил около 3 тысяч тонн толстого листа. Из него субподрядчик проекта, польская компания GSG Towers изготовит ветряные башни.

В этом году специалисты Siemens провели аудит на «Азовстали» и сертифицировали производство комбината. Это значит, что Метинвест стал украинским партнером Siemens и сможет поставлять продукцию и для других проектов компании. 

Ветряная электростанция  расположится в Барвице, что на северо-западе Польши. Проект включает строительство 14 ветряных турбин мощностью 3 мегаватта каждая. Общая мощность станции – 42 мегаватта. Строительство началось в марте этого года, а ввод ветропарка в эксплуатацию ожидается в феврале 2020 года. Ветроэлектростанция будет генерировать около 112 млн КВтч в год. Этого достаточно, чтобы обеспечить электричеством около 27 тысяч домохозяйств.

Ветропарк на острове Петалас, Греция

В западной Греции продолжается строительство ветроэлектростанции из 24 установок мощностью по 2 мегаватта каждая. Ветропарком будет управлять компания Protergia – энергетическое подразделение Mytilineos, крупнейшего производителя электроэнергии в Греции. 

Ветряные турбины в этом проекте изготавливает и монтирует один из крупнейших в мире производителей – датская компания Vestas, которой Метинвест поставил 0,5 тыс. тонн арматуры.

Ветропарки в Украине

На внутреннем рынке  ветрогенераторы украинского производства выпускает Краматорский завод тяжелого станкостроения, который совместно с компанией «Фурлендер Виндтехнолоджи» предоставляет полный цикл по производству ветрогенераторов.

Для изготовления ветроэнергетических установок в Украине за последний год Метинвест поставил более 2,5 тыс. тонн горячекатаного толстолистового проката производства «Азовстали».  

Ветроэлектростанция вблизи поселка Ясногорка, что возле Славянска, будет состоять из 15 установок. Один ветряк мощностью 4,5 мегаватт сможет обеспечивать электроэнергией около 3,5 тысяч семей. Строительство ветряного парка началось осенью 2018 года. На первом этапе планируется установить три ветрогенератора. 

Ветропарк «Очаковский» включает две ветроэлектростанции – Очаковскую и Тузловскую общей мощностью 37,5 мегаватт. Ветропарк расположен на трех полях протяженностью 16 км. Мощности станции хотят увеличить – всего планируется построить 150 ветроэнергетических установок мощностью 375 мегаватт.
 

Ветропарки: защита климата в ущерб живой природе? | Анализ событий в политической жизни и обществе Германии | DW

Угольная электрогенерация, фрекинг для добычи природного газа, бурение нефтяных скважин… Такие темы  сегодня все чаще выводят на улицы защитников окружающей среды. Но и возобновляемые источники энергии также могут быть весьма спорными — даже с точки зрения экоактивистов.

Рассказывая о том, что рядом с ее домом планируют вырубить лес под новый ветропарк, Габриэле Нихаус-Юбель (Gabriele Niehaus-Uebel), по ее собственным словам, ощущает бессилие, беспомощность и ярость. Она — лидер гражданской инициативы по борьбе со строительством 20-турбинной ветряной электростанции в федеральной земле Гессен.

Акция в защиту Хамбахского леса

Хотя планы по строительству этого объекта предусматривают вырубку менее двух процентов леса, Габриэль говорит, что это все равно разрушит «ранее нетронутую экосистему». Она сравнивает лесной массив в Гессене с уникальным Хамбахским лесом недалеко от Кельна, уже много лет находящимся под угрозой вырубки: концерн RWE планирует расширить свой угольный карьер. «Экологи и активисты там сражаются за каждое дерево, и об этом постоянно пишут в СМИ. Здесь у нас хотят вырубить 200 квадратных километров — и нигде ни слова об этом не говорят», — возмущается Нихаус-Юбель.

Использование энергии ветра будет расти

Спор по поводу целесообразности строительства ветряных электростанций в Германии идет уже много лет. «У ветроэнергетики всегда было много противников, — говорит генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер (Stefan Gsänger). — И это нормально в условиях любых изменений, происходящих демократическим путем».  

Как говорится на сайте объединения, возглавляемого Нихаус-Юбель, эта группа —  лишь одна из примерно 1000 гражданских инициатив, выступающих против строительства ветропарков. Между тем ветроэнергетика позволяет частично удовлетворить растущий мировой спрос на электроэнергию. По оценкам экспертов, в ближайшие двадцать лет использование этого источника энергии возрастет на 30 процентов, снижая при этом темпы изменения климата.

У ветропарков есть немало противников

Специалисты WWEA утверждают, что ветряные турбины, введенные в эксплуатацию до конца 2018 года, способны удовлетворять около шести процентов мирового спроса на электроэнергию. При этом, как сообщает Международное агентство по возобновляемым источникам энергии, доля производства энергии на возобновляемых источниках вырастет с 25% в 2017 году до 85% к 2050 году — в основном за счет использования энергии солнца и ветра. И учитывая глобальные масштабы этих изменений, недооценивать влияние ветряных электростанций на окружающую среду было бы крайне недальновидно.

Опасность для птиц и летучих мышей

Особую опасность ветровые турбины представляют для птиц и летучих мышей. У хищных птиц, к примеру, при необычайной остроте зрения, есть и «мертвая зона»: наклоняя при поиске добычи голову вниз, они не видят того, что находится прямо по курсу, и если птица летит в сторону ветрогенератора, столкновение с его лопастями почти неизбежно. А летучие мыши становятся жертвами ветряка, даже с ним не сталкиваясь: приблизившись к нему менее чем на 100 метров, животные попадают в зону низкого давления и погибают от внутреннего кровоизлияния, вызванного резким расширением легких. 

На юге Испании — в провинции Эстремадура — из-за ошибок на этапе планирования ветропарки были построены на пути миграций огромного количества перелетных птиц через Гибралтар. Этот факт, говорится в докладе испанского отделения орнитологического сообщества SEO BirdLife, может негативно отразиться на популяциях птиц всего северного полушария и угрожать отдельным редким видам, таким, как испанский королевский орел.

В ряде других исследований, впрочем, утверждается, что от столкновения с ветряными турбинами птицы гибнут гораздо реже, чем от других причин, связанных с деятельностью человека. В США, к примеру, чаще всего птицы становятся жертвами домашних кошек, сотни миллионов птиц ежегодно врезаются в окна высотных зданий и лобовые стекла движущихся автомобилей, десятки миллионов гибнут на линиях электропередач.

Однако испанские орнитологи из SEO BirdLife настаивают на том, что подобные исследования несовершенны, поскольку их выводы основаны на небольших размерах выборки. «Нельзя упускать из виду и тот факт, что даже невысокая смертность может иметь решающее значение для видов, находящихся под угрозой исчезновения, или с очень низким уровнем размножения», — говорится в отчете группы.

Как минимизировать опасность от ветряков для живой природы?

За пределами Европы — в Южной Африке — местное отделение орнитологического сообщества BirdLife недавно отпраздновало победу: благодаря его усилиям, в горном массиве Грут Винтерхоек примерно в 120 км от Кейптауна было отменено строительство ветропарка, появление которого могло бы стать угрозой для редких видов птиц. Южноафриканское отделение координирует работу Целевой группы по вопросам энергетики, созданной в соответствии с Конвенцией ООН по сохранению мигрирующих видов диких животных (CMS). Одной из ее задач является определение территорий, где можно строить объекты возобновляемой энергетики без вреда популяциям птиц.

Многие эксперты сходятся во мнении, что правильное расположение ветропарков и технологические усовершенствования в большинстве случаев позволят минимизировать опасность ветрогенераторов для биологического разнообразия. Довольно эффективным, на их взгляд, может стать выборочное отключение турбин в местах массового скопления перелетных птиц.

Выборочное отключение турбин уменьшает вероятность столкновения птиц с лопастями

Исследование 2012 года, опубликованное в ведущем международном журнале в области биологии и охраны природы Biological Conservation, зафиксировало 50-процентное снижение смертности стервятников на 13 ветряных электростанциях в Кадисе, на юге Испании, после того, как турбины стали выключать в момент приближения к ним птиц. Производство электроэнергии при этом снижалось всего на 0,7 процента в год.

Эксперты Американского института изучения природы ветра (AWWI) проанализировали случаи гибели птиц от столкновения с ветряными турбинами и пришли к выводу, что уменьшение скорости вращения лопастей при низкой скорости ветра может сократить число смертельных случаев на 50-87 процентов.

Кому должны принадлежать ветрогенераторы?

И хотя экологам не всегда удается предотвратить строительство ветропарков и свести к нулю их опасность для птиц и летучих мышей, эксперты убеждены в том, что отношение к ним будет более позитивным, если к дискуссиям, связанным с использованием альтернативных источников энергии, привлекать жителей тех регионов, где устанавливаются ветрогенераторы.

Позитивное отношение к ветровой электрогенерации можно сформировать, если «максимально вовлекать к обсуждению этой темы всех, на чью жизнь влияет строительство ветряных электростанций, и изначально гарантировать им максимально возможные права собственности и преимущества», — уверен генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер.

В развивающихся странах, таких, как, к примеру, Мали, возобновляемые источники энергии играют особенно важную роль в преодолении бедности, и передача их в собственность местным общинам может изменить ситуацию к лучшему, убежден Гзенгер. «У людей была бы не только энергия, но и контроль над ней», — объясняет он.

В одном взгляды сторонника строительства ветряных электростанций Штефана Гзенгера и их активного противника Габриэле Нихаус-Юбель сходятся: если ветрогенераторы передать в собственность людям и позволить им принимать участие в решении всех важных вопросов, связанных с эксплуатацией, это поможет уменьшить негативное воздействие ветряных электростанций на окружающую среду. Ведь люди, которым принадлежит земля, любят и ценят ее больше, чем кто-либо другой.

______________

Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram 

 Смотрите также:

  • Альтернативные ландшафты Германии

    Дисен-ам-Аммерзе (Бавария) • На прошлой июльской неделе мы опубликовали этот снимок из Баварии в нашей рубрике «Кадр за кадром» — причем, руководствуясь чисто эстетическими соображениями: не смогли пройти мимо столь живописного ландшафта. Публикация этого пейзажа с солнечными батареями вызвала оживленное обсуждение в соцсетях — о пользе и вреде возобновляемых источников энергии.

  • Альтернативные ландшафты Германии

    Лемвердер (Нижней Саксония) • Поэтому сегодня продолжим тему солнечных панелей и ветряков на немецких просторах. На возобновляемые источники в Германии уже приходится более 40 процентов всего объема вырабатываемой электроэнергии.

