Отличие синхронного генератора от асинхронного
Бытовая генераторная установка состоит из силового агрегата – двигателя, и узла, который преобразует крутящий момент в электричество — генератора.
В бытовых электростанциях, как правило, используются двигатели внутреннего сгорания. Дизельные либо бензиновые. Я бы не стал выделять отдельным классом бытовые газовые электростанции, т.к. по своей сущности, их двигатель представляет собой не что иное как доработанный бензиновый (аналогично переделке в автомобильных двигателях).
Как известно генераторы бываю синхронными и асинхронными. Какие из них лучше или хуже, чем? В описании продаваемой продукции торгующих организаций интернета излагается следующее:
“Асинхронные дешевле, но, к сожалению, говорить о приемлемом качестве электричества в данном случае нельзя. К тому же при подключении такой нагрузки, как электродвигатель (холодильник, насос, электроинструмент) в момент запуска потребляет кратковременно 1,5-3 кратную мощность, поэтому нужно делать соответственный запас по мощности выбираемой генераторной установки. Асинхронный генератор не переносит пиковых перегрузок.
Или еще:
“Синхронные генераторы — менее точны, но, тем не менее, они пригодны для аварийного электропитания офисов, холодильных установок, оборудования загородных домов, дач, строительных объектов. Такие электрогенераторы без проблем справляются с энергоснабжением электроинструментов и электродвигателей с реактивной нагрузкой до 65% от своего номинала.
Асинхронные генераторы обеспечивают поддержание напряжения в сети с высокой точностью, поэтому позволяют подключать к ним аппаратуру, чувствительную к перепадам напряжения (например, медицинское оборудование, другие электронные устройства). Подобные генераторы позволяют подключать к ним электроинструменты и электродвигатели с реактивной мощностью до 30% от номинала.”
Если Вы внимательно прочитали этот текст, то наверное обратили внимание, что информация указанная в нем строго противоречива. Вы можете сами в этом убедиться, набрав в поисковой системе Яндекс, запрос: “ познаем электростанции ” или “ отличие генераторов ”. В рамках данной статьи не хочется заниматься рекламой или наоборот, выбор должен оставаться за потребителем, поэтому:
Попробуем для начала разобраться, что такое вообще генератор.
Принцип действия любого генератора основан на явлении электромагнитной индукции. Преобразование механической энергии двигателя (вращательной) в энергию электрического тока поясняет следующая картинка:
Если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один – Э.Д.С., изменяющаяся по гармоническому закону.
Отличия между синхронными и асинхронными генераторами.
Синхронный генератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС.
В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин.
Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется “реакцией якоря”. Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR.
Асинхронный генератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора.
В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным. Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.
Синхронный генератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое, пересекая обмотку статора, наводит в ней ЭДС.
В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об./мин.
Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».
Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR.
Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать.
Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.
Асинхронный генератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора.
В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным. Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.
Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т. д.
При выборе бензогенератора для дома, или покупки дизельного генератора для работы, предприятия, любой, рационально мыслящий покупатель, естественно, обращает внимание на мощность электрогенератора, подробно и обстоятельно рассчитывая ее. И это верно. Но следует помнить и о том, что выбор генератора – вопрос сложный и разноплановый, наподобие геометрического многогранника – стоит упустить из виду хоть одну грань, и фигура развалится.
Для того, чтобы электроэнергия от генератора поступала качественная и без сбоев, нужно помнить об одном важном факторе: тип встроенного альтернатора. Звучит довольно сложно, но на самом деле, это простой выбор между двумя видами: щеточный или бесщеточный.
Содержание статьи:
СТАТИСТИКА ПРОДАЖ ГЕНЕРАТОРОВ ПО ТИПУ АЛЬТЕРНАТОРА
ЧТО ТАКОЕ АЛЬТЕРНАТОР
Когда–то давно, на заре своего возникновения, устройство для выработки электрического тока так и называлось – альтернатор. То есть, это устаревшее название генератора переменного тока. Позже его стали называть генератором, подразумевая под этим всю конструкцию: альтернатор и двигатель, размещенные на открытой раме или в корпусе.
Альтернатор в отдельности – самая важная часть генератора, именно он выполняет главную функцию – преобразовывает механическую энергию вращения вала двигателя в электрическую энергию переменного тока. В нем есть два стандартных элемента: вращающийся ротор и статор — неподвижная часть генератора.
Для возбуждения электродвижущей силы на обмотках статора нужно создать переменное магнитное поле. Для этого все генераторы используют намагниченный ротор, который вращается. Это то, что у всех одинаково. А вот дальше начинаются различия. По конструктивным особенностям передачи магнитного поля на обмотки статора все электростанции можно разделить на асинхронные и синхронные:
- Синхронные альтернаторы имеют обмотки и на роторе. Синхронный альтернатор носит второе популярное название – щеточный.
