Синхронный генератор. Устройство генератора и принцип действия :: SYL.ru
Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.
Область применения
Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью — в нее подключены иные генераторы.
Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.
Описание прибора
Устройство синхронного генератора обусловлено наличием таких элементов, как:
- Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
- Якорь, или статор (недвижимый), в который включается обмотка.
- Обмотка агрегата.
- Переключатель катушки статора.
- Выпрямитель.
- Несколько кабелей.
- Структура электрического компаундирования.
- Сварочный аппарат.
- Катушка ротора.
- Регулируемый поставщик постоянного электротока.
Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.
Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.
Принцип работы агрегата
Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС). ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.
Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.
Трехфазное устройство
Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора. И результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.
Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.
Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии. Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.
Структуры возбуждения
Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.
Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:
- Первая стадия возбуждения, то есть начальная.
- Работа вхолостую.
- Подключение к сети способом точной синхронизации либо самосинхронизации.
- Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
- Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
- Электроторможение аппарата.
Конструкция генератора
На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части:
- Электромагнит либо постоянный магнит, что производит магнитное поле.
- Обмотка с индуцирующейся переменной ЭДС.
Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников.
Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников — внутренний — взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).
Характеристики прибора
Для оценки функции синхронных генераторов применяются те же самые характеристики, какие применяются в генераторах постоянного тока. Только некоторые условия различаются и дополняются.
Главные характеристики синхронного генератора такие:
- Холостой ход – это зависимость ЭДС прибора от токов возбуждения, одновременно является показателем намагничивания магнитных цепей машины.
- Внешняя характеристика – это зависимость напряжения устройства от токов нагрузки. Напряжение агрегата меняется по-разному в зависимости от увеличения нагрузки при различных ее видах. Причины, что вызывают такие изменения, следующие:
- Падение значения напряжения на индуктивном и активном сопротивлении обмоток устройства. Увеличивается по мере того, как увеличивается нагрузка прибора, то есть его ток.
- Изменение ЭДС агрегата. Происходит в зависимости от реакции статора. При активных нагрузках уменьшение напряжения будет вызвано падением напряжения во всех обмотках, потому что реакция статора влечет за собой увеличение ЭДС генератора. При активно-емкостных видах нагрузки эффект намагничивания вызывает увеличение текущего значения напряжения по сравнению с номинальным показателем.
- Регулировочные характеристики синхронного генератора – это зависимость токов возбуждения от токов нагрузки. В процессе работы синхронных агрегатов нужно поддерживать постоянное напряжение на их зажимах независимо от характера и величины нагрузок. Этого несложно достигнуть, если регулировать ЭДС генератора. Это можно сделать путем изменения токов возбуждения автоматически в зависимости от изменений нагрузок, то есть при активно-емкостной нагрузке нужно уменьшать ток возбуждения для поддержания постоянного напряжения, а при активно-индуктивной и активной — увеличивать.
Мощность синхронного генератора определяется такими значениями:
- Соответствующим напряжением в электросети.
- Своей ЭДС.
- Углом измерения.
Прибор переменного тока
Синхронный генератор переменного тока – это электромашина, что преобразует механическую вращательную энергию в электрическую энергию переменных токов. Мощные генераторы таких токов устанавливают:
- гидрогенератор турбогенератор – на электростанциях;
- приборы переменного тока сравнительно небольшой мощности — в системах автономного энергоснабжения (газотурбинная электростанция, дизельная электростанция) и в частотных преобразователях (двигатель-генератор).
В настоящее время выпускается множество типов таких приборов, но все они имеют общее устройство главных элементов:
- якорь (статор) – неподвижный;
- крутящийся вокруг оси ротор.
В промышленных генераторах больших размеров вращается электромагнит, являющийся ротором. Одновременно с этим обмотки с наводящимися ЭДС, уложенные в пазы статора, остаются неподвижными.
В таких устройствах, как маломощный синхронный генератор, магнитное поле создается вращающимся постоянным магнитом.
Виды синхронных агрегатов
Существуют следующие виды синхронных генераторов:
- Гидро – в нем ротор имеет отличие за счет присутствия явно выраженных полюсов, применяется при производстве электроэнергии, осуществляет работу на малых оборотах.
- Турбо – имеет отличия неявнополюсным строением генератора, производится от турбин разного вида, скорость оборотов довольно высокая, достигает порядка 6000 оборотов в минуту.
- Компенсатор синхронный – данный агрегат поставляет реактивную мощность, применяется для повышения качества электроэнергии, чтобы стабилизировать напряжение.
- Асинхронный агрегат двойного питания – устройство генератора такого типа заключается в том, что в нем подключается как роторная, так и статорная обмотки от поставщика токов с различной частотой. Создается асинхронный график работы. Также он отличается устойчивостью графика работы и тем, что преобразовывает разные токи фаз и используется для решения задач с узкой специализацией.