  • Альтернативные ландшафты Германии

    Ульм (Баден-Вюртемберг) • При этом официальная немецкая статистика в этих данных учитывает энергию ветра, солнца, воды, а также получаемую разными путями из биомассы и органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Якобсдорф (Бранденбург) • В 2018 году на наземные (оншорные) и морские (офшорные) ветроэнергетические установки и парки в Германии пришлась почти половина всего объема произведенной возобновляемой энергии — 41 % и 8 % соответственно.

  • Альтернативные ландшафты Германии

    Пайц (Бранденбург) • Доля солнечных электростанций в этом возобновляемом энергетическом «коктейле» достигла 20 %.

  • Альтернативные ландшафты Германии

    Юнде (Нижняя Саксония) • Ровно столько же, то есть 20 % пришлось на использование биомассы в качестве альтернативного источника электрической энергии. Еще три процента дает использование органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Хаймбах (Северный Рейн — Вестфалия) • Оставшиеся семь процентов возобновляемой энергии приходятся на ГЭС. Возможности для строительства гидроэлектростанций в Германии ограничены, но используются эти ресурсы уже очень давно. Эту электростанцию в регионе Айфель построили в 1905 году. Оснащенная современными турбинами, она исправно работает до сих пор.

  • Альтернативные ландшафты Германии

    Халлиг Хооге (Шлезвиг-Гольштейн) • Для полноты картины приведем расклад по всем источникам в Германии за 2018 год: АЭС — 13,3 %, бурый уголь — 24,1 %, каменный уголь — 14,0 %, природный газ — 7,4 %, ГЭС — 3,2 %, ветер — 20,2%, солнце — 8,5 %, биомасса — 8,3 %.

  • Альтернативные ландшафты Германии

    Гарцвайлер (Северный Рейн — Вестфалия) • В 2038 году в Германии намерены полностью отказаться от сжигания бурого угля для получения электроэнергии. Последний атомный реактор, согласно решению федерального правительства, должны вывести из эксплуатации в 2022 году. В прошлом году на АЭС и бурый уголь пришлось более 37 %, которые необходимо будет чем-то замещать.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • По данным на конец 2018 года в Германии насчитывалось более 29 тысяч наземных ветроэнергетических турбин. В прибрежных морских водах Германии расположено еще около 1350 ветряков, однако более четырех десятков из них еще не были подключены в энергетическую сеть.

  • Альтернативные ландшафты Германии

    Северное море (Шлезвиг-Гольштейн) • Серьезную проблему представляет необходимость строительства новых энергетических трасс для транспортировки энергии из северных регионов, где ветер дует чаще и сильнее (здесь много таких турбин), к потребителям в западные и южные части Германии.

  • Альтернативные ландшафты Германии

    Лебус (Бранденбург) • Эти планы вызывают протесты жителей в тех густонаселенных регионах, по которым линии электропередач должны проходить. В некоторых местах люди требуют убирать высоковольтные ЛЭП под землю.

  • Альтернативные ландшафты Германии

    Рюген (Мекленбург — Передняя Померания) • Планы установки новых ветроэнергетических турбин в разных регионах все чаще наталкиваются в Германии на сопротивление со стороны населения. Соответствующие судебные иски часто имеют успех, что уже заметно сказывается на годовых показателях роста отрасли — тем более, что подходящие места становится находить все труднее.

  • Альтернативные ландшафты Германии

    Вормс (Рейнланд-Пфальц) • Согласно данным службы Deutsche WindGuard, в 2018 году в Германии было введено в эксплуатацию всего 743 новых ветряка. При этом предыдущий 2017 год оказался рекордным в истории развития этого вида возобновляемой энергии в ФРГ: почти 1849 новых установок.

  • Альтернативные ландшафты Германии

    Дассов (Мекленбург — Передняя Померания) • Всего в Германии сейчас насчитывается около тысячи гражданских инициатив, выступающих против строительства новых ветряков. Их сторонники считают, что эти установки разрушают жизненное пространство птиц и летучих мышей, уродуют ландшафты, а инфразвук и прочий постоянный шум этих установок вредит здоровью людей, живущих по соседству.

  • Альтернативные ландшафты Германии

    Восточная Фризия (Нижняя Саксония) • Эти инициативы требуют, в частности, в качестве альтернативы рассматривать газовые и паровые электростанции, повышать эффективность угольных станций, а также пересмотреть решение парламента и правительства Германии об отказе от атомной энергии.

  • Альтернативные ландшафты Германии

    Зауэрланд (Северный Рейн — Вестфалия) • Представители отрасли обычно указывают на недоказанность негативного влияния инфразвука на здоровье. Что касается гибели птиц из-за ветровых установок, специалисты называют разные цифры, максимум — до 200 тысяч в год в целом по Германии. Для сравнения: в результате столкновений со стеклами окон и фасадов погибает около 18 миллионов птиц в год.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • Летучих мышей гибнет более 100 тысяч в год (по некоторым оценкам, втрое больше) — не только от столкновений с лопастями, но и из-за травм, получаемых в результате завихрений воздуха, когда они пролетают рядом. Много гибнет во время сезонной миграции. Эксперты требуют учитывать эти факторы — в частности, отключать ветряки в часы особой активности летучих мышей.

  • Альтернативные ландшафты Германии

    Бедбург-Хау (Северный Рейн — Вестфалия) • Правила выбора мест для ветряков регулируются земельными законами. Например, в Северном Рейне — Вестфалии минимальное расстояние до жилых построек составляет 1500 метров, в Тюрингии — 750 метров. В Баварии это расстояние вычисляется по формуле «Высота установки х 10», то есть, например, два километра между жилыми зданиями и двухсотметровым ветряком.

  • Альтернативные ландшафты Германии

    Ренцов (Мекленбург — Передняя Померания) • Дискуссии о развитии возобновляемых источников энергии часто ведутся в Германии эмоционально и будут продолжаться в обозримом будущем. Чтобы повысить готовность населения видеть в окрестностях такие установки, предлагается, в частности, отчислять дополнительную часть доходов конкретным регионам на различные нужные и полезные для местных жителей проекты.

    Автор: Максим Нелюбин


Принцип работы ветрогенератора и его комплектующие

Содержание раздела:

  1. Компоненты ветроустановки
  2. Комплектация наших ветроустановок
  3. Подбор ветряка
  4. Примеры подбора компонентов установки
  5. Схемы работы ветрогенератора

1.

Компоненты ветроустановки

К основным компонентам системы, без которых работа ветряка невозможна, относят следующие элементы:

  1. Генератор – необходим для заряда аккумуляторных батарей. От его мощности зависит как быстро будут заряжаться ваши аккумуляторы. Генератор необходим для выработки переменного тока. Сила тока и напряжение генератора зависит от скорости и стабильности ветра.
  2. Лопасти – приводят в движение вал генератора благодаря кинетической энергии ветра.
  3. Мачта – обычно, чем выше мачта, тем стабильнее и сильнее сила ветра. Отсюда следует – чем выше мачта, тем больше выработка генератора. Мачты бывают разных форм и высот.

Список дополнительных необходимых компонентов:

  1. Контроллер – управляет многими процессами ветроустановки, такими, как поворот лопастей, заряд аккумуляторов, защитные функции и др. Он преобразовывает переменный ток, который вырабатывается генератором в постоянный для заряда аккумуляторных батарей.
  2. Аккумуляторные батареи – накапливают электроэнергию для использования в безветренные часы. Также они выравнивают и стабилизируют выходящее напряжение из генератора. Благодаря им вы получаете стабильное напряжение без перебоев даже при порывистом ветре. Питание вашего объекта идёт от аккумуляторных батарей.
  3. Анемоскоп и датчик направления ветра – отвечают за сбор данных о скорости и направлении ветра в установках средней и большой мощности.
  4. АВР – автоматический переключатель источника питания. Производит автоматическое переключение между несколькими источниками электропитания за промежуток в 0,5 секунды при исчезновении основного источника. Позволяет объединить ветроустановку, общественную электросеть, дизель-генератор и другие источники питания в единую автоматизированную систему. Внимание: АВР не позволяет работать сети одного объекта одновременно от двух разных источников питания!
  5. Инвертор – преобразовывает ток из постоянного, который накапливается в аккумуляторных батареях, в переменный, который потребляет большинство электроприборов.
  6. Инверторы бывают четырёх типов:
    1. Модифицированная синусоида – преобразовывает ток в переменный с напряжением 220В с модифицированной синусоидой (ещё одно название: квадратная синусоида). Пригоден только для оборудования, которое не чувствительно к качеству напряжения: освещение, обогрев, заряд устройств и т.п.
    2. Чистая синусоида — преобразовывает ток в переменный с напряжением 220В с чистой синусоидой. Пригоден для любого типа электроприборов: электродвигатели, медицинское оборудование и др.
    3. Трехфазный – преобразовывает ток в трехфазный с напряжением 380В. Можно использовать для трехфазного оборудования.
    4. Сетевой – в отличие от предыдущих типов позволяет системе работать без аккумуляторных батарей, но его можно использовать только для вывода электроэнергии в общественную электросеть. Их стоимость, обычно, в несколько раз превышает стоимость несетевых инверторов. Иногда они стоят дороже, чем все остальные компоненты ветроустановки вместе взятые.

2. Комплектация наших ветроустановок

В комплект наших ветроэнергетических установок входит:

  1. Турбина
  2. Мачта (не входит в комплект EuroWind 300L)
  3. Лопасти
  4. Крепления
  5. Тросы мачты
  6. Поворотный механизм (только с ветрогенераторами EuroWind 3 и старше)
  7. Контроллер
  8. Анемоскоп и датчик ветра (только с ветрогенераторами EuroWind 3 и старше)
  9. Хвост (только с ветрогенераторами EuroWind 2 и младше)

Аккумуляторы, инвертор и дополнительно оборудование подбираются индивидуально и в базовую комплектацию не входят. Независимо от комплектации ветрогенератор всегда автоматически позиционируется по ветру.


Комплектующие ветрогенератора EuroWind 10

3. Подбор ветряка

Первый вопрос, на который вы должны дать ответ и который поможет вам ответить на остальные вопросы: Для чего вам нужен ветрогенератор и какие задачи он должен выполнять?

Ответив на главный вопрос, вы можете без проблем ответить на остальные вопросы и решить какой набор оборудования вам необходим и сколько это будет стоить.