- Асинхронные альтернаторы обмотки на роторе не имеют. В них передается остаточная намагниченность ротора, без контакта, поэтому надобность в щетках тоже отпадает. Поэтому асинхронный альтернатор называют бесщеточным.
Если совсем просто, то синхронный альтернатор по строению является более сложным, он обладает обмотками на роторе и угольными щетками. Асинхронный альтернатор более простой по своему строению, поэтому генераторы с ним стоят дешевле и, учитывая отзывы покупателей, являются менее надежными и выносливыми. Но это не значит, что асинхронный альтернатор заведомо хуже синхронного. Есть некоторые нюансы, которые практически уравновешивают все плюсы и минусы и одного и другого типа. Какой генератор выбрать, синхронный или асинхронный, зависит от того, где и как вы планируете его применять.
Типичный отзыв клиента:
«Когда строил дом, время от времени брал генератор с работы (Хонда). Генератор хороший — не вопрос, наши дорожники использую больше пяти лет. Но когда я его подключил к газовому котлу, то он его не запустил. Уже позже узнал, что из-за того, что он бесщеточный, вырабатывает нестабильное напряжение. После этого взял Konner&Sohnen KS6000D . У кума работает больше года, он и посоветовал. От него вся электроника работает нормально, замерял вольтметром выходное напряжение, на выходе абсолютно ровная синусоида 220 В (+/-5). Не смотря на то, что я электрик, не знал, что для дома лучше брать синхронный генератор.» ©Глеб
СИНХРОННЫЙ АЛЬТЕРНАТОР: ПРЕИМУЩЕСТВА В РАБОТЕ
Качественный синхронный альтернатор для прохождения тока на роторе имеет медную обмотку. Иногда дешевые и низкокачественные модели генераторов оснащены алюминиевой обмоткой. Она хороша для редкого использования генератора при небольших нагрузках. А для получения тока высокого качества лучше приобрести генератор с медной обмоткой от стабильных и проверенных временем брендов. Кроме обмотки, есть скользящие контакты, называемые щетками, задачей которых является снятие напряжение с неподвижной части на подвижную часть, в связи, с чем через них проходит электроток. Именно медная обмотка и узел щеток на роторе являются гарантией легкого переноса пусковых нагрузок и кратковременных перегрузок альтернатора. Таким образом, синхронный генератор выдает на выходе напряжение без перепадов и скачков. Возможно минимальное отклонение — около 5%. Советы специалистов в этой отрасли гласят, что синхронная электростанция лучше асинхронной, так как выдается качественный и чистый ток. Известнейшая функция автоматического регулятора напряжения (AVR) работает только в синхронном генераторе. Качественный и ровный ток играет немаловажную роль при подключении к питанию электроприборов, таких как, ноутбук, принтер, комп’ютер, модем, телефон. Чувствительное лабораторное и медицинское оборудование также требует качественного и ровного тока. На бытовом уровне щеточный генератор будет более полезен, так как обеспечиваются качественным током и чувствительные к перепадам напряжения холодильники, телевизоры, стиральные машины.
Подобьем плюсы щеточного узла и обмотки:
- Стабильное напряжение
- Ток самого высшего качества
- Надежная работа
СИНХРОННЫЙ ГЕНЕРАТОР: ОТРИЦАТЕЛЬНЫЕ СТОРОНЫ
Наличие щеточного узла обладает и минусами в работе. Так, тесное постоянное скольжение этих щеток по ротору греет обмотку генератора. Чтобы избежать перегрева, используется воздушная система охлаждения с помощью вентилятора. Данная система приемлема и надежная, но также обладает побочным эффектом, таким как «эффект пылесоса». Открытая конструкция щеточного генератора способствует всасыванию вовнутрь грязи, пыли и влаги. В связи с этим данные генераторы обладают низким классом защиты. Но время не стоит на месте, и много производителей с помощью инновационных достижений довольно хорошо защищают свои генераторы от влаги, пыли и грязи.
Выбирая, какой генератор лучше, обратите внимание на класс защиты, иначе необходима частая чистка щеточного узла, из-за мусора и пыли генератор может поломаться. Качественным методом профилактики поломок генератора является замена щеток время от времени. Более качественные щетки медно-графитовые меняются один раз в три-четыре года, а угольные щетки нужно менять не реже, чем раз на два года.
Минусы щеток:
- Охлаждающий вентилятор тянет пыль вовнутрь
- Нужно проводить техосмотр – замену щеток
- Более высокая цена
- Еще одним немаловажным минусом щеток является создание радиопомех.