- Двухполюсный ударный агрегат – работает в графике короткого замыкания, воздействует кратковременно, в миллисекундах. Также испытывает аппараты с высоким напряжением.
Разновидности агрегатов
Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:
- Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
- Безредукторные – для применения в автономных системах.
- Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
- Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
- Индукторные моторы – для снабжения электроустановок.
Разделение по виду ротора
По роду прибора ротора устройство генератора подразделяется на:
- Явнополюсное – с выступающими либо с явно выраженными полюсами. Данные роторы применяются в генераторах с тихим ходом, у которых скорость вращения не превышает 1000 оборотов в минуту.
- Неявнополюсное – это ротор с формами цилиндра, у которого нет выступающих полюсов. Данные якоря бывают двухполюсными и четырехполюсными.
В первом случае ротор состоит из крестовины, на которой закрепляют сердечники полюсов или обмотки возбуждения. Во-втором – быстроходные агрегаты с числом оборотов 1500 либо 3000. Ротор сделан в виде цилиндра из стали довольно высокого качества с пазами, в них устанавливают обмотку возбуждения, состоящую из отдельных обмоток различной ширины.
24. Устройство трехфазного синхронного генератора.
Синхронная машина состоит из двух основных частей — статора и ротора Статор, являющийся неподвижной частью машины, по конструкции аналогичен статору асинхронного двигателя. Трехфазная обмотка статора выполнена с таким же числом полюсов, как и ротора Ротор — вращающаяся часть машины — представляет собой систему полюсов, на которых расположена обмотка возбуждения. Ротор служит для создания основного магнитного потока. По конструкции различают роторы с явно и неявно выраженными полюсами.
Ротор с явно выраженными полюсами (рис 62,а) состоит из стального вала, роторной звезды и полюсов возбуждения с полюсными катушками, укрепленными на ободе роторной звезды.
При больших частотах вращения (3 тыс об/мин), исходя из соображений механической прочности, ротор выполняют неявнопо-люсным (рис 62,6) с выфрезерованнымн на его поверхности продольными пазами, в которые закладывают обмотку возбуждения.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящпй контакт. Через скользящий кон- такт обмотка возбуждения подключается к источнику постоянного тока. При подключе нии обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток Ф, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения п ротора равна частоте вращения n1 магнитного поля статора.
25. Принцип работы трехфазного синхронного генератора.
Синхронными называются электрические машины, частота вращения которых связана постоянным соотношением с частотой сети переменного тока, в которую эта машина включена. Синхронные машины служат генераторами переменного тока на электрических станциях, а синхронные двигатели применяются в тех случаях, когда нужен двигатель, работающий с постоянной частотой вращения. Синхронные машины обратимы, т.е. они могут работать и как генераторы, и как двигатели, хотя в конструкциях современных синхронных генераторов и двигателей имеются небольшие, но практически весьма существенные отличия. Синхронная машина переходит от режима генератора к режиму двигателя в зависимости от того, действует ли на ее вал вращающая или тормозящая механическая сила. В первом случае она получает на валу механическую, а отдает в сеть электрическую энергию, а во втором случае она потребляет из сети электрическую энергию, а отдает на валу механическую энергию.
Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается посторонним источником-возбудителем, которым обычно является генератор постоянного тока небольшой мощности, установленный на общем валу с синхронным генератором. Постоянный ток от возбудителя подается на ротор через щетки и контактные кольца, установленные на валу ротора.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящий контакт. Через скользящий контакт обмотка возбуждения подключается к источнику постоянного тока. При подключении обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора.
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения ротора равна частоте вращения магнитного поля статора.
Схема включения и принцип работы синхронного генератора
Категория:
Передвижные электростанции
Публикация:
Схема включения и принцип работы синхронного генератора
Читать далее:
Схема включения и принцип работы синхронного генератора
Схема включения синхронного генератора показана на рис. 1.
Синхронный генератор работает следующим образом. Ротор генератора приводится во вращение первичным двигателем с номинальной скоростью, которая поддерживается постоянной при помощи автоматического регулятора скорости первичного двигателя. Генератор возбуждают, подавая ток возбуждения/в в обмотку ротора.
Если к зажимам работающего синхронного генератора присоединить внешнюю нагрузку, то в обмотке статора появится ток, который создаст свое магнитное поле, называемое потоком обмотки статора. Этот поток делится на две части. Одна часть (поток рассеяния), замыкаясь вокруг проводников статора через его воздушный зазор и пакет, обусловливает возникновение дополнительного индуктивного сопротивления обмотки статора. Другая часть потока, замыкаясь через воздушный зазор и полюсы ротора, образует вращающееся магнитное поле статора, подобное вращающемуся полю статора асинхронного электродвигателя. Скорость вращения магнитного поля статора будет равна скорости вращения магнитного поля ротора, иначе говоря, эти поля будут вращаться с одинаковой (синхронной) скоростью.