Итак, три основные величины, которые определяют работу всего комплекса:

  1. Выходная мощность ветроустановки (кВт), определяется только мощностью преобразователя (инвертора) и не зависит от скорости ветра, емкости аккумуляторов. Ещё её называют «пиковой нагрузкой». Этот параметр определяет максимальное количество электроприборов, которые могут быть одновременно подключены к вашей системе. Вы не сможете одновременно потреблять больше электроэнергии, чем позволяет мощность вашего инвертора. Если вы потребляете электроэнергию редко, но в больших количествах, то обратите внимание на более мощные инверторы. Для увеличения выходной мощности возможно одновременное подключение нескольких инверторов.
  2. Время непрерывной работы при отсутствии ветра или при слабом ветре определяется емкостью аккумуляторных батарей (Ач или кВт) и зависит от мощности и длительности потребления. Если вы потребляете электроэнергию редко, но в больших количествах, обратите внимание на аккумуляторы с большой емкостью.
  3. Скорость заряда аккумуляторных батарей (кВт/час) зависит от мощности самого генератора. Также этот показатель прямо зависит от скорости ветра, а косвенно от высоты мачты и рельефа местности. Чем мощнее ваше генератор, тем быстрее будут заряжаться аккумуляторные батареи, а это значит, что вы сможете быстрее потреблять электроэнергию из батарей и в больших объемах. Более мощный генератор следует брать в том случае, если ветра в месте установки слабые или вы потребляете электроэнергию постоянно, но в небольших количествах. Для увеличения скорости заряда аккумуляторов возможна установка нескольких генераторов одновременно и подключение их к одной аккумуляторной батарее.

Исходя из перечисленных выше факторов, для подбора ветрогенератора и сопровождающего оборудования вам необходимо ответить на три вопроса:

  1. Количество электроэнергии, необходимое вашему объекту ежемесячно (измеряется в киловаттах). Эти данные необходимы для подбора генератора. Их можно взять из коммунальных счетов на оплату электроэнергии или рассчитать самостоятельно, если объект находится в стадии строительства.
  2. Желаемое время автономной работы вашей энергосистемы в безветренные периоды или периоды, когда ваше потребление энергии из аккумуляторов будет превышать скорость зарядки аккумуляторных батарей генератором. Данный параметр определяет количество и емкость аккумуляторных батарей.
  3. Максимальная нагрузка на вашу сеть в пиковые моменты (измеряется в киловаттах). Необходимо для подбора инвертора переменного тока.

4. Примеры подбора компонентов установки

Рассмотрим несколько общих примеров подбора оборудования ветроустановки. Более точный расчёт может быть произведён нашими специалистами и включает в себя гораздо больше необходимых деталей.

Пример расчёта ветряка №1

Описание:

Частный дом в Киевской области находится в стадии строительства. По предварительным расчётам жильцы дома будут потреблять не больше 300 400 кВт электроэнергии ежемесячно. Затраты электроэнергии не очень высокие, т.к. хозяева будут использовать для отопления и нагрева воды твердотопливный котёл, а ветрогенератор необходим только для полного обеспечения бытовых приборов электроэнергией.

Хозяева проводят основную часть дня на работе, а пик потребления электроэнергии припадает на утренние и вечерние часы. В этот момент могут быть включены электроприборы суммарной мощностью до 4 киловатт.

Дом находится на возвышенности и есть открытое пространство вокруг будущего места установки ветрогенератора.

Общественной электросети нет.

Задача:

Полностью обеспечить 300-400 кВт электроэнергии ежемесячно с пиковыми нагрузками до 4 кВт.

Решение:
Генератор:

Чтобы понять как быстро должны заражаться аккумуляторы при расходе электроэнергии 400 кВт в месяц, мы должны разделить 400 кВт/мес на 30 дней (получим ежедневное потребление), а затем полученное число разделить на 24 часа (400/30/24 = 0,56 кВт/час – среднее ежечасное потребление). Скорость заряда аккумуляторных батарей генератором должна составить как минимум 560 Ватт в час.

В Киевской области низкая среднегодовая скорость ветра, но открытое пространство и возвышение объекта позволит ветрогенератору работать как минимум на 30-40% от номинальной мощности. Для более точных показателей можно произвести замер скорости ветра в месте установки.

Для того, чтобы обеспечить заряд аккумуляторных батарей генератором при этих условиях со скоростью 560 Ватт в час, нужно взять генератор, номинальная мощность которого будет как минимум в три раза больше необходимой, т.к. генератор будет работать всего на 30-35% от номинальной мощности (560Вт/ч*3=1680Вт/ч). Для этих нужд нам подходит генератор EuroWind 2 с номинальной мощностью 2000 Ватт.

Аккумуляторы:

Проводя 8-9 часов на работе в будние дни, хозяева отсутствуют, и энергопотребление их дома сведено к минимуму. В ночное время потребление также сведено к минимуму. Основное потребление происходит утром и вечером. Между этими основными пиками существует интервал в 8-9 часов.

При среднем уровне заряда аккумуляторных батарей 560 Вт/ч за интервал 8-9 часов ветровой генератор сможет выработать около 5000 Ватт. В ветреные дни этот показатель может увеличиться как минимум в два раза, поэтому за тот же период времени может быть выработано 10000 Ватт электроэнергии.

Генератор EuroWind 2 имеет напряжение 120 Вольт, поэтому ему необходимо 10 аккумуляторов с напряжением 12 Вольт (12В*10=120В). Одна аккумуляторная батарея 12В 100Ач способна сохранить до 1,2 кВт электроэнергии. Десять таких батарей могут сохранить до 12 кВт (1200Вт*10=12000Вт). Для запаса 10000 Ватт электроэнергии нам отлично подойдут 10 аккумуляторных батарей 12В с емкостью 100Ач.

Инвертор:

Для максимального потребления электроэнергии в пиковые моменты до 4 кВт, можно установить инвертор 5 кВА. Он сможет обеспечить постоянную нагрузку 4 кВт и пусковые токи до 6 кВт (150% нагрузка). Таблицу совместимости инверторов вы найдёте в разделе Инверторы.

Дополнительное оборудование:

АВР в данном случае не нужен, т.к. нет основной сети, а коммутацию с дизельным генератором (или бензиновым) можно производить посредством перекидного рубильника.

А вот дизельный генератор на 5 кВт в нашем случае не помешает – его можно использовать как резервное питание при полном отсутствии ветра.

ИТОГО:

Для полного энергообеспечения объекта нам необходим генератор EuroWind 2, 10 аккумуляторных батарей 12В с емкостью 100Ач, инвертор 5 кВА, дизельная электростанция на 5 кВт.


Пример расчёта ветряка №2

Описание:

Небольшой отель на 8 номеров вместе с рестораном расположены на трассе в открытом поле. Среднегодовая скорость ветра в месте установки была замерена предварительно и составляет 6,8 м/с. Расходы электроэнергии на бытовые приборы и освещение составляют 60 кВт на один номер в месяц и около 2500 кВт в месяц на ресторан. Ресторан и отель обогреваются, кондиционируются и круглый год обеспечивают себя горячей водой с помощью трехфазного геотермального теплонасоса инверторного типа мощностью 14 кВт. Потребление электроэнергии данного теплонасоса составляет 3,5 кВт/час, а пусковые токи — всего 2,8 кВт.

В ресторане и отеле используются энергосберегающие лампы для освещения. Пиковая нагрузка при использовании электроприборов и освещения объекта составляет около 7,5 кВт (не считая 3,5 кВт теплонасоса).

Есть общественная электросеть, но она не может обеспечить потребности, т.к. выделена линия мощностью только 4 кВт. Большую мощность не может обеспечить местная подстанция.

Задача:

Полное обеспечение объекта независимой электроэнергией, отоплением и резервным питанием от основной сети.

Решение:
Генератор:

Ежемесячный расход электроэнергии на содержание номеров составит 60 кВт * 8 номеров = 480 кВт в месяц. Общий расход электроэнергии на содержание отеля и ресторана без учёта отопления составит 2980 кВт в месяц (480 кВт + 2500 кВт = 2980 кВт). Отсюда следует, что среднее ежечасное потребление на все электроприборы и освещение без учёта обогрева составит 4,14 кВт/час (2980 кВт / 30 дней / 24 часа = 4,14 кВт/час). К этому числу необходимо прибавить 3,5 кВт/час, которые будет потреблять теплонасос. В итоге мы получаем, что генератор должен обеспечивать нас как минимум 7,64 киловаттами электроэнергии ежечасно (4,14 кВт/час + 3,5 кВт/час = 7,64 кВт/час).

Среднегодовая скорость ветра 6,8 м/с позволяет генератору работать как минимум на 40% от номинальной мощности. Отсюда следует, что номинальная мощность генератора должна составлять как минимум 19,1 кВт/час (7,64 кВт/час / 40% = 19,1 кВт/час)

Для этих целей отлично подошёл бы генератор EuroWind 20, но он рассчитан на более высокие средние скорости ветра, как и другие мощные генераторы (EuroWind 15, 20, 30, 50). Поэтому мы отдадим предпочтение двум генераторам EuroWind 10, которые будут работать в одной системе, вместо одного генератора EuroWind 20. Тем более, что свободное место для установки ветрогенератора в данном случае не критично – есть свободная площадь вокруг отеля и ресторана.

Аккумуляторы:

В этом комплексе практически отсутствуют большие перерывы в использовании электроэнергии, а постоянные ветра поддерживают равномерный уровень заряда аккумуляторов.

В этом случае необходимы аккумуляторы, которые будут являться своеобразным «буфером» между генератором и инвертором. Их главная задача будет состоять в стабилизации и выпрямлении напряжения, а не накоплении электроэнергии.

Генератор EuroWind 10 имеет напряжение 240 Вольт, поэтому ему необходимо 20 аккумуляторов с напряжением 12 Вольт (12В*20=240В). Одна аккумуляторная батарея 12В 150Ач способна сохранить до 1,8 кВт электроэнергии. Двадцать таких батарей могут сохранить до 36 кВт (1800Вт*20=36000Вт). Запаса электроэнергии в 36 кВт должно хватить всему комплексу почти на 5 часов непрерывной работы при средней нагрузке при полном отсутствии ветра. Для этого нам подойдут 20 аккумуляторных батарей 12В с емкостью 150Ач.

Инвертор:

Для максимального потребления электроэнергии в пиковые моменты до 7,5 кВт, можно установить инвертор 10 кВА. Он сможет обеспечить постоянную нагрузку 8 кВт и пусковые токи до 12 кВт (150% нагрузка).

А для обеспечения теплонасоса мощностью 3,5 кВт нам необходим трехфазный инвертор, т. к. этот теплонасос требует трехфазный ток с напряжением 380В. В этом случае возьмём ещё один инвертор – трехфазный 5 кВА, который обеспечит нас напряжением 380В и постоянной мощностью 4 кВт.

Дополнительное оборудование:

Можно установить АВР, который будет автоматически переключать питание отеля и ресторана с ветрогенератора на общественную электросеть в случае полного безветрия и разряда аккумуляторных батарей. Среднее потребление отеля и ресторана (4,14 кВт) практически равно мощности общественной линии электропередач, которая была выделена объекту (4 кВт), поэтому резервное питание будет обеспечено.

Для резервного обеспечения теплового насоса можно установить трехфазную бензиновую или дизельную электростанцию мощностью 3,5 4 кВт, т.к. общественная электросеть не сможет обеспечить трехфазный ток для резервного питания теплонасоса.

