Генераторы Свободной Энергии. Инструкции и схемы по изготовлению: wowavostok — LiveJournal
Электричество с каждым днем дорожает. И многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем в качестве образцов безтопливные генераторы Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегатов, их схема и как сделать устройство своими руками.Как сделать бестопливный генератор своими руками
Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.
Обзор генераторов
При использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.
Фото — Генератор Капанадзе
Обычные электрогенераторы работают на основе:
1. Двигателя внутреннего сгорания, с поршнем и кольцами, шатуном, свечами, топливным баком, карбюратором, … и
2. С использованием любительских двигателей, катушек, диодов, AVR, конденсаторами и т.д.
Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.
Фото — Схема генератора
Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.
Видео: самодельный бестопливный генератор:
Скачать видеоГенератор Тесла
Линейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.
Фото — Бестопливный генератор тесла
Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.
Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный . Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.
Свободная энергия: генератор, практические схемы, технологии
В поверхностном понимании термин «свободная энергия» интерпретируется довольно просто — то, что любезно предоставлено природой, можно использовать в качестве ее источника. Сюда можно включить различные солнечные батареи, ветряки и тому подобные агрегаты, причем все они в результате своей деятельности не оказывают вредного воздействия на окружающую среду.
Описание прибора
Чтобы вникнуть в суть функционирования генератора свободной энергии и понять принцип его работы, стоит иметь представление о схеме контура с подключенным разрядником. По теории резонансных явлений, которые наблюдаются в колебательном контуре, он буквально таков: питание подается на конденсатор, тот заряжается на определенную величину своей емкости, затем стартует процесс разрядки на катушку, соединенную с ним параллельно, одновременно со смещением запасенной в контуре свободной энергии в область индуктивности, в результате чего теоретически в контуре образуются условия, достаточные для повторной зарядки конденсатора и повторения данного цикла.
Колебания
Но на практике оказывается, что сопротивления, присущие любой электросхеме, заглушают колебания, и их уровень постепенно снижается по экспоненте, как изображено на картинке 1.
Чтобы колебания не затухали, в схему необходимо добавить элемент поддержки требуемого объема свободной энергии — таким является повышающий трансформатор. Его вторичная обмотка должна обладать пониженной индуктивностью (в целях сведения потерь к минимуму) и быть сконструирована таким образом, чтобы формируемое в ней поле имело высокие энергетические характеристики независимо от того, какой в схеме применяется источник питания.
Трансформатор
Создатель первого генератора свободной энергии
Первым, кто создал электрогенератор свободного тока, был Никола Тесла. Его прибор включает катушку с двумя обмотками, вторая постоянно находится под воздействием вибраций, что переводит вихревые потоки в сторону поперечного сечения. Как результат, появляется напряжение и воздушная ионизация. Явления происходят на конце обмотки с образованием разрядов.
Важно: на осциллограмме при этом наблюдаются кривые. В конструкции катушки задействован трансформаторный металл для усиления индуктивной связи — это оказывает положительный эффект на плотность сплетений и способствует возникновению колебаний между элементами обмоток.
Далее все происходит наоборот. По мере угасания сигнала растет рабочий показатель мощности. Как только мощность достигнет своего максимального значения, происходит ее обрыв. Тесла считал, что в этот момент можно получить колебания из вихревых потоков, создав условия для выработки электроэнергии.
Схема генератора Теслы
Источники для генераторов
Сегодня существует по меньшей мере сотня теорий в области использования альтернативных источников энергии. Они, как и вибрационный прибор Теслы, используют технологии свободной энергии и представляют огромный научный потенциал, но практически пока применяются очень редко. Вот некоторые из них:
Первую экспериментальную электростанцию для производства электроэнергии из соленой воды построила компания Statkraft в Норвегии. Суть технологии заключается в использовании физического эффекта — осмоса — при смешивании соленой и пресной воды. Как известно, увеличение энтропии жидкостей ведет к накоплению энергии, которая впоследствии вращает гидротурбину электрогенератора.
Вода
- Термогенераторы.
Основаны на далеко не новой технологии, обретшей актуальность в наши дни в связи с массовым распространением энергосберегающих источников света и разнообразных бытовых электроприборов. На преобразовании тепловой энергии в электрическую базируется немалое количество промышленных разработок. К примеру, отопительно-варочные печи снабжают встроенными термогенераторами, и во время их функционирования образуется не только тепло, но и электричество.
Термогенератор
- Пьезоэлементы.
Экспериментальные агрегаты, генерирующие электроэнергию за счет ее преобразования из кинетической, такие как пешеходные дорожки и специальные танцполы с интегрированными пьезогенераторами, даже сейчас представляют собой нечто в стиле футуризма. Также на ближайшее будущее планируется введение в эксплуатацию специальных «зеленых тренажерных залов», где по оценкам инженеров группе спортивных велосипедов-тренажеров может покориться отметка выработки до 3,6 МВт возобновляемой электрической энергии за год.
Пьезоэлемент
Принцип работы
Хотя в создании генератора свободной энергии заинтересовано множество людей, пока о вытеснении классических способов производства электроэнергии говорить очень рано. В прошлом разработчики сталкивались с проблемами, в основном связанными с несовершенством технического оснащения, сегодня же в пору активного НТП идея подобных изобретений становится все ближе к воплощению в жизнь. Об этом свидетельствует активная эксплуатация генераторов свободной энергии солнца и ветра, но так происходит далеко не повсеместно, а лишь в высоко технологически развитых странах, таких как Тайвань.