АСИНХРОННЫЙ АЛЬТЕРНАТОР: ПЛЮСЫ
Бесщеточный альтернатор не имеет обмотки на подвижной части, да и сама подвижная часть смахивает на маховик. Таким образом, и в щетках нет необходимости. Для работы генератору достаточно магнитного поля и конденсаторов. Технически конструкция у асинхронного альтернатора проще, а значит, долговечнее и надежнее, техническое обслуживание (замена щеток) вообще отсутствует. Обмотки медной нет, перегрева быть не может и охлаждение не требуется. Конструкция бесщеточного генератора такова, что пыль, влага и грязь не затягиваются вовнутрь. Благодаря этому повышается класс защиты. Бесщеточные генераторы обладают самым высоким уровнем защиты. Защищены от струй воды, падающих под любым углом, проникновения мелких пылинок и касаний. Вес и размеры асинхронного генератора намного меньше, ведь у него нет медной обмотки и вентилятора для охлаждения.
То есть, получаем такие плюсы отсутствия щеток и обмотки:
- Хорошая защита от пыли и грязи.
- Небольшой вес и размеры.
- Низкая цена.
- Не нужно менять щетки.
- И самый главный плюс — бесщеточный альтернатор невосприимчив к коротким замыканиям, что особенно важно при подключении к электростанции сварочных аппаратов.
АСИНХРОННЫЙ АЛЬТЕРНАТОР: МИНУСЫ
К сожалению, асинхронный генератор обладает не только плюсами, но и минусами, главный их которых – это низкая способность «проглатывания» пусковых перегрузок. В связи с чем, напряжение на выходе нестабильно. В официальных характеристиках асинхронных генераторов указывается возможное отклонение в 10%, но в основном скачки выходят за пределы допустимого отклонения. Функции автоматического регулятора напряжения у данного вида генераторов не бывает.
Различные незапланированные скачки могут испортить дорогую электронику, а в этом случае риск не благородное дело! Чтобы обезопасить свою электронику при выборе асинхронного генератора, используйте возможность приобретения и установки стартового усилителя, что способствует улучшению выходящего тока.
Итак, минусы асинхронного альтернатора:
- Нестабильное напряжение
- Ток низкого качества
Чтобы как-то выровнять эти показатели, помните при выборе генератора, что немаловажным фактором остается производитель мотора. Качественные бензиновые двигатели от мировых брендов способствуют улучшению выходных параметров, поскольку такой мотор поддерживает при изменении нагрузки постоянные обороты.
ВЫВОДЫ: КАКОЙ АЛЬТЕРНАТОР ЛУЧШЕ
Какой лучше альтернатор щеточный или бесщеточный, выбирать, конечно, вам, но отзывы потребителей тоже говорят о многом. Изучив отзывы и полезные советы покупателей, которые уже использовали альтернатор асинхронный или синхронный, становится понятно, что главный критерий выбора – ответ на вопрос, для каких целей нужен генератор.
Генератор с синхронным альтернатором в бытовых условиях
- Если вопрос в том, какой генератор лучше для дома, и вы планируете «запитывать» бытовую и компьютерную технику, то ответ без сомнений – нужно купить щеточный генератор, или как его еще называют – синхронный, а еще надежнее – генератор с функцией AVR. Только данный вид электростанции даст возможность спать спокойно при подключении чувствительных бытовых электроприборов и электротехники.
- Для медицинских клиник, лабораторий, компьютерных офисов – тоже лучше приобрести синхронный генератор.
- Если вас волнует вопрос, какой альтернатор выбрать для строительных работ, на открытом воздухе, в цехах, на улице, где повсюду пыль, грязь и преобладает повышенная влажность, то бесщеточный или, как его еще называют – асинхронный, генератор подойдет на все 100%.
- Сварочные работы также требуют асинхронного бесщеточного генератора, не реагирующего на короткие замыкания.
Генератор с асинхронным альтернатором в условиях строительных работ
То есть синхронные генераторы, все-таки надежнее и популярнее, несмотря на высокую цену, ведь покупать новую технику взамен испорченной – это очень дорого и неэкономно. В пользу синхронных альтернаторов говорит и статистика: синхронных (бесщеточных) генераторов продается намного больше, соотношение в пользу синхронных составляет 98%, поскольку они более практичны в быту.
Наука постоянно движется вперед, технологии усовершенствуются и развиваются, в связи с этим мировые бренды начинают производить синхронные электростанции с высоким классом защиты и асинхронные электростанции с более стабильным напряжением на выходе.
Рекомендуем к просмотру видео-обзор » Электрогенератор — асинхронный или синхронный «:
Какой генератор лучше — синхронный или асинхронный
Электрогенератор – это установка, которая способна производить электронную энергию. Бытовая генераторная установка, обычно, состоит из электродвигателя, также узла, который конвертирует вращающий момент в электроэнергию – генератора.