ИТОГО:

Для полного энергообеспечения этого объекта нам необходимы два генератор EuroWind 10, 20 аккумуляторных батарей 12В с емкостью 150Ач, однофазный инвертор 10 кВА, трехфазный инвертор 5 кВА, АВР, бензиновая или дизельная электростанция на 3,5-4 кВт.

5. Схемы работы ветрогенератора

Приводим несколько популярных схем работы ветрогенераторных систем с потребителем. Это всего лишь некоторые примеры, поэтому возможны и другие схемы работы. В каждом случае составляется индивидуальный проект, который способен решить поставленную перед нами задачу.


Автономное обеспечение объекта (с аккумуляторами).
Объект питается только от ветроэнергетической установки.


Ветрогенератор (с аккумуляторами) и коммутация с сетью.
АВР позволяет переключить питание объекта при отсутствии ветра и полном разряде аккумуляторов на электросеть. Эта же схема может использоваться и наоборот – ветрогенератор, как резервный источник питания. В этом случае АВР переключает вас на аккумуляторные батареи ветрогенератора при потери питания от электросети.


Ветрогенератор (с аккумуляторами) и резервный дизель-(бензо-)генератор.
В случае отсутствия ветра и разряде аккумуляторных батарей происходит автоматический запуск резервного генератора.


Ветрогенератор (без аккумуляторов) и коммутация с сетью.
Общественная электросеть используется вместо аккумуляторных батарей – в неё уходит вся выработанная электроэнергия и из неё потребляется. Вы платите только за разницу между выработанной и потреблённой электроэнергией. Такая схема работы пока-что не разрешена в Украине и во многих других странах.


Гибридная автономная система – солнце-ветер
Возможно подключение солнечных фотомодулей к ветрогенераторной системе через гибридный контроллер или с помощью отдельного контроллера для солнечных систем.


Увеличение производительности системы.
Возможно установить два и более генератора, инвертора и комплекта аккумуляторов для увеличения мощности системы.

Также возможны другие схемы работы и коммутации ветрогенераторов.

Ветровая энергия в России: почему у нас так мало ветряков

Как это работает

Ветряки преобразуют ветер в электроэнергию. Работают они по принципу мельницы, только более высокотехнологичной. Потоки воздуха крутят лопасти, и те вращаются в вертикальной плоскости. Таким образом возникает механическая энергия, энергия движения. А подключенный к устройству генератор уже вырабатывает электричество.

Чем выше ветряк, тем больше он производит электроэнергии. Высота столба — от 20 м, а самый высокий в мире ветрогенератор находится в Германии, в Гайльдорфе. Он вырос аж до 178 м.

Строительство ветрогенератора в Гайльдорфе. Фото: mbrenewables

Ветроэнергетику первым делом облюбовали страны, которые заботятся об окружающей среде: Дания, Германия, Испания, Ирландия. Оно и понятно: нет вредных выбросов и опасностей для флоры и фауны. Другое достоинство в том, что ветряки не требуют дополнительного топлива: платить нужно только за их постройку и обслуживание, так что это выходит дешевле, чем другие виды энергии. Хотя конечно, стоимость строительства и обслуживания ветроэлектростанций сильно варьирует в зависимости от многих факторов: место строительства, высота, материалы, дополнительное оборудование. 

Стоит заметить, что ветряки не так невинны: из-за них гибнут птицы и летучие мыши. Около тысячи в год погибают от одного генератора.

Главная проблема ветряков — внезапно — в том, что они работают лишь благодаря ветру. Так что местность для генератора нужно тщательно выбирать. Впрочем, и для этой проблемы уже нашли решение. Ветряки строят не только в полях, но и над гладью морской — в местах, где ветер дует практически непрерывно.

Фото: Florian Pircher с сайта Pixabay

При кажущейся простоте такого решения, ветрогенераторы — сложные и высокотехнологичные механизмы. Здесь нужно продумать все мелочи: сильный ветер может сломать лопасти, нагрузка на опорную конструкцию не должна быть критической, и нужна возможность остановить лопасти на время бури.

Дополнительного оборудования много, например, система тормозов. В России же пока просто не производят необходимого оборудования, а закупать его — слишком дорого. Только массовое производство ветряков поможет такому мероприятию окупиться, и то лишь в долгосрочной перспективе. Однако кое-какие шаги в направлении развития ветровой электроэнергетики Россия все же предпринимала раньше — и продолжает это делать.

Прошлое — далекое и не очень

В 1920-х годах в СССР уже начали разрабатывать предшественников сегодняшних ветряков для отдаленных районов. Работали они по гидравлическому принципу: ветер поднимал воду вверх по столбу, а затем она опускалась и крутила турбину. Так вырабатывался ток. Кстати, тот самый высоченный ветрогенератор в Гайльдорфе работает по тому же принципу.

В 30-х годах изобретатель Анатолий Уфимцев построил на собственные средства миниветроэлектростанцию. Она работала исправно несколько лет и снабжала электричеством его дом вплоть до смерти Уфимцева. В последующие годы в СССР продолжали выпускать ветряки, но с популяризацией топливной промышленности и строительством АЭС все меньше и меньше.

Ветростанция А. Г. Уфимцева — первая и единственная в мире, способная давать вполне выровненную электроэнергию от беспорядочных порывов ветра.

Писал в 1934 году Владимир Ветчинкин

Крупнейший советский учёный-механик в области аэродинамики

Ветростанция А. Г. Уфимцева в Курске. Фото: Википедия

Однако после 2000-х ветряками в России снова стали интересоваться. «Росатом» еще в 2017 году пообещал построить сеть ветряных электростанций по всей стране и таким образом «возродить отрасль». Помочь взялись в голландской компании Lagerwey. Однако специалисты выразили сомнение относительно проекта. Угнаться за постоянно растущим рынком и технологиями вот так сразу, с нуля, крайне тяжело.

Сегодня небольшие ветропарки раскиданы по всей стране. Один, например, есть в поселке Куликово Калининградской области. Существует он аж с 1998 года. Ветряки поселок получил в подарок от компании из Дании, и они работают до сих пор (хотя и не без инцидентов). Однако генерация энергии там небольшая, да и дачники строят дома слишком близко к турбинам, не понимая, что это опасно.

Ветряные электростанции недалеко от посёлка Куликово Калининградской области. Фото: Uritsk / Livejournal

В 2018 году самый крупный отечественный ветропарк открыли в Ульяновской области. Сделала это финская компания Fortum совместно с РОСНАНО. Промышленный парк настолько большой, что уже готов выйти на оптовые поставки энергии. Кроме того, при Ульяновском техническом университете открылась кафедра, где готовят специалистов в области электроэнергетики.

Какие могут быть проблемы?

В России существует сложная инфраструктура, которая обслуживает газовую и атомную отрасли энергетики. В этой области заняты тысячи людей. И просто так взять и сменить все это великолепие — пусть даже на более дешевую и экологически чистую — энергию мы не сможем.

Михаил Гусев, инженер подразделения «Электропривод» компании ABB, объясняет: «Россия не испытывает дефицита в электроэнергии. Большинство наших генерирующих предприятий работает ниже коэффициента использования установленной мощности. В арсенале наших энергетиков достаточную долю занимают АЭС и ГЭС, которые имеют ощутимо низкую удельную себестоимость производства электроэнергии по сравнению с генерацией на углеводородном сырье. Поэтому у нас нет острой потребности в развитии альтернативных источников энергии. Но в скором времени она появится, поэтому нужно вовремя начать развивать отрасль».

Отставание России по количеству ветропарков от США и Европы по-прежнему велико. По словам Владимира Максимова, руководителя департамента развития новых направлений бизнеса ООО «Тошиба Рус», основная причина такого положения вещей — в недостаточно эффективных мерах государственной поддержки сегмента ветровой энергетики. Впрочем, в сентябре прошлого года вышло постановление правительства, повышающее инвестиционную привлекательность строительства объектов, функционирующих на основе возобновляемых источников энергии. Это должно помочь.

«Еще одно существенное препятствие для развития ветроэнергетики в России — высокие требования по уровню местной локализации производства компонентов, который должен достигать 65%, — говорит Владимир Максимов. — Например, уровень локализации крупнейшего отечественного объекта, ветропарка в Ульяновске, составляет всего 28%. Проект спасло только то, что он был утвержден еще в 2015 году».

Промышленный ветропарк в Ульяновской области, построенный финской компанией Fortum. Фото: Twitter @ VostockCapital_

Другая проблема — тонкости нормативной базы. Михаил Гусев говорит: «Закон вынуждает рассматривать ветроустановку как уникальное сооружение из-за ее высоты, налагая ряд нелогичных ограничений. Например, есть требование обустраивать подъездные пути к ветряным электростанциям как автомобильные дороги. Все это ведет к увеличению стоимости ветряков. Но без удовлетворения нормативных предписаний объект не может быть введен в эксплуатацию».

Есть ли перспективы?

Тем не менее со стратегической точки зрения ориентация на импортозамещение должна принести плоды, считает Максимов. Так, в Ульяновске запускается предприятие по изготовлению лопастей для ветроустановок, а в Нижегородской области стартовало производство систем управления и охлаждения.

Российский потенциал ветроэнергетики оценивается экспертами примерно в пять раз выше, чем, например, германский.

Есть и потребность. «В России ветрогенераторные установки могут быть востребованы в регионах с децентрализованным энергоснабжением: в Бурятии, на Чукотке, на Сахалине, на Курильских островах, — говорит Иван Назаров, руководитель Инженерного центра НИЦ ‘ТехноПрогресс’. — На этих территориях электроснабжение потребителей не имеет связи с централизованной энергосистемой, а потому есть потребность в автономных источниках энергии. Пока в этих регионах в основном используются дизельные электростанции, конкуренцию которым могут составить альтернативные источники энергии».

Фото: PeterDargatz с сайта Pixabay

«До 2024 года эта отрасль сугубо дотационная, — говорит Михаил Гусев. — Однако и задачи стоят амбициозные: выйти на уровень локализации 65%. Это означает, что начнут работать предприятия по производству компонентов, будет адаптирована нормативная база, и главное — будут построены огромные мощности электроэнергетики. Помножив полученные компетенции на территорию нашей страны, где есть стабильный ветер, мы получаем безграничные перспективы. Главная цель для отрасли — стать конкурентной традиционным видам выработки электроэнергии».

Иван Назаров полагает: существует несколько векторов возможного развития России в области ветроэнергетики. Например, закупка и монтаж «под ключ» готовых зарубежных ветрогенераторных установок. Другой вариант — освоение западных технологий и организация с их помощью более масштабного производства на базе уже имеющегося в стране.