Со времен Теслы известные изобретатели со всего мира не прекращают совершенствование его великого устройства. Одной из последних моделей стал прибор Тариея Капанадзе, представленный в конце прошлого века. Его базу составила усовершенствованная катушка Теслы, по заявлению автора способная «накормить» потребителей мощностью в 5 кВт (и это при относительно компактных размерах!). В начале уже нынешнего века генератор Капанадзе общей мощностью 100 кВт (на пуск и работу нужно 2 кВт) мог быть запущен в Турции.
Генератор Капанадзе
Развитие энергетики
Приведенный выше пример одной из практических промышленных схем генераторов свободной энергии является открытым для общественности, однако основные параметры в нем покрыты строжайшей коммерческой тайной. Интернет полон всяческих предложений приобрести подобное устройство, на деле же они — не более чем пустышки. На фоне этой массы выделяется небольшой процент действительно функционирующих генераторов свободной энергии, включающих резонансные трансформаторы, катушки, постоянные магниты, и они способны справиться с обеспечением энергией частного дома, но при этом вряд ли их хватит еще и на двор.
Самодельный генератор
Так что генераторы свободной энергии остаются перспективным направлением с обширными возможностями практической реализации.
Генератор свободной энергии: схема, описание
Свободная энергия – процесс выделения большого количества этого элемента. Причем в данном случае человечество не участвует в подобной выработке. Сила ветра способствует вращению электрогенераторов. Чем больше перепад давления, тем выше атмосферное условие. Что касается человечества, то этот фактор считается дарованным свыше. Поэтому как таковой схемы генератора свободной энергии нет, подобные теории выдвигают современные экспериментаторы.
Однако в силу научных исследований ученые указывают на обратные сведения. Великие электротехники Тесла, Фарадей и Вольт заставили человечество по-другому взглянуть на физику и электрификацию, сегодня потребление энергетических ресурсов возросло. Большинство специалистов пытаются получить источники из внешней среды. Подобные действия легко осуществимы, с учетом того что Никола Тесла уже делал подобные эксперименты с помощью генераторов.
Практические схемы генераторов свободной энергии
Получение минимальных мощностей происходит несколькими способами:
- через магниты;
- с помощью тепла воды;
- из ферримагнитных сплавов;
- из атмосферного конденсата.
Однако чтобы получить электричество в огромном количестве, необходимо научиться управлять этой энергией. Благодаря практической схеме генераторов свободной энергии, свет должен доходить до каждого человека, вне зависимости от локального расположения. Это подтверждают исторические факты. Для такого эксперимента требуется огромная мощность излучения, которой в те времена быть не могло.
Да и сегодня существующие станции не способны дать такой заряд. Для создания схемы генератора свободной энергии требуется наличие определенных средств и элементов. Итак, чтобы получить необходимое количество заряженной мощности, потребуется катушка, которую в то время использовал Тесла. Электроэнергию получают в том количестве, которое понадобится.
Генератор свободной энергии: схема и описание
Сущность заключается в том, что человечество окружают воздух, вода, вибрации. Так вот, в катушке присутствуют две обмотки: первичная и вторичная, попадающая под вибрации, которую в процессе эфирные вихри пересекают в направлении поперечного сечения. Результат наводит напряжение, по сути, происходит воздушная ионизация. Она возникает на острие обмотки, выдавая разряды.
Осциллограмма колебаний тока сопоставляет кривые. Индуктивная связь сильна благодаря трансформаторному железу, ввиду этого возникает плотное сплетение и колебания между обмотками. При извлечении ситуация изменится. Импульс затухнет, зато мощность расширится, пройдя нулевую точку, и оборвется, когда дойдет до максимального напряжения, хотя связь слабая, а ток в первичной обмотке отсутствует. Тесла утверждал, что такие колебания продолжаются благодаря эфиру. Существующая среда предназначена для получения электричества. На практике рабочая схема генератора свободной энергии состоит из катушки, обмоток. Причем выглядит простейший способ получения тока следующим образом (фото внизу):
Особенности развития генератора
Практические опыты Теслы показывают, что получить электричество можно с помощью генератора, двух катушек и одной дополнительной без первичного мотка, две обмотки. Если двигать работающую и пустую катушку рядом на расстоянии полуметра, а затем просто отодвинуть, то корона затухнет. При этом ток, который запитан, не изменит значение от положения в пространстве той, что не заряжается от сети. Объяснение возникновения и поддержания подобной энергии в пустой вторичной обмотке легко объяснимо.
Когда развивалась электротехника, станции строились на переменном токе. Эти постройки были маломощными, покрывали одну сеть предприятий, которые были оснащены разным оборудованием. Несмотря на это, возникали такие ситуации, при которых генераторы работали вхолостую из-за перепадов напряжения. Пар заставлял турбины вращаться, двигатели работали быстрее, нагрузка на ток уменьшалась, в результате автоматика перекрывала подачу давления. В итоге нагрузка пропадала, предприятия переставали функционировать из-за раскачки тока, и их приходилось отключать. В процессе развития ситуацию стабилизировали подключением параллельной сети.