Рекламные предложения на основе ваших интересов:
В синхронном генераторе, работающем под нагрузкой, магнитное поле статора, накладываюсь на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Воздействие намагничивающей силы якоря на магнитное поле возбуждения ротора генератора называется реакцией якоря.
Реакция якоря может быть поперечной или продольной. При поперечной реакции поле статора размагничивает набегающий край полюсов и намагничивает сбегающий край полюсов. Продольная реакция может быть продольно-размагничивающей или продольно-намагничивающей. В первом случае магнитный поток якоря направлен навстречу потоку полюсов вдоль их оси, во втором случае согласно потоку полюсов также вдоль их оси.
Рис. 1. Схема включения синхронного генератора в сеть с нагрузкой: 1 — статор, 2 — ротор, 3 — возбудитель, 4 — шунтовой регулятор, 5 — электродвигатель, 6 — лампы
Реакция якоря зависит от характера нагрузки и оказывает большое влияние на работу синхронного генератора. При чисто активной нагрузке реакция якоря будет поперечной, а при чисто индуктивной и чисто емкостной нагрузках — соответственно продольно-размагничивающей и продольно-намагничивающей. Обыч-нЪ генераторы работают на смешанную нагрузку, чаще всего на индуктивную и активную.
Регулирование тока в обмотке возбуждения (в обмотке индуктора) генератора осуществляют при помощи шунтового регулятора (реостата), включенного в цепь возбуждения возбудителя. Изменяя напряжение возбудителя, можно изменять силу тока в индукторе генератора. Сущность данного способа регулирования заключается в том, что изменение тока в обмотке возбуждения ротора вызывает изменение э. д. е., индуктируемой в обмотке статора. При этом с увеличением тока в обмотке возбуждения э. д. е., индуктируемая в обмотке статора, также увеличивается.
Рекламные предложения:
Читать далее: Параллельная работа синхронных генераторов
Категория: — Передвижные электростанции
Главная → Справочник → Статьи → Форум
Синхронный генератор. Устройство и принцип работы
Генераторы переменного тока служат для преобразования механической энергии первичных двигателей в электрическую. В качестве первичного двигателя применяются: паровая турбина ( система паровая турбина – генератор называется турбогенератором), водяная турбина (гидрогенератор), двигатель внутреннего сгорания (дизель- генератор), электрический двигатель ( двигатель – генератор).
Синхронной машиной называется машина, скорость вращения магнитного поля которой равно скорости ротора
(9-17)
Машина обратима и может работать как генератор, так и как двигатель. Однако наибольшее распространение они получили как генераторы переменного тока, которые устанавливают на всех современных электростанциях.
Генератор, как и всякая электрическая машина, состоит из неподвижной части – статора и вращающейся части – ротора. Часто ту часть машины, которая создает магнитное поле, называют
В основе работы синхронных генераторов лежит явление электромагнитной индукции. ЭДС, которая индуцируется в рабочей обмотке
.
Принципиально безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или, наоборот, подвижное магнитное поле будет пересекать неподвижный проводник, поэтому конструктивно синхронные генераторы могут быть двух видов. В первом из них якорь неподвижен, а индуктор вращается (рис.111 а), во втором – наоборот (рис.111б).
а б
Рис. 111
Маломощные и низковольтные генераторы (однофазные и трехфазные) часто используются в передвижных станциях и могут работать по схеме рис. б. В этих генераторах рабочая обмотка часто выполняется на роторе, а на внутренней поверхности статора устраивается полюсная система с явно выраженными полюсами. Подключение генератора к внешней нагрузке осуществляется через скользящие токосъемы( щетки с кольцами на оси ротора).
Современные генераторы, как составная часть силовой электроэнергетики, стр ояться на высокое напряжение 15-40кВ. Снимать такие высокие напряжения с вращающейся рабочей обмотки при помощи щеточно – коллекторного узла затруднительно. Кроме того, обмотку высокого напряжения, которая при вращении ротора испытывает толчки и вибрации, очень трудно изолировать. Этим объясняется, что в современных генераторах обмотку якоря располагают на неподвижной части машины – статоре, а обмотку возбуждения (магнитные полюсы) располагают на роторе.
Схема двухполюсного синхронного генератора этого типа дана на рис. а. На статор машины намотаны три обмотки с одинаковым количеством витков, сдвинутые на угол 1200. Буквами Н и К отмечены начала и концы каждой обмотки. Магнитное поле создается обмоткой, намотанной на роторе. Через щетки и кольца к концам этой обмотки подается постоянное напряжение от специального источника питания. Ротор при помощи первичного двигателя приводится во вращение; его магнитное поле пересекает обмотки статора и в них индуктируются синусоидальные эдс.