Это тоже интересно:

Никита Забелин записал и сыграл трек у ветрогенераторов в поддержку Greenpeace

Новость 27/09/2021 читать и обсуждать наши новости в телеграме читайте наши новости в телеграме

Никита Забелин — один из главных диджеев и техно-продюсеров России, основатель и резидент лейбла Resonance Moscow, преподаватель в MMS (музыкальное отделение Высшей британской школы дизайна) записал новый трек и исполнил его у ветрогенераторов в Ульяновской области.

Новый трек Никита создал в поддержку проекта российского отделения Greenpeace по переходу на зелёную и климатически-дружественную энергию. Композиция войдёт в документальный фильм Greenpeace о возобновляемой энергетике. 

Никита Забелин: «Я музыкант. Но в первую очередь я человек, который ответственно относится к своей жизни и к жизни других на этой планете. Я решил написать музыку для проекта, чтобы привлечь внимание к проблеме климатических изменений. Когда я думал об идее трека, то размышлял на тему человека и природы, стихии, разума и того, как они могут сосуществовать. Ветер олицетворяет свободу, а музыка — это свобода для человека. Для меня этот символизм очень важен, потому что я свободный человек. А ещё элементом выступления станет то, что вся используемая моими приборами энергия будет чистой и питаться от солнечных батарей».


  • Фото © Слава Замыслов

  • Фото © Слава Замыслов

  • Фото © Слава Замыслов

Трек был исполнен на фоне ветрогенераторов в Ульяновской области неслучайно. Климатическая команда российского офиса Greenpeace только вернулась из экспедиции по регионам России, где выясняла, насколько наша страна готова к переходу на зелёную энергетику. Всего месяц назад Гринпис опубликовал нашумевший рейтинг регионов, который широко обсуждался в СМИ — и теперь мы проверяем, насколько обещания местных властей соответствуют действительности.

Ульяновская область — это первый регион России, где появился промышленный ветропарк, завод по производству лопастей для ветрогенераторов и предприятия, которые развивают возобновляемую энергетику для собственных нужд. Также здесь есть больница, полностью оборудованная солнечными панелями.

Скоро мы продолжим экспедицию по регионам, но нам очень нужна ваша помощь.

климат энергетика

Ветрогенераторы

Центр материаловедения разрабатывает, проектирует, изготавливает,  поставляет и устанавливает ветрогенераторы и ветрогенераторные энергетические установки (ВЭУ)  торговой марки ДОМ — комплексные автономные системы обеспечения энергоснабжением — ветрогенераторы разных мощностей по индивидуальным заказам.
Ветрогенераторы ДОМ WG предназначены для обеспечения бесперебойным источником электрической энергии небольших и больших объектов, таких как – особняки, коттеджи, загородные дома, отели, дачные участки, пасеки, туристические лагеря, фермерские хозяйства, производственные цеха или там, где отсутствует подача электроэнергии.

Ветроэнергетические установки (ВЭУ) торговой марки ДОМ -комплексные автономные системы обеспечения энергоснабжением — ветрогенераторы разных мощностей

Ветроэнергетическая установка (ВЭУ) на яхте

Ветроэнергетическая установка (ВЭУ) на яхте

Автономные источники питания (ветрогенератор и солнечная батарея ) на яхте

Комплексная автономная энергетическая система, включающая ветрогенератор и солнечную батарею

Одного ветрогенератора вполне достаточно для автономного функционирования придорожного магазина, небольшого отеля, ресторана, кафе. Но ветрогенераторы или ветрогенераторная установка в комплексе с солнечным коллектором для геолиосистемы горячего водоснабжения полностью обеспечат вашу энергетическую независимость, бесшумные ветрогенераторы создатут современный комфорт и нормальные энергетические условия функционирования объекта.
Вы можете заказать у нас ветрогенераторы разной мощности, полную систему ВЭУ ветро энергетической установки и даже систему: ветрогенераторы с системой горячего водоснабжения на солнечных коллекторах.Ветрогенераторы ДОМ WG предназначены для обеспечения бесперебойным источником электрической энергии для коттеджей, загородных домов, отелей, дачных  участков, пасек, туристических лагерей, фермерских хозяйств, мест, где отсутствует поставка электроэнергии. Надежные Ветрогенераторы — это простой способ получить электроэнергию в таком количестве и тогда, когда нужно Вам. Комплексное решение запросов заказчика по ветрогенератору или ветрогенераторной энергетической установки: поставка, проектирование, установка, сервисное обслуживание.

Ветрогенератор ( ветроэлектрическая установка или сокращенно ВЭУ ) — устройство для преобразования кинетической энергии ветра в электрическую. Ветрогенераторы ДОМ WG предназначены для обеспечения безперебойным источником электрической энергии для коттеджей, загородных домов, отелей, дачних участков, пасек, туристических лагерей, фермерских хозяйств, мест, где отсутствует подача электроенергии.
Ветрогенераторы
можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.

Строение малой ветряной установки

  • Ротор, лопасти, ветротурбина
  • Генератор (как правило это синхронный трёхфазный с возбуждением от постоянных магнитов напряжением =24 В)
  • Мачта с растяжками
  • Контроллер заряда аккумуляторов
  • Аккумуляторы (необслуживаемые на 24 В)
  • Инвертор (= 24 В -> ~ 220 В 50Гц)
  • Сеть
Строение промышленной ветряной установки
  • Фундамент
  • Силовой шкаф, включающий силовые контакторы и цепи управления
  • Башня
  • Лестница
  • Поворотный механизм
  • Гондола
  • Электрический генератор
  • Система слежения за направлением и скоростью ветра (анемометр)
  • Тормозная система
  • Трансмиссия
  • Лопасти
  • Система изменения угла атаки лопасти
  • Колпак ротора
  • Система пожаротушения
  • Телекоммуникационная система для передачи данных о работе ветрогенератора
  • Система молниезащиты
Типы ветрогенераторов

Существуют два основных типа ветротурбин: с вертикальной осью вращения и с горизонтальной. Вертикальноосевые ветрогенераторы работают при низких скоростях ветра, но имеют малую эффективность. Поэтому вертикальноосевые системы встречаются достаточно редко и применяются, как правило, в домашних системах.

В Украине индустрия  ветрогенераторов для дома активно развивается. Уже сейчас за вполне умеренные деньги можно приобрести ветряную установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 9 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором. Источники будут замечательно друг друга дополнять.

 На нижеследующих фотографиях представлены некоторые примеры элементов ветрогенераторов и моменты их сборки.

 

 

 

  Ветрогенератор WG-1000

Детальная характеристика ветрогенератора WG-1000 номинальной мощности 1000 Вт


Ветрогенератор

Номинальная мощность  (Вт) 1000
Напряжение (В) 48
Диаметр ротора (м) 2.9
Стартовая скорость ветра (м/с) 2
Номинальная скорость ветра (м/с) 9
Максимально допустимая скорость (м/с) 35
Торможение лопастей ветрогенератора (защита от ветра) механика
Номинальное количество оборотов (об/мин) 400
Материал ветрогенератора алюминий
Материал лопастей ветрогенератора стекловолокно
Количество лопастей 3

График зависимости мощности
ветрогенератора (вт) от скорости ветра (м/с)

График зависимости среднемесячной  мощности
ветрогенератора (вт) от среднегодовой скорости ветра (м/с)

 

Ветрогенераторы WG-1000 1000 ВТ предназначены  для   обеспечения  источником  электрической энергии небольших объектов, таких как — дачные участки, пасеки, туристические лагеря, фермерские хозяйства, или там, где отсутствует сетевая подача электрической энергии.  Максимальная мощность, которая может быть достигнута ветрогенератором, составляет 180 — 450 Квт на месяц для среднегодовых скоростей ветра 3-6 м/с, и 450 — 550 Квт на месяц для среднегодовых скоростей ветра 6 — 9 м/с.

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:
— Ветрогенератора номинальной/максимальной мощности — 1000 Вт / 1420 Вт
— Инвертора мощности 2000 кВт
— Аккумуляторных батарей (в количестве 4 шт.) 12 В емкостью 200 А*час, которые  способны аккумулировать 9,6 кВт*час электроэнергии
— Мачты-фермы ветрогенератора высотой 18 м.

Минимальная рабочая конфигурация ВЭУ (ветро энергетической установки) состоит из:
— Ветрогенератора номинальной/максимальной мощности — 1000 Вт / 1420 Вт
— Инвертора мощностью 1000 кВт
— Аккумуляторных батарей (в количестве 4 шт.) 12 В емкостью 40 А*час, которые  способны аккумулировать 1,92 кВт*час электроэнергии
— Мачты на растяжках для ветрогенератора высотой 6 м.

По договоренности из заказчиком возможно индивидуальное изготовление  мачты ветрогенератора желаемой конструкции и высоты.

Ветрогенераторы WG-2000

Детальные характеристики
ветрогенератора WG-2000 номинальной мощности 2000 Вт

Ветрогенератор от ДОМ тм

Номинальная мощность (Вт) 2000
Напряжение (В) 120
Диаметр ротора (м) 3.3
Стартовая скорость ветра (м/с) 2
Номинальная скорость ветра (м/с) 9
Максимально допустимая скорость ветра (м/с) 35
Торможение лопастей ветрогенератора ( защита от ветра) механика
Номинальное количество оборотов (об/мин) 300
Материал ветрогенератора алюминий
Материал лопастей ветрогенератора стекловолокно
Количество лопастей 3
График зависимости мощности
ветрогенератора (вт) от скорости ветра (м/с)
График зависимости среднемесячной  мощности ветрогенератора (вт) от среднегодовой скорости ветра (м/с)

 

Ветрогенераторы WG-2000 2000 ВТ предназначены для обеспечения источником электрической энергии небольших объектов, таких как — дачные участки, пасеки, туристические лагеря, фермерские хозяйства, или там, где отсутствует сетевая подача электрической энергии.  Максимальная мощность ветрогенератора, которая может быть достигнута, составляет 370 — 910 Квт в месяц для среднегодовых скоростей ветра 3- 6 м/с, и 910 — 1070 Квт в месяц для среднегодовых скоростей ветра 6 — 9 м/с.

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:
— Ветрогенератора номинальной/максимальной мощности — 2000 Вт / 3000 Вт
— Инвертора мощностью 4000 кВт
— Аккумуляторных батарей в количестве 10 шт. 12 В емкостью 200 А*час, которые способные аккумулировать 24 кВт*час электроэнергии
— Мачты-фермы ветрогенератора высотой 18 м.

Минимальная рабочая конфигурация ВЭУ (ветро энергетической установки) состоит из:
— Ветрогенератора номинальной/максимальной мощности —  2000 Вт / 3000 Вт
— Инвертора мощностью 2000 кВт
— Аккумуляторных батарей в количестве 10 шт. 12 В емкостью 40 А*час, которые  способны аккумулировать 4,8 кВт*час электроэнергии
— Мачты ветрогенератора на растяжках высотой 9 м.