Дальнейшее развитие электричества
Спустя определенное время энергосистемы стали совершенствовать, и частично подобные сбои напряжения уменьшались. Однако сформировалась четкая и принципиальная теория. В результате перепады тока и подобная дополнительная энергия получили название – реактивная мощность. Подобные скачки возникали из радиотехники ЭДС самоиндукции. По сути, катушки и конденсаторы работали наравне со станцией, а также против нее. Кроме того, полагалось, что ток имеет направление к раскачиванию, и провода нагреваются самостоятельно.
Также определили, что подобные неудачи возникают из-за резонанса. Но как катушка и конденсат индукции способны увеличить мощность энергетической системы сотни предприятий — об этом задумывались многие академики. Некоторые нашли ответы в практической основе схемы генератора свободной энергии Тесла, а большинство отодвинули этот вопрос на дальний план. В результате не только инженеры не могли справиться с обязанностями и пытались бороться с реактивной мощностью, но в процессе к ним присоединились ученые, которые создавали разнообразное оборудование, чтобы ликвидировать высокое напряжение.
Характеристика генератора Тесла
Спустя десятилетие после получения патента на переменный ток, Тесла создал схему генератора свободной энергии с самозапиткой. Бестопливная модель потребляет мощность самой установки. Чтобы запустить ее, требуется единственный импульс из аккумулятора. Однако это изобретение до сих пор не используется в хозяйстве. Работа прибора напрямую зависит от конструкции, в которую вошли компоненты:
- Две специальные железные пластины, одна поднимается вверх, а другая устанавливается в земле.
- В конденсатор подключаются два провода, идущие от заземления и сверху.
Металлической пластине передается постоянный электрический заряд, ввиду того что источники выделяют лучистые частицы микроскопических размеров. Земля является резервуаром с отрицательными частицами, поэтому терминал прибора подводится к ней. Заряд высокий, поэтому в конденсатор постоянно поступает ток, и благодаря этому он питается.
Разработка бестопливного аппарата
Схема с самозапиткой генератора свободной энергии благодаря конструкции соответствует статусу бестопливного механизма, потому что использует космические излучения как источник энергии. Этот аппарат способен активироваться самостоятельно, при этом извлекая электричество из атмосферы земли. По мнению Тесла, связка проводов, направленных вверх, за пределы атмосферы, даст ток, который будет идти от земли, потому как в ней тепла больше, чем за ее пределами.
В процессе прохождения напряжения можно запитать электродвигатель, причем функционирующий до температурного снижения в земле. В результате Никола Тесла смог вывести схему бестопливного генератора свободной энергии. Причем эта установка производит электричество без дополнительных источников питания – задействуется только атмосфера. В процессе энергия эфира была использована в целях добычи заряда частиц. Спустя какое-то время ученый утверждал, что обычная машина не способна заниматься преобразованием.
Дальнейшие разработки механизма
В результате ученый стал разрабатывать турбину. В основу этого агрегата вошел водяной насос, который ускорялся благодаря плоским железным дискам. Подобная основа может входить в состав других не менее полезных изобретений. В итоге рабочего процесса схема бестопливного генератора свободной энергии была усовершенствована, электричество передавалось в требуемом количестве. Чтобы собрать аппарат, необходимо выполнить три этапа:
- собрать вторичную обмотку, которая наполнена высоким содержанием вольтов;
- установить первичные мотки с низким напряжением;
- соорудить механизм управления.
Чтобы создать рабочую схему генератора свободной энергии, необходимо сделать основу, где будет собираться вторичная обмотка. Для этого потребуется предмет в форме цилиндра, медный провод, который будет на него намотан. Основной материал не должен пропускать электроэнергию, поэтому лучше использовать ПВХ трубу. Обмотка составляет 800 витков. Первичный провод толщиной должен превышать вторичный. В результате бестопливное устройство имеет такой вид.
Общие описания механизмов
Бестопливная схема генератора свободной энергии работает по принципу рециркуляции электричества обратно в катушку. Обычные устройства работают с помощью карбюратора, поршней, диодов и пр. То есть в этом аппарате двигатель не потребуется. Этот элемент заменен и преобразует энергию постоянно. Конструкция аппарата построена таким образом, чтобы мощность на выходе была меньшей.
Современные ученые Барбоса, Леаль соорудили уникальный генератор энергии, который имеет коэффициент полезного действия в 5000%. Сегодня эта конструкция, описание, характеристика работы и процесса не известны, ввиду того что устройство не запатентовано. Схема генератора свободной энергии Барбосы и Леаля создана таким образом, что работа дает небольшой виток мощности. Когда запускают аппарат, выходящая энергия превышает уровень подводимой. Небольшой прототип генерирует 12 кВт, используя при этом 21 Вт.
Самые известные способы генерации свободной мощности
Самыми популярными считаются работы Николы Тесла. Это был один из первых ученых, который занимался схемами генератора свободной энергии. Он занимался развитием беспроводной связи. В основе были плоские катушки с магнитным полем внутри. В результате трансформатор имеет асимметричную взаимоиндукцию. Если в выходную цепь подключить нагрузку, то это не повлияет на мощность, которая потребляется первичной обмоткой.
В процессе работы Тесла начал уделять внимание трансформатору, работающему на резонансе. Преобразовывал мощность в коэффициент полезного действия, который должен был быть более единицы. Для создания подобной схемы применял однопроводные конструкции. Именно Тесла создал термин «свободные вибрации», в исследованиях указывал на синусоидальные колебания в цепи электрики. Работы Тесла знамениты до сих пор. Последователей у свободной энергии много.