Для работы в бытовых критериях используются дизель генераторы и бензогенераторы.
Дизельный генератор – это генераторная установка, в какой употребляется дизельный электродвигатель. Данный вид генераторов употребляется как в качестве аварийного источника электроснабжения, так и основного. Дизельные движки владеют более длительным ресурсом работы, ежели бензогенераторы.
Безногенератор – это малая электрическая станция, в какой в качестве первичного электродвигателя применяется бензиновый двигатель, работающий на бензине. Бензиновые электростанции в большинстве случаев употребляются в качестве аварийного источника электроснабжения. Рабочий ресурс бензогенераторов рассчитан на 4 – 12 часов работы. Данный вид генератор будет просто незаменим при краткосрочных отключениях электроэнергии. Также бензиновые электростанции можно использовать в местах, где стопроцентно отсутствует электроснабжение.
Различают асинхронные и синхронные электрогенераторы. Какой из их избрать?
Главное преимущество синхронных электрогенераторов – высочайшая стабильность напряжения на выходе, главный их недочет – возможность перегрузки генератора по току (при работе с завышенной нагрузкой, регулятор может чрезвычайно прирастить ток в обмотке ротора). Также к недочетам синхронных генераторов можно отнести наличие щеточного узла. В какой-то момент нужно будет обслуживать старенькый либо делать электромонтаж новейшей системы щеток.
Вне зависимости от конфигурации оборотов электродвигателя, также тока нагрузки электростанции, стабильность напряжения на выходе генератора остается довольно-таки высочайшей, с колебанием в ± 1 процент.
Асинхронный генератора – это асинхронный движок, который работает в тормозном режиме. Ротор этого электродвигателя в одном направлении с магнитным полем статора, но, с неким опережением его. Асинхронный электрогенератор достаточно прост в эксплуатации и обслуживании, он обладает малой чувствительностью к маленьким замыканиям и достаточно демократичной ценой. Применяется данный вид электрогенераторов достаточно изредка, потому что имеет ряд недочетов: ненадежность работы при экстремальных критериях, также потребление намагничивающего тока значимой силы.
Синхронный или асинхронный альтернатор в электростанции: определяемся с выбором
При выборе электростанции любой здравомыслящий человек в первую очередь определяется с мощностью, скрупулезно делая расчеты. И это правильно. Но нужно помнить, что выбирать такое оборудование – все равно что строить сложную геометрическую фигуру: стоит упустить из виду одну-единственную грань, и все разрушится.
Чтобы оборудование работало долго и бесперебойно, нужно (в том числе) не ошибиться с типом альтернатора.
Альтернаторы: конструкция, назначение, виды
Первые приборы для генерации электротока назывались альтернаторами. Позднее всю конструкцию из двигателя и альтернатора, помещенную в корпус или закрепленную на раме, стали именовать генератором.
Альтернатор является важнейшей составляющей ГУ, поскольку на него возложена функция преобразования механической энергии оборотов коленвала в электроэнергию. Его основными механизмами являются ротор (подвижный) и статор (статичный).
По способу передачи магнитного поля все ГУ делятся на:
- синхронные или щеточные – с обмотками на роторе, по которым передается магнитное поле на статор с применением скользящих контактов – щеток;
- асинхронные – не имеющие обмоток и передающие остаточную намагниченность бесконтактным способом (другое название АА – бесщеточные).
СА более сложны по строению, поскольку имеют обмотки и щеточные узлы, соответственно более дорогостоящие и выносливые в эксплуатации. Именно они составляют львиную долю продаж ИБП – более 90% от общего количества. Но это вовсе не означает, что асинхронные альтернаторы хуже. Есть несколько технических нюансов, которые уравновешивают достоинства и недостатки обоих типов оборудования. Все зависит от того, где и с какой целью его применять.
Плюсы и минусы синхронных альтернаторов
Качественные СА должны комплектоваться медной, а не слабой алюминиевой обмоткой (будьте внимательны: некоторые производители таким образом пытаются снизить расходы на производство). Именно качественная обмотка и щеточный механизм обеспечивают равномерность тока на выходе (с отклонением не более 5 %), позволяют легко переносить повышенные нагрузки при запуске и непродолжительные колебания напряжения.
Чистый электроток очень важен для таких высокочувствительных пользователей, как ноутбуки, компьютеры, принтеры, телефоны, лабораторное и медицинское оборудование. И даже для такой привычной бытовой техники, как холодильники, ТВ, стиральные машинки также предпочтительным будет электроток, вырабатываемый синхронным генератором. Кроме того, только к щеточным ИБП можно подключать АВР (автоматический ввод резерва).
Итак, к неоспоримым плюсам щеточного узла и медной обмотки СА отнесем:
- стабильность напряжения;
- качественный электроток;
- надежность в работе.
При этом постоянное движение щеток способствует чрезмерному нагреву генератора. Применяющаяся в СА воздушная система охлаждения с вентилятором в целом достаточно надежна, но имеет существенный недостаток – эффект пылесоса. Активное втягивание вовнутрь пыли, грязи, влаги часто становится причиной неполадок в системе.
Но прогресс не стоит на месте, и сегодня ведущие производители находят все новые способы защиты оборудования от внешних факторов.
Выбирая генератор, обязательно интересуйтесь, к какому классу защиты он относится.
Минусы щеточных альтернаторов:
- попадание пыли и влаги;
- необходимость периодического техосмотра и замены щеток;
- высокая стоимость;
- создание помех для радиоволн.
Сильные и слабые стороны асинхронных альтернаторов
Подвижная часть бесщеточного АА не имеет обмотки и внешне напоминает маховик. Работу таких устройств обеспечивают только магнитное поле и конденсаторы. Технически они предельно просты, долговечны, не требуют постоянных техосмотров. Пыль и засоры в бесщеточные альтернаторы не проникают, как и осадки, под каким бы углом они ни шли. Охлаждение также не требуется. Поэтому АА обладают высоким уровнем защиты. Отсутствие вентилятора и медной обмотки делают вес таких агрегатов намного меньше. Но самый главный плюс бесщеточных конструкций – невосприимчивость к КЗ, что в особенности важно для сварочных генераторов.
Итак, перечислим все достоинства АА:
- хорошая защита;
- небольшие габариты и масса;
- низкая стоимость;
- отсутствие необходимости менять щетки.
Основной недостаток бесщеточных конструкций – нестабильность выходного напряжения, связанная в первую очередь с непереносимостью пусковых реактивных нагрузок. В сопроводительных документах к АА указывается возможность отклонения от нормы в 10 %, но в реальности скачки могут быть еще больше. Подключение системы АВР к таким агрегатам не предусмотрено.
Перепады напряжения в сети могут стать причиной поломки дорогого компьютерного и другого высокоточного оборудования, поэтому при покупке электростанций с асинхронными альтернаторами необходимо дополнительно устанавливать стартовый усилитель для нормализации выходного тока. Следует отметить, что у некоторых известных производителей двигатели способны поддерживать стабильность оборотов при колебаниях в сети, что также помогает добиться стабилизации выходного напряжения.
Так какой же тип альтернатора лучше?
Это зависит от того, как именно вы будете использовать оборудование.
- Для подключения компьютерной и бытовой техники, а также для лабораторий, медучреждений, офисов необходим щеточный генератор, желательно с АВР.
- Для строительных площадок, цехов и других мест, где возможно попадание в двигатель пыли, влаги, грязи, а также для сварочных работ на сто процентов подойдет бесщеточный генератор.
Как уже было сказано, синхронные генераторные установки все же более популярны даже несмотря на высокую стоимость. Ведь если испортится подключенное к ним электронное оборудование, это обойдется намного дороже. При этом инженеры продолжают работать над совершенствованием обоих типов альтернаторов. Так, у асинхронных напряжение на выходе становится все более стабильным, а синхронные постепенно улучшают уровень защиты.
Синхронный или Асинхронный генератор? Какая разница?
Для возбуждения ЭДС (электродвижущей силы) в обмотках статора (неподвижная часть генератора) нужно создать переменное магнитное поле. Это достигается вращением намагниченного ротора (другое его название — якорь). Для намагничивания используют разные приемы.
Так, у синхронного генератора на якоре имеются обмотки, на которые подается электрический ток. Изменяя его величину, можно влиять на магнитное поле, а следовательно, и на напряжение на выходе статорных обмоток. Роль регулятора прекрасно играет простейшая электрическая схема с обратной связью по току и напряжению. Благодаря этому способность синхронного альтернатора «проглатывать» кратковременные перегрузки очень высока и ограничена лишь омическим (активным) сопротивлением его обмоток.
Однако у такой схемы есть и недостатки. Прежде всего, ток приходится подавать на вращающийся ротор, для чего традиционно используют щеточный узел. Работая с довольно большими (особенно во время перегрузок) токами, щетки перегреваются и частично «выгорают». Это приводит к плохому их прилеганию к коллектору, к повышению омического сопротивления и к дальнейшему перегреву узла. Кроме того, подвижный контакт неизбежно искрит, а значит, становится источником радиопомех.
Чтобы избежать преждевременного износа, рекомендуется время от времени контролировать состояние щеточного узла и при необходимости очищать либо менять щетки. Кстати, после их замены желательно дать им время «приработаться» к коллектору, а уж затем нагружать станцию «по полной программе».
Многие самые современные синхронные генераторы снабжены бесщеточными системами возбуждения тока на катушках ротора (их еще называют brashless). Они лишены перечисленных недостатков, а потому предпочтительнее.
Асинхронный генератор вообще не имеет обмоток на роторе. Для возбуждения ЭДС в его выходной цепи используют остаточную намагниченность якоря. Конструктивно такой альтернатор намного проще, надежнее и долговечнее. К тому же, поскольку обмотки ротора охлаждать не нужно (их просто нет), корпус асинхронного генератора можно сделать закрытым и тем самым практически исключить попадание внутрь пыли и влаги.
К сожалению, асинхронники тоже не лишены недостатков. Стабильность напряжения на выходе у них обычно хуже, чем у синхронников. Да и способность к пусковым перегрузкам оставляет желать лучшего: при достижении некоторого критического значения тока в обмотках статора, ротор попросту размагничивается. Впрочем, намагнитить его несложно — достаточно подать на определенные входы указанное в инструкции напряжение.
Перечисленные «асинхронные проблемы» частично решают, оснащая станции регулятором напряжения и стартовым усилителем. Однако все эти «навороты» лишают агрегат его главного достоинства — простоты.
назад
Синхронные и асинхронные генераторы в Москве отличия и принцип работы
Каждый из нас знает, что такое устройство, как электростанция, представляет собой особый механизм, позволяющий преобразовывать один вид энергии в совершенно другой вид. Очень часто при выборе данного устройства у многих из нас возникает вопрос, какой его вид выбрать. Ведь на сегодняшний день одними из наиболее востребованных являются синхронные и асинхронные генераторы.
В чем отличия между этими двумя устройствами?
В том случае, если вы столкнулись с проблемой выбора и не знаете, какой вариант вам приобрести, в первую очередь вы должны рассмотреть отличительные особенности этих двух принципиально разных устройств.
Первое отличие, которое можно найти между этими устройствами – это режим работы. Рассматривая синхронный образец, следует понимать, что эта машина, которая осуществляет функционирование в постоянном режиме агрегата. В этом случае частота вращения ротора приравнивается к частоте вращения, так называемого магнитного поля.
Если же рассматривать работу асинхронного образца, то это машина, которая осуществляет свою деятельность по сравнению с предыдущим в режиме так называемого торможения. По сути, ротор устройства осуществляет некое опережение, но при этом направлен он в сторону действия магнитного поля.
Также при использовании и при выборе одной из этих моделей следует обращать внимание на некоторые особенности их применения. К таким особенностям следует отнести:
- точность синхронных — на порядок ниже
- асинхронные — обеспечивают поддержание бесперебойной подачи электрической энергии с достаточно большой точностью
- к асинхронным агрегатам зачастую подсоединяют многочисленную аппаратуру, которая достаточно чувствительна к очень резким перепадам напряжения.
По сути, эти особенности учитываются чаще всего при выборе бензинового генератора того или иного типа типа.
В том случае, если вы решились приобрести синхронный агрегат, вы должны понимать, что это устройство отлично подойдет для подключения всевозможного оборудования, размещенного в частных домах, холодильных установок, многочисленных строительных объектов и для так называемого аварийного электрического питания.
Что же касается асинхронных, то чаще всего подобное устройство приобретается для подсоединения разнообразного медицинского оборудования, электродвигателей и различных электрических инструментов. Поэтому, решившись на покупку установки, в первую очередь не забудьте ознакомиться с особенностями применения каждого из вышеприведенных вариантов.
Асинхронный генератор
Столкнувшись с проблемой выбора генератора, несомненно, вы встретите и такое понятие, как асинхронный генератор. Не всем понятно его значение. Если обратиться за толкованием к словарям, то там мы найдем такое определение: асинхронным генератором называется электрическая машина, которая работает в режиме генератора. Она является вспомогательным источником электрического тока малой мощности и тормозным устройством. Ротор генератора приводится в движение с помощью приводного двигателя. Направление его вращения совпадает с магнитным полем, но происходит с большей скоростью. При скольжении ротора, которое приобрело отрицательное значение, на валу генератора появляется тормозящий момент, и машина отдает в сеть электроэнергию. Для работы такого генератора требуется, чтобы в сети был генератор реактивной мощности, для чего подходит синхронная машина.
Чтобы выбрать генератор для дома и обеспечить свое жилище бесперебойным электричеством, необходимо познакомиться с его параметрами. Прежде всего, необходимо учитывать мощность генератора и суммарную нагрузку на него, сколько устройств он должен будет обеспечивать электроэнергией. К ним относятся самые необходимые в быту приборы: электроплита, освещение, чайник, бойлер. Все устройства не обязательно должны быть включены в сеть одновременно, главное, чтобы мощности генератора хватало без аварийных отключений обеспечивать их работу. При выборе надо ориентироваться на следующие характеристики: асинхронный генератор или синхронный, дизельный или бензиновый, мощность устройства и количество фаз.
Мощность генератора можно рассчитать следующим образом: для этого необходимо величину cosφ, которую имеет каждый электроприбор, разделить на его мощность, указанную в его технических характеристиках. Также можно вычислить мощность генератора.
Генераторы бывают двух видов: однофазные и трехфазные. Они предназначаются для различных целей. Если вы применяете трехфазный генератор, то необходимо обеспечивать между тремя фазами равномерную нагрузку. При использовании однофазного генератора такой проблемы не возникает. Генератор, работающий на бензине, удобнее применять в зимнее время, его бесперебойная работа равняется восьми часам. В отличие от него, дизельный генератора располагает большими моторесурсами и рассчитан на более длительный срок службы.
Перед тем как выбирать синхронный или асинхронный генератор, нужно определиться, каковы возможности генератора по обеспечению качественной работы с приборами, которые потребляют реактивную мощность, и как он выдерживает высокий пусковой ток. Синхронный генератор способен генерировать и активную, и реактивную мощность и вырабатывает электричество он более качественно. Такой генератор выдерживает пусковые токи, которые превышают в два-три раза номинальные. В то же время, цена его достаточно высока.
В отличие от синхронного, асинхронный генератор плохо приспособлен к пусковым токам, но является устойчивым к коротким замыканиям, а также перегрузкам. У асинхронного генератора выходное напряжение в меньшей степени подвержено нелинейным искажениям. Его используют для питания ламп накаливания, печи, утюга, радиотехники, электронагревателей, компьютеров и электронных устройств. Если предполагается использовать генератор с реактивными нагрузками, тогда потребуется запас по мощности в два-три раза. Его стоимость ниже, чем у синхронного генератора.
К положительным характеристикам генератора относят его низкий клирфактор, говорящий о количестве в его выходном напряжении высших гармоник. Это значение у него равно двум процентам. Таким образом, асинхронный двигатель-генератор способен вырабатывать только полезную энергию. К преимуществам асинхронного генератора можно отнести отсутствие у него деталей, чувствительных к внешним воздействиям, которые требуют замены и ремонта. По этой причине генератор в малой степени подвержен износу и рассчитан на длительную эксплуатацию.
Если вам необходим асинхронный двигатель, в режиме генератора функционирующий, то для этой цели подойдет коллекторный электродвигатель, имеющий постоянный магнит на статоре. При этом даже не потребуется вносить какие-либо серьезные переделки. Когда вал двигателя вращается с близкой к номинальному значению частотой, то будет вырабатываться постоянное напряжение. В качестве асинхронного генератора подойдут и шаговые двигатели, однако их надо будет вращать с небольшой частотой.
Асинхронный электрический генератор.Возбуждение асинхронного генератора
Принцип работы асинхронного электрического генератора
Во всех случаях асинхронная электрическая машина потребляет из сети реактивную мощность, необходимую для создания магнитного поля. При автономной работе асинхронной электрической машины в генераторном режиме магнитное поле в воздушном зазоре создается в результате взаимодействия магнитной движущийся силы магнитной силы всех фаз и магнитной движущийся силы обмотки ротора. Характер распределения магнитной движущийся силы точно такой же, как и в асинхронном электрическом двигателе(АД) , он также определяет характер распределения магнитного поля на полюсном делении. В асинхронном генераторе этот поток весьма близок к синусоидальному и при вращении ротора индуцирует в фазах статора и в обмотке ротора ЭДС Е| и Е2, которые можно принять синусоидальными.
В отличие от асинхронного электрического двигателя в асинхронном электрическом генераторе в данном случае ЭДС Е1 и Е2 являются активными, поддерживают ток в соответствующих цепях и в нагрузке, подключенной к выходным зажимам.
В установившемся режиме работы основные соотношения для асинхронного электрического генератора с самовозбуждением определяются из схемы замещения. Основное отличие только в том, что к ее выводам подключено сопротивление нагрузки 2Н = Кн +]ХН и конденсаторы для обеспечения самовозбуждения и регулирования напряжения при изменении нагрузки асинхронного электрического генератора с сопротивлениями Хс = 1/соС и Хск = 1/соСк.
Как видно, напряжение при работе под нагрузкой изменяется как за счет падения напряжения на сопротивлениях r1 и х1, так и за счет снижения магнитного потока Фот , связанного с размагничивающим действием магнитной движущийся силы ротора. Если магнитная цепь асинхронного электрического генератора выполнена с достаточно сильным насыщением, то поток Фот остается почти постоянным и напряжение U1 при увеличении нагрузки изменяется в меньшей степени, а его внешняя характеристика получается более «жесткой».
Способы регулирования напряжения автономного асинхронного генератора. Самовозбуждение асинхронного электрического генератора
Особенности самовозбуждения асинхронного генератора. Асинхронный элетродвигатель, подключенный к трехфазной сети переменного тока, при частоте вращения ротора, больше, чем частота вращения поля статора, переходит в генераторный режим и отдает в сеть активную мощность, потребляя из сети реактивную мощность, необходимую для создания вращающегося магнитного поля взаимной индукции. Тормозной электромагнитный момент, действующий на роторе, преодолевается приводным двигателем — дизелем, гидротурбиной, ветродвигателем и т.п.
Для возбуждения асинхронного электрогенератора необходимо наличие источника реактивной мощности — батареи конденсаторов или синхронного компенсатора, подключенных к обмотке статора. При этом почти естественной представляется работа асинхронного генератора при сверх синхронном скольжении, когда скорость вращения ротора выше скорости вращающегося магнитного поля. Однако практически асинхронный генератор может возбуждаться при частоте вращения ротора, значительно меньшей синхронной, причем значения напряжения и частоты тока оказываются пропорциональными частоте вращения ротора и, кроме того, зависящими от схемы соединения конденсаторов. Так, в эксперименте ( по опытным данным гл. инж. Штефана А.М. (НК ЭМЗ, г. Н.Каховка)) конденсаторный асинхронный мотор-редуктор типа АИРУ112-М2 при соединении батареи конденсаторов емкостью 3×120 мкФ в «звезду» возбуждается при скорости пр= 2133 об/мин с напряжением ГГф = 60 В и током фазы 1ф = 0,8 А, а при соединении тех же конденсаторов в «треугольник» напряжение =52 В и ток 1ф = 1,4А возникают при скорости пр= 1265 об/мин.
Весьма интересное явление наблюдалось в асинхронном генераторе серии А ИМН 90-L4 при включении емкости 40 мкФ только в одну из трех фаз. В этом случае возбуждение асинхронного генератора наступило при скорости п2 = 1369 об/мин с параметрами U1ф = =209 В, I = 1,29 А, Г = 44 Гц. При емкости С = 60 мкФ, включенной в одну из фаз, параметры возбуждения асинхронного электрогенератора были равны: п2 — 1300 об/мин, U = 500 В, I = 6,4 А, Г = 124 Гц. При увеличении частоты вращения ротора до синхронной (1500 об/мин) наблюдалось увеличение частоты тока до 400Гц. В некоторых случаях, наоборот, не удавалось добиться устойчивого возбуждения асинхронного генератора даже при сверх синхронной частоте вращения ротора. Например, для намагниченных гладких стального массивного и шихтованного роторов самовозбуждения не возникало при любых величинах присоединенной емкости.
Для массивного стального ротора с тонким экраном из меди, а также для массивного стального зубчатого ротора с торцовыми медными концами АГ устойчиво возбуждается при расчетном значении емкости. Асинхронная машина с гладкими роторами из меди или алюминия возбуждается без каких-либо дополнительных воздействий извне.
Таким образом, физические процессы самовозбуждения асинхронного генератора с полным основанием можно отнести к недостаточно изученным, что связано, по нашему мнению, с преимущественным использованием до настоящего времени АМ в качестве двигателя, с разработкой для него теории, расчетных методик и проектирования, а для генераторного режима эти машины проектировались и выпускались достаточно редко.
В маломощных системах генерирования применяются, как правило, АМ, предназначенные для работы в двигательном режиме с конденсаторным возбуждением.
Описание процесса самовозбуждения на принципе остаточной намагниченности магнитной цепи.
Современные работы по самовозбуждению АГ с помощью статических конденсаторов построены на трех подходах. Один из них базируется на принципе остаточной намагниченности магнитной цепи машины, начальная ЭДС от которой затем усиливается емкостным током в статоре . Рассмотрим этот подход.
Автономная работа асинхронного генератора в режиме самовозбуждения от потока остаточного намагничивания возможна, если к выводам обмотки статора подключить конденсаторы, необходимые как источник реактивной мощности от для возбуждения магнитного поля асинхронного электрогенератора, а при его работе на активно-индуктивную нагрузку эти конденсаторы должны служить источником реактивной мощности 0Н и для нагрузки.
Понравилось это:
Нравится Загрузка…