По договоренности из заказчиком возможно индивидуальное изготовление  мачты ветрогенератора желаемой конструкции и высоты.

Ветрогенератор WG-5000

Детальные характеристики ветрогенератора WG-5000 номинальной мощности 5000 Вт

Ветрогенератор

Номинальная мощность (Вт)  5000
Напряжение (В) 240
Диаметр ротора (м) 5.8
Стартовая скорость ветра (м/с) 2
Номинальная скорость ветра (м/с) 12
Максимально допустимая скорость (м/с) 60
Торможение лопастей ветрогенератора (защита от ветра) автоматика
Номинальное количество оборотов (об/мин) 200
Материал ветрогенератора алюминий
Материал лопастей ветрогенератора стекловолокно
Количество лопастей 3
График зависимости мощности
ветрогенератора (вт) от скорости ветра (м/с)
График зависимости среднемесячной  мощности ветрогенератора (вт) от среднегодовой скорости ветра (м/с)

 

Ветрогенераторы WG-5000 5000 Вт презначен для обеспечения источником электрической энергии коттеджей, дачних участков, больших фермерских хозяйств, средних производств, или там где отсутствует сетевая подача электрической энергии. Максимальная мощность, которая может быть достигнута составляет 810 — 1870 Квт в месяц для среднегодовых скоростей ветра 3- 6 м/с, и 1890 — 2310 Квт в месяц для среднегодовых скоростей ветра 6 — 9 м/с.

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:
— Ветрогенератора номинальной/максимальной мощности — 5000 Вт / 7000 Вт
— Инвертора мощностью 5000 кВт
— Аккумуляторных батарей в количестве 20 шт. 12 В емкостью 200 А*час,  которые  способны аккумулировать 48 кВт*час электроэнергии
— Мачты-фермы ветрогенераторов высотой 18 м.

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:
— Ветрогенератора номинальной/максимальной мощности — 5000 Вт / 7000 Вт
— Инвертора мощностью 5000 кВт
— Аккумуляторных батарей в количестве 20 шт. 12 В емкостью 100 А*час, которые способны аккумулировать 24 кВт*час электроэнергии
— Мачты ветрогенератора на ростяжках высотой 12 м.

По договоренности из заказчиком возможно индивидуальное изготовление  мачты ветрогенератора желаемой конструкции и высоты.


Как работает ветряная турбина?

Что такое ветряная турбина?

Ветряная турбина — это самая современная версия ветряной мельницы. Проще говоря, он использует силу ветра для производства электричества. Наиболее заметны большие ветряные турбины, но вы также можете купить небольшую ветряную турбину для индивидуального использования, например, для обеспечения энергией каравана или лодки.

Что такое ветряная электростанция?

Ветряная электростанция — это группа ветряных турбин. Довольно впечатляюще думать, что электричество, которое так сильно влияет на нашу жизнь — от зарядки наших телефонов до того, что позволяет нам приготовить чашку кофе и, все чаще, заправлять наши автомобили — могло начаться с простого порыва ветра. .

Как работает ветряная турбина?

Сначала давайте начнем с видимых частей ветряной электростанции, которые мы все привыкли видеть — этих высоких белых или бледно-серых турбин. Каждая из этих турбин состоит из набора лопастей, коробки рядом с ними, называемой гондолой, и вала. Ветер — а это может быть просто легкий ветерок — заставляет лопасти вращаться, создавая кинетическую энергию. Лопасти, вращающиеся таким образом, также заставляют вращаться вал в гондоле, а генератор в гондоле преобразует эту кинетическую энергию в электрическую.

Что будет дальше с электричеством, вырабатываемым ветряной турбиной?

Для подключения к национальной сети электрическая энергия затем пропускается через трансформатор на объекте, который увеличивает напряжение до уровня, используемого в национальной электроэнергетической системе. Именно на этом этапе электричество обычно направляется в передающую сеть National Grid, готовую к передаче, чтобы в конечном итоге ее можно было использовать в домах и на предприятиях. В качестве альтернативы, ветряная электростанция или отдельная ветряная турбина могут вырабатывать электроэнергию, которая используется частным образом отдельным лицом или небольшой группой домов или предприятий.


Почему ветряки обычно белые или бледно-серые?

Ветряки обычно бывают белыми или очень бледно-серыми — идея состоит в том, чтобы сделать их визуально ненавязчивыми, насколько это возможно. Обсуждается, следует ли их перекрашивать в другие цвета, особенно в зеленый, в некоторых условиях, чтобы помочь им лучше вписаться в окружающую среду.

Насколько сильным должен быть ветер для работы ветряной турбины?

Ветровые турбины могут работать при любых скоростях ветра — от очень слабого до очень сильного.Они генерируют около 80% времени, но не всегда на полную мощность. При очень сильном ветре они отключаются, чтобы предотвратить повреждение.

Где расположены ветряные электростанции?

Ветряные электростанции, как правило, располагаются в самых ветреных местах, чтобы максимально использовать энергию, которую они могут производить — вот почему вы с большей вероятностью увидите их на склонах холмов или на побережье. Ветряные электростанции, расположенные в море, называются оффшорными ветряными электростанциями, а расположенные на суше — наземными ветряными фермами.

Где была первая ветряная турбина и первая ветряная электростанция?

Самая первая ветряная турбина, вырабатывающая электричество, была создана профессором Джеймсом Блайтом в своем доме отдыха в Шотландии в 1887 году.Он был 10 метров в высоту и имел парусину.

Первая в мире ветряная электростанция открылась в Нью-Гэмпшире в США в 1980 году.

Вредны ли ветряные электростанции для птиц?

Дело в том, что изменение климата представляет собой самую серьезную долгосрочную угрозу для птиц и других диких животных. А возобновляемые источники энергии, ключевым компонентом которых являются ветряные турбины, необходимы для сокращения парниковых газов .

Королевское общество защиты птиц Великобритании ( RSPB ) признает эту более широкую картину, заявляя: «Переход на возобновляемые источники энергии сейчас, а не через 10 или 20 лет, необходим, если мы хотим стабилизировать выбросы парниковых газов в атмосфера на безопасном уровне.”

Разработчики ветряных электростанций тесно сотрудничают с RSPB и местными экологическими группами в рамках процесса консультаций по выбору ветряных электростанций, чтобы продолжить рост наземной и морской ветроэнергетики, одновременно компенсируя любой потенциальный вред птицам из-за потери среды обитания, нарушения и столкновение.

В отчете США делается вывод о том, что влияние энергии ветра на популяции птиц относительно невелико по сравнению с падением жертвой кошек и столкновениями с высотными зданиями.

Сколько энергии в Великобритании вырабатывается ветром?

Узнайте, сколько энергии в Великобритании вырабатывается ветром, с помощью приложения National Grid ESO для Google Play или Apple iOS .

Основы ветроэнергетики | NREL

Ветер возникает, когда поверхность земли неравномерно нагревается солнцем. Энергия ветра можно использовать для выработки электроэнергии.

Ветряные турбины

Ветряные турбины, как и ветряные мельницы, устанавливаются на башне, чтобы улавливать как можно больше энергии.На высоте 100 футов (30 метров) и более они могут воспользоваться более быстрым и менее бурный ветер. Турбины улавливают энергию ветра своим пропеллером. лезвия. Обычно на валу устанавливаются две или три лопасти, образующие ротор .

Лезвие действует как крыло самолета. Когда дует ветер, карман низкого давления воздух образуется на подветренной стороне лопасти.Затем воздушный карман низкого давления вытягивает лезвие к нему, заставляя ротор вращаться. Это называется лифт . Сила подъема на самом деле намного сильнее, чем сила ветра, направленная против ветра. передняя сторона клинка, которая называется drag . Комбинация подъемной силы и сопротивления заставляет ротор вращаться, как пропеллер, и вращающийся вал вращает генератор, чтобы вырабатывать электричество.

Исследования ветроэнергетики

NREL в основном проводятся в кампусе Флэтайронс, отдельном месте недалеко от Боулдера, Колорадо.

Ветряные турбины коммунального назначения на ветряной электростанции Сидар-Крик в Гровере, штат Колорадо. Фото Денниса Шредера / NREL

VolturnUS Плавающая оффшорная ветряная турбина с полупогружной плавучей ветроэнергетической системой Платформа, Университет штата Мэн, часть консорциума DeepCWind. Фотография из Университета штата Мэн

Наземная ветроэнергетика

Ветровые турбины могут использоваться как автономные приложения или их можно подключать к электросети или даже в сочетании с фотоэлектрической системой (солнечными элементами).Для коммунальные (мегаваттные) источники энергии ветра, большое количество ветряных турбин обычно строятся близко друг к другу, чтобы сформировать ветряную электростанцию ​​ , также называемую ветровой электростанцией . Некоторые поставщики электроэнергии сегодня используют ветряные электростанции для снабжения электроэнергией своих потребителей.

Автономные ветряные турбины обычно используются для перекачки воды или связи. Однако домовладельцы, фермеры и владельцы ранчо в ветреных районах также могут использовать ветряные турбины. как способ сократить свои счета за электричество.

Распределенная энергия ветра

Малые ветровые системы также обладают потенциалом в качестве распределенных энергоресурсов. Распространено энергоресурсы относятся к множеству небольших модульных технологий производства энергии. которые могут быть объединены для улучшения работы системы подачи электроэнергии. Для получения дополнительной информации о распределенном ветре посетите Отдел ветроэнергетических технологий Министерства энергетики США.

Морская ветроэнергетика

Оффшорная ветроэнергетика — относительно новая отрасль в США. Америки первая оффшорная ветряная электростанция, расположенная в Род-Айленде, у побережья острова Блок, в декабре 2016 года. В отчете Wind Vision Министерства энергетики показано, что к 2050 году морской ветер будет доступен во всех прибрежных регионах страны.

Дополнительные ресурсы

Для получения дополнительной информации о ветровой энергии посетите следующие ресурсы:

Основы ветроэнергетики
Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США

Карты и данные по ветроэнергетике
DOE’s WINDExchange

Как работают ветряные турбины
U.S. Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики.

Малые ветроэнергетические системы
Программа энергосбережения Министерства энергетики США

Американская ассоциация ветроэнергетики

Energy Kids Wind Basics
Управление энергетической информации США Energy Kids

Энергия ветра | Национальное географическое общество

Все, что движется, обладает кинетической энергией, а ученые и инженеры используют кинетическую энергию ветра для выработки электроэнергии.Энергия ветра, или энергия ветра, создается с помощью ветряной турбины, устройства, которое направляет энергию ветра для выработки электроэнергии.