Статор. Статор ничем не отличается от статора асинхронной машины. В его обмотке действием вращающегося магнитного поля ротора наводится эдс, подаваемая во внешнюю цепь генератора. Такая конструкция генератора позволяет устранить скользящие контакты в цепи нагрузки генератора (обмотка статора соединяется с нагрузкой непосредственно) и надежно изолировать рабочую обмотку от корпуса машины, что весьма существенно для современных генераторов, изготавливаемых на большие мощности при высоких напряжениях. Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается от постороннего источника питания. Постоянный ток от источника проходит через обмотку ротора через два кольца и две неподвижных щетки, установленные на валу генератора. Мощность такого источника питания равна 0,25 – 1% от номинальной мощности синхронного генератора. Номинальное напряжение 115-350В.
Ротор. По свой конструкции роторы генераторов делятся наявнополюсные (тихоходные) (рис. 112а) инеявнополюсные(высокоскоростные) (рис.112 б). Число пар полюсов ротора обусловлено
а б
Рис. 112
скоростью его вращения. При частоте генерируемой эдс 50Гц неявнополюсной ротор быстроходной машины – турбогенератора, вращающийся со скоростью 3000об/мин, имеет одну пару полюсов, тогда как явнополюсной ротор тихоходного гидрогенератора, вращающийся со скоростью от 50 до 750об/мин, имеет число пар полюсов соответственно от 60 до 4.
Работа генератора под нагрузкой. Реакция якоря. Если к зажимам работающего генератора подключить внешнюю нагрузку, то в обмотках статора возникает электрический ток, который создает свое магнитное поле – поток статора. Это магнитное поле накладывается на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Это воздействие поля статора на основное магнитное поле называетсяреакцией якоря.
Рассмотрим реакцию якоря при различных по характеру нагрузках.
Рис. 113
В случае активной нагрузки, при которой ток совпадает по фазе с эдс, максимум тока наступит в тот момент, когда оси полюсов ротора будут находиться напротив обмоток якоря (рис.113 а). Это так называемая поперечная реакция якоря: потоки статора и роторавзаимно перпендикулярны. В результате векторного сложения этих потоков результирующий магнитный поток генератора несколько увеличивается и смещается в пространстве, — следовательно, эдс генератора возрастает.
В случае чисто индуктивной нагрузки ток отстает от эдс по фазе на К моменту максимального значения тока в обмотке А-Х ротор должен быть повернуть на 900по часовой стрелке (рис.113 б). Магнитные потокиинаправлены встречно и результирующий магнитный поток генератора равен их разности. Такая реакция якоря уменьшает эдс генератора.
В случае чисто емкостной нагрузки ток нагрузки генератора опережает по фазе эдс на , — следовательно, ротор генератора еще не дошел 900до вертикального положения, а ток в обмотке А-Х уже имеет максимальное значение (рис.113 в). Потокииимеют одинаковое направление, увеличивают результирующий магнитный поток, а это приводит к увеличению эдс генератора.
Очевидно, что реакция якоря будет тем значительней, чем больше ток нагрузки. Таким образом, реакция якоря в синхронном генераторе приводит к изменениям магнитного потока и эдс, что является крайне нежелательным, так как изменение значения и характера нагрузки приводит к изменению напряжения на зажимах генератора.
На практике при всяком изменении нагрузки с помощью автоматики изменяют ток возбуждения; этим ослабляют влияние реакции якоря.
Для снятия различных характеристик синхронного генератора можно использовать схему рис.114 а.
Характеристика холостого хода. Эта характеристика представляет зависимость индуктированной в статоре эдс Е от тока возбуждения при разомкнутой внешней цепи машины
E=f(iB) приn=nниI= 0.
а б в
Рис. 114
Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора. Изменяют при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения. По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной эдс Е. Характеристика холостого хода показана на рис. 114б. Прямолинейная часть характеристики указывает на пропорциональность между магнитным потоком (током возбуждения) и индуктированной эдс. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т.е. при значительном увеличении тока возбуждения индуктированная эдс растет очень медленно.
Внешняя характеристика. Зависимость напряжения на зажимах генератораUот тока нагрузкиIпри постоянных значениях тока возбужденияiB, коэффициента мощностиcosφи скоростиnвращения дается внешней характеристикой (рис. в)
U=f(I).
На рис.114 в даны внешние характеристики генератора для различных видов нагрузки.
Изменение напряжения с нагрузкой происходит вследствие реакции якоря и падения напряжения в обмотке статора.
При индуктивной нагрузке реактивный ток размагничивает машину и напряжение при увеличении тока нагрузки уменьшается.
При емкостной нагрузке напряжение генератора с увеличением тока нагрузки повышается вследствие действия продольно – намагничивающей реакции якоря.