Последователи Тесла
Спустя время после знаменитого ученого за создание и разработку свободных генераторов принялись и другие исследователи и изобретатели. В прошлом столетии, в 20-30 годы, исследователем Брауном разрабатывалась безопорная тяга за счет сил электрики. Он достаточно четко и структурированно описывал процесс получения движущей мощности с помощью источника электрической энергии.
После Брауна получили популярность изобретения Хаббарда. В его устройстве в катушке срабатывали импульсы, благодаря этому магнитное поле вращалось. Вырабатываемая мощность была настолько сильна, что вся система могла совершать полезную работу. Позже Нидершот создал генератор электричества, состоящий из радиоприемника и неиндуктивной катушки.
Немного позже с подобными элементами работал Купер. Схема генератора свободной энергии этого исследователя заключалась в использовании явления индукции без магнитного поля. Чтобы компенсировать последний элемент, использовались катушки, имеющие специфическую намотку спиралью или двумя проводами. Принцип аппарата заключался в создании мощности во вторичной цепочке, обходя при этом первичную обмотку. Кроме того, описание устройства указывало на безопорную движущую мощность в пространстве. С точки зрения Купера, гравитация – поляризация атомов. Также он утверждал, что катушки, которые будут сконструированы специфически, смогут производить поле, не станут экранировать и имеют целый ряд схожих параметров и характеристик с полем гравитации.
Современный взгляд на свободную энергию
С точки зрения физической науки, понятия свободной энергии не может быть. Этот вопрос скорее философский или религиозный. Однако, как показывает практика некоторых известных ученых, энергия системы имеет постоянство. При детальном рассмотрении видно, что мощность выделяется и возвращается обратно. Таким образом, приток энергии через гравитацию и время не видны сторонним наблюдателям. То есть, если создается процесс выше трех пространственных измерений, то возникает свободное перемещение.
Джоуль был заинтересован подобными изобретениями. Практичность этого устройства очевидна для потребителя. Для производства энергии существование работающих схем генератора свободной энергии может обернуться большими потерями, ввиду того что распределение происходит централизованно и под контролем.
Позднее концепции свободных генераторов и подобные теории выдвигали ученые Адамс, соорудивший мотор, Флойд – ученый, вычисливший состояние вещества в нестабильном виде. У этих ученых было много изобретений, конструкций и теорий. Многие успешные устройства могли бы работать на благо человечества.
Однако не все ученые и изобретатели преуспели в науке и подобных конструкциях. Многие начинающие исследователи проводят свои опыты, но немногие достигают успеха. Правда, недавно у одного пользователя сети интернет возникла мысль повторить изобретение Тесла. В результате у пользователя «Акула» схема генератора свободной энергии была воссоздана. К тому же она еще и правильно функционировала. Кроме того, многие инженеры утверждают, что можно создать с помощью кулера схему генератора свободной энергии. Это доказывает, что великие умы прошлого могли получить электричество даже без специфических приборов.
Создание бестопливного генератора энергии — LiveJournal
Три знаменитых электротехника мира — Вольта, Фарадей и Тесла -своими работами заставили всё человеческое общество стремительно двинуться в направлении электрификации нашего быта, транспорта, промышленности. Вольта и Фарадей воспринимаются по учебникам физики молодым поколением нормально, а вот Николу Тесла немного «отставили» в сторону, а, пожалуй, напрасно. Представляете, громадное количество электролиний, трансформаторов, миллиардные тиражи электродвигателей переменного тока, и вообще весь переменный ток, заполонившие нашу технику,- всё это работа Теслы незаслуженно забытая нашим обществом из-за войн и революций 20 века. Своими экспериментами и изобретениями он намного опередил своё время, и оставил для нас, кроме отмеченного наследия, очень уникальный аппарат способный сделать прорыв в новую цивилизацию. Такие громкие слова не просто дань гению Теслы, об этом говорят недавно выполненные эксперименты, почти одновременно проведенные в шести точках земного простора.
Начнём немного издалека. С повышением энергетического потребления населением цена на топливо для электростанций неуклонно растёт, что заставляет специалистов электриков думать о получении электричества из окружающей среды, тем более, что Никола Тесла уже получал данную энергию. Такую энергию принято называть свободной энергией. В малых мощностях получение уже происходит, для этого используют разнообразные способы; извлекают из постоянных магнитов, из тепла воды, из атмосферного конденсатора в котором мы живём, из ферромагнитных сплавов и т.д. Но задача стоит гораздо объёмнее,- надо научиться получать электричество в широких масштабах, чтобы любая семья могла пользоваться электроэнергией вне зависимости от места жительства. И такая возможность, оказывается, давно имеется, и человечество «успешно с ней борется» в полном смысле этого выражения.
Исторически известно, что Тесла в ночное время зажигал небо над Нью-Йорком, а затем и над Атлантикой. Ночью становилось светло как днём, но при этом из под копыт лошадей сыпались длинные искры, а у прохожих светились волосы и пальцы. Об этом много писали в газетах. Представляете, какая должна быть мощность излучения энергии, что бы произвести данный эффект. А, как известно, в то время электростанции были предельно слабенькими, а даже современным электростанциям, вместе взятым, сейчас это сделать не под силу. Однако доподлинно точно известно, что энергию он получал при помощи своей катушки и «черпал» её прямо из окружающей среды. Что же это за катушка такая, что способна «черпать» электроэнергии столько, сколько необходимо данному человеку в данном месте? Назовём её «тесловкой».
Как утверждал «товарищ Тесла», людей окружают три океана. Первый океан — воздушный, которым мы дышим. Второй океан — водная стихия, вращаясь при этом, что Тесла и называл вибрациями. Вторичная обмотка, находящаяся внутри первичной, подпадает под вибрирующий поток. Естественно понять, что вихри эфира постоянно пересекают её витки в поперечном направлении, — подчеркнём, в поперечном. В результате в проводе «вторички» наводится напряжение, которое и высвечивается на острие вверху обмотки в виде короны, т.е. происходит ионизация воздуха от напряжения. Корона требует затрат определённой мощности. Этой короной и » балуются» любители катушки Теслы, извлекая длинные, красивые разряды в воздухе.
Многие снимали осциллограммы колебаний тока в катушках Теслы, но почему-то никто не обратил внимания на сопоставление полученных кривых тока. Рассмотрим колебания ленинградской катушки снятые ещё первыми осциллографами.На рис.2 представлены осциллограммы синусоиды тока одного колебания, где под буквой а) график колебаний тока первичной обмотки. Для сильной индуктивной связи внутри обмоток вставлено трансформаторное железо и кривые тока на осциллограмме первичной и вторичной обмотки колебаний, как и в любом трансформаторе, сплетены между собой очень плотно и колеблются вместе. Слева на графике железо вытащили, получилась слабая индуктивная связь. В этом случае а) видно, что в первичной обмотке при одиночном импульсе тока эти колебания затухают в точке К . Под буквой б) колебания тока во вторичной обмотке при слабой связи, здесь, наоборот, колебание начинается немного позднее нулевой точки и расширяется по высоте напряжения до определённого размера и только спустя некоторое время после точки К колебания тока в максимуме обрываются лишь в точке С, хотя ток в первичной обмотке уже давно отсутствует. Спрашивается, за счёт какой же среды продолжаются колебания тока во вторичной обмотке после точки К и вплоть до С ? Вполне ясно, что «святой дух» тут не причём. Значит это инерция какой-то среды, по Тесле это однозначно эфир. Видите, он даже без осциллографа это понял, а мы, имея самые новейшие приборы, не задумываемся о таких очевидных фактах электротехники. Раз среда существует, значит, мы можем её использовать для получения электричества. А как это выполнить практически?
Расскажем об этом на примере общения. «Болтая» на форуме интернета, мы вчетвером договорились изготовить генератор тока по статье «Тесла – генератор тока». Когда изготовили по первой катушке, было всё нормально – работали дружно переговариваясь. Но когда приступили к изготовлению второй катушки (генератор состоит из двух), тут начались споры о том, делать правую или левую намотку провода, поскольку от направления намотки, возможно, зависела работоспособность генератора, а мы не знали как лучше сделать. Для верности был смысл делать две вторичных обмотки и правой, и левой намотки. Так оказалось, что изготовив генератор «в черновую», у каждого осталось по лишней вторичной обмотке. Договорились начать электрические испытания, используя третью, одиночную обмотку, применяя её для определения параметров генератора. Вот тут и начались необычности. При включении третьей, рядом стоящей обмотки, на верхней игле её вторички загоралась корона с шипением и треском,- красота необычайная. Но, что интересно, другие две, предназначенные для генератора тоже начинали коронировать, хотя стояли на расстоянии почти двух метров не подключённые к сети. Это было удивительно, и это произошло у всех четверых, естественно, у всех четверых и начались бурные дебаты, что это такое и как поступить дальше. Оказалось, что и правая и левая намотки неплохо коронируют в воздухе благодаря соседней, работающей. У не работающих катушек не требовались первичные обмотки, вокруг одной работающей с первичной обмоткой можно поставить и двадцать, и тридцать штук даже без «первичек» в радиусе 1,5 — 3 метров (при напряжении 180 киловольт) и все будут работать — коронировать. А, как известно корона требует расхода мощности. И тут прозвучало — ребята, да это же и есть резонанс эфира Теслы и о котором постоянно пишет В. А. Ацюковский! И что тут началось…. Посыпалась уйма различных предложений, и в этом «ералаше» трудно было найти истину. С Дальнего востока пишут одно, с Урала другое, с Украины третье и так продолжалось почти три месяца. Совещание оборвалось летом (2009 г.), когда Тариэль Капанадзе из Грузии выступил в интернете с фильмом по получению электричества из эфира тоже на базе катушки Теслы. Всем четверым стало предельно ясно, что надо делать, и мы не одиноки в этом вопросе, и генератор, использующий топливо вообще никому не нужен. Снова началась работа и все стали «хвастаться», — у меня получилось, у меня тоже работает и т. д. Пошла лавина. Так что интернету большое, громадное спасибо, что сумел объединить и умножить наши усилия!
Каждый желающий может изготовить хотя бы две одинаковые по числу витков и диаметру катушки Теслы, одну из них включить в работу, а другую, даже просто вторичную обмотку без первички, двигать относительно работающей и получать на ней корону на близком расстоянии (в пределах полметра), а отодвигая в сторону, видеть затухающую корону. В это время надо смотреть за величиной тока работающей катушки и воочию убедиться в том, что ток питания от сети работающей катушки не меняет своего значения от пространственного положения не запитанной катушки. Спрашивается, -откуда берётся энергия на корону для пустой вторичной обмотки?В принципе, весь мир должен был догадаться об этом раньше, и мы не исключение. Ещё в двадцатых и тридцатых годах, на заре развития электротехники, строящиеся электростанции на переменном токе, были достаточно маломощными, и каждая питала всего несколько предприятий по одной сети, на которых работало до сотен электродвигателей, нагревательных печей, сварочных аппаратов и электролитических ванн. При этом происходили интересные вещи. В процессе эксплуатации, ни с того ни с сего, в сети напряжение начинало само по себе увеличиваться выше 380 Вольт до 450 и более, и генераторы на электростанции начинали работать как бы вхолостую. А поскольку пар давил на лопатки турбин (быстро изменить давление горячего пара невозможно), турбины начинали вращаться быстрее и частота тока в сети вырастала. Все электродвигатели станков на предприятиях начинали работать быстрее (их мощность напрямую зависит от частоты тока), хотя нагрузка на генераторы тока на электростанции уменьшалась, а автоматика в этот момент перекрывала подачу пара на турбины. Естественно генераторы резко тормозились, уменьшали подачу электричества, а в этом момент избыток напряжения пропадал, и предприятия начинали «задыхаться» из-за недополучения энергии. Происходила громадная раскачка напряжения и частоты тока в данной электрической сети вплоть до полного отключения. Со временем научились в такой момент подключать другую, параллельную сеть, чем и стабилизировали положение дел. С укрупнением энергосистем данные » запарки» всё уменьшались, но теория таких колебаний уже принципиально была создана и дополнительная энергия стала называться реактивной мощностью, которая происходила от применяемых конденсаторов и катушек индуктивности в электродвигателях и трансформаторах (в радиотехнике ЭДС самоиндукции). Представляете, какие-то катушки и конденсаторы создавали мощность сопоставимую с электростанцией и работали против неё. Ток от них всегда направлен навстречу тока раскачки и получалось, что электростанция почти не работает, а провода греются как при повышенной нагрузке. Были определены и точные «виновники» данных явлений — это резонанс токов и резонанс напряжений. Но, спрашивается, откуда у конденсаторов и катушек индуктивности берётся такая мощность, способная раскачать энергетическую систему в сотню современных предприятий? При » нормальном» мышлении можно ответить единственным предположением -такая энергия исходит от окружающей среды, а по Тесле — от эфира. В Академии наук такая задача даже не ставилась, поэтому все академики и ушли в сторону вакуума в отношении миропонимания. С данным явлением боролись только рядовые инженеры. Для компенсации реактивной мощности они стали применять мощные конденсаторные батареи, громадные синхронные машины-компенсаторы, делали изменяемые схемы питания нагрузок в зависимости от напряжения и тока в сети электростанций. В общем, борьба с реактивной мощностью во всём мире развернулась колоссальная и продолжается до сих пор.
Есть ещё в электрической практике не вполне адекватный фактор, приводящий иногда к несчастным случаям с персоналом. Если батарею конденсаторов не подключённую ни к чему оставить без закоротки обкладок (пластин-электродов), тогда, по прошествии суток или нескольких, батарея окажется заряженной электричеством почти в полной мере. И чем высоковольтнее батарея, тем быстрее она заряжается. Откуда эта электрическая мощность воспринимается в нарушение современного закона сохранения энергии? Для рядового инженера вполне понятно, — из окружающей среды (из эфира) и это та же самая реактивная энергия, а некоторые говорят, что энергия эта из вакуума. Но, технически грамотным людям понятно, что вакуум по названию является пустотой, тогда откуда у пустоты энергия? Но что интересно, во всём мире борются с этой реактивной энергией и никому в голову не пришло использовать её в качестве источника тока вместо электростанций. Здесь, для её получения не требуется топливо, хоронить отходы не надо, тут только необходимо колебать окружающую среду возле катушек и конденсаторов электрическим же способом. А вот какова затрачиваемая мощность на данные колебания — об этом поговорим позднее.Снова отметим, что из графиков рис.2 понятно, что катушка Теслы, в отличие от остальных электротехнических трансформаторов, имеет малую индуктивную связь между первичной и вторичной обмотками, то есть энергия от первичной обмотки легко переходит во вторичную, а наоборот -сравнительно плохо. Когда во вторичной обмотке создаётся ответный импульс тока, он раздвигает эфир от центра устройства до своих витков. Далее этих витков эфир почти не идёт и плохо попадает на первичную, из-за отсутствия железного сердечника, поскольку выполнена плохая индуктивная связь называемая «ниже критической». Понимание этого фактора наталкивает на однозначную мысль — для съёма энергии со вторички, которая находится » в свободном полёте» нужна третья обмотка, которая обязана находиться внутри вторичной, и чем успешнее будет работать «вторичка», тем эффективнее произойдёт съём энергии в третьей обмотке.
В опытах третья обмотка замыкалась накоротко медной перемычкой, которая грелась и на ней горела изоляция, а в первичной обмотке ток величиной в 1,8 Ампера даже не шелохнулся, как будто ничего не происходило, поскольку работа производится «на хвостике» между точками К и С по рис.2. Почти аналогичные условия возникают и во вторичной обмотке, но она примерно процентов на 10 — 15% обратно воздействует на первичный ток и питающее устройство начинает «чувствовать» величину нагрузки этой обмотки и обе легко выходят из резонанса. В общем, вторичная обмотка, воспринимая импульсы от первичной, становится главной и направляющей силой в раскачке эфира вокруг установки видимо за счёт своей большой площади и многовитковости. Образно говоря, энергия вторичной обмотки «трясёт эфир», а третья обмотка, помещённая внутрь вторичной «собирает на себя кусочки эфира», образуя поток электричества в третьем контуре.
Следует рассмотреть и конкретные параметры катушки Теслы в нашем опыте. Первичная обмотка выполнялась медной трубкой 6-10 мм в количестве 6 — 8 витков на одной катушке. Можно поставить отдельно рядом стоящих несколько «тесловок» штуки 3 или более вообще без первичных обмоток. Сама вторичная обмотка исполнялась длиной примерно 1 метр, диаметром 100 мм на полиэтиленовой или фторопластовой водопроводной трубе, с числом витков примерно 1000, с целью получения короны на верхнем конце. И самое главное, — третья обмотка внутри вторичной для каждой «тесловки» обязательна. Она выполняется толстым многожильным проводом (примерно 10 — 25 мм2) с утолщённой изоляцией с целью создания достаточного зазора между витками. Число витков определяется величиной необходимого напряжения. На концы третьей обмотки подсоединяется конденсатор с расчётом получения резонанса тока по уравнению: 1 = (2пF)2 LС
где F — частота тока, С — ёмкость конденсатора в фарадах, L -индуктивность обмотки в единицах Генри. Поскольку индуктивность зависит от числа витков, вполне естественно надо иметь прибор по замеру индуктивности в натуре при изготовлении, что ускорит настройку аппарата.
Если необходимы большие мощности, тогда надо третьи обмотки соединять параллельно в общую схему через высокочастотные диоды, которая дана на рис.3. Необходимо отметить очень существенную деталь устройства. Все три обмотки каждой «тесловки» должны быть настроены на определённую частоту тока (скажем, на разрешенную радиокомитетом 100 килогерц) при помощи конденсаторов. Если первичная или вторичная обмотки будут в плохом резонансе, тогда третья обмотка теряет ток, необходимый для нагрузки, состоящей из наших с вами телевизоров, холодильников, электроинструмента и т. д.
Резонанс является основой всего устройства, что и отметил Капанадзе в своём видеоролике. Можно, конечно, использовать и соединение с заземлением, как это делает Капанадзе, что увеличивает отдачу тока в системе через вторичку и атмосферный объёмный заряд. Однако это привязывает устройство к месту установки, что не очень рационально для городских квартир, поскольку заземлить электрическую сеть от катушки в двух местах, скажем, находясь на девятом этаже. достаточно проблематично. Но надо отдать должное таланту Капанадзе, именно он первый после Теслы догадался использовать третью обмотку в тесловке внутри вторички. На рис.4 изображена примерная схема его устройства достойная уважения его сообразительности. Третью катушку он разделил на две части. Та часть, что находится внутри вторичной обмотки, воспринимает её электроимпульсы, соответственно муляжная обмотка – вторая часть контура тоже вынуждена совершать колебания тока, поскольку включена последовательно, к тому же она облучается с внешней стороны вторичной обмотки в такт колебаниям.
Рассмотрим отношение мощностей. Если на первичную обмотку (рис.3.) подаётся 300 ватт энергии, то на вторичных обмотках рядом стоящих трёх «тесловках» выделяется тоже примерно по 250 ватт энергии, что в сумме составляет 750 ватт для короны. На трёх третьих обмотках тоже по 250 ватт, которые и можем использовать по назначению. Вторичные обмотки лучше не нагружать, поскольку они, получая свою долю энергии раскачки от первичной, через боковую поверхность, дополнительно «черпают» энергию из окружающего эфира за счёт «хвостика» от точки К до точки С по рис.2 и передают её в третьи обмотки. Данная энергия «хвостика» теоретически давно известна. К примеру, если у вас работает во дворе двигатель водяного насоса с индуктивностью обмотки 382 мГн, с сопротивлением 30 Ом, при напряжении 250 вольт (легче считать), с частотой 50 Гц. и с конденсатором 40 мкф, то двигатель потребляет 750 ватт энергии, при этом на магнитное поле уходит энергии всего лишь 9,55 дж, конденсатор расходует 6,4 дж, а вот реактивной энергии этот двигатель вырабатывает 1000 вольт-ампер реактивных, т.е. это те же ватты, только назвали их реактивными, которые идут по проводам к электростанции и на них тратится дополнительный расход топлива в генераторах для её погашения. Вот такая настоящая энергия «хвостика», поэтому и идёт борьба с реактивной энергией в любой энергетической системе из-за экономии топлива.
Шестые товарищи отдельно работают на Смоленщине. Они использовали принцип описанной выше конденсаторной установки. Примерная схема устройства приведена на рис.5. Здесь также от источника колебательной энергии подаётся ток на три последовательно соединённые конденсатора С1, С2, С3. Заряд их пластин колеблется в такт источника раскачки колебаний, но С2 включён схемой в цепь высоковольтной обмотки бытового трансформатора в виде колебательного контура. Естественно, колебательный контур С2 с обмоткой трансформатора воспринимает «маленькие порции» раскачки, и уже сам собой, в результате резонанса с эфиром, начинает выдавать необходимую мощность во вторичную обмотку на полезную нагрузку ~ 220 V. Схема предельно простая, это надо отдать должное «сообразительности» смоленских «парней». Здесь сравнительно небольшой раскачки источника колебаний вполне хватает для резонансного возбуждения силовых колебаний тока в данном контуре, а с вторичной обмотки трансформатора можно спокойно снимать трансформированный ток на любую полезную нагрузку. Возможно, что сам Тесла использовал этот приём для привода своего электромобиля в движение, недаром же он покупал радиолампы в магазине, которые и являлись источником колебательной энергии для обкладок конденсаторов, а индуктивность статорной обмотки тягового электродвигателя служила основной частью колебательного контура – источника тока (вместо первичной обмотки трансформатора в схеме рис.5). А сейчас поговорим о главном – о величине мощности раскачки эфира вокруг ёмкостей и индуктивностей с целью получения свободной энергии (реактивной мощности), поисками которой заняты специалисты во всём техническом мире. Сначала рассмотрим теоретическую сторону вопроса.
Поскольку формула реактивной мощности для любой обмотки Q = I^2*2П*F* L,
где I -величина тока, F — частота тока, L- индуктивность. Величина L задана геометрией обмотки трансформатора или контура, её изменять трудновато, но её и использовал Капанадзе. Другая величина — частота F может изменяться. В реактивной мощности она задаётся частотой электростанции (источником колебаний), но с увеличением её увеличивается мощность свободной энергии, значит, разумно её повышать при раскачке индуктивности. А раскачать индуктивность по частоте, для получения и повышения тока I необходим конденсатор, подключённый к индуктивности. Но, чтобы начать раскачку контура, нужен первоначальный импульс тока. А его сила, в свою очередь, зависит от активного сопротивления самой обмотки, сопротивления соединительных проводов и, как не удивительно, волнового сопротивления этой цепочки тока. Для постоянного тока этого параметра не существует, а для переменного обязательно возникает и ограничивает наши возможности, а с другой стороны помогает нам. Из уравнений длинных линий связи известно,-волновое сопротивление движения для любой электромагнитной волны по проводам должно быть согласовано с сопротивлением нагрузки в конце линии. Чем лучше согласование, тем экономичнее устройство. В контурах, состоящих из ёмкости и индуктивности, из которых состоит «тесловка», волновое сопротивление определяется величиной которая, если её поделить на активное сопротивление проводников, в принципе, является добротностью контура, т.е. числом, показывающим во сколько раз напряжение в катушке контура возрастает по отношению к задающему напряжению от генератора электростанции (источника раскачки).
Zв = КОРЕНЬ ( L / С ),
Вот этим принципом и пользовался Тесла, изготавливая катушки всё более солидные по размеру, т. е. увеличивая, и увеличивая L — индукцию катушки и чисто интуитивно стремился к волновому числу Zв = 377 Ом. А это и есть волновое сопротивление не чего нибудь, а обыкновенного эфира по Максвеллу, хотя его конкретную величину определили позднее исходя из условий распространения электромагнитных волн в атмосфере и космосе. Приближение к этому числу волнового сопротивления уменьшает мощность раскачки. Отсюда всегда можно хотя бы приблизительно вычислить даже частоту колебаний самого эфира, при которой требуется минимальная энергия раскачки от электростанции для «тесловки» вырабатывающей реактивную энергию, но это отдельная тема рассмотрения.
В будущем видится предельно простой генератор тока для любых мощностей. Это трансформатор приемлемой мощности, первичная обмотка которого подсоединяется через рассчитанный конденсатор (с соответствующей реактивной мощностью) к источнику электрической раскачки сравнительно небольшой мощности, работающего при запуске от аккумулятора. Вторичная обмотка трансформатора через выпрямитель и инвертор выдаёт в расходную сеть необходимый ток с частотой 50 Герц для потребителей и одновременно питает, минуя аккумуляторы, схему раскачки, точнее сам себя (по рис.5.). Сейчас это кажется нереальным в силу закона сохранения энергии, поскольку не учитывается действие эфира, однако в ближайшем будущем такие установки будут широко распространёнными в быту и на производствах. Реактивная мощность, точнее свободная энергия эфира, подчеркнём, эфира Максвелла и Кельвина, должна и будет работать на людей в полной мере, как это предсказывал великий Никола Тесла. Время, которое он предвидел, уже наступило благодаря воспитанной промышленностью громадной армии специалистов электриков и интернету, позволяющему обмениваться мировым опытом.
Доказательство работы эфира может видеть каждый на своём столе. Для этого много не надо. Гвоздь однозначно подскакивает со стола к полюсу магнита за счёт чего-то. Какой же разумный человек может сказать, что гвоздь к магниту подскакивает со стола вод действием вакуума (пустоты). Схема данного повседневного опыта, предельно простая (на наш взгляд). В доменах магнита, которые видны по металлическим опилкам не вооружённым глазом, природой организованы обычные сверхпроводящие токи, которые существуют независимо от наших тео