Ветер обдувает лопатки турбины, прикрепленные к ротору. Затем ротор вращает генератор для выработки электричества. Есть два типа ветряных турбин: ветряные турбины с горизонтальной осью (HAWT) и ветровые турбины с вертикальной осью (VAWT). HAWT — наиболее распространенный тип ветряных турбин. У них обычно есть две или три длинных тонких лопасти, которые похожи на пропеллер самолета.Лопасти расположены так, что они обращены прямо против ветра. VAWT имеют более короткие и широкие изогнутые лопасти, которые напоминают лопасти, используемые в электрическом миксере.

Небольшие индивидуальные ветряные турбины могут производить 100 киловатт энергии, достаточной для питания дома. Небольшие ветряные турбины также используются в таких местах, как водонасосные станции. Чуть более крупные ветряные турбины расположены на башнях высотой до 80 метров (260 футов) с лопастями ротора, длина которых составляет примерно 40 метров (130 футов).Эти турбины могут генерировать 1,8 мегаватт энергии. Еще более крупные ветряные турбины можно найти на башнях высотой 240 метров (787 футов) с лопастями ротора длиной более 162 метров (531 фут). Эти большие турбины могут генерировать от 4,8 до 9,5 мегаватт энергии.

После выработки электроэнергии ее можно использовать, подключать к электросети или хранить для будущего использования. Министерство энергетики США работает с национальными лабораториями над разработкой и улучшением технологий, таких как батареи и гидроаккумулирующие установки, чтобы их можно было использовать для хранения избыточной энергии ветра.Такие компании, как General Electric, устанавливают батареи вместе со своими ветряными турбинами, чтобы электричество, вырабатываемое за счет энергии ветра, можно было сразу же хранить.

По данным Геологической службы США, в США имеется 57 000 ветряных турбин как на суше, так и на море. Ветровые турбины могут быть автономными конструкциями или они могут быть объединены в так называемую ветряную электростанцию. В то время как одна турбина может вырабатывать достаточно электроэнергии для удовлетворения потребностей в энергии одного дома, ветряная электростанция может вырабатывать гораздо больше электроэнергии, достаточной для снабжения энергией тысяч домов.Ветряные электростанции обычно располагаются на вершине горы или в другом месте, где ветрено, чтобы использовать преимущества естественного ветра.

Самая большая оффшорная ветряная электростанция в мире называется Walney Extension. Эта ветряная электростанция расположена в Ирландском море примерно в 19 километрах (11 милях) к западу от северо-западного побережья Англии. Расширение Уолни занимает огромную территорию в 149 квадратных километров (56 квадратных миль), что делает ветряную электростанцию ​​больше, чем город Сан-Франциско, Калифорния, или остров Манхэттен в Нью-Йорке.Сеть из 87 ветряных турбин имеет высоту 195 метров (640 футов), что делает эти морские ветряные турбины одними из самых больших ветряных турбин в мире. Walney Extension имеет потенциал для выработки 659 мегаватт электроэнергии, чего достаточно для снабжения электричеством 600 000 домов в Соединенном Королевстве.

Информация и факты об энергии ветра

Ветер — это движение воздуха из области высокого давления в область низкого давления. На самом деле ветер существует потому, что Солнце неравномерно нагревает поверхность Земли.Когда горячий воздух поднимается, более холодный воздух заполняет пустоту. Пока светит солнце, будет дуть ветер. А ветер издавна служил источником энергии для людей.

Древние мореплаватели ловили ветер парусами. Когда-то фермеры использовали ветряные мельницы для измельчения зерна и перекачивания воды. Сегодня все больше и больше ветряных турбин выжимают из ветра электричество. За последнее десятилетие использование ветряных турбин увеличивалось более чем на 25 процентов в год. Тем не менее, он обеспечивает лишь небольшую часть мировой энергии.

Погода на нашей планете может быть очень суровой — от волн тепла и града до тайфунов и торнадо. Узнайте, что заставляет природу высвободить свою ярость.

Как это работает

Большая часть энергии ветра поступает от турбин, которые могут достигать высоты 20-этажного здания и иметь три лопасти длиной 200 футов (60 метров). Ветер вращает лопасти, которые вращают вал, соединенный с генератором, вырабатывающим электричество.

Самые большие ветряные турбины вырабатывают достаточно электроэнергии в год (около 12 мегаватт-часов) для выработки около 600 U.С. дома. Ветряные электростанции имеют десятки, а иногда и сотни таких турбин, выстроенных вместе в особенно ветреных местах. Небольшие турбины, установленные на заднем дворе, могут производить достаточно электроэнергии для одного дома или небольшого предприятия.

Бурно развивающаяся ветроэнергетика

Ветер — это чистый источник возобновляемой энергии, не вызывающий загрязнения воздуха и воды. А поскольку ветер здесь бесплатный, эксплуатационные расходы после установки турбины практически равны нулю. Массовое производство и технический прогресс удешевляют турбины, и многие правительства предлагают налоговые льготы, чтобы стимулировать развитие ветроэнергетики.

К недостаткам относятся жалобы местных жителей на уродливые и шумные ветряные турбины. Медленно вращающиеся лезвия также могут убивать птиц и летучих мышей, но не так много, как автомобили, линии электропередач и высотные здания. Ветер тоже переменчив: если он не дует, электричество не вырабатывается.

Тем не менее, ветроэнергетика процветает. Благодаря глобальным усилиям по борьбе с изменением климата, таким как Парижское соглашение, возобновляемая энергия переживает бум роста, при этом энергия ветра лидирует.С 2000 по 2015 год совокупная ветровая мощность во всем мире увеличилась с 17 000 мегаватт до более чем 430 000 мегаватт. В 2015 году Китай также обогнал ЕС по количеству установленных ветряных турбин и продолжает лидировать в установке.

Отраслевые эксперты прогнозируют, что при сохранении таких темпов роста к 2050 году одна треть мировых потребностей в электроэнергии будет удовлетворяться за счет энергии ветра.

Ветряная турбина — Музей науки и промышленности

Постройте ветряную турбину для выработки электроэнергии и исследуйте процесс преобразования энергии.

Материалы

  • Три трубы из ПВХ, одна длиной около 30 см, а другие длиной не менее 15 см
  • Три тройника из ПВХ
  • Одно колено из ПВХ
  • Двигатель
  • Провод (длиной около двух футов)
  • Провод фрезы
  • Ступица (можно приобрести у Kid Wind Project)
  • Деревянные дюбеля
  • Мультиметр
  • Зажимы типа «крокодил»
  • Ножницы
  • Лента
  • Фен или вентилятор
  • Материалы для лезвий, такие как бальзовая бумага, алюминиевая фольга, конструкционная бумага , палочки для мороженого и т. д.

Указания

  1. Вставьте 15-сантиметровую трубу из ПВХ в среднее отверстие тройника из ПВХ. Повторите то же самое с другой 15-сантиметровой трубой из ПВХ и тройником.
  2. Соедините две части вместе, вставив свободные концы труб по бокам третьего тройника со средним отверстием вверх.
  3. Вставьте оставшуюся трубу из ПВХ в тройниковое отверстие, направленное вверх, так, чтобы труба стояла вертикально.
  4. Поместите последний тройник на свободный конец башни.
  5. Подсоедините к двигателю два провода.Надежно установите двигатель в шарнир наверху башни. Пропустите провода по трубе башни и выведите из одного из тройников на основании. При необходимости используйте изоленту, чтобы надежно удерживать двигатель на месте.
  6. Прикрепите пластиковую круглую деталь, называемую ступицей, к прямой металлической детали на внешней стороне двигателя.
  7. Подключите провода к мультиметру с помощью зажимов типа «крокодил». Установите мультиметр на 20 вольт.
  8. Вставьте несколько небольших деревянных дюбелей в отверстия ступицы.Создайте ветер с помощью фена или вентилятора. Проверьте мультиметр, чтобы узнать, сколько энергии вырабатывается.
  9. Используя различные материалы, спроектируйте различные лопасти ветряной турбины. Учитывайте вес, гладкость поверхности и количество необходимых лезвий. Прикрепите лезвия к дюбелям с помощью скотча.
  10. Снова включите фен или вентилятор и проверьте турбину с каждым типом лопастей, которые вы разработали. Чем отличается электрическая мощность? Протестируйте турбину с разными скоростями ветра, такими как низкие, средние и высокие настройки вентилятора.Влияет ли скорость ветра на выработку электроэнергии?

Что происходит?

Поскольку кинетическая механическая энергия движущегося ветра вращает лопасти ветряной турбины, генератор внутри турбины также вращается. Это заставляет спиральный провод вращаться вокруг магнита и создает электрический ток, который мы измеряем с помощью мультиметра.

Так как энергия не создается и не уничтожается, чем больше энергия вводится, тем больше будет выход энергии.Следовательно, чем больше механической энергии вы начинаете — чем быстрее вращаются лопасти — тем больше электроэнергии будет вырабатывать турбина.

Справочная информация

Ветер возникает из-за разницы в давлении, создаваемой неравномерным нагревом поверхности Земли солнцем. Излучение солнца заставляет землю накапливать тепловую энергию. Воздух над землей также получает тепловую энергию и расширяется, становясь менее плотным и поднимаясь вверх.

Это движение вызывает область низкого давления на поверхности, создавая вакуум, который втягивает воздух.Более холодный и плотный воздух течет к поверхности с низким давлением, заполняя пространство, оставшееся поднимающимся нагретым воздухом. Это создает конвекционный ток, а тепловая энергия преобразуется в кинетическую механическую энергию в виде движущегося воздуха или ветра.

Ветряная турбина преобразует механическую энергию ветра в электрическую. Турбина берет кинетическую энергию движущейся жидкости, в данном случае воздуха, и преобразует ее во вращательное движение. Когда ветер проходит мимо лопастей ветряной турбины, он перемещает или вращает лопасти.Эти лезвия вращают генератор. Генератор работает как инверсия электродвигателя; вместо того, чтобы применять электрическую энергию для поворота и создания механической энергии, он использует механическую энергию для поворота и создания электрической энергии. Генераторы вращают спиральную проволоку вокруг магнитов для создания электрического тока.

Физика ветряных турбин | Основы энергетики

Более тысячи лет назад ветряные мельницы работали в Персии и Китае, см. TelosNet и Википедия. Почтовые мельницы появились в Европе в XII веке, а к концу XIII в. башенная мельница, на которой вращалась только деревянная крышка вместо всего корпуса мельницы.В США развитие ветряная мельница, перекачивающая воду, была важным фактором, позволившим заниматься земледелием и разводить скотоводство на обширных территориях. в середине девятнадцатого века. Эти ветряные помпы (иногда называемые западными мельницами) все еще распространены в Америке и Австралии. У них есть ротор с около 30 лопастей (или лопастей) и способность медленно поворачиваться. Из 200 000 ветряных мельниц, существующих в В Европе середины девятнадцатого века через столетие остался только один из десяти.С тех пор старые ветряные мельницы были заменены паровыми двигателями и двигателями внутреннего сгорания. Однако поскольку В конце прошлого века количество ветряных турбин неуклонно растет, и их начинают принимать играет важную роль в производстве электроэнергии во многих странах.