Номинальный режим нагрузки выбирается таким, чтобы при cosφ= 0,8 изменения напряжения не превышали 35 — 45% от номинального (кривая 1).
О принципе работы синхронных генераторов: устройство и конструкция ротора
Электрогенератор (альтернатор) электротока переменного типа предназначается для процедуры преобразования кинетической и потенциальной энергии в электроэнергию. Ротор такой машины приводится в движение, а именно вращается, от двигателя первичного типа, в роли которого могут выступать ДВС (топливные двигатели), электродвигатели, турбины.
Внешний вид производственной синхронной генерирующей машины переменного тока модели СГС-14-100-6
Если альтернатор переменного тока характеризуется тем, что частота вращения его ротора совпадает с частотой вращения магнитного поля, то такие машины называются синхронными. Произвести расчет частоты вращения можно по формуле:
n = 60*f/p, где:
- f – частота тока в электросети;
- p – количество пар статорных полюсов.
Часто многие неосведомленные в области электроустановок люди задаются вопросом о том, какой принцип работы синхронного генератора.
Принцип работы СГ
Конструкция генерирующей машины переменного тока достаточна проста. Статор и ротор – это основные компоненты синхронного генератора (СГ).
Принцип действия синхронного генератора на основе взаимодействия магнитных полей статора и ротора
Синхронный альтернатор, в основном, вырабатывает электроэнергию тогда, когда ротор синхронного генератора движется по кругу вместе с магнитным полем, линии которого встречаются в неподвижной обмотке статора. Поле образуется посредством возбуждения дополнительным устройством, например:
- вспомогательным генератором;
- аккумулятором;
- разнообразными энергетическими преобразователями;
- и другими энергоисточниками.
Стоит отметить, что процесс преобразования энергий в СГ может происходить и по-другому – вращающееся части проводникового элемента могут располагаться в обездвиженном магнитном поле. В этом случае возникает трудность токосъема через щеточно-коллекторный узел электрической машины, какой соединяет ротор с цепями ее неподвижной части. Для генераторных машин невысокой мощности подобная схема может успешно применяться. Зачастую она встречается в установках передвижного типа.
В рассматриваемом генераторе продуцируется электродвижущая сила (ЭДС), расчет которой совершается по формуле:
e = 2*π*B*l*w*Dn, где:
- π – константа;
- B – индукция магнитного поля;
- l – длина паза статорного элемента;
- w – число витков в обмотке статорного компонента;
- Dn – диаметр статора внутри.
Электроэнергетика с такими устройствами построена, в основном, на электронапряжении в диапазоне 15 000-40 000 В. Энергообмен через коллектор альтернатора затруднителен. К тому же обмоточная катушка подвижного типа подвергается ударным нагрузкам большой силы и вращательным движениям с попеременной скоростью, что формирует проблематику с изоляционной составляющей. По этой причине якорные элементы производят обездвиженными, так как именно через них пропускается основная масса энергии.
Мощность устройства-возбудителя обычно не превосходит 4-5% от совокупной производительной мощности синхронного генератора – это дает возможность пропускать электроток через динамический узел.
Для информации. В механизмах переменного тока малой мощности (до нескольких кВт) роторный элемент изготавливается с магнитными деталями постоянного типа (ферритовыми, неодимовыми, полимерными магнитопластами и другими). В них не нужно устанавливать подвижные контакты, однако из-за этого существуют трудности с регулировкой выходного напряжения.
Устройство СГ
Статор СГ имеет почти такое же устройство и принцип функционирования, как и у асинхронного варианта. Его железные компоненты компилируются из стальных пластин (сталь применяется электротехнического назначения), которые отделаются друг от друга слоями изоляции. Обмотка переменного электротока располагается в его пазах. Провода обмоток отделяются друг от друга изолирующим слоем и закрепляются надежно, так как через них вводится нагрузка. Ротор может исполняться без выпирающих полюсов либо с ярко выраженными полюсами.
На заметку. Наибольшую популярность имеет трехфазный синхронный генератор, применяемый во многих областях жизнедеятельности человека и предприятий. Однофазные варианты обычно применяется в быту.
Основные типы СГ: а – с ротором, у которого выступают полюса; б – с не явно полюсным ротором
Синхронные генераторы с явно полюсным ротором производятся для тихоходных машин, к примеру, для установок с гидротурбинами. А СГ с не явно полюсными роторами подходят для механизмов переменного тока, вращающихся с высокой скоростью.
Синхронные генерирующие устройства могут работать в двух режимах: двигательном либо генерирующем переменный электроток. Здесь важно то, какой метод охлаждения применяется, так как генерация чего-либо всегда более требовательна. В основном, на вал монтируются крыльчатки, какие охлаждают ротор с двух сторон воздухом, проходящем через фильтрующий элемент. Потоки воздуха в такой системе охлаждения вращаются одни и те же. При работе СГ в усиленном режиме подобная система нежелательна.
Важно! Эффективнее при высоких нагрузках применять в качестве охлаждающего агента водород, какой более чем в 14 раз легче воздуха.
Внутреннее устройство СГ переменного тока
Обмотки рассматриваемого генератора отводятся концами на его распредкоробку. Трёхфазная машина имеет иное соединение обмотки – отвод совершается звездой или треугольником.
Преимущественно все синхронные генерирующие устройства поддерживают синусоидальное переменное электронапряжение. Этого можно достичь посредством изменения формы наконечников на полюсах и особым месторасположением витков в пазах не явно полюсного ротора.
Реакция якоря
В обмотках статорного элемента при присоединении выхода с наружной нагрузкой начинает протекать электроток. Образующееся при этом силовое магнитное поле совмещается с полем, что формируется роторным элементом. Такое взаимодействие полей именуется реакцией якоря.
Реакция якоря в СГ при разнородных видах нагрузки
При активной нагрузке электроток и ЭДС имеют одни и те же фазы. Предельная сила электротока проявляется в тот момент, когда полюса роторного элемента находятся на противоположной стороне от якорных обмоток. Главный магнитный поток и второстепенный поток, который формируется во время реакции якоря, перпендикулярны друг другу, а при сопоставлении формируют увеличенный итоговый поток, что увеличивает в тот момент ЭДС.
Нагрузка индуктивного вида, имея потоки, направленные навстречу друг к другу, наоборот, приводит к значительному снижению электродвижущей силы.
Нагрузка емкостного типа вызывает совмещение потоков, движущихся в одну сторону, итог – увеличение ЭДС.
Любое повышение нагрузки увеличивает влияние реакции якоря на выходное электронапряжение, которое из-за этого изменяется в ту или иную сторону, что крайне нежелательно в электросетях. Практично такой процесс можно контролировать: просто изменять возбудитель, что снизит уровень влияния реакции якоря на главное силовое поле.
Режимы работы СГ
Нормальный режим работы СГ можно охарактеризовать любым числом рабочих периодов, какой угодно длительности, при которых главные параметры не выходят за диапазон допустимых значений. При таком режиме работы допустимы отклонения электронапряжения на выходе и частоты в пределах 4-5% и 2,5% от номинального значения, коэффициентов мощности и тому подобные. Допуски на отклонения задаются нормативными документами и определяются нагревом машин либо же гарантируются фирмой-производителем.
Бытовой топливный синхронный генератор отечественного производства, модель «Интерскол ЭБ-5500» на 5,5 кВт
Нормальные рабочие режимы недопустимы для долгого функционирования устройства при таких обстоятельствах, как перевозбуждение или недовозбуждение, переход в режимы асинхронного типа, перегрузки. На возникновение таких обстоятельств влияют следующие отклонения в электросети:
- неравномерность фазной загрузки;
- короткое замыкание;
- нагрузки попеременного действия.
Стоит отметить, что на нормальное функционирование механизма воздействует подключенная к нему электросеть, в которой любые нарушения работоспособности отдельно взятых источников потребления вызывают искажение формы и несимметрию электросигнала.
Диаграмма мощностей СГ
Важно! Длительная работа генерирующего энергию устройства допустима при разнице токов на фазах турбогенератора до 10% и водяных генераторов, синхронных компенсирующих машин до 15-20%.
Искривление синусоиды на СГ может случаться из-за высокомощных преобразователей, выпрямляющих устройств и прочих.
Необходимо учесть, что нормальное функционирование синхронных устройств возможно только при качественной работе охлаждающей системы. Так, при затратах охлаждающего агента в объеме более 70% от номинального значения, должна срабатывать предупреждающая сигнализация о том, что устройство нужно отключить от сети, в противном случае может произойти выход оборудования из строя. Когда расход охлаждающего агента уменьшается на 50%, то устройство должно разгрузиться порядка двух минут, после чего отключиться за максимум четыре минуты.
Характерные черты СГ
СГ обладают нижеследующими характерными чертами:
- при нулевой нагрузке (холостом ходе), когда якорная обмотка находится в не замкнутом виде, задается зависимость электродвижущей силы от электротоков возбуждения, а также устанавливается значение уровня намагничивания сердечников генератора;
- выходное электронапряжение зависит от нагрузочных электротоков – этот признак является внешней характеристикой СГ;
- регулировочные характеристики синхронной машины проявляются в зависимости возбуждающих электротоков от нагрузочных аналогов при поддерживании установленных параметров на выходе в автоматическом режиме.
Синхронные генераторы нашли широкое применение в промышленности и энергообеспечении, так как имеют простую конструкцию, понятный принцип работы и могут выдерживать кратковременные перегрузки.
Для правильной эксплуатации и проведения ремонтных работ над СГ переменного тока необходимо знать их принцип работы (одинаковое по частоте вращение ротора и магнитного поля) и устройство. Эти знания пригодятся инженерам производственных предприятий и специалистам в области энергетики, а также обычным людям, которые используют подобную технику в бытовых целях.
Видео
Схема синхронного генератора
Основной особенностью синхронных генераторов является равенство частот вращения ротора и магнитного поля статора. Эти показатели зависят от частоты тока в сети и количества пар полюсов. Все синхронные устройства обладают основным качеством электрических машин. Они могут быть обратимыми, то есть использоваться в качестве не только генератора, но и электродвигателя. Основная схема синхронного генератора используется для получения электрической энергии. В качестве первичных двигателей применяются различные виды турбин или двигателей внутреннего сгорания.
Принцип работы синхронного генератора
При перемещении проводников в магнитном поле, когда оно неподвижно или перемещении самого магнитного поля относительно проводников, находящихся в неподвижном состоянии, возникает электродвижущая сила.
Применительно к генератору, индуктирование происходит на неподвижном статоре, а создание электродвижущей силы происходит на роторе, в период его вращения. В другом варианте, якорь и полюса меняются местами и размещаются, соответственно, на статоре и на роторе.
При вырабатывании электроэнергии по первому варианту, ее передача производится на специальный приемник с помощью скользящих контактов. В их состав входят щетки и контактные кольца. При использовании скользящего контакта, теряется большое количество энергии, поэтому, такой вариант используется только при незначительном напряжении и мощности. Чаще всего используются синхронные генераторы, где полюсы размещаются на роторе, а сам якорь непосредственно на статоре.
Устройство синхронного генератора
Данное устройство состоит из двух основных частей самого синхронного генератора (1) и возбудителя (2).
Роторы в таких машинах выполняются с выступающими полюсами, или с такими полюсами, которые практически не выступают и явно не выражены. При относительно небольшой частоте вращения, для роторов используется первый, явно выраженный вариант, где полюса равномерно располагаются вокруг ротора.
В состав полюса входит сердечник, полюсный наконечник и, размещенная на сердечнике, катушка обмотки возбуждения. Таким образом, схема синхронного генератора с выступающими полюсами, используется, преимущественно, в гидравлических турбинах с малым количеством оборотов. Такое устройство ротора не является достаточно прочным для высокоскоростных механизмов, где применяются роторы без явно выраженных полюсов.
При выработке электроэнергии, высокая скорость обеспечивается паровыми турбинами или двигателями внутреннего сгорания.
Лабораторная работа №1 Подключение к сети синхронного генератора методом точной синхронизации
Цель работы: целью лабораторной работы является изучение методов подключения генератора к системе методом точной синхронизации в ручном режиме.
Общие сведения
При подключении синхронного генератора применяют два способа: точная синхронизация и самосинхронизация. Первый способ требует предварительную синхронизацию включаемого генератора, которая осуществляется следующим образом (Рис.8.1).
Рис.8.1. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа
Скорость машины Г доводится примерно до синхронного числа оборотов и ее возбуждение регулируется так, чтобы вольтметр на ее зажимах показал значение, равное напряжению сети. При этом последовательность фаз машины должна соответствовать последовательности фаз сети. Перед подключением машины к сети необходимо более точное регулирование частоты вращения машины и фазы ее ЭДС. Для этой цели используют синхроскопы. В простейшем случае синхроскоп составляется из ламп накаливания. Чем меньше частота генератора отличается от частоты сети, тем медленнее будут происходить колебания света фазных ламп. Достигают совпадения частот, при котором промежутки времени между следующими друг за другом вспышками ламп будут не менее 3…5 сек. Затем в момент полного затухания ламп осуществляют подключение генератора к сети.
Сущность метода самосинхронизации состоит в том, что генератор включается на сеть без возбуждения, когда его скорость отличается от синхронной на 2…3%. Обмотка ротора во время такого включения должна быть замкнута накоротко или на некоторое сопротивление. Сейчас же после включения генератора на сеть в ротор подается постоянный ток возбуждения, и генератор сам доходит до синхронной скорости под действием электромагнитных сил. Вращающий момент синхронного двигателя при пуске равен 0, поэтому пуск двигателя состоит из двух этапов: первый этап — синхронный пуск с помощью короткозамкнутой обмотки, расположенной на роторе, и второй этап — втягивание в синхронизм после включения постоянного тока возбуждения. Во время первого этапа асинхронного пуска обмотка возбуждения отключается от источника постоянного тока и замыкается на активное сопротивление, превышающее активное сопротивление обмотки возбуждения в 10…15 раз. Не следует оставлять обмотку возбуждения разомкнутой, т. к. вращающееся поле может индуктировать в ней весьма значительную ЭДС, опасную для изоляции. Но с другой стороны, нецелесообразно было бы замыкать эту обмотку накоротко, т. к. в ней возникает значительный однофазный ток, который будет тормозить ротор по достижении им половины синхронной скорости.
Перечень аппаратуры
Обозначение | Наименование | Тип | Параметры |
G1 | Трехфазный источник питания | 201.2 | 400 В ~; 16 А |
G2 | Источник питания двигателя постоянного тока | 206.1 | 0…250 В 3 А (якорь) 200 В ; 1 А (возбуждение) |
G3 | Возбудитель машины переменного тока | 209.2 | 0…40 В ; 3,5 А |
G4 | Машина переменного тока (Синхронный генератор) | 102.1 | 50 Вт; 230 В ~; cos = 1; 1500 мин1 |
G5 | Преобразователь угловых перемещений | 104 | 6 выходных сигналов |
M1 | Двигатель постоянного тока | 101.1 | 90 Вт; 220 В 0,76 А (якорь) 220 В; 0,2 А (возбуждение) |
А1 | Трехфазная трансформаторная группа | 347.2 | 3 х 80 ВА; 242, 235, 230, 126, 220, 133, 127 / 230 В (треугольник) |
A2 | Блок синхронизации | 319 | 220 В ~; 10 А; синхроноскоп; 3 индикаторные лампы |
Р1 | Указатель частоты вращения | 506.2 | 0…2000 мин1 |
Р2 | Измеритель напряжений и частот | 504.1 | 0…500 В ~; 45…55 Гц, 220 В ~ |
Описание электрической схемы соединений
Обмотка возбуждения машины постоянного тока, используемой как первичный двигатель М1 (см. Рис.8.2) с независимым возбуждением, присоединена к нерегулируемому выходу «ВОЗБУЖДЕНИЕ» источника G2, к регулируемому выходу «ЯКОРЬ» которого присоединена якорная обмотка этой же машины. Вход питания источника G2 присоединен с помощью электрического шнура к розетке «380 В» на тыльной стороне трехфазного источника питания G1.
Обмотка ротора машины переменного тока, используемой как синхронный генератор G4, через гнезда «F1», «F3» присоединена к выходу возбудителя G3. Вход питания возбудителя присоединен с помощью электрического шнура к розетке «220 В~» трехфазного источника питания G1.
Фазы статорной обмотки генератора G4 через блок синхронизации А2 и трехфазную трансформаторную группу А1 с напряжениями 127 В, присоединены к гнездам трехфазного источника питания G1.
Частоту вращения генератора G4 можно контролировать с помощью указателя Р1, соединенного с выходом преобразователя угловых перемещений G5.
Величину и частоту напряжения генератора G4 и сети можно контролировать с помощью измерителя напряжений и частот Р2.
Указания по проведению эксперимента
Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
Соберите электрическую схему соединений тепловой защиты машины переменного тока (стр. 12).
Соедините гнезда защитного заземления «» устройств, используемых в эксперименте, с гнездом «РЕ» источника G1.
Соедините аппаратуру в соответствии с электрической схемой соединений.
Переключатели режима работы источника G2, возбудителя G3 и блока синхронизации А2 переведите в положение «РУЧН.».
Регулировочные рукоятки источника G2 и возбудителя G3 поверните против часовой стрелки до упора.
Включите источник G1. О наличии напряжений фаз на его выходе должны сигнализировать светящиеся лампочки.
Включите выключатель «СЕТЬ» и нажмите кнопку «ВКЛ.» источника G2.
Включите выключатель «СЕТЬ» указателя Р1.
Вращая регулировочную рукоятку источника G2, установите частоту вращения двигателя М1 (генератора G4) 1500 мин–1.
Включите выключатель «СЕТЬ» и нажмите кнопку «ВКЛ.» возбудителя G3.
Вращая регулировочную рукоятку возбудителя G3, установите напряжение между фазами (линейное) генератора G4 равным линейному напряжению сети.
Включите выключатель «СЕТЬ» блока синхронизации А2.
Обеспечьте условия синхронизации согласно табл. 8.1, после чего, нажатием на кнопку «ВКЛ.» блока синхронизации А2, подключите генератор G4 к сети.
Убедитесь, что генератор G4 вошел в режим синхронной работы с сетью о чем должно свидетельствовать постоянство напряжения между фазами генератора G4.
По завершении эксперимента нажмите кнопку «ОТКЛ.» блока синхронизации А2, поверните регулировочные рукоятки сначала возбудителя G3, а затем источника G2 против часовой стрелки до упора, отключите выключатели «СЕТЬ» возбудителя G3, источника G2, блока синхронизации А2 и указателя Р1, отключите источник G1 нажатием на красную кнопку – гриб и последующим отключением ключа – выключателя (см. Табл.8.1).
Таблица 8.1