Сначала мы покажем, что для всех ветряных турбин мощность ветра пропорциональна скорости ветра в кубе. Энергия ветра — это кинетическая энергия движущегося воздуха. Кинетическая энергия массы м с скорость v составляет

Массу воздуха m можно определить из плотности воздуха ρ и объема воздуха V согласно

Затем,

Мощность — это энергия, разделенная на время.Рассмотрим малое время Δ t , за которое частицы воздуха пройти расстояние с = v Δ t для протекания. Умножаем расстояние на площадь ротора ветряной турбины A , в результате получается объем

, который приводит в движение ветряную турбину на короткое время. Тогда мощность ветра дается как

.

Сила ветра увеличивается пропорционально скорости ветра. Другими словами: удвоение скорости ветра дает в восемь раз больше энергии ветра.Поэтому для ветряка очень важен выбор «ветреного» места.

Эффективная полезная энергия ветра меньше, чем указано в приведенном выше уравнении. Скорость ветра позади ветряк не может быть нулевым, так как воздух не может следовать. Следовательно, только часть кинетической энергии можно извлечь. Рассмотрим следующую картину:

Скорость ветра перед ветряной турбиной больше, чем после. Поскольку массовый расход должен быть непрерывным, площадь A 2 после ветряной турбины больше площади A 1 до.Эффективная мощность — это разница между двумя ветровыми мощностями:

.

Если разница обеих скоростей равна нулю, у нас нет чистой эффективности. Если разница слишком велика, поток воздуха через ротор слишком затруднен. Коэффициент мощности c p характеризует относительная мощность рисования:

Для вывода приведенного выше уравнения было принято следующее: A 1 v 1 = A 2 v 2 = A ( v 1+ v 2) / 2.Обозначим соотношение v 2/ v 1 с правой стороны. уравнения с x . Чтобы найти значение x , которое дает максимальное значение C P , мы берем производную по отношению к x и устанавливаем ее равной нулю. Это дает максимум, когда x = 1/3. Максимальная мощность вытяжки получается для v 2 = v 1 /3, а идеальный коэффициент мощности равен

Другая ветряная турбина, расположенная слишком близко сзади, будет приводиться в движение только более медленным воздухом.Таким образом, ветряные электростанции в Преобладающее направление ветра требует минимального расстояния, в восемь раз превышающего диаметр ротора. Обычный диаметр ветряков составляет 50 м с установленной мощностью 1 МВт и 126 м с ветроэнергетической установкой мощностью 5 МВт. Последний в основном используется на шельфе.

Установленная мощность или номинальная мощность ветряной турбины соответствует выходной электрической мощности со скоростью между 12 и 16 м / с, при оптимальных ветровых условиях. По соображениям безопасности установка не вырабатывает большую мощность при сильном ветре. условия, чем те, для которых он разработан.Во время грозы установка отключается. В течение года загруженность из 23% можно добраться вглубь страны. Это увеличивается до 28% на побережье и 43% на море.

Более подробную информацию можно найти на Интернет-страницах wind-works.org и в страницы Американской ассоциации ветроэнергетики.

Установленная мощность ветроэнергетики в США в апреле 2020 года составляла около 107,4 ГВт. Эта мощность была превышена. только Китай (более 200 ГВт).Центр ветроэнергетики Альты в Калифорнии — крупнейшая ветряная электростанция в США с 2013 года мощностью 1,6 ГВт. Электроэнергия, произведенная с помощью энергии ветра в Соединенных Штатах, составила в 2019 году около 300 ТВт-ч (тераватт-часов), или 7,3% всей вырабатываемой электроэнергии. Подробную информацию о нынешнем состоянии в США можно найти в Википедия.

Ключевым моментом в ветроэнергетике является то, что время пикового спроса на электроэнергию и время оптимальных ветровых условий совпадают редко.Таким образом, другие производители электроэнергии с короткими сроками выполнения заказа и хорошо развитой системой распределения электроэнергии. системы необходимы для дополнения выработки энергии ветра.

Почему современные ветряные турбины потеряли одну лопасть по сравнению со старыми четырехлопастными ветряными мельницами?
Мощность ротора P мех = 2π M n пропорциональна крутящему моменту M , действующему на вал и частота вращения n ​​. На последнее влияет передаточное число наконечников λ , который рассчитывается согласно λ = v u / v 1 из отношения окружная скорость (конечная скорость) v u ротора и скорость ветра v 1 .Крутящий момент M увеличивается с количеством лопастей. Поэтому он является самым большим для мельниц западного производства с множеством лопастей, меньшего размера для ветряных мельниц с четырьмя лопастями и самого маленького на сегодняшний день ветряных турбин с 3 лопастями. Однако каждое лезвие, по мере вращения снижает скорость ветра для следующих лопастей. Этот эффект «ветровой тени» увеличивается с увеличением количества лопастей. Оптимальное передаточное число концевых скоростей около 1 для мельницы Western, чуть более 2 для четырехлопастной мельницы и 7-8 для мельницы с четырьмя лопастями. трехлопастные роторы.Трехлопастные роторы при оптимальном передаточном числе конечных скоростей достигают значения c p . 48% и приближается к идеальному значению 59%, чем ветряные турбины с 4 лопастями. Для ветряных турбин с двумя лопастями или уравновешенных по весу конфигураций ротора с одной лопастью выходная мощность меньше, несмотря на более высокое передаточное число наконечников из-за меньшего крутящего момента M . Таким образом, ветряные турбины сегодня имеют три лопасти.

Производство ветровой энергии с использованием энергии ветра : Системы и решения : Возобновляемые источники энергии

Производство энергии ветра означает получение электроэнергии путем преобразования энергии ветра в энергию вращения лопастей и преобразования этой энергии вращения в электрическую энергию с помощью генератора.Энергия ветра увеличивается пропорционально кубу скорости ветра, поэтому WTG следует устанавливать в зоне с более высокой скоростью ветра.
Мы работаем в партнерстве с производителями ветряных турбин, чтобы продавать ветровые турбины и строить электростанции, используя нашу торговую сеть. Мы также продолжаем разрабатывать электронные устройства, включая системы управления, используя наши знания и технологии, полученные в результате проектирования и производства тепловых и гидравлических электростанций. самостоятельно участвует в ветроэнергетическом бизнесе.Занимая позиции обеих сторон, производителя и пользователя, мы предлагаем решения для удовлетворения потребностей клиентов в самых разных ситуациях.

Легко устанавливаемая / управляемая ветряная электростанция, не беспокоясь об истощении запасов

В мире растет внедрение ветроэнергетики, которая имеет следующие характеристики:
  • • Нет CO 2 выбросы

  • • Ветер — это безопасный источник энергии, существующий повсюду, и не нужно беспокоиться о его истощении, таком как ископаемое топливо

  • • Простое оборудование и легкое управление

  • • Мало привязанности к природе

Сегодня в мире наблюдается значительный прогресс технологий по разработке более крупных WTG, и это приводит к увеличению выработки электроэнергии на одну единицу WTG и развитию большого поля WTG, называемого «ветряной электростанцией».Развиваются и технологии строительства морских ВТГ.

Высоконадежная ветроэнергетическая установка

Герметично закрытый синхронный генератор с постоянными магнитами (PMSG), обеспечивающий повышенную эффективность выработки электроэнергии без необходимости во внешней системе возбуждения

При возбуждении постоянными магнитами генератор обеспечивает работу без обслуживания и снижает частоту отказов за счет удаления контактных колец для внешнего возбуждения.Благодаря отсутствию необходимости во внешней системе возбуждения эффективность выработки электроэнергии увеличивается. Благодаря использованию систем водяного охлаждения и внутреннего охлаждения с вентилятором, генератор не забирает воздух извне, что подходит для использования в среде с большим количеством мелких частиц в космосе или прибрежных / морских районах.

Генератор на 2 МВ ВТГ

Более длинный отвал обеспечивает более высокое годовое производство энергии даже при низкой скорости ветра

Использование более длинного лезвия позволяет преобразовать больше энергии ветра в электричество.Для WTG типа U93 мощностью 2 МВт используются лопасти длиной 45 м и диаметром 93 м, что на 16% длиннее, чем у других производителей, что увеличивает площадь приема ветра и обеспечивает более высокое годовое производство энергии даже при низкой скорости ветра.

Схема гондолы

Используются

ПМСГ с коробкой передач и полноразмерным преобразователем.

Внутренняя конструкция гондолы 2 МВ WTG

2 МВт WTG

WTG Toshiba мощностью 2 МВт можно охарактеризовать следующими характеристиками:

  • • Модель: U88E

  • • Высокая надежность достигается за счет среднескоростной передачи (1:72)

  • • Малый синхронный генератор с постоянными магнитами (PMSG)

  • • Герметичный генератор с водяным охлаждением

  • • Соответствие высоковольтной системе в системе полного преобразователя

* Стандарт МЭК: справочная скорость ветра 50 м / с, средняя скорость ветра 8.5 м / с, экстремальная скорость ветра (Ve50) 70 м / с.

* Проконсультируйтесь с нами, если скорость ветра превышает 70 м / с.

Toshiba для предприятий ветроэнергетики

Чтобы удовлетворить потребности клиентов, Toshiba предоставляет всестороннюю поддержку в самых разных бизнес-ситуациях, от геологических / экологических исследований и бизнес-планирования до проектирования, производства, строительства, ввода в эксплуатацию и эксплуатации и технического обслуживания после запуска генератора.

Всесторонняя поддержка при назначении участков-кандидатов –Планирование–

Мы поддерживаем наших клиентов от назначения участков-кандидатов, включая геологическое или экологическое исследование, рассмотрение законодательных / нормативных вопросов, до планирования строительства.Также мы предоставляем упаковочные решения с аккумулятором / вторичной батареей для стабильной выходной мощности генератора и оптимизируем точку установки с помощью микросайтинга с CFD для сложных наземных структур.

Достижение высокой ветроустойчивости с помощью длинных лопастей — Дизайн / Производство —

※ 1

У нас есть множество WTG с длинными лопастями, которые покрывают широкий диапазон выносливой скорости ветра, поэтому мы можем предоставить WTG, подходящие для каждого объекта.Мы также продолжаем разрабатывать большие WTG для береговых и морских объектов, чтобы снизить удельную стоимость.

Надлежащая установка и безопасное обслуживание

Мы предлагаем подходящие методы установки для каждого объекта.
Toshiba в сотрудничестве с производителями ветряных турбин и другими отечественными субподрядчиками предоставляет разнообразные меню периодического обслуживания, ремонта, капитального ремонта и гарантии для обеспечения безопасной и стабильной работы.Что касается поставки запчастей, мы располагаем запасами запчастей у местных субподрядчиков для бесперебойной поставки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *